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INTRODUCTION: WHAT CAN AND CANNOT
BE COMPUTED?

There cannot be any [truths] that are so remote that they are not
eventually reached nor so hidden that they are not discovered.

— René Descartes, Discourse on the Method for Conducting
One’s Reason Well and for Seeking the Truth in the Sciences
(1637)

The relentless march of computing power is a fundamental force in modern
society. Every year, computer hardware gets better and faster. Every year,

the software algorithms running on this hardware become smarter and more
effective. So it’s natural to wonder whether there are any limits to this progress. Is
there anything that computers can’t do? More specifically, is there anything that
computers will never be able to do, no matter how fast the hardware or how smart
the algorithms?

Remarkably, the answer to this question is a definite yes: contrary to the
opinion of René Descartes in the quotation above, there are certain tasks that
computers will never be able to perform. But that is not the whole story.
In fact, computer scientists have an elegant way of classifying computational
problems according to whether they can be solved effectively, ineffectively,
or not at all. Figure 1.1 summarizes these three categories of computational
problems, using more careful terminology: tractable for problems that can be
solved efficiently; intractable for problems whose only methods of solution
are hopelessly time consuming; and uncomputable for problems that cannot
be solved by any computer program. The main purpose of this book is that we
understand how and why different computational problems fall into these three
different categories. The next three sections give an overview of each category
in turn, and point out how later chapters will fill in our knowledge of these
categories.
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Tractable
problems

Intractable
problems

Uncomputable
problems

Description can be solved
efficiently

method for
solving exists

but is hopelessly
time consuming

cannot be solved
by any computer

program

Computable
in theory � � ×

Computable
in practice � × (?) ×

Example shortest route
on a map decryption

finding all bugs
in computer

programs

Figure 1.1: Three major categories of computational problems: tractable, intractable,
and uncomputable. The question mark in the middle column reminds us that certain
problems that are believed to be intractable have not in fact been proved intractable—see
page 5.

1.1 TRACTABLE PROBLEMS

As we can see from figure 1.1, a computational problem is tractable if we can solve
it efficiently. Therefore, it’s computable not only in theory, but also in practice.
We might be tempted to call these “easy” problems, but that would be unfair.
There are many tractable computational problems for which we have efficient
methods of solution only because of decades of hard work by computer scientists,
mathematicians, and engineers. Here are just a few of the problems that sound
hard, but are in fact tractable:

• Shortest path. Given the details of a road network, find the shortest route
between any two points. Computers can quickly find the optimal solution
to this problem even if the input consists of every road on earth.

• Web search. Given the content of all pages on the World Wide Web, and
a query string, produce a list of the pages most relevant to the query. Web
search companies such as Google have built computer systems that can solve
this problem in a fraction of a second.

• Error correction. Given some content (say, a large document or software
package) to be transmitted over an unreliable network connection (say, a
wireless network with a large amount of interference), encode the content
so it can be transmitted with a negligible chance of any errors or omissions
occurring. Computers, phones, and other devices are constantly using error
correcting codes to solve this problem, which can in fact be achieved
efficiently and with essentially perfect results.

In this book, we will discover that the notion of “tractable” has no precise
scientific definition. But computer scientists have identified some important
underlying properties that contribute to the tractability of a problem. Of these,
the most important is that the problem can be solved in polynomial time.
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Chapter 11 defines polynomial-time problems, and the related complexity classes
Poly and P.

1.2 INTRACTABLE PROBLEMS

The middle column of figure 1.1 is devoted to problems that are intractable. This
means that there is a program that can compute the answer, but the program is
too slow to be useful—more precisely, it takes too long to solve the problem on
large inputs. Hence, these problems can be solved in theory, but not in practice
(except for small inputs). Intractable problems include the following examples:

• Decryption. Given a document encrypted with a modern encryption
scheme, and without knowledge of the decryption key, decrypt the doc-
ument. Here, the difficulty of decryption depends on the size of the
decryption key, which is generally thousands of bits long in modern
implementations. Of course, an encryption scheme would be useless if
the decryption problem were tractable, so it should be no surprise that
decryption is believed to be intractable for typical key sizes. For the schemes
in common use today, it would require at least billions of years, even using
the best known algorithms on the fastest existing supercomputer, to crack
an encryption performed with a 4000-bit key.

• Multiple sequence alignment. Given a collection of DNA fragments,
produce an alignment of the fragments that maximizes their similarity. An
alignment is achieved by inserting spaces anywhere in the fragments, and
we deliberately omit the precise definition of “optimal” alignment here.
A simple example demonstrates the main idea instead. Given the inputs
CGGATTA, CAGGGATA, and CGCTA, we can align them almost perfectly as
follows:

C GG ATTA
CAGGGAT A
C G CT A

This is an important problem in genetics, but it turns out that when the
input consists of a large number of modest-sized fragments, the best known
algorithms require at least billions of years to compute an optimal solution,
even using the fastest existing supercomputer.

Just as with “tractable,” there is no precise scientific definition of “intractable.”
But again, computer scientists have uncovered certain properties that strongly
suggest intractability. Chapters 10 and 11 discuss superpolynomial and exponential
time. Problems that require superpolynomial time are almost always regarded
as intractable. Chapter 14 introduces the profound notion of NP-completeness,
another property that is associated with intractability. It’s widely believed that
NP-complete problems cannot be solved in polynomial time, and are therefore
intractable. But this claim depends on the most notorious unsolved problem in
computer science, known as “P versus NP.” The unresolved nature of P versus NP
explains the presence of a question mark (“?”) in the middle column of figure 1.1:
it represents the lack of complete certainty about whether certain problems are
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6 • 1 Introduction

intractable. Chapter 14 explains the background and consequences of the P versus
NP question.

1.3 UNCOMPUTABLE PROBLEMS

The last column of figure 1.1 is devoted to problems that are uncomputable. These
are problems that cannot be solved by any computer program. They cannot be
solved in practice, and they cannot be solved in theory either. Examples include
the following:

• Bug finding. Given a computer program, find all the bugs in the program.
(If this problem seems too vague, we can make it more specific. For example,
if the program is written in Java, the task could be to find all locations in the
program that will throw an exception.) It’s been proved that no algorithm
can find all the bugs in all programs.

• Solving integer polynomial equations. Given a collection of polyno-
mial equations, determine whether there are any integer solutions to the
equations. (This may sound obscure, but it’s actually an important and
famous problem, known as Hilbert’s 10th Problem. We won’t be pursuing
polynomial equations in this book, so there’s no need to understand the
details.) Again, it’s been proved that no algorithm can solve this problem.

It’s important to realize that the problems above—and many, many others—have
been proved uncomputable. These problems aren’t just hard. They are literally
impossible. In chapters 3 and 7, we will see how to perform these impossibility
proofs for ourselves.

1.4 A MORE DETAILED OVERVIEW OF THE BOOK

The goal of this book is that we to understand the three columns of figure 1.1:
that is, we understand why certain kinds of problems are tractable, intractable, or
uncomputable. The boundary between computable and uncomputable problems
involves the field of computability theory, and is covered in part I of the book
(chapters 2–9). The boundary between tractable and intractable problems is the
subject of complexity theory; this is covered in part II of the book (chapters 10–14).
Part III examines some of the origins and applications of computability and
complexity theory. The sections below give a more detailed overview of each of
these three parts.

This is a good time to mention a stylistic point: the book doesn’t include
explicit citations. However, the bibliography at the end of the book includes full
descriptions of the relevant sources for every author or source mentioned in the
text. For example, note the bibliographic entries for Descartes and Hilbert, both
of whom have already been mentioned in this introductory chapter.

Overview of part I: Computability theory

Part I asks the fundamental question, which computational problems can be
solved by writing computer programs? Of course, we can’t get far without formal
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definitions of the two key concepts: “problems” and “programs.” Chapter 2 kicks
this off by defining and discussing computer programs. This chapter also gives
a basic introduction to the Python programming language—enough to follow
the examples used throughout the book. Chapter 3 plunges directly into one
of the book’s most important results: we see our first examples of programs
that are impossible to write, and learn the techniques needed to prove these
programs can’t exist. Up to this point in the book, mathematical formalism is
mostly avoided. This is done so that we can build an intuitive understanding
of the book’s most fundamental concepts without any unnecessary abstraction.
But to go further, we need some more formal concepts. So chapter 4 gives
careful definitions of several concepts, including the notion of a “computational
problem,” and what it means to “solve” a computational problem. At this point,
we’ll be ready for some of the classical ideas of computability theory:

• Turing machines (chapter 5). These are the most widely studied formal
models of computation, first proposed by Alan Turing in a 1936 paper
that is generally considered to have founded the discipline of theoretical
computer science. We will see that Turing machines are equivalent to
Python programs in terms of what problems they can solve.

• Universal computer programs (chapter 6). Some programs, such as your
own computer’s operating system, are capable of running essentially any
other program. Such “universal” programs turn out to have important
applications and also some philosophical implications.

• Reductions (chapter 7). The technique of “reducing” problem X to problem
Y (i.e., using a solution for Y to solve X) can be used to show that many
interesting problems are in fact uncomputable.

• Nondeterminism (chapter 8). Some computers can perform several actions
simultaneously or make certain arbitrary choices about what action to take
next, thus acting “nondeterministically.” This behavior can be modeled
formally and has some interesting consequences.

• Finite automata (chapter 9). This is a model of computation even simpler
than the Turing machine, which nevertheless has both theoretical and
practical significance.

Overview of part II: Complexity theory

Part II addresses the issue of which computational problems are tractable—that
is, which problems have efficient methods of solution. We start in chapter 10
with the basics of complexity theory: definitions of program running times, and
discussions of which computational models are appropriate for measuring those
running times. Chapter 11 introduces the two most fundamental complexity
classes. These are Poly (consisting of problems that can be solved in polynomial
time) and Expo (consisting of problems that can be solved in exponential
time). Chapter 12 introduces PolyCheck, an extremely important complexity class
with a somewhat strange definition. PolyCheck consists of problems that might
themselves be extremely hard to solve, but whose solutions can be efficiently
verified once they are found. Chapter 12 also examines two classes that are closely
related to PolyCheck: NPoly and NP. A crucial tool in proving whether problems are
“easy” or “hard” is the polynomial-time mapping reduction; this is the main topic
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of chapter 13. The chapter also covers three classic problems that lie at the heart
of complexity theory: CIRCUITSAT, SAT, and 3-SAT. Thus equipped, chapter 14
brings us to the crown jewel of complexity theory: NP-completeness. We’ll
discover a huge class of important and intensively studied problems that are all, in
a certain sense, “equally hard.” These NP-complete problems are believed—but
not yet proved—to be intractable.

Overview of part III: Origins and applications

Part III takes a step back to examine some origins and applications of computabil-
ity and complexity theory. In chapter 15, we examine Alan Turing’s revolutionary
1936 paper, “On computable numbers.” We’ll understand the original definition
of the now-famous Turing machine, and some of the philosophical ideas in the
paper that still underpin the search for artificial intelligence. In chapter 16, we see
how Turing’s ideas can be used to prove important facts about the foundations of
mathematics—including Gödel’s famous incompleteness theorem, which states
there are true mathematical statements that can’t be proved. And in chapter 17,
we look at the extraordinary 1972 paper by Richard Karp. This paper described
21 NP-complete problems, catalyzing the rampage of NP-completeness through
computer science that still reverberates to this day.

1.5 PREREQUISITES FOR UNDERSTANDING THIS BOOK

To understand this book, you need two things:

• Computer programming. You should have a reasonable level of familiarity
with writing computer programs. It doesn’t matter which programming
language(s) you have used in the past. For example, some knowledge of any
one of the following languages would be good preparation: Java, C, C++, C#,
Python, Lisp, Scheme, JavaScript, Visual Basic. Your level of programming
experience should be roughly equivalent to one introductory college-level
computer science course, or an advanced high-school computer science
course. You need to understand the basics of calling methods or functions
with parameters; the distinction between elementary data types like strings
and integers; use of arrays and lists; control flow using if statements and
for loops; and basic use of recursion. The practical examples in this book
use the Python programming language, but you don’t need any background
in Python before reading the book. We will be using only a small set of
Python’s features, and each feature is explained when it is introduced. The
online book materials also provide Java versions of the programs.

• Some math. Proficiency with high-school math is required. You will need
familiarity with functions like x3, 2x, and log x . Calculus is not required.
Your level of experience should be roughly equivalent to a college-level pre-
calculus course, or a moderately advanced high-school course.

The two areas above are the only required bodies of knowledge for under-
standing the book. But there are some other spheres of knowledge where some
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previous experience will make it even easier to acquire a good understanding of
the material:

• Proof writing. Computability theory and complexity theory form the
core of theoretical computer science, so along the way we will learn the
main tools used by theoretical computer scientists. Mostly, these tools are
mathematical in nature, so we will be using some abstract, theoretical ideas.
This will include stating formal theorems, and proving those theorems
rigorously. Therefore, you may find it easier to read this book if you have
first studied proof writing. Proof writing is often taught at the college level in
a discrete mathematics course, or sometimes in a course dedicated to proof
writing. Note that this book does not assume you have studied proof writing.
All the necessary proof techniques are explained before they are used. For
example, proof by contradiction is covered in detail in section 3.1. Proof by
induction is not used in this book.

• Algorithm analysis and big-O notation. Part II of the book relies heavily
on analyzing the running time of computer programs, often using big-O
notation. Therefore, prior exposure to some basics of program analysis using
big-O (which is usually taught in a first or second college-level computer
science course) could be helpful. Again, note that the book does not
assume any knowledge of big-O notation or algorithm analysis: sections 10.2
and 10.3 provide detailed explanations.

1.6 THE GOALS OF THE BOOK

The book has one fundamental goal, and two additional goals. Each of these goals
is described separately below.

The fundamental goal: What can be computed?

The most fundamental goal of the book has been stated already: we want
to understand why certain kinds of problems are tractable, intractable, or
uncomputable. That explains the title of the book: What Can Be Computed? Quite
literally, part I answers this question by investigating classes of problems that are
computable and uncomputable. Part II answers the question in a more nuanced
way, by addressing the question of what can be computed efficiently, in practice.
We discover certain classes of problems that can be proved intractable, others that
are widely believed to be intractable, and yet others that are tractable.

Secondary goal 1: A practical approach

In addition to the primary goal of understanding what can be computed, the
book has two secondary goals. The first of these relates to how we will gain our
understanding: it will be acquired in a practical way. That explains the book’s
subtitle, A Practical Guide to the Theory of Computation. Clearly, the object of
our study is the theory of computation. But our understanding of the theory of
computation is enhanced when it is linked to the practice of using computers.
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Therefore, an important goal of this book is to be ruthlessly practical whenever
it’s possible to do so. The following examples demonstrate some of the ways that
we emphasize practice in the theory of computation:

• Our main computational model is Python programs, rather than Turing
machines (although we do study both models carefully, using Turing
machines when mathematical rigor requires it).

• We focus on real computational problems, rather than the more abstract
“decision problems,” which are often the sole focus of computational theory.
For more details, see the discussion on page 59.

• We start off with the most familiar computational model—computer
programs—and later progress to more abstract models such as Turing
machines and finite automata.

Secondary goal 2: Some historical insight

The other secondary goal of the book is to provide some historical insight into
how and why the theory of computation developed. This is done in part III of
the book. There are chapters devoted to Turing’s original 1936 paper on com-
putability, and to Karp’s 1972 paper on NP-completeness. Sandwiched between
these is a chapter linking Turing’s work to the foundations of mathematics,
and especially the incompleteness theorems of Gödel. This is important both
in its own right, and because it was Turing’s original motivation for studying
computability. Of course, these chapters touch on only some small windows into
the full history of computability theory. But within these small windows we
are able to gain genuine historical insight. By reading excerpts of the original
papers by Turing and Karp, we understand the chaotic intellectual landscape
they faced—a landscape vastly different to today’s smoothly manicured, neatly
packaged theory of computation.

1.7 WHY STUDY THE THEORY OF COMPUTATION?

Finally, let’s address the most important question: Why should we learn about the
theory of computation? Why do we need to know “what can be computed”? There
are two high-level answers to this: (a) it’s useful and (b) the ideas are beautiful and
important. Let’s examine these answers separately.

Reason 1: The theory of computation is useful

Computer scientists frequently need to solve computational problems. But what
is a good strategy for doing so? In school and college, your instructor usually
assigns problems that can be solved using the tools you have just learned. But
the real world isn’t so friendly. When a new problem presents itself, some
fundamental questions must be asked and answered. Is the problem computable?
If not, is some suitable variant or approximation of the problem computable? Is
the problem tractable? If not, is some suitable variant or approximation of the
problem tractable? Once we have a tractable version of the problem, how can we
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compare the efficiency of competing methods for solving it? To ask and answer
each of these questions, you will need to know something about the theory of
computation.

In addition to this high-level concept of usefulness, the theory of computation
has more specific applications too, including the following:

• Some of the techniques for Turing reductions (chapter 7) and polynomial-
time mapping reductions (chapter 13) are useful for transforming real-world
problems into others that have been previously solved.

• Regular expressions (chapter 9) are often used for efficient and accurate text-
processing operations.

• The theory of compilers and other language-processing tools depends heav-
ily on the theory of automata.

• Some industrial applications (e.g., circuit layout) employ heuristic methods
for solving NP-complete problems. Understanding and improving these
heuristic methods (e.g., SAT-solvers) can be helped by a good understanding
of NP-completeness.

Let’s not overemphasize these arguments about the “usefulness” of the theory
of computation. It is certainly possible to be successful in the technology industry
(say, a senior software architect or database administrator) with little or no
knowledge of computability and complexity theory. Nevertheless, it seems clear
that a person who does have this knowledge will be better placed to grow, adapt,
and succeed in any job related to computer science.

Reason 2: The theory of computation is beautiful and important

The second main reason for studying the theory of computation is that it contains
profound ideas—ideas that deserve to be studied for their beauty alone, and for
their important connections to other disciplines such as philosophy and math-
ematics. These connections are explicit even in Turing’s 1936 “On computable
numbers” paper, which was the very first publication about computability.
Perhaps you will agree, after reading this book, that the ideas in it have the same
qualities as great poetry, sculpture, music, and film: they are beautiful, and they
are worth studying for their beauty.

It’s worth noting, however, that our two reasons for studying the theory of
computation (which could be summarized roughly as “usefulness” and “beauty”)
are by no means distinct. Indeed, the two justifications overlap and reinforce each
other. The great Stanford computer scientist Donald Knuth once wrote, “We have
some freedom in setting up our personal standards of beauty, but it is especially
nice when the things we regard as beautiful are also regarded by other people as
useful.” So, I hope you will find the ideas in the rest of the book as useful and
beautiful as I do.

EXERCISES

1.1 Give one example of each of the following types of problems: (i) tractable,
(ii) intractable, and (iii) uncomputable. Describe each problem in 1 to 2
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sentences. Don’t use examples that have already been described in this chapter—
do some research to find different examples.

1.2 In a few sentences of your own words, describe why you are interested
in studying the theory of computation. Which, if any, of the reasons given in
section 1.7 do you feel motivated by?

1.3 Part II of the book explores the notion of intractability carefully, but this
exercise gives some informal insight into why certain computational problems
can be computable, yet intractable.

(a) Suppose you write a computer program to decrypt an encrypted password
using “brute force.” That is, your program tries every possible encryption
key until it finds the key that successfully decrypts the password. Suppose
that your program can test one billion keys per second. On average, how
long would the program need if the key is known to be 30 bits long?
What about 200-bit keys, or 1000-bit keys? Compare your answers with
comprehensible units, such as days, years, or the age of the universe. In
general, each time we add a single bit to the length of the key, what
happens to the expected running time of your program?

(b) Consider the following simplified version of the multiple sequence align-
ment problem defined on page 5. We are given a list of 5 genetic strings
each of length 10, and we seek an alignment that inserts exactly 3 spaces in
each of the strings. We use a computer program to find the best alignment
using brute force: that is, we test every possible way of inserting 3 spaces
into the 10-character strings. Approximately how many possibilities need
to be tested? If we can test one billion possibilities per second, what is the
running time of the program? What if there are 20 genetic strings instead
of 5? If there are N genetic strings, what is the approximate running time
in terms of N?

1.4 Consult a few different sources for the definition of “tractable” as it
relates to computational problems. Compare and contrast the definitions, paying
particular attention to the definition given in this chapter.

1.5 Interview someone who studied computer science at college and has now
graduated. Ask them if they took a course on the theory of computation in
college. If so, what do they remember about it, and do they recommend it to
you? If not, do they regret not taking a computational theory course?
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prime numbers, 51, 237
private key, 216
problem. See computational problem
program, 7. See also computer program,

Python program
programming, xvii, 8
programming language, 8, 52, 91, 93, 104,

176, 188, 195
proof by contradiction, 30–31
proof system, 333, 335
proof-writing, 9
protein-folding, 301
provable. See statement
PROVABLEINPEANO, 343
pseudo-code, 139, 210
pseudo-polynomial time, 212, 311
public key, 216
pumping, 184

cutoff, 184
lemma, 185–187

pushdown automaton, xvii, xviii, 173.
See also the online supplement

Python function, 16
Python program, 10, 15–21, 23–26, 95, 97,

98, 221, 371
definition of, 24
halting of, 126
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impossible, 30–44
language of, 51
nondeterministic. See nondeterministic
output, 24
reductions via, 138
running time of, 206–210, 220
SISO, 18–21, 23, 26, 41, 45
universal, 104–105

Python programming language, 7, 8, 15
version of, 16, 23, 25, 97, 209

pythonSort.py, 47

Quad, 222
quantum algorithm, 101
quantum computer, 98, 220, 221, 238, 371
quasipolynomial, 202, 246, 248, 309

RAM, 92, 93
random-access tape, 92
randomness, xviii, 24, 223
read-write head, 72
recognize, 52, 65, 113, 134, 343
recognizeEvenLength.py, 66
recursive language. See language
recursively enumerable. See language
recursiveness, 327
reduction, xviii, 7, 11, 116–142, 323, 371.

See also polyreduction, Turing
reduction

for easiness, 116–118
for hardness, 118–120

reference computer system, 23, 24, 130,
206

regex. See regular expression
register, 93
regular expression, xviii, 11, 175–181,

333, 339
primitive, 176
pure, 176–177
standard, 177–178

regular language. See language
reject

for nfa, 170
for Python program, 25, 78
for Turing machine, 74
implicit, 82, 172

reject state, 73
repeated N-match, 334
repetition, 52
RestrictedBinAdLogic, 337
returnsNumber.py, 23
reverse, 187

rf(), 17
Rice’s theorem, xviii, 123, 133, 134,

139, 371
Rivest, Ron, 216
ROM, 93
root, 49
RSA, 216, 311
rule 110 automaton, 109
Run Module, 17
running time. See also Turing machine

absolute, 197, 371
asymptotic, 197, 371
nondeterministic, 258, 266

Russell, Bertrand, 143

SAT, 8, 281–284, 286, 287, 289, 290,
296–298, 302, 353, 356, 361

definition of, 284
real-world inputs for, 310

SAT-solver, 11
satisfiability, 281, 282
satisfy

Boolean formula, 283
circuit, 281

Saxena, Nitin, 237
scanned symbol, 73, 319
Schocken, Shimon, 95
search engine. See web search
search problem, 57
Searle, John, 15, 27
self-reflection, 33
Selman, Alan, 272
Shamir, Adi, 216
shell window, 16
shiftInteger, 83
shortest path. See SHORTESTPATH
SHORTESTPATH, 4, 55, 60, 235, 236, 310
SHORTESTPATHLENGTH, 58
simulateDfa.py, 166
simulateTM.py, 97
simulation, 86

chain of, 86
costs, 217–221

Sipser, Michael, xvi, 89, 346
SISO, 18. See also Python program
soft-O, 202
software verification, 41, 281
solution, 54

correct, 251
solution set, 54
solve, 62
sorted, 45, 217
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sorting algorithms, 45–46, 227
complexity of, 217

SORTWORDS, 46, 62, 217, 228
split(), 19
splitting a clause. See clause
start state, 73
state diagram, 75, 165

abbreviated notation for, 78
for nfas, 168–169

state set, 73
statement, 333, 335

provable, 334, 336
Stearns, Richard, 228
str(), 20
strict nfa. See nfa
string, 50
subexponential, 202
SUBSETSUM, 257
subtraction, 213
superpolynomial, 5, 202, 228, 237
symbol, 49, 72, 319

first kind, 320, 321
second kind, 320, 321

syntaxError.py, 23

tape, 72, 319
TASKASSIGNMENT, 307, 310, 311
term, 198. See also dominant

basic, 199
terminate. See halt
theory course, xv
thread, 24, 144, 158, 258

child, 149
Python, 144
root, 149

threading module, 144, 145
threshold problem, 57
threshToOpt.py, 69
throwsException.py, 23
time complexity, 205, 207, 210–217, 244
time constructible, 222
Time( f (n)), 222
tractable, 3–5, 7, 245
transducer, 77, 158
transition function, 74, 75, 157, 165, 169
transitivity

of dominant functions, 199
of polyequivalence, 290
of Turing reductions, 122

traveling salesperson problem. See TSP
tree, 49

rooted, 49

TRUEINPEANO, 343
truth assignment, 337
truth problem, 339
Tseytin transformation, 285–287, 290
TSP, 232, 235, 310
TSPD, 253
TSPPATH, 235
Turing equivalent, 98
Turing machine, xvii, xviii, 7, 8, 10, 25, 26,

71–102, 143, 164, 173, 181, 195, 209,
302, 328, 354, 371

as defined by Turing, 317–323
clone, 154
definition of, 74
deterministic, 167
multi-tape, 86–91, 98, 217, 218, 327
nondeterministic, 152, 154–158, 164,

167, 354
oracle, 121
random-access, 92–95, 101
read-only, 191
running time of, 204–206
universal, 105–107

Turing reduction, 11, 136, 139, 273,
276, 317

definition of, 120
polytime, 274, 299

Turing test, 324, 327, 328
Turing’s thesis, 329
Turing, Alan, 7, 8, 10, 11, 30, 33, 39, 71, 73,

86, 106, 126, 317, 346, 349, 352, 370
two-way infinite tape, 78, 88–89

UHC, 236, 277–281, 296, 358, 364–365
definition of, 277

unary, 244
uncomputable problem, 3, 4, 6, 118,

123–140, 299, 370, 371
definition of, 62

undecidable, xviii, 63
language, 64
logical system, 343, 345–346
problem, 62, 113, 134, 317, 323, 349

UNDIRECTEDHAMILTONCYCLE, see UHC
Unicode, 21, 51
union, 52
universal computation, xviii, 7, 103–115,

123, 135, 158, 219, 317, 370. See also
Turing machine, Python program

real-world, 107–110
universal.py, 105
UNIX, 176
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unrecognizable, 158
unsure, 253
utils.py, 17
utils.readfile(), 17

verifier, 250–256, 371
definition of, 251
polytime, 254–256

verifyFactor.py, 251
verifyFactorPolytime.py, 254
verifyTspD.py, 253
vertex, 47

waitForOnePosOrAllNeg(), 147
WCBC, xv
weaker computational model, 98, 181
weather forecasting, 301
web search, 4, 159
weirdCrashOnSelf.py, 40
weirdH.py, 241
weirdYesOnString.py, 38, 241

well-formed, 333, 335
whitespace, 19, 21, 54
wire, 282
witness, 266
Wolfram, Stephen, 330
worst-case, 196, 205

YES, 64
yes.py, 33, 71
YESONALL, 124
YESONEMPTY, 124
yesOnSelf.py, 35, 37, 39
YESONSOME, 124
YESONSTRING, 63, 124
yesOnString.py, 33, 37–39
yesViaComputesF.py, 133
yesViaGAGA.py, 119
yesViaHalts.py, 127

ZeroDivisionError, 22
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