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Introduction

Walter Scheidel

SCIENCE HAS LONG been making an enormous contribution to our under-
standing of the ancient past. Archaeology is simply unthinkable without it,
and the study of various types of source material from inscriptions and coins
to papyri and palimpsests has greatly benefited from scientific analysis. In re-
cent years, the contribution of science has broadened even further as entirely
new types of evidence from genetics to climate proxies have been brought to
bear on historical inquiries. Thanks to this accelerating expansion, the study of
history in general is now approaching a new stage of interdisciplinarity that
is firmly grounded in the recognition that human and natural history are inti-
mately and inseparably intertwined.

This book shows that the study of the ancient Roman world is no exception
to this trend.! Climate is given pride of place (Chapter 1), a powerful influence
on the development of agrarian societies that often survived on narrow mar-
gins. It remains a formidable challenge to reconstruct meaningful patterns
from local data without obscuring local variation. Yet for the first time, we are
now able to glimpse the contours of climate change in the long term. Roman
power expanded and flourished during a period of favorable conditions—
warm, stable, and moist in the right places. Given that Rome’s imperial reach
turned out to be a unique outlier in the history of western Eurasia, this may
well be more than just a coincidence and calls for further inquiry into the inter-
action of institutions, geopolitics, and environmental factors that produced
this outcome.

From the second century CE onwards, growing climatic instability accom-
panied the fitful decline of Roman power. While a warming trend in the fourth
century coincided with temporary imperial recovery in the West, increased
precipitation aided development in the East. Prolonged droughts may have
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been implicated in population movements in the Central Asian steppe in the
fourth century and in Arabia two and three centuries later. Even more omi-
nously, the fifth and sixth centuries, a time of upheaval for the Mediterranean,
experienced secular cooling coupled with a surge in volcanic activity. The histo-
rian’s agenda is clear: while the temporal association between trends in macro-
social development and climatic conditions is increasingly well documented,
the complexity of causal relations remains very much in need of detailed anal-
ysis. The history of climate change is also the history of human resilience, and
we must ask not only how Roman society was affected by environmental forces
but also how it responded to them. Moreover, other ecological factors such as
pathogens or deforestation also need to be taken into account.

The study of plant remains is a complementary field of investigation (Chap-
ter 2), closely tied up as it is with that of climatic conditions, even though the
connections between them are yet to be explored in depth. Existing research
has put emphasis on the spread of cultivable crops under the aegis of Roman
rule. The dissemination of naked wheats that were suitable for making bread
is one example; charred remains of oil pressings that point to the expansion
of oleiculture are another. We can track how particular crops were at first im-
ported, sometimes over long distances, and later incorporated into local farm-
ing regimes, and also how widely such crops came to be adopted and consumed.
These observations are germane to big questions about the nature of Roman
economic development. To what extent were these processes driven by imperial
rule as such or were merely the by-product of ongoing long-term growth, just
as farming itself had once spread from the Middle East? How “Roman” was
the Roman economy, in the sense of being shaped by empire? The food supply
of the Roman army is a case in point: how did plant foods found at military
sites compare to those present among the local civilian population? Change
over time in the sources of food and timber required by the military reveal
how state-sponsored demand affected patterns of production. The influence
of empire is also visible in the fact that the Roman conquest of Britain closely
coincided with the introduction of grain beetles that thrived in large open gra-
naries of the kind set up by the occupiers. Plant remains recovered at Red Sea
ports shed light on the dynamics of long-distance trade that would otherwise
be irrecoverable, such as the provenance of merchant ships and change over
time. Evidence of plant production within urban sites is highly relevant to de-
bates about population size: if the finding that one-sixth of Pompeii’s surface
area was given over to plant production is anything to go by, Roman cities may
not have been as densely inhabited as some would like to think.

But above all, plant remains are a key source of information regarding diet.
The discovery of dozens of different plant species at a whole range of Roman-
era sites speaks to the scale and scope of economic development: that peri-
od’s new-found diversity of food consumption was not necessarily restricted to
elite settings but was also present in more modest or rural locales. This has
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considerable ramifications for ongoing debates about Roman well-being and
the distribution of gains from growth and commercial integration. The inhab-
itants of northwestern Europe in particular—a region that felt the transforma-
tive power of imperial rule more than many others—enjoyed greatly improved
access to and diversity of foodstufTs.

Animal remains offer similar insights (Chapter 3). Patterns of meat con-
sumption have been studied across time and space, linking it to “Romaniza-
tion” and other processes. Just like crops, animal species spread under Roman
rule. Increases in the size of domestic animals in Roman Italy point to produc-
tivity gains. A combination of osteometric and genetic investigations helps clar-
ify how much this progress owed to breeding or the introduction of imported
varieties. The study of animal remains has enlightened us about various kinds
of transfers, from the export of Nile fish to Asia Minor to the migrations of
the black rat, which eventually came to be instrumental in the transmission
of bubonic plague. Skeletal pathologies, for instance those that document the
use of cows alongside oxen for plowing, add to our knowledge of the efficiency
of the rural economy. Feeding regimes inferred from dental micro-wear tell us
if animals were sustained by pasture or fodder, and variations in heavy metal
deposits in goat bones have even been used to track changes in their proximity
to human settlements.

Yet however much the remains of ancient plants, livestock, and pests may
have to teach us, it is the human body that takes center stage (Chapter 4). It
is one thing to observe which crops or animals had spread or were present at
a particular site; it is another one entirely to examine how such findings cor-
relate with the physical well-being of people at the time. In the absence of con-
temporary statistics on food consumption or public health, human bones and
teeth are the most important source of information about nutritional status,
health, and morbidity in the Roman world. Without them, we cannot hope to
observe change over time, both within a given person’s life and across genera-
tions or centuries. Human skeletal remains form the biggest archive of what
it was like, in the most fundamental terms, to “be Roman.”

Not all lines of inquiry are equally promising. Longevity is a crucial vari-
able in assessing overall well-being and levels of development, but it is gen-
erally poorly or not at all attested outside very narrow settings, most notably
the papyrological census record of Roman Egypt. Unfortunately, aggregations of
human remains in ancient cemeteries tend to be an unreliable guide to the age
structure of past populations. This raises the question whether exceptional
cases that have produced demographically plausible patterns are capable of
vindicating paleodemographic reconstructions. After all, even a broken clock
is sometimes right. But maybe we have been barking up the wrong tree: in-
stead of bemoaning the manifold biases that have shaped (and, from a de-
mographer’s perspective, spoiled) the funerary record, these very biases are
likely to reflect cultural practices and preferences that are very much worth
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investigating. In the end, bones may have to tell us more about culture than
about demography, a valuable reminder of osteology’s ability to shed light on
life in the past well beyond the physiological dimension of human existence.

Bones and teeth are of paramount importance in identifying a wide variety
of ailments that can often be linked to specific infections, occupational haz-
ards, and cultural norms. It is important to be aware of the limitations of this
evidence: the inconclusive debate about the connection between certain types
of porotic lesions and malaria stands as a warning against overly confident
identifications of Roman pathogen loads. The most common and deadliest
diseases of the ancient world, such as gastro-intestinal infections, generally
remain hidden from view, and mummified bodies, which allow a wider range
of investigations, are confined to just one corner of the Roman world and even
there have not fully received the attention they deserve. Even so, considerable
progress has been made. The bodies of infants and children hold out particu-
lar promise, as dental enamel analysis has begun to shed light on weaning and
sanitation practices that would otherwise remain obscure. The early, formative
years are in some ways also the ones most worth knowing about, and it should
be remembered that children and adolescents would have accounted for over
a third of any ancient population. If we ultimately end up with more detailed
information about children than adults, this will help offset the general scar-
city of information about this critical phase of the ancient life cycle.

Much the same is true for diet. Stable isotope analysis of teeth and bones
provides valuable clues about the types of food people used to consume, even
though in practice precision remains an elusive goal. Isotopic studies have
been at their most successful in ascertaining the relative weight of terrestrial
and marine food sources for different groups of people. Given that a sizeable
share of the population of the Roman Empire was concentrated in coastal
areas where access to seafood was at least an option and that processed
marine-based foods were shipped over long distances, this metric is more use-
ful than it might seem in illuminating dietary variations rooted in class and
gender as well as geography. However, the biggest question concerns the over-
all importance of cereals as opposed to animal products in Roman-era diets,
and there much work remains to be done.

Last but not least, stable isotope analysis helps us track migration at dif-
ferent stages of the life cycle. Because humans acquire oxygen and strontium
isotopic signatures by consuming local food and water—in their dental enamel
in childhood and in their bones throughout their lives—comparison of such
profiles with local patterns allows inferences about mobility. Complications
abound: short-term movement may be hard to track down, imported food and
water piped in through aqueducts affect the record, and different regions may
exhibit similar isotopic properties. Systematic compilation of local reference
data will be the solution to at least some of these problems. Just as previous
generations compiled huge editions of inscriptions or papyri, the time has
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come to create comparable collections of scientific evidence that is relevant to
our understanding of life in the past. This applies to isotope signatures just as
it does to climate records and genetic information.

The study of body height is yet another branch of osteology (Chapter 5),
embedded in a rich tradition of scholarship that seeks to relate stature to various
factors such as health and economic development. In the most general terms,
height tends to correlate with well-being: however, the fact that the former is the
single cumulative outcome of a wide variety of inputs such as genetics, diet and
disease greatly complicate causal explanation. In this field, large bodies of data
and long-term comparison across space and time are once again of the essence.
One key observation that has emerged from the aggregation of local samples is
that the Roman period in general was associated with lower body heights than
previous or subsequent centuries.2 The question whether nutrition or pathogen
loads played a greater role in this is of fundamental importance to our under-
standing of the Roman economy. The relationship between imperial rule and
physical well-being was bound to be complex, mediated by factors such as eco-
nomic development, urbanization, connectivity, and inequality that produced
conflicting gains and costs in terms of nutrition, health, and thus stature. Once
again, as with teeth, the pre-adult record may turn out to be of particular value.
The stature evidence points to late menarche and male puberty, in keeping with
conditions in current low-income countries and other historical populations. And
given enough and sufficiently fine-grained data, class differences in body height—
which are well attested for early modern and contemporary societies—may also
become apparent. In general, the study of somatic development will greatly ben-
efit from the proper integration of different strands of research, from informa-
tion about health and diet derived from teeth and bones, about the availability
of foodstuffs documented by plant and animal remains, and about geographical
and ancestral provenance as documented by stable isotopes and ancient DNA.

The last one of these data sources is derived from most of the other types
of ancient remains surveyed so far, from plants to humans and other animals
(Chapter 6). Owing to the relatively recent nature of ancient DNA studies and
especially the rapid pace of innovation in this field, it has only just begun to
contribute to the study of the Roman world. Genetic analysis holds particu-
lar promise in identifying the geographical origin of people, livestock, and
crops and thus in establishing patterns of human mobility and the transfer of
productive resources. Possible genetic discontinuities between ancient Etrus-
cans and more recent Tuscans and connections between Etruscans and the
Eastern Mediterranean are of obvious relevance to our assessment of ancient
traditions regarding their provenance and to modern models of ethnogene-
sis. Individual cases of migration over very large distances may catch the eye,
but findings of local continuity are equally valuable. Overall, whole-genomic
sequencing of larger samples is the best way forward. For antiquity, the most
revealing findings made so far concern pathogens rather than humans: the
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identification of the cause of the sixth-century CE “Plague of Justinian” (as
well as the late medieval “Black Death”) as Yersinia pestis must count as a
milestone in the annals of historical epidemiology. The agents behind earlier
pandemics such as the second-century CE “Antonine Plague” and the third-
century CE “Plague of Cyprian” still await scientific discovery. Among other
potent infections, malaria, which is otherwise difficult to infer from skeletal
evidence, is also becoming visible, although relative to the likely scale of its
spread in the ancient world the existing genetic evidence remains exiguous
indeed. All the same, in light of the speed with which this line of research has
developed and matured in recent years, it is hard to overestimate its potential
for enriching our knowledge of the ancient world.

Analysis of surviving strands of ancient biomolecules is complemented by
studies of the genetic makeup of current populations that serves as a giant
archive of demographic processes in the past (Chapter 7). Measures of affinity
and admixture throw light on the origins of those alive today. In this field, just
as with ancient DNA, most existing research has focused on prehistory. A few
studies, some of them perhaps already superseded by more recent advances,
have identified patterns suggestive of migration from the Levant to North Af-
rica and from the Aegean to Sicily and southern Provence that may be linked
to Phoenician and Greek settler activity. Roman history, which lacks similarly
distinctive migration events, may prove less fruitful terrain for such studies.
One important question that remains to be explored is whether the massive
inflow of slaves into select parts of the Italian peninsula has left traces in the
genetic record. Both ancient and modern DNA will need to be marshaled to ad-
dress this problem. Elsewhere, solid evidence of genetic continuity over time
could serve as an important antidote to exaggerated notions of population
mobility in the Mediterranean environment.

Even this rapid and superficial survey of some of the issues covered in the
following chapters should leave no doubt that scientific methods provide in-
sight at all levels of resolution of historical inquiry, from “micro” to “macro.”
At one end of the spectrum, the individual. Under ideal circumstances, by in-
tegrating various approaches, we are now able to tell where someone was from
and at what age that person moved to where she died; at which age she was
weaned and experienced serious physiological stress; whether she subsisted
more on terrestrial or marine foods; and whether she died of the plague. Her
somatic data could be compared to those of others at the site and matched
with local remains of cultivars, weeds, livestock, and pests, as well as the usual
array of inorganic archaeological remains. Never before has it been possible
to examine individual Roman lives in such detail.

At the “meso” level, serial analysis of data from a particular locale over the
long run and comparison with those from other sites steer us toward broader
questions about the impact of empire, of political and economic integration,
of urbanization and culture change at the local or regional level and beyond.
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Just as the archaeoscience of inanimate objects from ceramics to metals and
stone has done for a long time, climatology and bioscience hand the historian
additional tools for tackling these questions.

And moving even further to the opposite end of the spectrum, we are now for
the first time in a position to try our hand at defensible biohistorical narratives of
the Roman Empire as a whole. Kyle Harper’s new book meshes climate proxies
and scientific data about pathogens with more conventional sources in eluci-
dating the interplay of ecology and human agency over the course of centuries.?
Much will need to be refined as the scientific evidence expands, but the contours
of a truly interdisciplinary history of ancient Rome are now finally in view.

RES NG

Pursuit of questions about big structures and large processes will require
us to think hard about how to integrate conventional evidence with scien-
tific findings. Integration is predicated on the compatibility of observations
from different domains of inquiry, a compatibility that arises from consilience.
Coined in the nineteenth century, this term, to quote Michael McCormick’s
pithy summary,

refers to the quality of investigations that draw conclusions from forms
of evidence that are epistemologically distinct. The term seems partic-
ularly apt for conclusions produced by natural-scientific investigations
on one hand and by historical and archaeological studies on the other.
Consilience points to areas of underlying unity of humanistic and sci-
entific investigation—a unity arising from that of reality itself.*

While this perspective is designed to bridge the gaps between different dis-
ciplinary practices and academic precincts of specialized expertise and inquiry,
it is worth acknowledging that the underlying premise might also reinforce
existing divisions rather than leveling them. Some of our colleagues in the hu-
manities may be skeptical of notions of a “unified reality” or harbor reservations
about an encroachment of science. And indeed, the premise of consilient unity
leaves little room for the more esoteric varieties of postmodern engagement
with the historical record: the very concept is resolutely “modern.” To the ex-
tent that it will succeed, it may mark a swing of the pendulum towards a more
open and, for want of a better word, optimistic perspective on the production of
knowledge and our understanding of the world. I believe we ought to welcome
such a shift. It is also worth noting that recourse to insights derived from the
biosciences readily accommodates historians’ concerns about hegemonic dis-
courses and the subaltern: what more immediate way of accessing the history
of the “99%” than to study what is actually left of them and the organisms that
both sustained and blighted their lives? Archaeobiology gives a powerful boost
to history from below, shining a light on those of whom no other record exists.
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Nevertheless, biohistorical interdisciplinarity poses genuine challenges.
Increasingly sophisticated techniques and falling costs, most dramatically in
genetics, keep boosting the contribution of science to historical inquiry. But
this progress frequently entails a fair amount of creative destruction. We are
faced with perpetual churn in which results made only a few years—never mind
decades—ago are called into question or downright superseded by the applica-
tion of improved methods. This makes for treacherous terrain for the uniniti-
ated. Keeping up to date is an imperfect solution: five or ten years ago, it was
perfectly possible for experts to be both up to date and wrong. Caution is the
order of the day. Paleodemography and the extrapolation of stature from bone
length have long been beset by ongoing confusion about norms and standards.
More recently, we have learned that methods and procedures that once seemed
state-of-the-art—from trace element analysis in the osteology of ancient nutri-
tion to blood allele studies of modern populations and early work on ancient
DNA—cannot bear the weight they had been granted. The enduring lesson is to
remain circumspect and resist the ever-present temptation to oversell the latest
findings. The very dynamism of scientific research is at once its most attractive
feature and a challenge to historians who wish to capitalize on it.

Both the pace of change in the sciences and the professional expertise re-
quired to assess and apply its results highlight the need for collaboration across
established disciplinary boundaries. Outside archaeology, transdisciplinary re-
search (not to mention teaching) on the ancient world has been rare, and even
collaborative work more generally is an exception rather than the norm. Con-
tinuing emphasis on individual competence has held back innovation in a vari-
ety of areas, from cross-cultural comparative history to Digital Humanities. A
biohistorical approach is if anything even more profoundly incompatible with
the existing model of training, supporting, and evaluating professional histori-
ans as some sort of latter-day master crafts(wo)men. It adds new expectations
in terms of what historians ought to know and how they are to cooperate with
colleagues from other fields, and draws them deeper into the complex world
of grant applications that are the life-blood of their colleagues in the sciences.
At the same time, it calls for scientists to partner up with historians in the de-
velopment of research designs and interpreting the results: transdisciplinarity
must not turn into a one-way street that casts historians in the passive role of
consumers. Rather, consilient perspectives on the past allow historians to be-
come brokers, by creating ties between discrete communities of scholars that
unite them in the pursuit of a richer understanding of the past.

R W ety

The present volume illustrates only some elements of an engagement with the
Roman world that is informed by scientific knowledge. We focus on the human
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body and on the surrounding biosphere. In so doing, the seven chapters follow
an arc from the weather to plants, animals, and humans, and, for humans, from
large (skeletons) to small (biomolecules), from phenotype to genotype, and
from ancient to modern. For our purposes, the distinction between climatology
as part of the Earth Sciences and areas of research that are rooted in biology
is merely a formality. Although most climate change in the last few millennia
was caused by variations in solar and volcanic activity and the earth’s orbit,
climate occupies a central position in biohistorical reconstructions because it
primarily affected humans indirectly through its impact on flora, fauna, and
the water supply.

More could be added. A true “biohistory” of ancient Rome would be
broader still, extending into the scientific study of human cognition and be-
havior, an area that is challenging to access for students of the more distant
past and remains outside the scope of this survey. One day, it may be worth
pondering how Roman brains and minds were shaped by an environment of
endemic slavery and organized violence (from mass conscription to the car-
nage of the arena), to name just a few prominent features of the historical
record.’

This volume is meant to offer a guide to different bioscientific approaches
and their contribution to the study of Roman history: how they have (or have
not) enriched our understanding, and how they might do so in the future.®
While our focus is on the ancient Roman world broadly defined, the scope
of coverage varies from chapter to chapter, and for good reason. Most rele-
vant work on ancient and especially modern DNA deals with earlier periods
of human history. Rather than elucidating specific issues of Roman Studies, it
gives us a sense of the potential of this research to re-shape our understand-
ing of ancient societies in the coming years. Conversely, the study of bones
and teeth presents us with an embarrassment of riches that calls for a degree
of selectivity. Chapter 4 therefore concentrates on Roman Italy proper while
Chapter 5 privileges stature data from Roman Britain, which has attracted
some of the most careful attention. Not every part of the Roman world could
be covered in equal measure: evidence from Egypt is particularly rich and
would deserve a separate volume, contextualizing Roman finds in the great
time depth of Nilotic civilization and making full use of the unique evidence
of mummified remains.”

One thing is certain. No matter how comprehensive the coverage of a sur-
vey of this kind, the rapid progress of scientific research ensures that before
long it will seem dated. It cannot be more than a snapshot, capturing a partic-
ular moment in the growing entanglement of ancient history and the sciences.
We are pushing against the limits of conventional formats of dissemination:
the next step may well have to be a continuously updated electronic publica-
tion to keep us up to date.
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Notes

1. The seven chapters contain over 1,000 references. I therefore largely refrain from
adding further bibliography.

2. In addition to the work cited in Chapter 5, this is documented in particular by the
dissertation project of Geertje Klein Goldewijk at the University of Groningen, which
draws on a larger amount of data than published studies: see Scheidel 2012: 326.

3. Harper 2017. For other times or places, see now especially White 2011; Broodbank
2013; Parker 2013; Brooke 2014; Campbell 2016.

4. McCormick 2011: 257. His article inspires much of what follows in this section.

5. AHR Roundtable 2014 calls on historians to engage with biology more generally.
That forum includes contributions on behavior and emotion by Harper 2014, Roth 2014,
and Scheidel 2014. See also Harper 2013.

6. Killgrove forthcoming offers a complementary perspective.

7. See Scheidel 2010 for a brief survey of the ancient disease environment.
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