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C H A P T E R  1

MEASUREMENT

One way to understand the roots of a subject is to examine how its 
originators thought about it. Some basic philosophical issues are 
already evident at the very beginning. The first great idea is simply 
that chance can be measured. It emerged during the sixteenth and 
seventeenth centuries, and it is something of a mystery why it took 
so long. The Greeks had a goddess of chance, Tyche. Democritus 
and his followers postulated a physical chance affecting all the atoms 
that made up the universe. This is the “swerve” of atoms in Lucretius’ 
De Rerum Natura. Games of chance, using knucklebones or dice, were 
known to egyptians and Babylonians and were popular in Rome. 
Soldiers cast lots for Christ’s cloak. Greek Skeptics of the later Acad-
emy postulated probability (eikos) as the guide to life.1 Nevertheless, 
it appears that there was no quantitative theory of chance in these 
times.2

Gerolamo Cardano
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How do you measure anything?3 Consider length. You find a stan-
dard of equal length, apply it repeatedly, and count. The standard 
might be your foot, as you pace off a distance. Different feet may 
not lead to the same result. One refinement, proposed in 1522 for 
determining a lawful rood (rod), was to line up the feet of 16 people 
as they emerged from church, as shown in figure 1.1.4 As the illus-
tration shows, the various folks have very different foot lengths, 
but an implicit averaging effect was accepted by a group— even 
though the explicit notion of an average seems to not have existed 
at the time.

It is worth mentioning a certain philosophical objection at this 
point. There is a kind of circularity involved in the procedure. We are 
defining length, but we are already assuming that our standard re-
mains the same length as we step off the distance.

No sensible person would let this objection stop her from stepping 
off distance. That is how we start. eventually we refine our notion of 
length. Your foot may change length; so may the rod; so may the stan-
dard meter stick, at a fine- enough precision. Using physics, we refine 

Figure 1.1. Determination of the lawful rood
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the measurement of length.5 So the circularity is real, but it indicates 
a path for refinement rather than a fatal objection.*

So it is with chance. To measure probability, we first find— or 
make— equally probable cases. Then we count them. The probability 
of an event A, denoted by P(A), is then

P(A) = no. of cases in which A occurs
total no. of cases

.

Note that it follows that

1. Probability is never negative,
2. If A occurs in all cases, P(A) = 1,
3. If A and B never occur in the same case,

P(A or B) = P(A) + P(B).

In particular, the probability of an event not occurring is 1 less the 
probability of its occurring:

P(not A) = 1 − P(A).

It is surprising how much can be done by ingenious application 
of this simple idea. Consider the birthday problem. What is the 
probability that at least two people in a room share the same birth-
day, neglecting leap years, assuming birthdates are equiprobable and 
birthdays of individuals in the room are independent (no twins)? If 
you have not seen it before, the results are a bit surprising.

The probability of a shared birthday in the group is 1 minus the 
probability that they are all different. The probability that the second 
person has a different birthday from the first is (364365) . If they are dif-
ferent, the probability that the third is different from them is (363365), 
and so on, for all in the room. So the probability of a shared birthday 
among N people is

1− 364
365

i
363
365

i! i
365 − N + 1

365
⎛
⎝⎜

⎞
⎠⎟ .

* What are the paths open for refinement of the notion of equiprobable? They will unfold as 
we move through the book.
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If you are interested in an even- money bet, this formula can be used 
to find a value of N such that the product is close to 12. If there are 23 
people in the room, the probability of a shared birthday is slightly 
greater than 12. If there are 50 people, it is close to 97%.

There are many variations on the birthday problem. These are used 
for thinking about surprising coincidences. For instance, it is over-
whelmingly likely that there are two people in the United States who 
share a birthday, whose fathers share the same birthday, whose fathers’ 
fathers share this birthday, and so on, four generations back. Useful 
approximations for working with these variations may be found in an 
appendix to this chapter. These approximations are, in turn, used to 
prove de Finetti’s representation theorem in an appendix at the end 
of this book. The point for now is that the basic “equally likely cases” 
structure has real breadth and strength.

BEGINNINGS

Nothing provides us better candidates for equiprobable cases than vig-
orous throws of symmetric dice or draws from a well- shuffled deck of 
cards. This is where the measurement of probability began. We cannot 
say who was there first, but the idea was clearly there in the sixteenth- 
century work on gambling by the algebraist, physician, and astrolo-
ger Gerolamo Cardano.6 Cardano, who sometimes made a living at 
gambling, was quite sensitive to the equiprobability assumption. He 
knew about shaved dice and dirty deals: “. . . the die may be dishon-
est either because it has been rounded off, or because it is too narrow 
(a fault which is easily visible), or because it has been extended in one 
direction by pressure on the opposite faces. . . . There are even worse 
ways of being cheated at cards.”7

In the early seventeenth century Galileo composed a short note on 
dice to answer a question posed to him (by his patron, the Grand 
Duke of Tuscany). The Duke believed that counting possible cases 
seemed to give the wrong answer. Three dice are thrown. Count-
ing combinations of numbers, 10 and 11 can be made in 6 ways, as 
can 9 and 12. “.  .  . yet it is known that long observation has made 
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dice- players consider 10 and 11 to be more advantageous than 9 and 
12.”* How can this be?

Galileo replies that his patron is counting the wrong thing. He 
counts three 3s as one possibility for making a 9 and two 3s and a 4 
as one possibility for making a 10. Galileo points out the latter covers 
three possibilities, depending on which die exhibits the 4:

<4, 3, 3>, <3, 4, 3>, <3, 3, 4>.

For the former, there is only <3, 3, 3>. Galileo has a complete grasp 
of permutations and combinations and does not seem to regard it as 
anything new.

In constructing equiprobable cases, both Galileo and Cardano ap-
pear to make implicit use of independence. They suppose that for each 
die, all 6 faces are equally probable and that for throws of 3 dice, all 
216 possible outcomes are also equally probable. When we treated the 
birthday problem earlier, we assumed that different people had inde-
pendent chances for their birthdays.

With this basic machinery well understood, Pascal and Fermat in 
their famous correspondence attacked more subtle problems with a 
different conceptual flavor.

PASCAL AND FERMAT (1654)

The first substantial work in the mathematics of probability appears 
to be the correspondence between Pascal and Fermat, which began 
in 1654. We include a discussion for three reasons: (1) It is the first; (2) 
it shows how seemingly complex problems can be reduced to straight-
forward calculations with equally likely cases; and (3) it introduces 
the crucial notion of expectation— a mainstay of the subject.

* One strange aspect of the statement of the problem is the comment about long observation. 
The observation would have had to be long indeed. From Galileo’s calculations, the chance 
of a 9 is 25

216 , about 0.116; the chance of a 10 is 27
216 , about 0.125. The difference between these 

is 0.009, or about 1
100 . As an exercise, you could calculate how many observations would 

be required.
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Pascal and Fermat addressed problems with a different conceptual 
flavor from those solved by Cardano and Galileo, defining fairness and 
focusing on expectation.

There are two problems given to Pascal by his sometime gambling 
friend, the Chevalier de Méré. Pascal communicated these, together 
with his thoughts on them, to Fermat, with whom he had a connec-
tion through the academy of Father Mersenne. This was the Académie 
Parisienne that Mersenne formed in 1635 where the work of leading 
mathematicians, scientists, and philosophers— including Galileo, Des-
cartes, and Leibniz— was shared.

The problem of dice: A player has undertaken to throw a 6 in 8 throws 
of a die. The stakes have been settled, and the 3 throws have been 
taken without obtaining a 6. What proportion of the stake would 
be fair to give the player to forego his fourth throw (just the fourth).*

The problem of points: Two players of equal skill† are playing a se-
ries of games. The one to win a round gets a point. They have agreed 
that the first to reach a certain number of points wins the game and 
collects the stakes. A certain number of rounds have been played, 
and the game is interrupted. What is a fair division of the stakes?

Both of these problems are stated in terms of fairness. But what is 
fairness in the theory of probability? We will see that Pascal and Fermat 
implicitly employ the concept of expectation to answer that question.

The expected value of a gamble that pays off V(x) in outcome x is 
the probability weighted average: 

expectation (V) = V(x1) p(x1) + V(x2) p(x2) + . . . .

A transaction that leaves the players’ expected values unchanged is as-
sumed to be fair. For example, consider flipping a fair coin. If it comes 
up heads you win 1; if tails you lose 1. Then the expected value is 
(+1)(12)  + (−1)(12)  = 0.

Let’s apply this idea to the problem of dice. The stakes, s, are still 
on the table. If the player does not forego his fourth throw, he has 5 
throws remaining. His expectation is

* You might try to think about this directly before you proceed. Suppose that before start-
ing, bets are laid so that there is $10 on the table that you will get a 6 in eight throws. Would 
you take $5 to forego just trial 4? Would this be fair?
† We may as well think of them as flipping a fair coin.
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 1
6 s + 5

6 1− 5
6( )4( ) s

 (win in fourth throw)  (lose on fourth but win on 1  
  of the remaining 4 throws).*

Suppose that that player foregoes his fourth throw for 16  of the stakes, 
as Fermat suggests in the correspondence.8 Then his expectation is

 1
6 s + 1− 5

6( )4⎛
⎝⎜

⎞
⎠⎟

5
6( ) s

 (the amount (probability of winning in 
 he is paid to forego the remaining 4 throws times  
 that throw) the diminished stakes).

These are the same, so 16  of the stakes is the fair price for foregoing the 
throw.9

The problem of points is also an expected- value problem. It had baf-
fled many previous thinkers. In 1494, Fra Luca Pacioli considered a 
problem of points where the play is complete with 6 points; one player 
has won 5 and the other, 3. Pacioli— perhaps under the influence of 
Aristotle’s proportional theory of justice— argues that the fair division 
is in proportion to the rounds already won, 5 to 3. About 50 years 
later, Tartaglia objected that, according to this rule, if the game were 
stopped after 1 round, 1 player would be awarded the whole stake. 
This consequence looks worse and worse as the number of points nec-
essary to win is increased. Tartaglia tried to modify Pacioli’s rule to 
take this into account, but in the end he doubted that a definitive 
answer was possible. The problem puzzled all who thought about it, 
including Cardano and the Chevalier de Méré.

Fermat had the key insight. Suppose that one player needs r points 
to win and the other, s. Then the game will surely be decided in r + s − 1 
rounds. It may be decided earlier, but there is no harm in considering 
all sequences of r + s − 1 coin flips, since the outcome is well defined 
for each. This reduces the problem to one of equiprobable cases and 
we can calculate probabilities by counting.

So for Pacioli’s problem, where player 1 has 5 points and player 2 
has 3, since 6 points concludes the game, 3 more rounds will suffice. Of 

* Probability of winning on one of the remaining 4 throws = 1 − P(lose on all 4) = (1 − ( 56 )4).
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the 8 equiprobable cases, player 2 will win the game only if he wins 
all 3 rounds. His expectation is 18  of the stakes, while player 1 has an 
expectation of 78 on the stakes. It is fair, then, to divide the stakes in 
this proportion.

expectation, computed by counting equiprobable cases, solves the 
problem. But there may be a large number of equiprobable cases to 
count. Consider Tartaglia’s example. Six points win, and one player 
has no points and the other, 1 point. Then play must be complete after 
10 more rounds. It would be tedious to write out the 1024 possible 
outcomes. But Pascal had a better way of counting.

To count the cases in which the first player wins, one adds the num-
ber of cases in which she gets 6 wins in 10 trials [called 10 choose 6] + 
the number where she gets 7 wins in 10 trials [10 choose 7] + · · · + the 
number where she gets 10 wins in 10 trials [10 choose 10].  These 
numbers are conveniently to be found on the tenth row of Pascal’s 
arithmetical triangle (or Tartaglia’s triangle, or Omar Khayyam’s tri-
angle10), which we show in figure 1.2. The row tells us the number 
of ways we can choose from a group of 10 objects. Reading from 
the left, there are 1 way of choosing nothing, 10 ways of choosing 1 
object, 45 ways of choosing 2 objects, 120 ways of choosing 3, and so 
on, to only 1 way of choosing 10.

We want the number of ways of getting 6 wins in 10 trials + the 
number of ways to get 7 wins in 10 trials + · · · + the number where 
she gets 10 wins in 10 trials. From row 10 we get

210 + 120 + 45 + 10 + 1 = 386

for a probability of winning of

 386
1024

(about 38%).

Thus a fair division of the stakes gives player 1 (who had no points) 
386
1024  of the stakes and player 2 the rest.

After Pascal and Fermat, the basic elements of measuring prob-
ability by counting equiprobable cases, calculating by combinatorial 
principles, and using expected value are all on the table.
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HUYGENS (1657)

The ideas in the Pascal- Fermat correspondence were taken up and de-
veloped by the great Dutch scientist Christiaan Huygens11 after he heard 
about the correspondence on a visit to Paris. He then worked them 
out by himself and wrote the first book on the subject in 1656. It was 
translated into english by John Arbuthnot in 1692 as Of the Laws of 
Chance.12

Huygens begins his book with a fundamental principle:

Postulat

As a Foundation to the following Proposition, I shall take Leave 
to lay down this Self- evident Truth: That any one Chance or ex-
pectation to win any thing is worth just such a Sum, as wou’d 
procure in the same Chance and expectation at a fair Lay. As 
for example, if any one shou’d put 3 Shillings in one Hand, 
without letting me know which, and 7 in the other, and give 
me Choice of either of them; I say, it is the same thing as if he 
shou’d give me 5 Shillings; because with 5 Shillings I can, at a 
fair Lay, procure the same even Chance or expectation to win 
3 or 7 Shillings.

Huygens assumes that he could, in effect, flip a fair coin to choose 
which hand to pick.* Then (12)3 + (12)7 = 5. He then says that the value 

* A point made much later by Howard Raiffa against the so- called ellsberg paradox, which 
we will visit in our chapter on psychology of chance (chapter 3).
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Figure 1.2. Pascal’s triangle
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of the wager is the same as the value of 5 for sure. Thus he makes 
explicit (a special case of ) the principle that is implicit in Pascal and 
Fermat: expectation is the correct measure of value.

He then goes on to justify this measure by a fairness argument. Sup-
pose I bet 10 shillings with someone on the flip of a fair coin. This 
is fair by reasons of symmetry. Now suppose we modify this by an 
agreement that whoever wins shall give 3 to the loser. This preserves 
symmetry, so the modified arrangement is also fair. But now the loser 
nets 3 and the winner retains 7. Any such agreement preserves fair-
ness, including where the winner gives the loser 5, and each has 5 for 
sure. Huygens then shows how the argument generalizes to arbitrary 
finite numbers of outcomes and arbitrary rational- valued probabilities 
of outcomes. It will be a recurring theme that an equality is justified 
by a symmetry.

NEWTONIAN CONSIDERATIONS

In the preface to the translation of Huygens, Arbuthnot, who was a 
follower of Newton,13 makes the following noteworthy remark (L. 
Todhunter, A History of the Mathematical Theory of Probability (Cam-
bridge: Macmillan, 1865); reprinted by Chelsea (New York, 1965), 
p. 51):

It is impossible for a Die, with such determin’d force and direc-
tion, not to fall on such determin’d side, only I don’t know the 
force and direction which makes it fall on such determin’d side, 
and therefore I call it Chance, which is nothing but the want of art.

Arbuthnot thus introduces the fundamental question of the proper 
conception of chance in a deterministic setting. His answer is that 
chance is an artifact of our ignorance.

Consider tossing a coin just once. The thumb hits the coin; the coin 
spins upward and is caught in the hand. It is clear that if the thumb 
hits the coin in the same place with the same force, the coin will land 
with the same side up. Coin tossing is physics, not random! To dem-
onstrate this, we had the physics department build us a coin- tossing 
machine. The coin starts out on a spring, the spring is released, the 
coin spins upward and lands in a cup, as shown in figure 1.3. Because 
the forces are controlled, the coin always lands with the same side up. 
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This is viscerally quite disturbing (even to the two of us). Magicians 
and crooked gamblers (including one of your authors) have the same 
ability.

How then is the probabilistic treatment of coin flips so widespread 
and so successful? The basic answer is due to Poincaré. If the coin is 
flipped vigorously, with sufficient vertical and angular velocity, there is 
sensitive dependence on initial conditions. Then a little uncertainty 
as to initial conditions is amplified to a large uncertainty about the 
outcome, where equiprobability of outcomes is not such a bad assump-
tion. But the provisos are important. See appendix 2 for a little more 
on this. We will return to the question in more detail in our chapter 
on physical chance (chapter 9).

BERNOULLI 1713

In 1713 Jacob Bernoulli’s Ars Conjectandi 14 was published, 8 years after 
his death. Bernoulli made explicit the practice of his predecessors. The 
first part is a reprint, with commentary, of Huygens. The probability 
of an event is now explicitly defined as the ratio of the number of 
(equiprobable) cases in which the event happens to the total number 
of (equiprobable) cases. The probability of being dealt a club from a 
deck of cards is 1352 . He also defines the conditional probability of a sec-
ond event (B) conditional on a first (A) as the ratio of the number of 
cases both happen to the number of cases the first happens:

Probability (B conditional on A) = no. of cases in which A and B occur
no. of cases in which A occurs

.

Figure 1.3. A deterministic coin- tossing machine
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The probability of being dealt a queen given that one is dealt a 
club is 1

13.
On the basis of these definitions, he shows that the probabilities of 

mutually exclusive events add and that probabilities satisfy the mul-
tiplicative law, P(A and B) = P(A)P(B conditional on A). These simple 
rules form the heart of all calculations of probability.

But Bernoulli’s major contribution was to establish a rigorous con-
nection between probability and frequency that had heretofore only 
been conjectured. He called this his golden theorem.

As an illustration he considers an urn containing 3000 white peb-
bles and 2000 black pebbles and postulates independent draws with 
replacement of the pebble drawn. He asks whether one can find a 
number of draws so that it becomes “morally certain” that the ratio 
of white pebbles to black ones becomes approximately 3:2. He then 
chooses a high probability as moral certainty and establishes a num-
ber of draws sufficient to provide a positive answer. Then he shows 
the weak law of large numbers:

Given any interval around the probability (here 3
5) as small as 

you please and any approximation to certainty, 1 − e, as close 
as you please, there is a number of trials, N, such that in N tri-
als the probability that the relative frequency of draws of white 
falls within the specified interval is at least 1 − e.

This is a story to which we will return in our chapter on frequency 
(chapter 4).

SUMMING UP

Probability, like length, can be measured by dividing things into 
equally likely cases, counting the number of successful cases and divid-
ing by the total number of cases. This definition satisfies the following:

1. Probability is a number between 0 and 1.
2. If A never occurs, P(A) = 0. If A occurs in all cases, P(A) = 1.
3.  If A and B never occur in the same case, then P(A or 

B) = P(A) + P(B).
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4.  Conditional probability for B given A is defined by counting all 
the cases in which B and A occur together and dividing by the 
number of cases in which A occurs. Then, P(A and B) = P(A)P(B 
conditional on A). If A and B are independent, that is, if P(B 
conditional on A) just equals P(B), then P(A and B) = P(A)P(B).

Finding the cases and doing the counting leads to math problems such 
as the probability of winning a complicated wager or the birthday 
problem.

expectation, weighting the costs and benefits of various outcomes 
by their chances, is useful for calculations and is a measure of fairness 
and value.

The law of large numbers, to which we will return in chapter 4 
(and again in chapter 6), proves that chances can be approximated 
(with high probability) by frequencies in repeated independent 
trials.

APPENDICES

These three appendices give, respectively, a more detailed look at the 
correspondence between Pascal and Fermat, a development of the 
physics of coin tossing, and a more detailed analysis of the connec-
tion between the mathematics of probability and the real- world oc-
currence of chance events. (For those who might find it useful, there 
is a probability- refresher appendix at the end of this book.)

APPENDIX 1. PASCAL AND FERMAT

THE PROBLEM OF DICE

Pascal’s first letter to Fermat is lost, but it must state the problem of 
the dice.

Fermat’s reply points out that Pascal has made an error (“Pascal 
and Fermat on Probability,” tr. by Vera Sanford in A Sourcebook 
in Mathematics, ed. David eugene Smith (New York: McGraw Hill, 
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1929), 546– 65. Dover reprint in 1969 available online at https://www 
.york.ac.uk/depts/maths/histstat/pascal.pdf ):

If I undertake to make a point with a single die in eight throws, 
and if we agree after the money is put at stake, that I shall 
not cast the first throw, it is necessary by my theory that I 
take 16  of the total sum to [be] impartial because of the aforesaid 
first throw.

And if we agree after that, that I shall not play the second 
throw, I should, for my share, take the sixth of the remainder 
that is 5

36  of the total.
If, after that, we agree that I shall not play the third throw, I 

should to recoup myself, take 16  of the remainder, which is 25
216  of 

the total.
And if subsequently, we agree again that I shall not cast the 

fourth throw, I should take 1
6  of the remainder or 125

1296  of the 
total, and I agree with you that that is the value of the fourth 
throw supposing that one has already made the preceding plays.

But you proposed in the last example in your letter (I quote 
your very terms) that if I undertake to find the six in eight throws 
and if I have thrown three times without getting it, and if my 
opponent proposes that I should not play the fourth time, and 
if he wishes me to be justly treated, it is proper that I have 125

1296  
of the entire sum of our wagers.

This, however, is not true by my theory. For in this case, the 
three first throws having gained nothing for the player who holds 
the die, the total sum thus remaining at stake, he who holds the 
die and who agrees to not play his fourth throw should take 16  
as his reward. And if he has played four throws without find-
ing the desired point and if they agree that he shall not play the 
fifth time, he will, nevertheless, have 16  of the total for his share. 
Since the whole sum stays in play it not only follows from the 
theory, but it is indeed common sense that each throw should be 
of equal value.

It is clear that the central issue here is that of expected value. The com-
bination of foregoing a round and receiving a proportion of the stake 
is fair if it leaves the expected value of the game unchanged.



 MeASUReMeNT 15

Fermat sees clearly that the analysis is the same at any point in the 
game. Suppose that after the round in question, there will be n + 1 
rounds remaining; give the stakes at this point value 1. Then the 
value of taking the play is 1

6  for winning now and (56)(1− 5
6( )n)  for 

failing on this throw but possibly eventually winning. The value of 
taking 16  of the stakes and proceeding with the rest of the game for 
the diminished stakes is 16  for the cash in hand plus 1− 5

6( )n, the prob-
ability of eventually, winning times 5

6  of the the diminished stakes. 
Pascal immediately agrees with Fermat’s analysis.

THE PROBLEM OF POINTS

There is another aspect of Pascal’s discussion that is of interest. He 
starts with the example of a game where two players play for 3 points, 
where each has staked 32 pistoles (“Pascal and Fermat on Probabil-
ity,” tr. by Vera Sanford in A Sourcebook in Mathematics, ed. David 
eugene Smith (New York: McGraw Hill, 1929), 546– 65. Dover reprint 
in 1969 available online at https://www.york.ac.uk/depts/maths/his tstat 
/pascal.pdf ):

Let us suppose that the first of them has two (points) and the 
other one. They now play one throw of which the chances are 
such that if the first wins, he will win the entire wager that is at 
stake, that is to say 64 pistoles. If the other wins, they will be two 
to two and in consequence, if they wish to separate, it follows 
that each will take back his wager that is to say 32 pistoles.

Consider then, Monsieur, that if the first wins, 64 will be-
long to him. If he loses, 32 will belong to him. Then if they do 
not wish to play this point, and separate without doing it, the 
first should say “I am sure of 32 pistoles, for even a loss gives 
them to me. As for the 32 others, perhaps I will have them and 
perhaps you will have them, the risk is equal. Therefore let us 
divide the 32 pistoles in half, and give me the 32 of which I am 
certain besides.” He will then have 48 pistoles and the other 
will have 16.

This is not just a calculation of expected value but also a justifica-
tion of the fairness of using it, in terms that are hard for anyone to 
reject. What you have for sure is yours. For what is uncertain, equal 
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probabilities match equal division. It is a definitive answer to Fra Pa-
cioli’s line of thought.

Pascal goes on to show how this reasoning can be further iterated:

Now let us suppose that the first has two points and the other 
none, and that they are beginning to play for a point. The 
chances are such that if the first wins, he will win all of the 
wager, 64 pistoles. If the other wins, behold they have come 
back to the preceding case in which the first has two points and 
the other one.

But we have already shown that in this case 48 pistoles will 
belong to the one who has two points. Therefore if they do not 
wish to play this point, he should say, “If I win, I shall gain all, 
that is 64. If I lose, 48 will legitimately belong to me. Therefore 
give me the 48 that are certain to be mine, even if I lose, and let 
us divide the other 16 in half because there is as much chance 
that you will gain them as that I will.” Thus he will have 48 and 8, 
which is 56 pistoles.

Let us now suppose that the first has but one point and the 
other none. You see, Monsieur, that if they begin a new throw, 
the chances are such that if the first wins, he will have two points 
to none, and dividing by the preceding case, 56 will belong to 
him. If he loses, they will [be] point for point, and 32 pistoles will 
belong to him. He should therefore say, “If you do not wish to 
play, give me the 32 pistoles of which I am certain, and let us di-
vide the rest of the 56 in half. From 56 take 32, and 24 remains. 
Then divide 24 in half, you take 12 and I take 12 which with 32 
will make 44.

This gives us a recursive procedure for fair division. Pascal then proj-
ects to games with larger numbers of points, and comes to a general 
solution of the problem.

APPENDIX 2. PHYSICS OF COIN TOSSING

Drawing balls from an urn, flipping coins, rolling dice, and shuffling 
cards are basic probability models. How are they connected to their 
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parallels in the real world? Going further afield, these basic models 
are often used to calculate chances in much more complicated setups; 
Bernoulli considered the successive scores of two tennis players. Gilo-
vitch, Tversky, and Valone15 considered the successive hits and misses 
of basketball players. Shouldn’t physics and psychology come into 
these analyses?

each of the foregoing examples has its own literature. To give a fla-
vor of this, we consider a single flip of a coin. Afterward, pointers to 
the analysis of other examples will be given.

Let’s take a brief look at a simple version of the physics.16 When the 
coin leaves the hand, it has an initial velocity upward v (feet/second) 
and a rate of spin ω (revolutions/second). If v and ω are known, 
Newton tells us how much time the coin will take before landing 
and thus heads or tails are determined. The phase space of a coin in 
this model is thus as shown in figure 1.4.

A single flip corresponds to a point in this plane. Consider the point 
in figure 1.4. The velocity is large (so the coin goes up rapidly), but 
the rate of spin is low. Thus the coin goes up like a pizza tossed in the 
air, hardly turning. Similarly, a point with v small and ω large may 
be turning like crazy but never goes high enough to turn over once. 
From these considerations, it follows that there is a region of initial 
conditions, close to the two axes, where the coin never turns.

Figure 1.4. The vω- plane with a single flip

ω

v
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There is an adjoining region where the coin turns once, then a re-
gion for two turns, and so on. The full picture is shown in figure 1.5.

Inspection of the picture (and some easy mathematics) shows that 
regions far from 0 get closer together. So small changes in initial con-
ditions make for the difference between heads or tails.

To go further, one must know the answer to the following ques-
tion: When real people flip real coins, where are the points on the 
picture? We have carried out experiments and a normal flip takes about 
1
2 second and turns at about 40 revolutions/second. Look at figure 1.5. 
In the units of the picture, velocity is about 15, very close to zero. The 
rate of spin, ω, is 40 units up, however, way off the picture. The math 
behind the picture says how close the regions are. This coupled with 
experimental work shows that coin tossing is fair to two decimal 
places but not to three.

The preceding analysis is in a simple model, which assumes that 
the coin flips about an axis through the coin. In fact, real coins are 
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1.6 9.65.6 12.8

200
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1,400
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v
Figure 1.5. The hyperbolas separating heads from tails in part of phase space. Initial condi-
tions leading to heads are hatched, tails are left white, and ω is measured in s−1.
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more complicated. They precess in amazing ways. A full analysis, with 
many details, caveats, and full references is in “Dynamical Bias in the 
Coin Toss,”17 which concludes that vigorous tosses of ordinary coins 
are slightly biased. The chance of the coin landing the same way it 
started is about 0.51.

Where does all this analysis leave us? The standard model is a very 
good approximation. It would take about 250,000 flips to detect the 
difference between 0.50 and 0.51 (in the sense of giving second- digit 
accurately). We wish some of the other instances of the standard 
model were as solidly useful. Similar statements hold for Galileo’s dice, 
but roulette or shuffling cards is another story!18

If an honest analysis of a simple coin flip leads us into such compli-
cations, how much more would be required for an analysis of chances 
in games of skill or for the application of probability to medicine and 
law, as envisioned by Leibniz and Bernoulli? Bernoulli appreciated the 
point (Jacob Bernoulli, The Art of Conjecturing, tr. with an introduc-
tion and notes by edith Dudley Sylla (Baltimore: Johns Hopkins Uni-
versity Press, 2006), 327):

But what mortal, I ask, may determine, for example, the num-
ber of diseases, as if they were just as many cases, which may 
invade at any age the innumerable parts of the human body 
and which imply our death? And who can determine how much 
more easily one disease may kill than another— the plague com-
pared to dropsy, dropsy compared to fever? Who, then, can 
form conjectures on the future state of life and death on this 
basis? Likewise who will count the innumerable cases of the 
changes to which the air is subject every day and on this basis 
conjecture its future constitution after a month, not to say after 
a year?

Again, who has a sufficient perspective on the nature of the 
human mind or on the wonderful structure of the body  so 
that they would dare to determine the cases in which this or that 
player may win or lose in games that depend in whole or in part 
on the shrewdness or the agility of the players? In these and 
similar situ ations, since they may depend on causes that are en-
tirely hidden and that would forever mock our diligence by an 



20 CHAPTeR 1

innumerable variety of combinations, it would clearly be mad 
to want to learn anything in this way.19

Bernoulli thought he had an answer to these problems in his law 
of large numbers. We return to this issue in chapter 4. There, and in 
subsequent chapters, we will assess the adequacy of the answer and 
discuss the possible alternatives.

APPENDIX 3. COINCIDENCES  
AND THE BIRTHDAY PROBLEM

Coincidences occur to all of us. Should we be surprised, or wor-
ried? The simple birthday problem (and its variations) has emerged 
as a useful tool to enable standards of surprise. While most people 
are surprised when there is a birthday match within a group of 
23 people, the easy calculation in the introduction to this chapter 
shows that it is not surprising at all. Let us abstract and extend this 
calculation.

Consider what we will call the “watch” problem. Old- fashioned 
watches— watches with second hands— are coming back into cur-
rent fashion. We believe that the second hands are “random”— 
completely out of sync and equally likely to show anything from 1 
to 60— independently from watch to watch. Consider a group of N 
people, each having a watch with a second hand. What is the prob-
ability that two or more of these match— say, right at this second?

This is the birthday problem with 60 categories. The original birth-
day problem has 365 categories. Abstracting, consider C categories 
(so C = 60 for watches but C = 365 for birthdays.) There are N people, 
each independently and uniformly distributed in {1, 2, 3, .  .  .  , C}. 
What is the chance that all these numbers are distinct? Of course, this 
depends on C and N; the chance is zero if N = C + 1.

Call this chance P(C, N). By our earlier reasoning, 

P(C, N) = 1 i 1− 1
C

⎛
⎝⎜

⎞
⎠⎟
i 1− 2

C
⎛
⎝⎜

⎞
⎠⎟
i! i 1− (N − 1)

C
⎛
⎝⎜

⎞
⎠⎟ .

This is a neat formula. You can use it with a pocket calculator to give 
an exact answer for any fixed C and N.
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But this is not particularly useful for understanding. For later use, 
we can compute a simple approximation, which shows that when 
N = 1.2 C, the chance of success is close to 12 . For the watch prob-
lem, 1.2 60 = 9.3, so a match has at least even odds with 10 people. 
Intuitively, a match would seem a striking coincidence. (For the 
original birthday problem, 1.2 365 = 22.9. )

We state our approximation as a proposition.
Proposition: With N people and C possibilities, N and C large, the 

chance of no match is

P(C, N) ∼ e− N(N−1)/2C.

Proof: The argument uses simple properties of the logarithm: 
log(1 − x) ∼ −x when x is small. Then 

P(C, N) = 1− 1
C

⎛
⎝⎜

⎞
⎠⎟
i 1− 2

C
⎛
⎝⎜

⎞
⎠⎟
i! i 1− (N − 1)

C
⎛
⎝⎜

⎞
⎠⎟

= elog(1− 1/C) + log(1−2/C) + . . . + log(1− (N − 1)/C)

~ e−1/C − 2/C . . . −(N − 1)/C

= e−N(N − 1)/2C .
The approximations are accurate provided that N and C are large, 

with N2/3/C small.
Diaconis and Mosteller20 use the birthday problem more generally 

in studying coincidences. They use these ideas to study multiple coin-
cidences. For instance, how large should N be to have approximately 
even odds of a triple birthday match? (Answer: about 81.)

As a counterpoint to a philosophy that tries to make much of coin-
cidences, we have provided a simple chance model for comparison. It 
seems useful and believable for studying things like a birthday match 
in a classroom. But one might consider instead a group of people in 
a very fancy restaurant. Since people are often taken out to dinner on 
their birthdays, it is quite likely that there may be several matches on 
a given night. The assumptions of our chance model don’t hold, so 
the conclusions aren’t relevant. The caution applies to all the simple 
chance models of this section. For more, see Diaconis and Holmes 
(2002).21
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