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Introduction

A LTHOUGH THERE HAVE been several excellent studies of aspects of
Poincaré’s work this book is the first full-length study covering all the

main areas of his contributions to mathematics, physics, and philosophy.
It presents an introduction to his work, an overview of its many fields and
interconnections, and an indication of how Poincaré was able to tackle so
many different problems with such success. What emerges is a picture of
Poincaré as a man with a coherent view about the nature of knowledge,
one that he expressed in many of his popular philosophical essays and
applied in the conduct of his own research. What he emphasized above
all was the act of human understanding. His preferred means of attaining
the understanding of a problem was to find the right generalization of its
core concepts, often in the form of an analogy, but one measured by its
ability to generate new results. He endorsed Ernst Mach’s idea of the
economy of thought, and he spoke of looking for the “soul of the fact’’—
the right relationship between the facts that constitutes a productive
principle.

He did not disdain rigor, he regarded it as essential, but he observed
that rigorous proofs could be too long to be comprehensible, and in
mathematical physics they could also fail to capture the way nature
seemed to work and be incapable of producing answers useful to the
physicist. Formal arguments, as in geometry, could distort the subject by
emptying it. His use of the idea of a group underpinned his epistemology
and frequently inspired his search for fruitful analogies. He trusted his
intuition to make productive contact with calculations in every domain
from differential equations to algebraic topology. But he did not put
his trust in pure insight—he admitted his own intuitions were frequently
wrong—or in finding the “true’’ meaning of things. On the contrary, he
was very aware that what some might call the progress of science, more
critical observers would call the accumulating ruins of failed theories.
He knew very well that the best theories in physics were inconsistent,
he wrote about these problems in several essays and addressed them in
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his papers and books on electromagnetism and optics, and what he felt
was a typical mistake was to infer the existence of objects responsible
for the phenomena. For him, theory change was usually a matter of
abandoning the objects while refining the relationship between the facts
(mathematical and experimental) that had been carefully built up.

The picture of Poincaré that emerges would perhaps have pleased
the later Wittgenstein. We have no certainty beyond what shared use
and discourse can guarantee, no unmediated access to reality. We do
what we can according to our best understanding of the rules of the
game (axioms, principles, the best experimental data). Mathematics and
physics together offer us a rule-governed way of living in the world,
although we may, from time to time, have to change the rules, and our
ability to frame these rules is, in some ways, built into how our minds
work.

In this book I argue that understanding, thus conceived, was Poincaré’s
aim in everything he worked on. I trace how he came to the core ideas
that animated his theories in many different domains. In addition to
the numerous links he found between them, much of his work exhibits
standard features that display his sense of the understanding one can
have. In the tension between rigor and understanding, acute in both
mathematics and physics, there is no doubt that Poincaré frequently
failed to provide rigor. But he usually aimed at sharing understanding,
expressed in ways in which new knowledge can most efficaciously be
acquired. Assessing the extent to which he succeeded is one of the aims
of this book.

This is a scientific biography of Henri Poincaré. It is confined entirely
to his public life: his contributions to mathematics, to many branches of
physics and technology, to philosophy, and to public life. It presents him
as a public figure in his intellectual and social world; it leaves the private
man alone apart from a deliberately brief account of his childhood and
education. A full biography is underway with a team of scholars at the
Archive Henri Poincaré at the University of Lorraine, and their book,
due out in 2015, will be very valuable.

The book (2006) edited by Charpentier, Ghys, and Lesne can be
recommended as an introduction to the implications of Poincaré’s work
for mathematics today, and I am sure that readers of this book will want
to consult Verhulst’s Henri Poincaré: Impatient Genius, which I have not yet
seen.
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VIEWS OF POINCARÉ

Pictures are like mirrors: what we see in them reflects aspects of ourselves.
The frontispiece shows the famous picture of Poincaré at the age of 57,
standing alone on the seashore. He has his back to us, he is slightly
stooped, we cannot know what he is thinking, but most likely the picture
suggests to the viewers that Poincaré is lost in his own, remarkable
thoughts. Some may connect it with Newton’s famous remark about
picking up a few pebbles on the seashore:

I do not know what I may appear to the world, but to myself I seem
to have been only like a boy playing on the sea-shore, and diverting
myself in now and then finding a smoother pebble or a prettier shell
than ordinary, whilst the great ocean of truth lay all undiscovered
before me. (Brewster 1855, vol. 2, 407)

It may invite us to enter our own speculations faced with the immensity
of the oceans. Those who know of Poincaré’s profound interest in physics
may recognize the connection between the man and his research into the
shape of the earth. Others, knowing how visionary and innovative was
his mathematics, may see isolation and loneliness. Or just a middle-aged
man enjoying a quiet holiday.

How Poincaré was regarded in his lifetime is inseparable from who he
was. It is in the community of professional mathematicians that he first
emerged, where he made his most profound and lasting contributions,
and where his reputation remains most secure. He amazed his contem-
poraries with his unending stream of intellectual achievements. These
began in 1881, when he brought together the mathematical subjects
of complex function theory and complex differential equations with an
entirely unexpected use of non-Euclidean geometry, to create the theory
of automorphic functions. It continued in the middle years of the 1880s
with his work on real differential equations and his radically new way
of handling celestial mechanics. Despite his ever-deepening involvement
with physics, his work in mathematics continued all this time. His most
lasting achievement is his creation of the subject of algebraic topology, but
he was one of the few to advance the subject of complex function theory
in several variables in the 1900s, and he made important contributions
to algebraic geometry and Sophus Lie’s theory of transformation groups,
and even to number theory.
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Nonetheless, by the 1890s he had become a professor of astronomy
and celestial mechanics, occupied with the fast-moving field of electricity,
magnetism, and optics after Maxwell. This brought him into contact with
Hertz, Lorentz, and, if only obliquely, Einstein. He was now professionally
a physicist and a mathematical astronomer, a man nominated, albeit
unsuccessfully, more than anyone else until recently for the Nobel Prize
in physics. The physics community greatly appreciated his lectures on
a dozen different topics in contemporary physics, and saw him as the
leading French authority on electricity, magnetism, and optics, and the
author of one of the founding papers in the theory of special relativity—
although Einstein’s theory was not widely accepted until after the First
World War.

The public at large heard of him first in 1890, when he won a
prestigious prize for a study of the motion of the planets and the
stability of the solar system, and he went on to write two major works
on celestial mechanics. He was a loyal French citizen, active in the
Bureau des longitudes for many years. He was and remains almost unique
among mathematicians and scientists in presenting his ideas to a general
audience as well as his peers; he wrote widely on many topics and
engaged forcefully in important issues about the nature of mathematics
and contemporary physics, and the relationship between science and
ethics. As this book shows, he was also highly regarded in his lifetime
for a number of interventions in technological discussions.

In many different ways Poincaré exerted a deep and lasting influence,
and yet he had few if any pupils working on his ideas, while his
contemporaries often kept themselves at a safe distance from what he
did and preferred other topics. He was a naturally elegant writer, but his
style was often to describe what he had seen in a problem after prolonged
contemplation, and he left many details for his readers to fill in. A
professor of his time, he was not expected to create a school and his habit
of having little to add to his sometimes impressionistic writings did not
help. Barely two years after his death Europe plunged into a war in which
many young French mathematicians and scientists were killed. When it
was over there were few who were eager to develop Poincaré’s legacy, and
its personal character, with its deep commitment to mathematical physics,
was uncongenial to the next generation in France—the young Bourbaki
with their orientation toward the abstract pure mathematics that was
coming out of Germany. Only after another war, and the full development
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of the Bourbaki style, did mathematicians begin to rediscover the riches
of what Poincaré had set out so many years before.

The modern science, mathematics, and philosophy communities differ
in interesting ways, and one is their attitude to the past. A physicist
today finds it hard to look back beyond the two great changes in
20th century physics: quantum mechanics and the general theory of
relativity. Poincaré’s contribution to the special theory of relativity is
secure, if inextricably entangled with that of Einstein, but much else
in what he did is shrouded in the obscurity of a lost way of thought.
Many mathematicians, however, see him today not only as the exemplary
creator of new branches of mathematics, but as the source of ongoing
topics of research in several areas. As the recent excitement over the
solution of the so-called Poincaré conjecture showed, Poincaré’s work in
topology lives among mathematicians to this day as, to an extent, he
does among philosophers of science, who still discuss his philosophy of
conventionalism. It fed into the ideas of the Vienna circle, and it has kept
his popular essays in print for a century.

Which partial view of Poincaré to present first? The mathematician may
always have been the most significant, and Poincaré was an extraordinary
mathematician. Most mathematicians would be pleased to produce the
work in any one of the first ten volumes of his Oeuvres; each one has
some papers of remarkable depth and originality: the first two volumes
carry the theory of automorphic functions, volume 4 his work on Abelian
functions and complex functions of several variables, volume 6 the
invention of algebraic topology, volume 7 his work on celestial mechanics
and the discovery of chaotic dynamical systems, and volume 10 his work
on the partial differential equations of mathematical physics. But by
being largely topically organized they give a misleading impression of
the man, who switched from one topic to another with great rapidity:
to give just one example, in 1905 he published on number theory,
geodesics on convex surfaces, the dynamics of the electron, a report on
the French geodetic survey in Peru, and a popular philosophical paper
on mathematics and logic. However, the last century has not made his
mathematics any easier to explain to a broad audience.

Few mathematicians in any period would aspire to preeminence in
a branch of physics as well, but Poincaré was one of the dominant
figures in the theory of electrodynamics after Lorentz, eminent in celestial
mechanics, and capable of publishing in every branch of the subject.
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His contributions to physics and astronomy were markedly theoretical,
although when space exploration began in earnest NASA brought out
an English translation of Poincaré’s major work on celestial mechanics,
New Methods of Celestial Mechanics (1967), but it too belongs chiefly to
the experts for whom it was intended. So Poincaré the physicist is
more accessible than the mathematician, but his claim on a modern
audience has been attenuated by the great changes in physics since his
death.

Some mathematicians and physicists might hope to reflect philosophi-
cally on their subject, or to assist in its popularization, but starting in 1891
Poincaré did both, often in the same article and certainly in each of his
four books of essays. As the public philosopher is the easiest to appreciate,
I shall start with him, asking the reader to take on trust that Poincaré’s
words carried particular weight because he was a highly respected,
internationally recognized expert in many fields. In December 1885 he
had won the Prix Poncelet of the Institut de France for his mathematical
work. In 1886 he became the professor of mathematical physics and
probability in the Faculté des sciences in Paris, and was elected president
of the Société Mathématique de France (SMF). In January 1887 he was
elected a member of the geometry section of the Académie des sciences.
This then will be the introduction to this remarkable figure. After some
general reflections on Poincaré’s ways of working, we move to look at the
public intellectual, and then turn to look at his work in mathematics and
mathematical physics.

POINCARÉ’S WAY OF THINKING

It also makes sense to start with the philosopher for the good reason
that to a remarkable degree, Poincaré was guided in his mathematical
and scientific work by his philosophical reflections. There are times in
mathematics and physics when the practical mathematician or physicist
becomes a philosopher of their subject, whether they, or the later
professional community admits it explicitly. As Hilbert said of Dedekind’s
work on one occasion, “The mathematician was thus compelled to
become a philosopher, for otherwise he ceased to be a mathematician.’’1

1 Quoted in Corry (2004, 379).
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Whenever the nature of the mathematics changes profoundly, as it did in
Poincaré’s time with the arrival of characteristically modern mathematics,
or physics, as it was to do with the general theory of relativity and with
quantum mechanics, some mathematicians and physicists are decisive in
the conceptual—indeed, philosophical—reformulation of their subject.
The most prominent proponent of the new, highly abstract, modern
mathematics was David Hilbert in Göttingen, and it is easy to argue
that there was a sea change, even before he articulated it, that many
German mathematicians went with and many French opposed: what
Cantor advocated, with Hilbert’s subsequent blessing, Charles Hermite,
the leading French mathematician of his day and an important influence
on the young Poincaré, found pointless and disturbing. But Poincaré, for
all he spoke against the new set-theoretical foundations of mathematics
that were coming out of Germany was not a spokesman for French values,
rather, only for his own. He could appreciate the axiomatic approach
often favored by Hilbert, he favored the general over the particular in his
own work (unlike Hermite). However, what holds his life’s work together
to a remarkable degree is the tight hold his epistemology had on his ideas
of ontology, on what constitutes an answer to a mathematical or physical
problem (and what does not), and on what the practice of mathematics
and physics consists of.

Poincaré argued that we had every reason to believe the universe was
intelligible, but could never know what it was “truly’’ like. We could only
hope to live in it in an effective manner. To do so as a mathematician
and a physicist meant, he argued, recognizing the two subjects as parts of
the same subject because mathematics was the only language the scientist
can speak, and because physics had given mathematics the concept of the
continuum, without which little mathematics could be done. As concerns
language, this is a theme that runs right through Poincaré’s work. In his
view, we share the usage of key terms, and we strive for objectivity through
discourse, not for truth, a word he seldom used. As for the continuum,
this, he said, was chosen by us as a matter of convenience without which
science as he knew it could not proceed, but it was not forced upon us—he
knew that other continua were mathematically consistent.

Poincaré entertained three levels of working assumptions in our
intellectual life. The first was that of hypotheses: these could turn out
to be true or false, and scientists make them all the time. At a more
fundamental level, certain hypotheses, such as the laws of mechanics,
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1 Quoted in Corry (2004, 379).
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had, over time, been elevated to the level of principles. They could not
be verified, but they were extremely plausible and led to a very elegant
theory with great range and predictive power. They were conventions,
adopted for their efficacy not for their truth, and might one day have
to be abandoned in favor of better ones, but until that day they were
beyond discussion and controversial evidence should first be assessed on
the assumptions that these basic principles hold.

At the third level, underpinning all these conventions, were two
epistemological ones. Geometrical conventionalism was his explanation
of how knowledge is possible at all. It is a theory of how the individual
constructs his or her notion of space and, like cognitive science today,
it is a mixture of evolutionary ideas and ideas about early mental
development.2 But it, too, leaves open the idea that other intelligent
beings might make a different construction of space, and find it to be, say,
non-Euclidean where we find it to be Euclidean. There would be no fact
of the matter, only a choice based on convenience, albeit one long since
built into the workings of our (and their) minds. In particular, our concept
of distance between objects rests on our idea of how to measure, and this
is typical of Poincaré: no concept is admitted without a way of evaluating
it and deciding upon its correctness. Confronted with an apparent truth,
he would always ask: How do you know?

Poincaré’s second epistemological convention was his explicitly argued
belief that we have a built-in understanding of reasoning by recurrence,
from which flows our knowledge of what the natural numbers are, and
indeed all the mathematics that does not depend on the continuum.
This is not the view of most mathematicians today, but we know now that
all rich mathematical theories rest on some assumptions. His loneliest
position was his rejection of Zermelo’s set theory, on the grounds that
the transfinite sets it required were too big to be understood, and if they
could not be understood, they could not usefully be talked about. In this
sense, Poincaré’s preference for our knowledge of the natural numbers
over axiomatic set theory is not so strange.

He believed strongly that a knowledge claim had to come with an
account of how we can know it. In a long controversy with Bertrand

2 The ultimately flexible, purely utilitarian character of the conventionalism distinguishes it
from Kantian intuition, which is, at least in Kant’s presentation, an unanalyzed and perhaps
even unanalyzable mental grasping.
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Russell over what it is to know what distance is, he emphasized that
it was imposed on us by our understanding of measurement. Inspired
by Maxwell he had confidence in experimental results and rigorous
mathematics but no compelling need or logical force in filling the gap
between experimental results (measurements, laws) and mathematical
theorems with stuff (such as electric fluids, electrons, and the like, that
people—Lorentz included—populated their papers with).3 In part this
was a somewhat Kantian recognition that the ultimate nature of things is
hidden from us, but it was also a belief that such talk often turned out
to be wrong, whereas the theoretical relations between the objects usually
prospered. It was the relations we could work with, not the things. He
sometimes said he dealt with the form but not the matter of a subject,
often capturing the form as a particular mathematical object, the group.
But he seldom studied any individual group in detail; for him the crucial
fact was the existence of a group. It allowed him to explain how we arrive
at a particular convention for understanding space; equally it allowed
him to explain why certain functions in number theory exist, and why
certain topological spaces are different.

A striking late expression of this idealist strain in his thinking illumi-
nates his ideas about space. In the preface he wrote to the first three-
volume collection of his essays he emphasized that he was interested
in the language we use to talk about space and how we might have
confidence in it without ever having access to some phantom of a
fundamental reality. “Space,’’ he remarked, “is only a word that we have
believed a thing’’ (1913, 5). A decade earlier, in a controversy with Le Roy
over the nature of scientific knowledge, Poincaré discussed how the brute
facts (simple observation statements such as “it is dark’’) are translated
into the language of science, and where the fundamental principles
of physics enter the analysis. He was firmly of the opinion that these
principles are human creations, and as such capable of revision—which is
a good view to hold when theories are likely to change.

Talk, discourse, was crucial to Poincaré. He recognized that we can-
not compare our individual sensations, but we nonetheless agree on
what is red. Likewise, he argued that in accepting as conventions the

3 Perrin’s experiments of 1908 convinced him of the existence of atoms because his analysis
showed that it was possible to make definite statements about them that could be consistent with
other theories in physics.
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fundamentals of Newtonian mechanics, and so moving them beyond
the reach of experiment, we are agreeing on what we shall say is true.
He made no distinction between saying “the earth rotates’’ and “it is
convenient to say that the earth rotates’’ because the only way to make
the first remark is to subscribe in advance to the second: to unpack its
meaning was, for him, to discover that it is a statement in Newtonian
dynamics. Truths by convention were part of a shared discourse.

For Poincaré, understanding was central, and it was captured in the
ways people were enabled to say what they could not say before.4 So
Poincaré in his own way preferred to speak of use rather than of meaning,
even in mathematics. The axiomatic approach promoted by Hilbert does
indeed tell us how to use the elements of an abstract structure but never
what they are (although we may recognize specific exemplars). But when
Poincaré speculated on how to do mathematics he came back to the
importance of analogy in guiding one’s thoughts, formulating new ideas,
and generally doing something new. The rigorous side of mathematics
was valuable, for without it there was nothing, but what mattered more
was invention, the productive use of old and new ideas. And this was
expressed in the steady expansion of our mathematical language. And
when Poincaré talked about mathematics he valued new facts only if they
united seemingly disparate elements in an unexpected way that, as he
put it, “enables us to see at a glance each of these elements in the place it
occupies in the whole’’ (L’avenir 375). Elsewhere, in words that not every
lesser mathematician might feel comfortable with, he disparaged the
mere production of new combinations of mathematical entities as work
that can be done by anyone and that is highly likely to be absolutely
devoid of interest; the task is to discern the few useful new combinations,
which will usually be of ideas drawn from widely separated domains. He
said that mathematicians set great store by the elegance of a solution or
a proof because of the economy of thought that Mach had identified as a
measure of intellectual economy.

Whenever he found it possible, he was rigorous. As he put it in L’avenir:
“In mathematics rigour is not everything, but without it there is nothing.’’
His education at the École polytechnique raised him to fluency in the
theory of differential equations as it stood in the early 1870s, in complex
function theory, in the use of Fourier series, and in coordinate geometry.

4 See the insightful paper, Epple (1996).
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This gave him a battery of standard methods to apply, of checks to run
before certain theorems can be used, and general tricks of the trade
that he rapidly fitted into his way of thinking mathematically. That said,
when he himself felt an argument of his was imprecise, as was often the
case in his work in applied mathematics, where there is a need to make
approximations to get results and rigorous means are not available, he
recognized that the proper test is the experimenter’s, whose results can
guide a theory when rigorous mathematics cannot. And on occasion he
offered a vision of how things should be that, in the absence of a proper
terminology and body of new results, could only be imperfect, as he did
when creating algebraic topology. This is true quite broadly: Poincaré
gave his readers good reasons to believe what he said, and where he could
be rigorous he usually was, but he was happy to publish when he had
convinced himself, and on those occasions his contemporaries had to be
content with little more than a shrug.

Poincaré was explicit that understanding was not chiefly a psycho-
logical state. When he spoke to the Psychological Society in 1907 he
noted that the feeling of having made an insight could be delusive,
and the error would only be revealed “when we attempt to establish
the demonstration’’ (1908d, 395). But he did appreciate the power of
analogy, and indeed he often sought out analogies and demonstrated
their use in various aspects of his work. These were never speculative,
groundless analogies, but the result of detailed examinations of stories
drawn from different domains that could be used to make productive
comparisons. Indeed, his way of working further dismantles the idea that
Poincaré pursued a path of pure intuition. He worked regularly from
10 till 12 in the morning and from 5 till 7 in the late afternoon. He
found that working longer seldom achieved anything, but that it was
not always possible to switch off, which was why he never worked in the
evenings. He took a complete rest when on holiday. When reflecting
on a topic he liked to walk about, but when preparing he took few
notes and very often began to tackle a problem without any clear idea
about the solution. He typically felt drawn on by a topic almost like an
automaton and did not have the sensation of making an effort of will,
but “with Poincaré the feeling of certainty must be rather weak, for every
truth appeared to him to be debatable in some respect’’ (Toulouse 1909,
192). Organizing his ideas generally came easily to him, but if the effort
became painful he would give up and abandon the work, which usually
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happened when he lost interest. On the other hand, he sometimes found
that things went well by dropping a subject and coming back to it at
intervals.5

He set out his views on what it is to understand mathematics in
several places, most programmatically in his (1904c) on definitions
in mathematics. This was an address at the Musée pédagogique, and
chiefly concerned itself with the teaching of mathematics in schools,
but Poincaré was concerned with the marked difference between formal
and intuitive mathematics. Just as a precise definition might not be
understood in a classroom, understanding a proof is not the same
thing as checking its logical validity. Today, he said, we know that our
predecessors worked with many imprecise definitions that we have made
precise, that of continuity, for example, but in the last fifty years logic
has sometimes produced monsters: functions that are not continuous,
or, if continuous, have no derivatives. Indeed, strictly speaking, these
are the typical functions and the ones one finds without going looking
for them are a small corner of the whole. But if logic was our only
guide, the student would have to begin in a teratological museum, and
this would be as futile as studying an elephant only with a microscope.
Everything would be correct, but it would not show the true reality. So it
is necessary to proceed in the reverse direction, and build up the student’s
intuition before gradually introducing rigor. “It is not enough to doubt
everything,’’ he said in paragraph 7, “one must know why one doubts.’’
Even the future professional mathematician (géomètre) needs intuition,
“For if it is by logic that one proves, it is by intuition that one invents’’
(para. 9). The real skill, said Poincaré, is in choosing between the different
correct things one can write down so as to see the goal from a long way
away, and without intuition the mathematician is like a writer who knows
grammar but has no ideas.

The question of why something is true was much more important for
Poincaré than the question of what is true. Even a strict proof would not
always answer the question of why a result holds: there had to be what he
called the “soul of the fact’’ (L’avenir 376), the central idea that explained
why it was true and also how it could be proved. This did not necessarily
make the proof entirely short or obvious, but it told him how to tackle the
problem and which standard techniques would resolve it.

5 See Toulouse (1909, 145–146).
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This accounts for the longevity of his popular essays. It is quite
remarkable that so many of them are worth reading well over a hundred
years after they were written, and they remain fresh because they address
issues that will always come round in the education of mathematicians,
scientists, and the general public. Perhaps non-Euclidean geometry has
become a surrogate for some other belief about space, but the issue of
how a rigorous mathematical theory can be interpreted in physical terms
remains pertinent. Certainly Poincaré is not the best person to read about
special relativity, but his reflections on how the best science of his day
seemed to be crumbling in the face of almost inexplicable laboratory
results speaks to anyone concerned about how theories change (as they
do). His hostility to logicism and his deep distrust of the rising axiomatic
set theory leave Poincaré’s strictures about how to define mathematical
objects with limited appeal—except that to this day a number of eminent
voices raise concerns about the cavalier acceptance of the infinite. Very
likely his predictions for the future of mathematics look no better than
most gamblers’ best estimates, and no better than Hilbert’s selection—
and Hilbert was in a much better position to make his predictions come
true—but read in their entirety they say valuable things about how
mathematics does, or might, develop. And no one has written better
about how to be an inventive mathematician. Other volumes in the series
Poincaré wrote for tried for topicality, and now they pay the price of being
yesterday’s news. Poincaré tried to speak about human understanding,
and that does not date. He might even be presented, with his theory of
knowledge, as a precursor of cognitive science.

Poincaré’s Achievements

Poincaré first emerged on the mathematical scene in 1879 and 1880
with a number of small papers on number theory after the manner
of Hermite, who was pleased with them, and a couple on differential
equations. He turned 26 in 1880, so he was no prodigy. But in 1881
he began to publish the work that had led him to write the essay
and its supplements which placed him second in a prize competition
of the Académie des sciences, and a stream of new ideas began that
transformed the study of three areas of mathematics: complex function
theory, differential equations in the complex domain, and non-Euclidean
geometry. By 1884, when Poincaré’s interests began to embrace yet
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Figure 0.1. Charles Hermite (1822–1901). Source: Arild Stubhaug, The Mathe-
matician Sophus Lie (Springer, 2002).

more fields he had rewritten the theory of Riemann surfaces, created
new classes of functions that solve a large class of hitherto intractable
differential equations, and placed at the center of it all the topic of
non-Euclidean geometry that had previously been merely exotic. The
new functions he defined, variously called Fuchsian or Kleinian functions
after other investigators or more generally, automorphic functions, were a
generalization of elliptic functions, a subject of considerable importance
in its own right although one that did not detain Poincaré.

It is possible to trace Poincaré’s progress quite closely in these years (as
chap. 3 below describes) and we do not see a sudden flash that illuminates
the whole. Rather, we see the gradual emergence of a governing family of
ideas, built around the deepening appreciation of the group idea. Once
Poincaré saw how non-Euclidean geometry entered the story he had a
program that he could pursue that raised questions that, mostly, he could
solve and that, in what was both a cooperation and a competition with the
German mathematician Felix Klein, led eventually to a brilliant insight
that had to remain an unproved conjecture for twenty-five years.
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Thereafter, his work displayed no particular pattern. Unlike most
of his contemporaries he did not stay in one field and deepen his
understanding of it. Nor, like some more restless souls, did he simply
switch fields from time to time. He took up new interests, but seldom
dropped any. His earliest interests remained his last—his very last paper,
as fate was to determine it, was on Fuchsian functions and number
theory. But a significant shift came when he began to develop theories
that applied to planetary astronomy: the shape of planets (described
in chap. 5 below), their orbits, and the long-term stability of the solar
system.

These were traditional questions going back at least as far as Newton,
and they were central to an establishment that revered Laplace, but
Poincaré invigorated them. Once again he soon reached a governing
idea, in this case that for such problems the long-term behavior of the
solution curves was what had to be understood. This marked a complete
contrast with the astronomers’ incremental tradition in which prodigious
amounts of calculation were deployed to calculate the ephemerides for
only a few years ahead. Poincaré succeeded to a remarkable degree with
a preliminary study of differential equations and their solution curves on
surfaces—which was a further way for him to appreciate their topology—
and then embarked on what became a lifelong involvement with plane-
tary motion. What remains one of his most celebrated discoveries is his
demonstration that there is a deep reason for the failure of traditional
methods to resolve even the simplest nontrivial problem, the three body
problem: even three bodies moving under their mutual gravitational
attraction can display chaotic motion and have orbits extremely sensitive
to the initial conditions, thus making long-term predictions almost
impossible.

When Poincaré became a professor of mathematical physics and
probability in 1886 his interest in physics deepened, and no topic was
more important and exciting than the theory of electricity, magnetism,
and optics. To the British this meant the theory presented by James
Clerk Maxwell, who had died in 1879, but this theory was distasteful
to French scientists who found it lacking the elegant mathematical
sophistication they were used to in their own tradition. Poincaré even
found it inconsistent, but he also admired it for its depth, its mathematics,
and its appreciation of the fact that there will not be a unique explanation
of nature if there is any explanation at all. In the 1890s Poincaré became
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the French expert on the theory, the man who could indeed provide an
elegant exposition of the ideas of Maxwell, Helmholtz, and Hertz, point
out their strengths and weaknesses, and in due course do the same for
Lorentz’s contributions. He also became the adjudicator of a number of
disputes in the subject, contributed to the technological exploitation of
the new ideas, and, in 1905, the author of one of the lasting ideas in
what is now the subject of special relativity: what he modestly called the
Lorentz group. Finally, in 1911 his grasp of Max Planck’s new theory of
quanta was influential in the acceptance of the new ideas with a speed
that Planck had feared impossible.

From 1890 until his death Poincaré retained an interest in the theory
of real and complex functions in one and several variables and worked
successfully on a number of outstanding problems. He made lasting
contributions to Sophus Lie’s theory of transformation groups and to
algebraic geometry. But his major contribution to mathematics in those
years was undoubtedly that of topology. It was one of his abiding beliefs
that a qualitative analysis of a problem ought to precede a quantitative
one, and the pioneer of qualitative methods in mathematical analysis was
Bernard Riemann, who had died in 1866 leaving behind such a profound
reorganization of the subject that it was take at least a generation to
assimilate. Poincaré’s involvement with Riemann surfaces early in his
career educated him in the power of Riemann’s ideas—in many ways
Riemann and Poincaré were kindred spirits—and his formulation of
the three body problem had led Poincaré to contemplate problems in
extending Riemann’s ideas to three dimensions. What he accomplished
here essentially created a new branch of modern mathematics: algebraic
topology. It may have done so in part because his methods were so
visionary that they had more or less to be done again and differently
in order to be rigorous, but also set out an attractive topic and ways
of approaching its problems. He outlined several ways of defining
three-dimensional manifolds, sketched what later would be called a
Morse-theoretic decomposition of them, and described the two natural
algebraic objects that are associated to a manifold, their first homotopy
and homology groups, with enough precision to establish a profound
problem, one that grew in successive interpretations to become the
Poincaré conjecture.

This great range invites the question: Was there one Poincaré or many?
If, trivially, there were many—the Poincaré of (sometimes) rigorous
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pure mathematics, the applied mathematician and lecturer happy with
heuristic arguments, the scientist immersed in the details of geodesy
or celestial mechanics—there was also only one. Not just because he
took a firm view of what his task was, which was to develop the
understanding of everything he looked at, but because of the many
analogies and links he found between the subjects he worked on. Among
the links he mentioned explicitly were ones between celestial mechanics
and problems in the theory of complex functions of several variables;
between physicists’ intuitions and the often contrived methods for solving
the partial differential equations of mathematical physics; and between
geometry, physics, and philosophy. The right approach for a book such
as this one is surely to follow his own, and to seek to explain what he
discovered by conveying why it has to be described in particular ways, to
aim to reilluminate the radiating centers of his own systems of ideas.

His way of working explains why Poincaré had rather distant relations
with his contemporaries and no real students. As his nephew Pierre
Boutroux explained to Mittag-Leffler, Poincaré was willing to be very
patient with students, but when it came to expressing an opinion his
standards were very high: either they had really grasped the idea, or they
had not. Add to that the fact that the French system was much more
closely tied to the old model of young independent inventors making
their way in the world than the German graduate school approach, and
the fact that most mathematicians in the 19th century worked on their
own anyway, and his isolation is less surprising. But it did not spring from
any reluctance to express himself, or from an “ivory tower’’ mentality: he
served energetically on numerous committees and editorial boards.

Another measure of the man is afforded by the work of others that
excited and impressed him. The first of these seems to have been Georg
Cantor’s work on point-set topology, which he applied to his own work
in the 1880s. He was impressed by Lie’s theory of transformation groups
when he met Lie in Paris, but he did not work on the subject until 1900,
after Lie was dead. Hill’s new approach to the study of the motion of the
moon he regarded as an insight into dynamical systems that was likely
to be very useful in numerous ways. Among the physicists, the ideas first
of Hertz and then Lorentz impressed him and drew him to the frontier
of electromagnetic theory. Hilbert’s Foundations of Geometry he recognized
as presenting a profound and radical challenge to his own ideas, and
this seems to have impressed him more than Hilbert’s work on integral



August 7, 2012 Time: 12:54pm introduction.tex

16 Introduction

the French expert on the theory, the man who could indeed provide an
elegant exposition of the ideas of Maxwell, Helmholtz, and Hertz, point
out their strengths and weaknesses, and in due course do the same for
Lorentz’s contributions. He also became the adjudicator of a number of
disputes in the subject, contributed to the technological exploitation of
the new ideas, and, in 1905, the author of one of the lasting ideas in
what is now the subject of special relativity: what he modestly called the
Lorentz group. Finally, in 1911 his grasp of Max Planck’s new theory of
quanta was influential in the acceptance of the new ideas with a speed
that Planck had feared impossible.

From 1890 until his death Poincaré retained an interest in the theory
of real and complex functions in one and several variables and worked
successfully on a number of outstanding problems. He made lasting
contributions to Sophus Lie’s theory of transformation groups and to
algebraic geometry. But his major contribution to mathematics in those
years was undoubtedly that of topology. It was one of his abiding beliefs
that a qualitative analysis of a problem ought to precede a quantitative
one, and the pioneer of qualitative methods in mathematical analysis was
Bernard Riemann, who had died in 1866 leaving behind such a profound
reorganization of the subject that it was take at least a generation to
assimilate. Poincaré’s involvement with Riemann surfaces early in his
career educated him in the power of Riemann’s ideas—in many ways
Riemann and Poincaré were kindred spirits—and his formulation of
the three body problem had led Poincaré to contemplate problems in
extending Riemann’s ideas to three dimensions. What he accomplished
here essentially created a new branch of modern mathematics: algebraic
topology. It may have done so in part because his methods were so
visionary that they had more or less to be done again and differently
in order to be rigorous, but also set out an attractive topic and ways
of approaching its problems. He outlined several ways of defining
three-dimensional manifolds, sketched what later would be called a
Morse-theoretic decomposition of them, and described the two natural
algebraic objects that are associated to a manifold, their first homotopy
and homology groups, with enough precision to establish a profound
problem, one that grew in successive interpretations to become the
Poincaré conjecture.

This great range invites the question: Was there one Poincaré or many?
If, trivially, there were many—the Poincaré of (sometimes) rigorous

August 7, 2012 Time: 12:54pm introduction.tex

Introduction 17

pure mathematics, the applied mathematician and lecturer happy with
heuristic arguments, the scientist immersed in the details of geodesy
or celestial mechanics—there was also only one. Not just because he
took a firm view of what his task was, which was to develop the
understanding of everything he looked at, but because of the many
analogies and links he found between the subjects he worked on. Among
the links he mentioned explicitly were ones between celestial mechanics
and problems in the theory of complex functions of several variables;
between physicists’ intuitions and the often contrived methods for solving
the partial differential equations of mathematical physics; and between
geometry, physics, and philosophy. The right approach for a book such
as this one is surely to follow his own, and to seek to explain what he
discovered by conveying why it has to be described in particular ways, to
aim to reilluminate the radiating centers of his own systems of ideas.

His way of working explains why Poincaré had rather distant relations
with his contemporaries and no real students. As his nephew Pierre
Boutroux explained to Mittag-Leffler, Poincaré was willing to be very
patient with students, but when it came to expressing an opinion his
standards were very high: either they had really grasped the idea, or they
had not. Add to that the fact that the French system was much more
closely tied to the old model of young independent inventors making
their way in the world than the German graduate school approach, and
the fact that most mathematicians in the 19th century worked on their
own anyway, and his isolation is less surprising. But it did not spring from
any reluctance to express himself, or from an “ivory tower’’ mentality: he
served energetically on numerous committees and editorial boards.

Another measure of the man is afforded by the work of others that
excited and impressed him. The first of these seems to have been Georg
Cantor’s work on point-set topology, which he applied to his own work
in the 1880s. He was impressed by Lie’s theory of transformation groups
when he met Lie in Paris, but he did not work on the subject until 1900,
after Lie was dead. Hill’s new approach to the study of the motion of the
moon he regarded as an insight into dynamical systems that was likely
to be very useful in numerous ways. Among the physicists, the ideas first
of Hertz and then Lorentz impressed him and drew him to the frontier
of electromagnetic theory. Hilbert’s Foundations of Geometry he recognized
as presenting a profound and radical challenge to his own ideas, and
this seems to have impressed him more than Hilbert’s work on integral



August 7, 2012 Time: 12:54pm introduction.tex

18 Introduction

equations, where Poincaré always gave the palm to Ivar Fredholm’s
contributions. He appreciated Hermann Minkowski’s Geometry of Numbers
as a breakthrough in number theory, a topic Poincaré regarded as
particularly difficult, and he seems to have appreciated the work of Italian
geometers on the theory of algebraic surfaces sufficiently to produce
his own, complex analytic, version of one of their most incisive results.
His last enthusiasm was for Planck’s insight into the quantum nature
of radiation. On the other hand he never learned much from Einstein’s
theory of special relativity and seems not to have fully grasped it, despite
coming up with the Lorentz group at the same time. He did little with
the work of his contemporaries, whether he got on with them personally
(as he did with Paul Appell) or not (Émile Picard), and he seems to
have not cared about the younger generations of French analysts—Émile
Borel, Maurice Fréchet, Henri Lebesgue, and Paul Montel—and not to
have taken up even the idea of measure theory, despite his interest in
probability theory. He may even have thought their interest in the strange
behavior of functions somewhat misplaced. Even those who strayed into
his territory, like Jacques Hadamard and Paul Painlevé, do not seem to
have become mathematical confidantes. He disliked what he saw of the
attempt to reduce mathematics to logic, and while he remained polite
he was doubtful that any attempt to reduce mathematics to axiomatic set
theory would succeed.

In Context

It would be impossible, and therefore absurd, to summarize the state of
France in the second half of the 19th century, but a few perspectives are
most relevant here. The defeat by the Prussians in the Franco-Prussian
War and the loss of parts of Alsace and Lorraine in 1870–71 charged
national feelings with potent emotions of shame, rivalry, and renewed
patriotism. These burst out in the Dreyfus affair, which began in 1894,
but they permeated scientific life in the form of repeated comparisons
with whatever was happening in Germany.

Education prospered in the aftermath of the defeat. As Gispert (1991)
has described, the higher education budget more than doubled between
1877 and 1883, new university professorships were created, especially
in the provinces, research became professionalized, student numbers
increased. The French Mathematical Society, founded in 1872, was
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initially dominated by graduates of the École polytechnique, but as the
status of teaching rose so too did that of the École normale supérieure
at the expense of the École polytechnique until by 1900 Poincaré was a
marked exception in having attended the École polytechnique: Appell,
Borel, Cartan, Darboux, Goursat, Hadamard, Painlevé, and Picard were
all normaliens. New journals were founded—as they were in all academic
subjects and in all types of journalism. Even so, Germany with its twenty-
two universities and its productive emphasis on research, was the object
of many a nervous glance. Poincaré, as we shall see, made numerous
contributions to several of these journals, and his popular reputation was
lucratively sustained as a result.

The Belle Epoque, as the period in French history from the 1890s
to 1914 has become known, was a period when foreign travel took off
among the middle classes, and champagne, high fashion, and operettas
were the height of fashion. As a child Poincaré had traveled widely
with his parents, and he continued this habit in later life. He also liked
music, Wagner especially, but did not play an instrument although he
had been taught piano briefly as a child.6 But it was also the period
of Zola’s novels, when the gap between the rich and the poor widened
considerably, and fashionable pleasures were contrasted with the miseries
of the growing slums. On occasion Poincaré spoke out against what he
saw as the mindless accumulation of wealth, although his involvement in
explicitly political activity was sporadic, and he was a moderate on the
side of Dreyfus (see chap. 2, sec. “The Dreyfus Affair’’ below).

French scientists were among those who hoped to improve the quality
of life, Pasteur most famously, but the half century also saw the arrival of
the telegraph, wireless, street lighting, and a number of other technolog-
ical breakthroughs, and Poincaré was to contribute to the discussion of
many of these issues. The ideology that accompanied these contributions
to the creation of modern life was usually positivism in the form that
Auguste Comte had given it in the 1850s but without his oddly religious
overtones. This was a belief that the evidence of the senses, perhaps
refined through simple scientific theories, was the only reliable form of
knowledge, superior to any form of metaphysics or organized religion.

6 When Poincaré died, Le monde artiste (20 July 1912, p. 458), recorded that Poincaré liked to
go alone to matinees at the Opéra-Comique to listen to Pélleas et Mélisande and with his young
daughters to La trompette, where he was the most attentive and assiduous listener.
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Positivism was the default position of most scientists, and sometimes
spilled over into a view that scientists were therefore particulary suited
to advise government, perhaps best from a position of studied neutrality
that had the unintended side effect of keeping the state funding of
science at low levels, with detrimental effects on the growth of physics as a
discipline in France. It often went with a naive progressivism, a belief that
science dispassionately and sensibly applied would lead to steady, and
ultimately remarkable improvements in the quality of life. Its greatest
weakness was a failure to understand politics, where, of course, it was
opposed by the powerful Catholic Right, and played into the lasting divi-
sions created in the traumatic conflict of the French Revolution. Poincaré
was far from being a positivist, but when he was drawn into defending his
views of science against the arguments of Le Roy who sought to present
science as little more than the inventions of scientists, he was arguing
against opinions intended to bolster the theology of the Church, as is
discussed below (see chap. 1, sec. “Science, Hypothesis, Value’’).

Émile Boutroux, the most prominent philosopher of his generation,
and who was only nine years older than him, was his brother-in-law and it
is often speculated that some of the Kantian aspects of Poincaré’s thought
derive from Boutroux. One of his central concerns in Boutroux’s major
book (1874/1895) was to bring a respect for contemporary science into
philosophy without, as a result, introducing a determinism that would
shut out ethics and free will. To do this he invoked a layered nature of
science that put logic at the lowest level, with mathematics upon it, then
mechanics, and so on until physiology and finally sociology was reached,
and argued that no layer could be reduced to the one below because an
element of contingency always intervenes. Mathematics could not then
have an a priori claim on our knowledge of the world, whatever its
rigorous character, and moreover, as he put it “the law of causality is but
the most general expression of the relations arising from the observable
nature of things.’’7 The word “relations’’ here alerts us to the later ideas of
Poincaré, and in fact Boutroux went on to distinguish two kinds of laws in
science. The first kind are mathematical, abstract, and almost necessary
although capable of revision, but they are remote from reality. The
second kind are intuitive, observational, and completely empirical, but
are not deterministic at all. The former operate when science explains,

7 See É. Boutroux (1874, 25–27), quoted in Heidelberger (2009, 123).
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the latter when it describes. But the mathematical laws are rooted neither
in reality nor in the fundamental nature of the intellect: “mathematics
is necessary only with respect to postulates whose necessity cannot be
demonstrated, and so is hypothetical after all.’’8 As Heidelberger points
out, following Pierre Boutroux at this point, the element of contingency
gives a pragmatic edge to Émile Boutroux’s analysis that brings it close to
Poincaré’s conventionalism. On Boutroux’s formulation, as on Poincaré’s,
the mathematical laws of nature cannot be made to apply except by
treating them as free choices of the mind, taken with as much pragmatism
as is worthwhile.

But it is also the case that Poincaré thought through anything that
interested him for himself. He was never in the grip of a philosophical
orthodoxy that drove him to explain everything in somebody else’s
language as if it had greater epistemic depth. He rather resembled
Helmholtz in his struggles with the Kantians: sometimes sympathetic,
but never a party member.9 This was because his expertise was in
mathematics and physics, topics the philosophers (Boutroux excepted)
had largely ignored, but which he knew raised genuine problems in
epistemology and ontology and on which he knew he had something
original and important to say. The reflections of mathematicians and
physicists on their subjects in the years 1880–1914 in fact created
philosophies of their subjects well in advance of anything the professional
philosophers deigned to contribute.

Habits and Customs

We have some evidence of how Poincaré actually worked on a daily basis.
Like all really good mathematicians, Poincaré, kept a structured account
or story of mathematics in his mind, one that placed the key concepts,
methods, and theorems in a coherent way. He read in the fashion of some
of the best mathematicians, as Pierre Boutroux observed,

He did not force himself to follow long chains of deductions, the
closely-woven net of definitions and theorems that one usually finds
in mathematical memoirs. But going straight away to the result that

8 See É. Boutroux (1895, 215), quoted in Heidelberger (2009, 135).
9 I do not find Poincaré’s conventionalist epistemology as close to Kant’s synthetic a priori as

does Folina (1992).
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and who was only nine years older than him, was his brother-in-law and it
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and argued that no layer could be reduced to the one below because an
element of contingency always intervenes. Mathematics could not then
have an a priori claim on our knowledge of the world, whatever its
rigorous character, and moreover, as he put it “the law of causality is but
the most general expression of the relations arising from the observable
nature of things.’’7 The word “relations’’ here alerts us to the later ideas of
Poincaré, and in fact Boutroux went on to distinguish two kinds of laws in
science. The first kind are mathematical, abstract, and almost necessary
although capable of revision, but they are remote from reality. The
second kind are intuitive, observational, and completely empirical, but
are not deterministic at all. The former operate when science explains,

7 See É. Boutroux (1874, 25–27), quoted in Heidelberger (2009, 123).
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the latter when it describes. But the mathematical laws are rooted neither
in reality nor in the fundamental nature of the intellect: “mathematics
is necessary only with respect to postulates whose necessity cannot be
demonstrated, and so is hypothetical after all.’’8 As Heidelberger points
out, following Pierre Boutroux at this point, the element of contingency
gives a pragmatic edge to Émile Boutroux’s analysis that brings it close to
Poincaré’s conventionalism. On Boutroux’s formulation, as on Poincaré’s,
the mathematical laws of nature cannot be made to apply except by
treating them as free choices of the mind, taken with as much pragmatism
as is worthwhile.

But it is also the case that Poincaré thought through anything that
interested him for himself. He was never in the grip of a philosophical
orthodoxy that drove him to explain everything in somebody else’s
language as if it had greater epistemic depth. He rather resembled
Helmholtz in his struggles with the Kantians: sometimes sympathetic,
but never a party member.9 This was because his expertise was in
mathematics and physics, topics the philosophers (Boutroux excepted)
had largely ignored, but which he knew raised genuine problems in
epistemology and ontology and on which he knew he had something
original and important to say. The reflections of mathematicians and
physicists on their subjects in the years 1880–1914 in fact created
philosophies of their subjects well in advance of anything the professional
philosophers deigned to contribute.

Habits and Customs

We have some evidence of how Poincaré actually worked on a daily basis.
Like all really good mathematicians, Poincaré, kept a structured account
or story of mathematics in his mind, one that placed the key concepts,
methods, and theorems in a coherent way. He read in the fashion of some
of the best mathematicians, as Pierre Boutroux observed,

He did not force himself to follow long chains of deductions, the
closely-woven net of definitions and theorems that one usually finds
in mathematical memoirs. But going straight away to the result that

8 See É. Boutroux (1895, 215), quoted in Heidelberger (2009, 135).
9 I do not find Poincaré’s conventionalist epistemology as close to Kant’s synthetic a priori as

does Folina (1992).
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lay at the centre of the memoir, he interpreted it and reconstructed
it in his own way; he took control of it in his own way and then,
taking the book up in his hands once again he looked rapidly
through the propositions, lemmas, and corollaries, that furnished
the memoir. . . .Instead of following a linear route his mind radiated
from the centre of the question he was studying to the periphery.
As a result, in his teaching and even in ordinary conversation he
was often difficult to follow and could even seem obscure. When he
expounded a scientific theory, or even told a story, he almost never
began at the beginning but, ex abrupto, he set forth at once the
salient fact, the characteristic event or the central person, someone
he had absolutely not taken to time to introduce and whose name
his interlocutor did not even know. (P. Boutroux 1914/1921)

He added, “All his discoveries my uncle made in his head, most often
without the need to check his calculations in writing or setting his proofs
down on paper. He waited for the truth to strike him like thunder, and
counted on his excellent memory to remember it.’’

We may note a number of approaches to topics that Poincaré fre-
quently tried, among them the following.

1. He looked whenever possible for transformations of a problem,
not just to simplify it but because groups of transformations were
at the heart of every place where they arose. As we shall see (for
example in chap. 3) whenever he studied geometry, the
corresponding transformation group was the key to all the
important issues.

2. In problems on mathematical physics he looked for the basic
principles: conservation of energy and of momentum, least
action, and so forth.

3. When problems depended on some parameters, as for example
many problems in dynamics do, he looked at the effect of
varying the parameters on the quantities he was trying to find. If
some important function vanished for a certain value of the
parameters, would it vanish for a range of parameter values?

4. He frequently made a distinction between the qualitative and the
quantitative aspects of a problem, arguing that the broad
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features had to be understood first before the details could be
fitted in, and that understanding the broad features aided the
more detailed quantitative explorations.

5. He appreciated the close connection between real harmonic
functions and complex analytic functions that Riemann had
pioneered in the 1850s, and extended the intuitive properties of
harmonic functions to the more complicated setting of functions
of several variables.

6. He had a liking for naive geometrical analyses involving curves
and surfaces, and in that setting for finding a way of reducing
the dimension of the problem, for example looking at a flow on
a surface by seeing how the flow repeatedly crossed a curve, and
by reducing questions about three-dimensional manifolds to
their two-dimensional boundaries. But he was not a visualizer
who relied on what he could draw or see with his mind’s eye.

7. He was comfortable with the fundamental features of
finite-dimensional vector spaces, such as spaces of solutions of
certain equations, or objects specified by parameters, and willing
to consider infinite-dimensional analogues.

8. He analyzed problems in mathematical physics by looking
phenomenologically at very small regions, where the physical
process could be expected to be linear, and from this deducing
an infinite system of linear equations that might then produce a
linear partial differential equation. But he abandoned this final
step with vigor when he saw that the new quantum theory was
necessarily discontinuous.

Of course, the precise problem area would then determine how much
detail Poincaré would think fit to give. The discovery of a new, and
solvable, class of differential equations in pure mathematics, or of the way
to generalize an important function in number theory, did not call for
much detail, but when he was occupied with problems in new technology,
as he was with radio waves, he was much more willing to show how the
fundamental theory delivered useful information.

In 1909 Poincaré had allowed himself to be subjected to a battery of
medical and psychological examinations conducted under the direction
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of Dr. Étienne Toulouse, the director of the Laboratoire for experimental
psychology at the École des hautes études in Paris. Toulouse was inter-
ested in the psychology of exceptional people, and had already published
a similar investigation of Zola in 1896 and some notes on Berthelot
in 1901. Among other matters, Poincaré also answered questions about
his personal views. He had believed in religion when he took his first
communion, but found that by the age of 18 he had ceased to believe.
He believed in freedom of thought, the right to research and to tell
the truth, and for that reason he opposed clerical intolerance. He was
a republican in politics, and thought that the state should not intervene
very much, except in certain matters of health. He favored political
equality for all, and had no theoretical objection to judicial or political
rights for women, although he feared the influence of the church upon
them. He was indeed a man of his time in his progressive beliefs in the
merits of science for the public good, the role of the scientific intellectual,
his republican dislike of the anti-intellectual positions of the Catholic
Church and its insistent attempts to shape opinions and extend their
influence. This was the milieu he grew up in, and most likely because
of the damage caused by the Franco-Prussian War he was quite patriotic
and very willing to serve his country in the best ways he could. He
was never bellicose, but he was not averse to military rhetoric (he had,
after all, studied at the École polytechnique) and there is a hint from
time to time that he did not cite German authors when perhaps he
should have done (he read and spoke German fluently, but he seldom
cited widely). He had principled reasons for staying away from the
world of politics, and was only drawn into the Dreyfus affair when he
saw he had a contribution to make, but had strong views on education
and on ethics that he expressed quite frequently as his popular esteem
grew.

We also learn from Toulouse’s account, which was published in 1909,
and is in part a record of facts that anyone who knew Poincaré in person
would probably have known. He was 1.65 m tall (5′ 5′′) and weighed about
70 kg (154 pounds), which was regarded as moderately corpulent.10 He
had begun to put on weight when he married. His face was colored
and his nose large and red. His hair was chestnut, his mustache fair.
He had, it seemed, a share of minor ailments: digestion took some two

10 It gives him a body mass index of 25.7.
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to three hours during which time he could not think productively and
indigestion frequently interfered with his sleep. For that reason he kept
regular habits, with breakfast at eight, lunch at noon, and dinner at
seven (he ate meat quite a lot), and never had coffee after dinner. He
went to bed at ten and rose at seven. He did not smoke and never had,
and disapproved of the habit. He had never exercised systematically, but
he liked walking and would willingly go fifteen kilometers. He seldom
had headaches. He made no mention to Toulouse of the illnesses that
had affected him in public on several occasions, and only mentioned a
disabling bout of rheumatism when he was 32.

Toulouse reported that Poincaré either made his mind up quickly
or found it increasingly difficult to do so; and he noted, as many did
who knew Poincaré, that he seemed almost permanently distracted. He
relayed the story (p. 27) of Poincaré discovering to his surprise one day
on a walk that he had a birdcage in his hand and having to retrace his
steps to find the place where he had inadvertently picked it up. He also
reported that Poincaré would answer questions even when it seemed that
he had not been listening. This compares well with Boutroux’s memory
that Poincaré

thought in the street, when he went to the Sorbonne, when he went
to take part in a scientific meeting, or when he went on one of the
long walks he was accustomed to take after his dinner. He thought
in his room at home or in the lecture theatre at the Institut, when
he wandered about, pulling a face and playing with his key ring.
He thought at the table, at family reunions, even in the salons,
often interrupting brusquely in the middle of a conversation to force
his interlocutor to follow a chain of thought he had come up with.
(P. Boutroux 1914/1921, 197–200)

Toulouse also noted that when animated by a topic Poincaré liked to
walk about with his hands behind his back, his brow furrowed and his
eyes blinking. He was good with languages, spoke clearly and correctly
but rather timidly, so outside of the lecture theater he spoke on public
occasions only after careful preparation, and often by reading from notes.
But he had never thought to learn a speech by heart and give it from
memory. Writing quickly and clearly came easily to him, although he
did not have particularly fine handwriting and never had. But although
right handed he could write quickly with his left hand, and recalled being
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ambidextrous up to the age of eight; he also had difficulty distinguishing
his left from his right.

The most interesting finding Toulouse made concerned Poincaré’s
visual abilities. Poincaré had taken to wearing spectacles in his early
thirties, but had good vision in both eyes, and he did reasonably well
on the tests of short term visual memory. He was not good at recognizing
faces, and was helped by hearing people’s voices. Strikingly, he did not
think visually, and claimed to have no long-term visual memory and
to rely on his motor memory; when asked to copy simple figures from
memory, which he did quite well, he did so by recalling the motion of
his eyes. Toulouse put it this way: “Poincaré analyses the objects that he
sees and looks at; it is by analysis that he reproduces them. The lucidity
of his observations is remarkably clear.’’ But he noted that Poincaré did
draw occasionally. Altogether a curious set of abilities for someone who is
rightly regarded as one of the great geometers.
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1
The Essayist

POINCARÉ AND THE THREE BODY PROBLEM

On 20 January 1889 the ambitious Swedish mathematician Gösta Mittag-
Leffler went to the Court of King Oscar II of Sweden to announce
the judges’ decision concerning the prize competition the King had
announced in 1885. Mittag-Leffler had administered it, and would have
been feeling very pleased, for the competition had been a success: the
result would surely play well with the King and would add, as intended,
to the celebrations for the King’s 60th birthday. Moreover, it would be
popular with professional mathematicians; none of this could do other
than advance Mittag-Leffler’s own career.

King Oscar II was an enlightened monarch who proposed prize
competitions from time to time. He had studied mathematics at Uppsala
University and retained an interest in it all his life. He had given financial
support to Mittag-Leffler’s new journal, Acta Mathematica, occasionally
sponsored individual mathematicians, and in 1884 had asked Mittag-
Leffler to run the prize competition whose result he was shortly to
discover (it is not known if he had had the original idea or if it was
a suggestion of Mittag-Leffler’s). Together they took the risky decision
of calling for essays on specific topics, rather than merely awarding a
fine recent piece of work. The four topics they chose, and which were
published in Acta Mathematica, some German and French journals, and in
English translation in Nature (30 July 1885) were all substantial, but the
winning one addressed in suitably technical language the most publicly
accessible topic:

A system being given of a number whatever of particles attracting
one another mutually according to Newton’s law, it is proposed,
on the assumption that there never takes place an impact of
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