Contents

Preface ix

1 Why It Matters 1

2 Of What Purpose Are Mosquitoes? 8

3 Creating Paradigms 20

4 Ecology B.C. (“Before Charles”) 40

5 Ecology A.D. (“After Darwin”) 53

6 The Twentieth Century: Ecology Comes of Age 67

7 A Visit to Bodie: Ecological Space and Time 84

8 Ecology and Evolution: Process and Paradigm 97

9 Be Glad to Be an Earthling 113

10 Life Plays the Lottery 128

11 Why Global Climate Is Like New England Weather 140

12 Taking It from the Top—or the Bottom 155

13 For the Love of Biodiversity (and Stable Ecosystems?) 170

14 Facing Marley’s Ghost 186

Epilogue 203

Acknowledgments 207

Notes 209

Index 229
Why It Matters

What is this Balance of Nature that Ecologists Talk About?

That there is a balance of nature is one of the most deep-seated assumptions about the natural world, the world we know on planet Earth. For as long as we humans have had the ability to think seriously about our world we have attempted to find order in chaos. The world is vast and surely appeared vaster when our collective knowledge was far less than it is today. Humans living, say, 10,000 years ago, at the dawn of agriculture, must have perceived nature as impossibly complex, perhaps beautiful, very mysterious, and surely fairly scary. These perceptions have changed to various degrees. Today *Homo sapiens* has emerged as the dominant species on the planet, as measured by its collective effects on Earth’s ecosystems. No single species in Earth’s history has caused more changes on the planet than what we are doing today. We need to understand and act on this reality. But why? Begin by allowing me to take you on a journey beyond Earth, through a bit of space and time, and you’ll soon see “why it matters.”

We live in the Stelliferous era, the time of the stars. There was a previous time when there were no stars, and there will be a time in the far distant future when there will be only cold and dark remnants of stars, when absolutely no form of life will exist anywhere in the universe. All traces of human existence or any other forms of life will presumably have long since disappeared from

For general queries, contact webmaster@press.princeton.edu
the cosmos. The universe, our universe, will be dead. The very early history of the universe in which we reside was one of short-lived symmetry and order, lasting but the tiniest fraction of a second, until small asymmetries made possible the eventual formation of elements, stars, and galaxies in a universe fated to expand forever. The universe, and all in it, has essentially been asymmetrical and evolving ever since. 

Much of the universe is a violent place. Stars periodically explode, becoming gargantuan supernovas, then collapse, shedding their outer gases to end their stellar existences as cold, dark dwarfs, some of which, the pulsars, spin around at a dizzying pace, curious space beacons in the aftermath of trauma. Immense black holes lurk menacingly in the center of galaxies, astronomical quicksands sucking up the stellar offspring of the big bang. Our own Sun is no less than a consolidation of billions of constantly exploding hydrogen bombs, a thermonuclear furnace, continuously engaged in the most violent reaction known, the result of which keeps us warm, gives green plants their most vital ingredient, and tans our skins. Yes, the universe is violent and basically unpleasant when you get too close. It’s pretty hostile outside of the spacecraft. Thinking about the stunning forces that govern, indeed define, the universe can make humanity and life in general seem very frail.

Stars form, stars shine, and stars go dark, their nuclear fuel fully consumed. Such a fate eventually will befall our star, the Sun. These billions upon billions of huge, gassy gravitational concretions of concentrated thermonuclear energy just come and go. All that is required is time. Lots of time. And there has been lots of time. The universe is estimated to be 13.7 billion years old, rough two-thirds again as old as our Sun and its solar system. And the universe will become much, much older.

In July 1994, the planet Jupiter was repeatedly struck by pieces of Comet Shoemaker-Levy, whose path had been altered by the huge gravitational field of the planetary giant, itself a stillborn star. Jupiter literally pulled the comet from space, shredding it in the process, and pieces of the comet left obvious impact marks across the face of the planet. If that happened to Earth (as it has in the past), it would be bad. Are we safe? No, we aren’t. It’s a matter
of probabilities. We’ve been hit before and will likely be hit again (chapter 10). Even in our local solar neighborhood among our sibling planets, the threat of violence is lurking. Maybe there’s good reason to be afraid of the dark.

But on the other hand, on a warm summer night when it really is dark and that magnificent and vast assemblage of stars we call the Milky Way traces its winding course across the sky, we humans perceive the universe around us as anything but violent. Seeing dust-sized meteors streaking through the atmosphere leaving a momentary trace of firelike light does not inspire thoughts of imminent doom from asteroid impact. There is, more often than not, a sense of profound tranquility and serenity imparted to one’s psyche when lying on one’s back in the cool, damp grass and staring skyward at the slowly revolving panorama of thousands of points of light so far above, so far away. From our earthly perspective, the universe can seem ever so peaceful, constant, predictable, and essentially inviting. The phases of the Moon change, but do so in a most orderly, predictable fashion. The Sun never disappoints, always faithfully rising in the east, setting in the west, never the other way around. The constellations seem unchanging (though they are not—again, it’s only a matter of time), and the planets predictably trace their respective paths around the Sun, moving through the Zodiac from constellation to constellation (regrettably keeping astrologers in business).

The universe is exquisite, never minding the copious unbridled forces underpinning and sustaining the apparent beauty. It’s really no wonder that heaven, as it is envisioned by those who believe there is such a place, should be located somewhere in that cornucopia of glittering stars. The violent universe deceives us, seeming to welcome us, a falsely serene place, its parts working in the illusion of harmony, the so-called “music of the spheres.”

The point here is that things, including natural things, are not always as they seem. Nor are they necessarily as we might wish them to be. They just are. One’s perspective on the universe can be highly quixotic, a perception that satisfies, that makes us happy when thinking about the heavens above, even if not very accurate. Or, one might envision the universe exactly as astronomers say it
is, with all the accompanying violent reactions that have defined stellar birth and death from the big bang onward. In either case, one can be fascinated and mentally fulfilled just thinking about what’s out there.

As far as the universe is concerned, it really doesn’t matter what we think. Think anything you want. Whatever the universe is or isn’t, there isn’t anything you or I can do about it. We can’t blow up Saturn, pollute the Sun, or cause the extinction of any of the stars. The clusters of galaxies will continue to fly apart from one another as spacetime expands, whether we approve or not. We have no power whatsoever to influence events occurring tens, hundreds, millions, or billions of light-years away from our own planet. We humans are utterly trivial in our collective influence on the workings of the universe we inhabit. A fly has more effect on the atmosphere of the Earth than we collectively have on the universe.

But, on the contrary, it does matter what we believe about the workings of our own planet, endowed as it is with a myriad of living systems we call organisms, including in excess of six billion human beings. We can and do affect the ecology of the Earth in innumerable and profound ways. If what we do is wrong, it will have consequences and costs. It already has. What we do is obviously largely determined by what we believe about the structures and workings of the systems we affect, so, to say it again, what we believe about Earth, ecology, nature, and our own biology and evolution, matters.

We are beginning what is called the twenty-first century. It isn’t really. There have actually been 45 million centuries in the history of this planet, but we anthropocentric humans pretentiously identify only those that began with the birth of Christ plus a few hundred that preceded that particular historic event. In reality, for every year in which Homo sapiens has inhabited the planet (assuming approximately 100,000 years as “modern humans”), there have been roughly 45,000 when it was absent. Nonetheless, we are here now and the twentieth century was perhaps most notable for the degree to which one species, the human species, has influenced the Earth’s ecology. Never in the 4.5 billion-year history of Earth has but one species had such an inordinate influence on all
WHY IT MATTERS

others, and in such a short span of time. That influence grows every second.

It is the objective of these essays to examine what is known about some important aspects of how life on Earth functions. One theme will weave throughout the essays, connecting them as the message of the book: there really is no such thing as a “balance of nature.” Nor is there purpose to nature. Nature, like the vast universe of which it is but an infinitesimal part, just is.

That our perception of nature may be erroneous is not a trivial point. It is, indeed, very critical to know how nature works. It does matter. Our welfare as well as that of many, and perhaps most other nonhuman life forms, ultimately depends on judgments we make based upon what we know about the workings of the biosphere, that thin layer of life that coats Earth’s surface.

I don’t believe in Santa Claus, though once I did. I think it does no harm to tell a child a myth about a red-suited, white-bearded, elderly philanthropist who likes hot cocoa. Realizing that the myth is, indeed, a myth is not really very traumatic, at least it wasn’t for me. I hold no grudge against my parents for helping promulgate an enchanting falsehood. Quite the contrary, those were good Christmases, leaving me with the best of childhood memories. During the time when I believed in Santa Claus I took a nasty fall and a rusty nail penetrated deeply into my scalp. I soon developed a raging case of septicemia, and might have died. However, my parents saw to it that I quickly got to a doctor and was treated with massive doses of penicillin. After a few bad days, I recovered. I’m really glad my parents believed in medicine, not spiritual healing or something like it. My life was saved by a chemical evolved by a fungus in response to the collective competitive pressures exerted over eons by bacteria, the chief competitors of fungi. I owe my life to an evolutionary by-product of interspecific competition, from a species of mold, the properties of which, incidentally, were discovered mostly by accident. Millions of us owe the same debt. When it comes to life support systems, it won’t do to create myths.

Knowledge is not easily acquired. It is far simpler to believe than to discover. To give but one example, Ancient Egyptian mummy preparators, who were otherwise pretty good at what they did,
routinely extracted the brain through the nostrils and discarded it, utterly ignorant of its function and profound importance. Other organs were carefully saved and prepared, to accompany the pharaoh on the journey into the afterlife. Poor pharaoh. Eyes, ears, nose, heart, liver, lungs, body, but brainless. Not much of an afterlife. Imagine the deceased royalty of ancient Egypt all mingling about in the Great Beyond with nothing to say to each other but “Duh.”

It required centuries of medical study and experiment to learn that the heart is not the center of the soul but is instead a sophisticated, coordinated blood pump. How the brain works is still far from fully understood. But this much we do know: we think, we feel, we love, we hurt, we hunger, and we believe with our brain. The ancient Egyptians were wrong. Their view of human physiology was flawed. Some contemporary cultural relativists, abounding as they do in the halls of academe, might argue that the ancient Egyptian view was “equally valid” to the modern view, and should be “celebrated.” Celebrate it all you want, it’s still wrong.

And there is something else in the example to note. Science is a way of knowing. It is actually possible to get the right answer, though many wrong ones may crop up along the way. Since scientific truths must be discovered, and since many, probably most, are far from intuitively obvious, wrong answers are inevitable. The path to the truth is sinuous, not easily navigated. One reason for such difficulties is that scientifically gained knowledge is often non-intuitive or even counterintuitive. In the vernacular of some college students, “science is hard.” However, with a reasonably open mind and persistence, right answers and understanding are achievable.

From the time of early human civilization, most notably the intellectual contributions of the ancient Greeks, humans have envisioned life on Earth as having both balance and purpose. Such a notion was philosophically satisfying, immensely so, perhaps even essential for the psyche of those toga-clad early thinkers. It was supported, albeit at a superficial level, by lots of observational evidence. There are many people today who harbor similar beliefs. Creationists, now reinvented as “students of intelligent design,” continue their efforts to make science subservient to religious
dogma, as they try harder and harder to philosophically pound a very square peg into an awfully round hole. As a second example, conservationists who believe fully in evolution, including human evolution, worry about upsetting the balance of nature, causing irreparable harm to Earth’s life support systems. Most people in the United States are regrettably ignorant about what is known in ecology as it relates to evolutionary biology, and how this information, this knowledge, these facts, should affect decision making about environmental issues.

It will be my task to convince you that life on Earth has neither innate balance, nor purpose, at least in the meanings usually associated with those words. It is not my intention to demean human existence or that of any other species. Quite the contrary, I wish to focus on the importance of understanding how life functions evolutionarily and ecologically so that our species can assume a more realistic and ultimately more responsible role in its task of stewardship of the planet.

Philosophers have noted that scientific truths should not, in themselves, lead to prescriptive ethics. The so-called “naturalistic fallacy” asserts that one should not assume that what is, is what ought to be. The naturalistic fallacy was conceived to separate science, especially evolutionary biology, from philosophy, especially ethics. However, in the latter part of the twentieth century, the two disciplines came increasingly closer. Some philosophers now refute much of the naturalistic fallacy. Ecosystem restoration and management, based on the science of ecology, is applied to moral decisions about whether or not we ought to try and preserve endangered species. Studies of animal behavior and molecular genetics that indicate a profound Darwinian link between humans and apes raise significant moral questions about whether sentient or even partially sentient nonhumans should endure medical experimentation.

In my view the time has come to free ourselves from some notions that originated almost as early as civilization itself, notions that have, in my opinion, become more of a hindrance than a help. We still carry too much philosophical baggage. The time has come to leave some of it behind.
Index

(Scientific names follow common names.)

Adam and Eve, 20
Aegean Sea, 32
African savanna, 74
Aleutian Islands, 161
alkaloid, 167
Allee, W. C., Principles of Animal Ecology, 98
Allosaurus (Dinosauria), 44
Almagest, 33
Alvarez, Luis, 134
Alvarez, Walter, 134
American Association for the Advancement of Science (AAAS), 193
American Bird Conservancy, 153
Anaxagoras, 33
Anaximander, 32
Andes Mountains, 43
ant, leaf-cutter (Atta spp.), 168
anthropic principle, 115–16, 126; strong anthropic principle (SAP), 115; weak anthropic principle (WAP), 115
antibiotics, 11
Apatosaurus (Dinosauria), 131
ape, 7, 105
apeiron, 33
Apollo program, 123
Apophis, 139
Appalachian Mountains, 142
Arctic Circle, 145
Arctic National Wildlife Refuge, 196
Arima Valley, Trinidad, 170
Aristarchus, 22, 33–34
Aristotle, 32, 34, 36–38, 41, 45, 57; History of Animals, 37; On the Parts of Animals, 37; scala naturae (the Great Chain of Being), 38, 45, 139
Arizona, 100–101
armadillo (Dasypus novemcinctus), 90
Armstrong, Neil, 123
Asa Wright Centre, 170
Asia Minor, 32
aster (Aster spp.), 92
astrobiology, 116–17
astrologer, 31
Audubon, John James, 85, 93
Australopithecus: afarensis, 25; africanus, 25
baboon (Papio spp.), 26
Babylonia, 30
Bacon, Francis, 47
bacteria, 5, 15, 44, 102, 104–5; (Yersinia pestis), 169; spirochete (Borrelia burgdorferi), 111
Baffin Island, 142–43
Bailey, George, 137
Balmford, A., 194, 196
Banks, Joseph, 42
Barrett, Gary W., 98
bat (Chiroptera), 101
bear: black (Ursus americanus), 105; brown (Ursus arctos), 171; polar (Ursus maritimus), 172, 199
Bear Island, 73
beaver (Castor canadensis), 90
beech, American (Fagus grandifolia), 110
beetle, flour (Tribolium spp.), 79
Bertness, M. D., 157
big bang, 2, 4, 22–24, 32, 115
biodiversity-ecosystem function paradigm (BEFP), 185
biome, 144
biophilia, 198
Birch, L. C., 160
Birdlife International, 192
black hole, 2
bobcat (Lynx rufus), 90
Bodie, Town of, California, 84
Bodie, William “Watermelon,” 84
Boreal Forest, 143
Borneo, 42
botfly (Dermatobia hominis), 13
bottom-up force, 158, 166–67
Breeding Bird Survey, 93
British Museum of Natural History, 51
Brownlee, Donald, Rare Earth: Why Complex Life Is Uncommon in the Universe, 120, 125
Bryan, William Jennings, 22
Buffett, Jimmy, 142
bushmaster (Lachesis muta), 170
caddisflies (Trichoptera), 180–81
Callisto, 117
Cambridge University, 43
Cameroon, 195–96
Canadian Zone, 145
Cape Canaveral, 142
Cape Cod, Massachusetts, 94, 151
Capra, Frank, It’s a Wonderful Life (film), 137
capsaicin, 100–102
Capsicum annuum, var. glabriusculum, 99–100
Carboniferous period, 148
cardinal, northern (Cardinalis cardinalis), 19, 90
Caribbean Sea, 142
Carrick, Bruce, 156
Carroll, Lewis, Alice Through the Looking Glass, 49
Carson, Rachel, Silent Spring, 198
Cascade Mountains, 146–47
cedar, eastern red (Juniperus virginiana), 92
Cedar Bog Lake, Minnesota, 75–76
Cedar Creek, Minnesota, 181–82
Cenozoic era, 49, 89, 130–32, 147, 177
Central Rocky Mountains, 144
ceratopsian (Dinosauria), 132, 136
Chambers, Robert, Vestiges of the Natural History of Creation, 55
chaparral, 144
Charon, 121
cheetah (Acinonyx jubatus), 50, 74, 173
chestnut, American (Castanea dentata), 91
chickadee, black-capped (Poecile atricapilla), 153
chickadee, Carolina (Poecile carolinensis), 153
Chicxulub, 134–35
chiffchaff (Phylloscopus collybita), 52
chimpanzee (Pan troglodytes), 26, 42, 120
chipmunk, eastern (Tamias striatus), 105, 109
chlorinated hydrocarbon, 18
chlorophyll, 103
Chordata, 138
Christ, birth of, 4
cicada, periodical (Magicicada spp.), 108
Civil Rights Act of 1964, 197
Clarke, Arthur C., 42
Clean Air Act, 195, 198
Clean Water Act, 195, 198
Clements, Frederic, 68–70, 72, 87; Bio-Ecology, 68
climax community, 69
Coleoptera (beetles), 13
Colinvaux, Paul, Why Big Fierce Animals Are Rare, 74
Colorado Springs, Colorado, 140
Columbus, Christopher, 42

For general queries, contact webmaster@press.princeton.edu
Comet Shoemaker-Levy, 2, 125
calcanx index, 72
Cook, James, 42
Copernicus, Nicholas, 22, 34, 41
cordgrass, salt marsh (Spartina alterniflora), 157
Corvallis, Oregon, 146
Corvidae (crows, ravens, jays), 105
Costanza, Robert, 194
coyote (Canis latrans), 95
creationism, 13–14, 64
Creation, 43
dark ages, 41
darwin, charles, 10, 22, 26, 34–35, 37, 40, 42–43, 46, 48, 50, 52–54, 57–60, 66–67, 75, 81, 83, 98, 112, 125; on the origin of species, 40–41, 46, 55–57, 63–65, 78, 83–84; the descent of man and selection in relation to sex, 56; the expression of emotion in man and animals, 56; the formation of vegetable mould, through the action of worms, 56
darwin, emma, 54
darwin, “one long argument,” 56
darwin’s finches (geospizinae), 80
dawkins, richard 113
ddt, 18
delamarck, jean-baptiste, zoological philosophy, 48–50
deccan traps, india, 133–35
deer, white-tailed (odocoileus virginianus), 95, 105, 111
democritus, 32–33
dengue, 11
density dependence, 79–80
density independence, 78–80
descartes, 113
devonian period, 131
dinosaur, 14, 44, 127, 129–32, 138
directional selection, 62
disruptive selection, 62
diversity resistance hypothesis, 182
diversity-stability debate, 182
dna, 9–10, 16, 113–14, 120
dna, dinosaur, 14
dobhansky, theodosius, 67
dodo (raphus cucullatus), 174
Drake equation, 120
earth day, 82, 187
East India Company, 43
Eastern Deciduous Forest, 143–44
eastern equine encephalitis, 8, 11
Eastwood, Clint, 28
Ebola hemorrhagic fever, 177
ecological footprints (United States, Germany, Mozambique), 191
ecological meltdown, 165–66, 204
Ecological Society of America, 68, 146
Ecologists’ Union, 68
Economy of nature, 40, 46, 64, 67
ectoparasite, 15
Ecuador, 61
Egerton, Frank N., 36
Egypt, 6, 30
Ehrlich, Paul, 160
Einstein, Albert, 22
Einsteinian relativity, 23
El Niño, 61, 136
elk, Irish (Megaloceros giganteus), 129
Elton, charles, 73–74; animal ecology, 73
Eltonian food chain, 74
emerson, A. E., Principles of Animal Ecology, 98
Empire State Building, 12
Endangered Species Act, 173, 198
Eocene epoch, 50, 147
Eratosthenes, 33
essentialism, 36, 38
ethnobotany, 29
INDEX

eukaryotic cell, 119
Europa, 117
Everglades, 142

falcon, peregrine (Falco peregrinus), 17, 95
Feynman, Richard, 21
finch, house (Carpodacus mexicanus), 91
fisher (Martes pennanti), 94
Fisher, Ronald, 62–63, 67
fitness, 59
FitzRoy, Captain Robert, 43
Flagstaff, Arizona, 144
Flood, biblical, 45
Florida Keys, 142
fly, fruit (Drosophila spp.), 79
flycatcher, Acadian (Empidonax virescens), 90
flytrap, Venus (Dionaea muscipula), 102
foraminiferans, 132
Forbes, Stephen A., 65–66
Fossey, Dian, 42
fox, gray (Urocyon cinereoargenteus), 95, 105
fox, red (Vulpes fulva), 95
fundamental niche, 80
fundamentalist Christians, 13
fungi, 5, 15, 104–5

Gabon, 177
Gaia, 87–88
Galápagos Islands, 43, 56, 60–61, 80, 136
Galen, 34, 38
Galilea, 22
galliwasp, Jamaican giant (Celestus occidentis), 174
Ganymede, 117, 122
Garden of Eden, 20, 114
Gatun Lake, Panama, 142
giant impact hypothesis, 124
Gleason, Henry A., 70, 72–73, 90
Globigerina ooeze, 132
gnatcatcher, blue-gray (Polioptila caerulea), 90
God, 13–14, 29, 35, 44–47, 116, 138
goldenrod (Solidago spp.), 92
Goldilocks effect, 116, 120, 125–26, 150

Goodall, Jane, 42
Gore, Al, 204
gorilla (Gorilla gorilla), 42
Gould, Stephen Jay, 107; Wonderful Life, 137–38
grackle, common (Quiscalus quiscula), 95
Grand Canyon, 144
Great Basin Desert, 84, 86, 147
greenhouse effect, 150
grosbeak, blue (Passerina caerulea), 153
ground-finich, medium (Geospiza fortis), 60–61
Guam, 176

hackberry, desert (Celtis pallida), 100
hadrosaur (Dinosauria), 132, 136
Haeckel, Ernst, 40, 64
Hairson, N. G., 159–60
Haldane, J.B.S., 13, 62–63, 67; inordinate fondness for beetles, 13
hantavirus pulmonary syndrome (HPS), 168
Hardin, Garrett, 188–89
Hardy-Weinberg population genetics, 62
Hawaiian Islands, 42
hawk, accipiter (Accipiter spp.), 95
hawk, buteo (Buteo spp.), 95
hawk, Cooper’s (Accipiter cooperii), 74
hemlock, eastern (Tsuga canadensis), 92
Heraclitus, 85
Herodotus, 34–35
Herschel, John, 53
Hesiod, 32
hierarchical patch dynamics, 92
Hildebrand, Alan, 134
Hipparchus, 33
Hippocrates, 34
HMS Beagle, 43, 56
Homer, 32
Homo: erectus, 25; habilis, 25; sapiens, 1, 4, 25, 92, 113
honeycreeper, Hawaiian (Drepanididae), 174
Hooke, Robert, 44
Hooker, Joseph, 54
horsefly (Chrysops spp.), 13
Hoyle, Fred, 114, 126

For general queries, contact webmaster@press.princeton.edu
Hubble, Edwin, 22
Hudson Bay, 143, 145
Hudsonian Zone, 145
Huguenard, Amie, 171
humble-bees (Bombus spp.), 64
Hutchinson, G. Evelyn, 80, 97; The Ecological Theater and the Evolutionary Play, 97
Hutton, James, 44
Huxley, Thomas Henry, 57
importance values, 71
industrial melanism, 60
Industrial Revolution, 149–51
intelligent design, 6, 47
Intergovernmental Panel on Climate Change, 151
International Biological Program (IBP), 77
Ionia, 32–33
IPAT formula, 190
Irrawaddy Delta, Burma, 204
Janzen, Daniel, 199
jay, blue (Cyanocitta cristata), 74, 95, 103–5, 109–10
Jefferson, Thomas, 45
Jones, C. G., 111
junco, dark-eyed (Junco hyemalis), 153
Jupiter, 2, 117, 121–22, 124–25
Jurassic Park, 14, 129
Jurassic period, 130
Kant, Immanuel, 23; Critique of Pure Reason, 201
Kennedy, John, 186–87
keystone species, 13, 160, 162–63, 179
King Kong, 2
Kricher, John, A Field Guide to Eastern Forests, 151
krummholz, 145
Lack, David, 80–81; The Natural Regulation of Animal Numbers, 79
Lake Erie, 143
Lake Mendota, Wisconsin, 75–76
Lake Victoria, 175
Larson, Gary, 130
leishmania, 13
lemur, sloth (Palaeopropithecus ingens), 174
leopard (Panthera pardus), 25, 74
Leopold, Aldo, 197
Leplae, Pierre-Simon, 23
Lewis, Meriwether and William Clark, 45
life zone, 144
Lincoln, Abraham, 53
Lindberg, David C., 35, 38
Lindeman, Raymond, 75–76
Linnaean Society, London, 55, 75
Linnaeus (Carl von Linne), 45–46;
Specimen Academicum de Oeconomia Naturae, 46
lion, African (Panthera leo), 57, 74
lion, mountain (Felis concolor), 94
load-bearing species, 13, 179
Locke, John, 188
Long Term Ecological Research (LTER), 83
Lovelock, James E., 87–88
Lower Sonoran Zone, 145
Lyell, Charles, 54
Lyme disease, 111–12, 168
Lystrosaurus (Synapsida), 137
Maastrichtian epoch, 134
MacArthur, Robert, 80–82; The Theory of Island Biogeography, 82
Magellan, Ferdinand, 42
maggot (larval dipteran), 46
malaria, 11
Malay Archipelago, 54
Malthus, Thomas, 58; An Essay on the Principle of Population, 58
Malthusian economics, 57
mangrove, red (Rhizophora mangle), 57
maple, sugar (Acer saccharum), 92, 110
Marley, Jacob, 200; ghost of, 96, 200
Mars, 117, 123–24
Mars Orbiter, 117
martin, purple (Progne subis), 17
Massachusetts State Lottery, 128
masting, 106, 110
materialism, 32
May, Robert M., 174, 182
mayfly (Ephemeroptera), 108

For general queries, contact webmaster@press.princeton.edu
INDEX

Mayr, Ernst, 36, 38, 67, 102
meadowlark, eastern (Sturnella magna), 94
Megalosaurus (Dinosauria), 44
Mendelian genetics, 48, 62
Mercury, 123
Merriam, C. Hart, 144
Mesozoic era, 89, 124, 131, 138
Miami, Florida, 142
Miletus, 32
Milky Way, 3, 119–21
Miocene epoch, 132
Mississippi River, 86
Möbius, Karl, 65
mockingbird, northern (Mimus polyglot-tos), 151
Mono Lake, California, 85
Moon, 3, 34, 121–24
mosasaur (Mosasauridae), 133
moth: gypsy (Lymantria dispar), 110–12; peppered (Biston betularia), 60
Mount Olympus, 32
Mount St. Helens, 137
mouse: cactus (Peromyscus eremicus), 100; white-footed (Peromyscus leucopus), 105, 109, 111–12
Mozart, Wolfgang Amadeus, 48–49
Muir, John, The Yosemite, 197
multiverse, 115, 127
mummy preparators, ancient Egyptian, 5
Munny, William, 28
Murray Maxwell Bay, 142–43
Mustelidae (weasel family), 160
mutualism, 98, 104
Nabhan, Gary, 100–101
Naeem, Shahid, 184
National Oceanographic and Atmospheric Association (NOAA), 154
natural selection, 10, 14, 16, 53–54, 57, 59–60, 64, 98–99, 106, 126, 128
naturalistic fallacy, 7
Nature Conservancy, 69
n-dimensional hypervolume, 80
Near Earth Object (NEO), 139
Neptune, 121
New England, 86–87
Newton, Isaac, 58
Newtonian mechanics, 22
Nineteenth Amendment, 196
North Sea, 73
nuthatch, European (Sitta europaea), 165
Nuttall, Thomas, 93
oak, white (Quercus alba), 164
Odum, Eugene P., 69, 76, 87, 98–99; Fundamentals of Ecology, 69, 97
Odum, Howard, 76
oi-kos, 40, 190
opossum, Virginia (Didelphis virginiana), 90, 151
orangutan (Pongo pygmaeus), 42, 162
Ordovician period, 131
oriole, orchard (Icterus spurius), 90
osprey (Pandion haliaetus), 17–19
tonter, sea (Enhydra lutris), 160–62
overyielding, 180
owl, spotted (Strix occidentalis occidentalis), 173
Oxford University, 51, 73
Pacific Ocean, 61
packrat (Neotoma lepida), 100
Paine, Robert, 163
Paleocene epoch, 147
paleoecology, 98
Paleozoic era, 137, 148
Paley, William, Natural Theology, 47
Palumbi, S. R., 192
Panama Canal, 142
panda, giant (Ailurpoda melanoleuca), 172
Paramecium, 79
Park, O., Principles of Animal Ecology, 98
Park, T., Principles of Animal Ecology, 98
Parulidae (New World wood-warblers), 80
pelican, brown (Pelecanus occidentalis), 17 periwinkle: common (Littorina littorea), 157; marsh (Littorina irrata), 157
Permian period, 131, 137
phoebe, eastern (Sayornis phoebe), 152
Phoenician alphabet, 30
Phoenix Mars Lander, 117
phrenology, 43
phytosociologist, 69
INDEX

pigeon: passenger (*Ectopistes migratorius*), 91, 94, 105, 107–8; rock (*Columba livia*), 57
pigeon, breeds, 57
Pilgrims, 89
plasmodium, 13, 18; *Plasmodium falciparum*, 12
plate tectonics, 21, 131
Plato, 35–36
Pleistocene megafauna, 93
Pleistocene period, 92, 129
plesiosaur (*Plesiosauria*), 133
Pluto, 117, 121
Polo, Marco, 42
*Popeye* (film), 15
Popper, Karl, 21
porcupine (*Erethizon dorsatum*), 90
Prime Mover, 38
Proceedings of the National Academy of Sciences, 157
prokaryotic cell, 119
protozoa, 15
Proxima Centuri, 117
pterosaur (*Pterosauria*), 133
Ptolemy, 33
pulsar, 2
pyrethrum, 12
quantum mechanics, 21, 24
raccoon (*Procyon lotor*), 95, 105
rat, Norway (*Rattus norvegicus*), 169
Raup, David, *Extinction: Bad Genes or Bad Luck?*, 139
Raven, Peter H., 193
Ray, John, *Catalogue of Cambridge Plants*, 45; *Wisdom of God Manifested in the Works of Creation*, 45
realized niche, 80
reciprocal altruism, 26, 29
Red Queen metaphor, 49
relativity, 22
Renaissance, 41
Republic of Congo, 177
rivet analogy, 179
Robertson, Douglas S., 135
robin: American (*Turdus migratorius*), 46; European (*Erithacus rubecula*), 46
Roman Catholic Church, 22
Root, Terry, 152
Roswell, New Mexico, 138
Roundworm (*Nematoda*), 13
Russell, Dale, 138
Sagan, Carl, 26
sage-grouse, greater (*Centrocercus urophasianus*), 85
Samos, 32–33
San Francisco Peaks, 144
Saturn, 4
Schaller, George, 42
Science, 161
Scopes, John, 22
screech-owl, eastern (*Otus asio*), 103
Scrooge, Ebenezer, 200
sea cow, Steller's (*Hydrodamalis gigas*), 174
Sea of Tranquility, 123
Sears, Paul, 187
Selborne, village of, “The Wakes,” 49
Serengeti, Tanzania, 77, 155
severe acute respiratory syndrome (SARS), 168
shaman, 29–30
Shelford, Victor E., 68–69; *The Ecology of North America*, 68
shistosome (*Trematoda*), 13
Silliman, B. S., 157
Silver Springs, Florida, 76
Simpson, George Gaylord, 67
Singapore, 175–76
skunk, striped (*Mephitis mephitis*), 105
Slobodkin, L. B., 159–60
Smith, Adam, 57–58, 189
Smith, F. E., 159–60
Smith, Robert Leo, *Ecology and Field Biology*, 99
Socrates, 35
socratic method, 35
solar wind, 126
Sonoran Desert, 86
sparrow: field (Spizella pusilla), 92; grasshopper (Ammomanus savannarum), 94; house (Passer domesticus), 91
Spencer, Herbert, 59
Spica, 118
Spitsbergen, 73
squirrel: fox (Sciurus niger), 105; gray (Sciurus carolinensis), 105, 109
stabilizing selection, 62
star, sea (Pisaster spp.), 163–64
starling, European (Sturnus vulgaris), 91
Stegosaurus stenops (Dinosauria), 130
Stelliferous era, 1
Stewart, James, 137
stoat (Mustela erminea), 64
struggle for existence, 58–59
subversive science, 187
succession, ecological, 17
sumac (Rhus spp.), 92
Sun, 2–4, 15, 23, 34, 74, 116–19, 122, 126
sundew (Drosera spp.), 102
supernova, 2
survival of the fittest, 59
swallow, tree (Tachycineta bicolor), 152
Systema naturae, 45
tanager, summer (Piranga rubra), 153
tannin, 105–6
Tansley, Arthur, 73
tapeworm (Cestoda), 13
tau neutrino, 21
teleology, 28, 32, 38, 116
Terbohr, John, 162, 165, 204
terrapin, diamondback (Malaclemys terrapin), 157
Tertiary period, 136–37
Tewksbury, Joshua, 100–101
Thailand, 194
Thoreau, Henry David, 87
thrasher, brown (Toxostoma rufum), 92
thrasher, curve-billed (Toxostoma curvirostris), 100
Thrips imaginis, 79
thrush, wood (Hylocichla mustelina), 92
tick, 13: deer (Ixodes scapularis), 111
tick-borne encephalitis, 168
Timaeus, 35–36
tit, great (Parus major), 165
titmouse, tufted (Parus bicolor), 90, 151
top-down force, 158
Transition Zone, 145
Treadwell, Timothy, 171
tree: American chestnut (Castanea dentata), 163; fig (Ficus spp.), 162; ginkgo (Ginkgo biloba), 129
tree of life, 56
treesnake, brown (Bioga irregularis), 176
Triassic period, 131, 137
Triceratops (Dinosauria), 132
trilobite (Trilobita), 44
Troodon (Dinosauria), 138
trophic cascade, 158
trypanosome (Protista), 13
turkey, wild (Meleagris gallopavo), 95, 105
Turkey Run State Park, 68
Tyranosaurus rex (Dinosauria), 78, 130–31
Ubud, Bali, 12
ultimate existential game, 14
Unforgiven (film), 28
Upper Sonoran Zone, 145
Urey, Harold C., 123
Van Allen radiation belts, 126
van Leeuwenhoek, Anton, 44
Venus, 88, 123, 150
Virgo, 118
Vitousek, Peter, 191–92
von Humboldt, Alexander, 43
vulture: black (Coragyps atratus), 152; turkey (Cathartes aura), 90, 152
Wallace, Alfred Russel, 10, 52–55, 58, 60, 75
warbler: bay-breasted (Dendroica castanea), 81, 93; black-throated blue (Dendroica caerulescens), 153; black-throated green (Dendroica virens), 81; blue-winged (Vermivora pinus), 94; Cape May (Dendroica tigrina), 81; chestnut-sided (Dendroica can tanea), 93; golden-
winged (*Vermivora chrysoptera*), 94; prairie (*Dendroica discolor*), 92; willow (*Phylloscopus trochilus*), 51; wood (*Phylloscopus sibilatrix*), 51; worm-eating (*Helmitheros vermivorus*), 90

Ward, Peter D., *Rare Earth: Why Complex Life Is Uncommon in the Universe*, 120, 125

Weismann, August, 48

West Nile virus, 11

whale, killer (*Orcinus orca*), 161–62

*What Bugged the Dinosaurs?*, 132

White, Gilbert, 52; *The Natural History of Selborne*, 51

White, Lynn, Jr., 188

Whittaker, Robert, 72

wildebeest (*Connochaetes spp.*), 78

Wilson, Edward O., 82, 177–78, 191, 198; *The Theory of Island Biogeography*, 82

Wisconsin Glacier, 147

wolf, gray (*Canis lupus*), 57, 94, 169

woodcock, American (*Scolopax minor*), 19

woodpecker: red-bellied (*Melanerpes carolinus*), 90, 151; red-headed (*Melanerpes erythrocephalus*), 105

World Health Organization, 11

World Wildlife Fund, 172

Worm, Boris, 184

wren, Carolina (*Thyothorus ludovicianus*), 90

Wright, Sewall, 62–63, 67

Wyncote Bird Club, 156

yellow fever, 11

Yosemite National Park, 85, 169

Yucatan Peninsula, 133–34

Zodiac, 3, 30