Contents

List of Figures xiii

List of Tables xv

Preface xvii

1 Introduction 3

1.1 Organization of the Book 4

1.2 Useful Background 6

1.2.1 Mathematics Background 6

1.2.2 Probability and Statistics Background 6

1.2.3 Finance Theory Background 7

1.3 Notation 8

1.4 Prices, Returns, and Compounding 9

1.4.1 Definitions and Conventions 9

1.4.2 The Marginal, Conditional, and Joint Distribution of Returns 13

1.5 Market Efficiency 20

1.5.1 Efficient Markets and the Law of Iterated Expectations 22

1.5.2 Is Market Efficiency Testable? 24

2 The Predictability of Asset Returns 27

2.1 The Random Walk Hypotheses 28

2.1.1 The Random Walk 1: IID Increments 31

2.1.2 The Random Walk 2: Independent Increments 32

2.1.3 The Random Walk 3: Uncorrelated Increments 33

2.2 Tests of Random Walk 1: IID Increments 33

2.2.1 Traditional Statistical Tests 33

2.2.2 Sequences and Reversals, and Runs 34
Contents

2.3 Tests of Random Walk 2: Independent Increments 41
 2.3.1 Filter Rules 42
 2.3.2 Technical Analysis 43
2.4 Tests of Random Walk 3: Uncorrelated Increments . . 44
 2.4.1 Autocorrelation Coefficients 44
 2.4.2 Portmanteau Statistics 47
 2.4.3 Variance Ratios 48
2.5 Long-Horizon Returns 55
 2.5.1 Problems with Long-Horizon Inferences 57
2.6 Tests For Long-Range Dependence 59
 2.6.1 Examples of Long-Range Dependence 59
 2.6.2 The Hurst-Mandelbrot Rescaled Range Statistic .. 62
2.7 Unit Root Tests 64
2.8 Recent Empirical Evidence 65
 2.8.1 Autocorrelations 66
 2.8.2 Variance Ratios 68
 2.8.3 Cross-Autocorrelations and Lead-Lag Relations .. 74
 2.8.4 Tests Using Long-Horizon Returns 78
2.9 Conclusion ... 80

3 Market Microstructure 83
 3.1 Nonsynchronous Trading 84
 3.1.1 A Model of Nonsynchronous Trading 85
 3.1.2 Extensions and Generalizations 98
 3.2 The Bid-Ask Spread 99
 3.2.1 Bid-Ask Bounce 101
 3.2.2 Components of the Bid-Ask Spread 103
 3.3 Modeling Transactions Data 107
 3.3.1 Motivation 108
 3.3.2 Rounding and Barrier Models 114
 3.3.3 The Ordered Probit Model 122
 3.4 Recent Empirical Findings 128
 3.4.1 Nonsynchronous Trading 128
 3.4.2 Estimating the Effective Bid-Ask Spread 134
 3.4.3 Transactions Data 136
 3.5 Conclusion .. 144

4 Event-Study Analysis 149
 4.1 Outline of an Event Study 150
 4.2 An Example of an Event Study 152
 4.3 Models for Measuring Normal Performance 153
 4.3.1 Constant-Mean-Return Model 154
 4.3.2 Market Model 155

For general queries, contact webmaster@press.princeton.edu
Contents

4.3.3 Other Statistical Models ... 155
4.3.4 Economic Models .. 156
4.4 Measuring and Analyzing Abnormal Returns 157
 4.4.1 Estimation of the Market Model 158
 4.4.2 Statistical Properties of Abnormal Returns 159
 4.4.3 Aggregation of Abnormal Returns 160
 4.4.4 Sensitivity to Normal Return Model 162
 4.4.5 CARs for the Earnings-Announcement Example 163
 4.4.6 Inferences with Clustering .. 166
4.5 Modifying the Null Hypothesis .. 167
4.6 Analysis of Power ... 168
4.7 Nonparametric Tests .. 172
4.8 Cross-Sectional Models ... 173
4.9 Further Issues ... 175
 4.9.1 Role of the Sampling Interval ... 175
 4.9.2 Inferences with Event-Date Uncertainty 176
 4.9.3 Possible Biases .. 177
4.10 Conclusion .. 178

5 The Capital Asset Pricing Model .. 181
 5.1 Review of the CAPM .. 181
 5.2 Results from Efficient-Set Mathematics 184
 5.3 Statistical Framework for Estimation and Testing 188
 5.3.1 Sharpe-Lintner Version ... 189
 5.3.2 Black Version ... 196
 5.4 Size of Tests ... 203
 5.5 Power of Tests ... 204
 5.6 Nonnormal and Non-IID Returns .. 208
 5.7 Implementation of Tests ... 211
 5.7.1 Summary of Empirical Evidence 211
 5.7.2 Illustrative Implementation ... 212
 5.7.3 Unobservability of the Market Portfolio 213
 5.8 Cross-Sectional Regressions .. 215
 5.9 Conclusion .. 217

6 Multifactor Pricing Models .. 219
 6.1 Theoretical Background ... 219
 6.2 Estimation and Testing .. 222
 6.2.1 Portfolios as Factors with a Riskfree Asset 223
 6.2.2 Portfolios as Factors without a Riskfree Asset 224
 6.2.3 Macroeconomic Variables as Factors 226
 6.2.4 Factor Portfolios Spanning the Mean-Variance Frontier 228
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Estimation of Risk Premia and Expected Returns</td>
<td>231</td>
</tr>
<tr>
<td>6.4</td>
<td>Selection of Factors</td>
<td>233</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Statistical Approaches</td>
<td>235</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Number of Factors</td>
<td>238</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Theoretical Approaches</td>
<td>239</td>
</tr>
<tr>
<td>6.5</td>
<td>Empirical Results</td>
<td>240</td>
</tr>
<tr>
<td>6.6</td>
<td>Interpreting Deviations from Exact Factor Pricing</td>
<td>242</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Exact Factor Pricing Models, Mean-Variance Analysis, and</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>the Optimal Orthogonal Portfolio</td>
<td></td>
</tr>
<tr>
<td>6.6.2</td>
<td>Squared Sharpe Ratios</td>
<td>245</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Implications for Separating Alternative Theories</td>
<td>246</td>
</tr>
<tr>
<td>6.7</td>
<td>Conclusion</td>
<td>251</td>
</tr>
<tr>
<td>7</td>
<td>Present-Value Relations</td>
<td>253</td>
</tr>
<tr>
<td>7.1</td>
<td>The Relation between Prices, Dividends, and Returns</td>
<td>254</td>
</tr>
<tr>
<td>7.1.1</td>
<td>The Linear Present-Value Relation with Constant Expected</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Returns</td>
<td></td>
</tr>
<tr>
<td>7.1.2</td>
<td>Rational Bubbles</td>
<td>258</td>
</tr>
<tr>
<td>7.1.3</td>
<td>An Approximate Present-Value Relation with Time-Varying</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Expected Returns</td>
<td></td>
</tr>
<tr>
<td>7.1.4</td>
<td>Prices and Returns in a Simple Example</td>
<td>264</td>
</tr>
<tr>
<td>7.2</td>
<td>Present-Value Relations and US Stock Price Behavior</td>
<td>267</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Long-Horizon Regressions</td>
<td>267</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Volatility Tests</td>
<td>275</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Vector Autoregressive Methods</td>
<td>279</td>
</tr>
<tr>
<td>7.3</td>
<td>Conclusion</td>
<td>286</td>
</tr>
<tr>
<td>8</td>
<td>Intertemporal Equilibrium Models</td>
<td>291</td>
</tr>
<tr>
<td>8.1</td>
<td>The Stochastic Discount Factor</td>
<td>293</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Volatility Bounds</td>
<td>296</td>
</tr>
<tr>
<td>8.2</td>
<td>Consumption-Based Asset Pricing with Power Utility</td>
<td>304</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Power Utility in a Lognormal Model</td>
<td>306</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Power Utility and Generalized Method of Moments</td>
<td>314</td>
</tr>
<tr>
<td>8.3</td>
<td>Market Frictions</td>
<td>314</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Market Frictions and Hansen-Jagannathan Bounds</td>
<td>315</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Market Frictions and Aggregate Consumption Data</td>
<td>316</td>
</tr>
<tr>
<td>8.4</td>
<td>More General Utility Functions</td>
<td>326</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Habit Formation</td>
<td>326</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Psychological Models of Preferences</td>
<td>332</td>
</tr>
<tr>
<td>8.5</td>
<td>Conclusion</td>
<td>334</td>
</tr>
</tbody>
</table>
Contents

9 Derivative Pricing Models ... 339
 9.1 Brownian Motion ... 341
 9.1.1 Constructing Brownian Motion 341
 9.1.2 Stochastic Differential Equations 346
 9.2 A Brief Review of Derivative Pricing Methods 349
 9.2.1 The Black-Scholes and Merton Approach 350
 9.2.2 The Martingale Approach 354
 9.3 Implementing Parametric Option Pricing Models 355
 9.3.1 Parameter Estimation of Asset Price Dynamics 356
 9.3.2 Estimating σ in the Black-Scholes Model 361
 9.3.3 Quantifying the Precision of Option Price Estimators 367
 9.3.4 The Effects of Asset Return Predictability 369
 9.3.5 Implied Volatility Estimators 377
 9.3.6 Stochastic Volatility Models 379
 9.4 Pricing Path-Dependent Derivatives Via Monte Carlo Sim-
 ulation .. 382
 9.4.1 Discrete Versus Continuous Time 383
 9.4.2 How Many Simulations to Perform 384
 9.4.3 Comparisons with a Closed-Form Solution 384
 9.4.4 Computational Efficiency 386
 9.4.5 Extensions and Limitations 390
 9.5 Conclusion ... 391

10 Fixed-Income Securities ... 395
 10.1 Basic Concepts ... 396
 10.1.1 Discount Bonds ... 397
 10.1.2 Coupon Bonds .. 401
 10.1.3 Estimating the Zero-Coupon Term Structure 409
 10.2 Interpreting the Term Structure of Interest Rates 413
 10.2.1 The Expectations Hypothesis 413
 10.2.2 Yield Spreads and Interest Rate Forecasts 418
 10.3 Conclusion ... 423

11 Term-Structure Models ... 427
 11.1 Affine-Yield Models 428
 11.1.1 A Homoskedastic Single-Factor Model 429
 11.1.2 A Square-Root Single-Factor Model 435
 11.1.3 A Two-Factor Model 438
 11.1.4 Beyond Affine-Yield Models 441
 11.2 Fitting Term-Structure Models to the Data 442
 11.2.1 Real Bonds, Nominal Bonds, and Inflation 442
 11.2.2 Empirical Evidence on Affine-Yield Models 445
11.3 Pricing Fixed-Income Derivative Securities 455
 11.3.1 Fitting the Current Term Structure Exactly 456
 11.3.2 Forwards and Futures 458
 11.3.3 Option Pricing in a Term-Structure Model 461
11.4 Conclusion .. 464

12 Nonlinearities in Financial Data 467
 12.1 Nonlinear Structure in Univariate Time Series 468
 12.1.1 Some Parametric Models 470
 12.1.2 Univariate Tests for Nonlinear Structure 475
 12.2 Models of Changing Volatility 479
 12.2.1 Univariate Models 481
 12.2.2 Multivariate Models 490
 12.2.3 Links between First and Second Moments 494
 12.3 Nonparametric Estimation 498
 12.3.1 Kernel Regression 500
 12.3.2 Optimal Bandwidth Selection 502
 12.3.3 Average Derivative Estimators 504
 12.3.4 Application: Estimating State-Price Densities 507
 12.4 Artificial Neural Networks 512
 12.4.1 Multilayer Perceptrons 512
 12.4.2 Radial Basis Functions 516
 12.4.3 Projection Pursuit Regression 518
 12.4.4 Limitations of Learning Networks 518
 12.4.5 Application: Learning the Black-Scholes Formula . 519
 12.5 Overfitting and Data-Snooping 523
 12.6 Conclusion .. 524

Appendix .. 527
 A.1 Linear Instrumental Variables 527
 A.2 Generalized Method of Moments 532
 A.3 Serially Correlated and Heteroskedastic Errors 534
 A.4 GMM and Maximum Likelihood 536

References .. 541

Author Index .. 587

Subject Index .. 597
1

Introduction

FINANCIAL ECONOMICS is a highly empirical discipline, perhaps the most empirical among the branches of economics and even among the social sciences in general. This should come as no surprise, for financial markets are not mere figments of theoretical abstraction; they thrive in practice and play a crucial role in the stability and growth of the global economy. Therefore, although some aspects of the academic finance literature may seem abstract at first, there is a practical relevance demanded of financial models that is often waived for the models of other comparable disciplines.¹

Despite the empirical nature of financial economics, like the other social sciences it is almost entirely nonexperimental. Therefore, the primary method of inference for the financial economist is model-based statistical inference—financial econometrics. While econometrics is also essential in other branches of economics, what distinguishes financial economics is the central role that uncertainty plays in both financial theory and its empirical implementation. The starting point for every financial model is the uncertainty facing investors, and the substance of every financial model involves the impact of uncertainty on the behavior of investors and, ultimately, on market prices. Indeed, in the absence of uncertainty, the problems of financial economics reduce to exercises in basic microeconomics. The very existence of financial economics as a discipline is predicated on uncertainty.

This has important consequences for financial econometrics. The random fluctuations that require the use of statistical theory to estimate and test financial models are intimately related to the uncertainty on which those models are based. For example, the martingale model for asset prices has very specific implications for the behavior of test statistics such as the autocorrelation coefficient of price increments (see Chapter 2). This close connection between theory and empirical analysis is unparalleled in the

¹ Bernstein (1992) provides a highly readable account of the interplay between theory and practice in the development of modern financial economics.
social sciences, although it has been the hallmark of the natural sciences for quite some time. It is one of the most rewarding aspects of financial econometrics, so much so that we felt impelled to write this graduate-level textbook as a means of introducing others to this exciting field.

Section 1.1 explains which topics we cover in this book, and how we have organized the material. We also suggest some ways in which the book might be used in a one-semester course on financial econometrics or empirical finance.

In Section 1.2, we describe the kinds of background material that are most useful for financial econometrics and suggest references for those readers who wish to review or learn such material along the way. In our experience, students are often more highly motivated to pick up the necessary background after they see how it is to be applied, so we encourage readers with a serious interest in financial econometrics but with somewhat less preparation to take a crack at this material anyway.

In a book of this magnitude, notation becomes a nontrivial challenge of coordination; hence Section 1.3 describes what method there is in our notational madness. We urge readers to review this carefully to minimize the confusion that can arise when \(\hat{\beta} \) is mistaken for \(\beta \) and \(X \) is incorrectly assumed to be the same as \(X \).

Section 1.4 extends our discussion of notation by presenting notational conventions for and definitions of some of the fundamental objects of our study: prices, returns, methods of compounding, and probability distributions. Although much of this material is well-known to finance students and investment professionals, we think a brief review will help many readers.

In Section 1.5, we turn our attention to quite a different subject: the Efficient Markets Hypothesis. Because so much attention has been lavished on this hypothesis, often at the expense of other more substantive issues, we wish to dispense with this issue first. Much of the debate involves theological tenets that are empirically undecidable and, therefore, beyond the purview of this text. But for completeness—no self-respecting finance text could omit market efficiency altogether—Section 1.5 briefly discusses the topic.

1.1 Organization of the Book

In organizing this book, we have followed two general principles. First, the early chapters concentrate exclusively on stock markets. Although many of the methods discussed can be applied equally well to other asset markets, the empirical literature on stock markets is particularly large and by focusing on these markets we are able to keep the discussion concrete. In later chapters, we cover derivative securities (Chapters 9 and 12) and fixed-income securi-
ties (Chapters 10 and 11). The last chapter of the book presents nonlinear methods, with applications to both stocks and derivatives.

Second, we start by presenting statistical models of asset returns, and then discuss more highly structured economic models. In Chapter 2, for example, we discuss methods for predicting stock returns from their own past history, without much attention to institutional detail; in Chapter 3 we show how the microstructure of stock markets affects the short-run behavior of returns. Similarly, in Chapter 4 we discuss simple statistical models of the cross-section of individual stock returns, and the application of these models to event studies; in Chapters 5 and 6 we show how the Capital Asset Pricing Model and multifactor models such as the Arbitrage Pricing Theory restrict the parameters of the statistical models. In Chapter 7 we discuss longer-run evidence on the predictability of stock returns from variables other than past stock returns; in Chapter 8 we explore dynamic equilibrium models which can generate persistent time-variation in expected returns. We use the same principle to divide a basic treatment of fixed-income securities in Chapter 10 from a discussion of equilibrium term-structure models in Chapter 11.

We have tried to make each chapter as self-contained as possible. While some chapters naturally go together (e.g., Chapters 5 and 6, and Chapters 10 and 11), there is certainly no need to read this book straight through from beginning to end. For classroom use, most teachers will find that there is too much material here to be covered in one semester. There are several ways to use the book in a one-semester course. For example one teacher might start by discussing short-run time-series behavior of stock prices using Chapters 2 and 3, then cover cross-sectional models in Chapters 4, 5, and 6, then discuss intertemporal equilibrium models using Chapter 8, and finally cover derivative securities and nonlinear methods as advanced topics using Chapters 9 and 12. Another teacher might first present the evidence on short- and long-run predictability of stock returns using Chapters 2 and 7, then discuss static and intertemporal equilibrium theory using Chapters 5, 6, and 8, and finally cover fixed-income securities using Chapters 10 and 11.

There are some important topics that we have not been able to include in this text. Most obviously, our focus is almost exclusively on US domestic asset markets. We say very little about asset markets in other countries, and we do not try to cover international topics such as exchange-rate behavior or the home-bias puzzle (the tendency for each country's investors to hold a disproportionate share of their own country's assets in their portfolios). We also omit such important econometric subjects as Bayesian analysis and frequency-domain methods of time-series analysis. In many cases our choice of topics has been influenced by the dual objectives of the book: to explain the methods of financial econometrics, and to review the empirical literature in finance. We have tended to concentrate on topics that
involve econometric issues, sometimes at the expense of other equally interesting material—including much recent work in behavioral finance—that is econometrically more straightforward.

1.2 Useful Background

The many rewards of financial econometrics come at a price. A solid background in mathematics, probability and statistics, and finance theory is necessary for the practicing financial econometrician, for precisely the reasons that make financial econometrics such an engaging endeavor. To assist readers in obtaining this background (since only the most focused and directed of students will have it already), we outline in this section the topics in mathematics, probability, statistics, and finance theory that have become indispensable to financial econometrics. We hope that this outline can serve as a self-study guide for the more enterprising readers and that it will be a partial substitute for including background material in this book.

1.2.1 Mathematics Background

The mathematics background most useful for financial econometrics is not unlike the background necessary for econometrics in general: multivariate calculus, linear algebra, and matrix analysis. References for each of these topics are Lang (1973), Strang (1976), and Magnus and Neudecker (1988), respectively. Key concepts include

- multiple integration
- multivariate constrained optimization
- matrix algebra
- basic rules of matrix differentiation.

In addition, option- and other derivative-pricing models, and continuous-time asset pricing models, require some passing familiarity with the Ito or stochastic calculus. A lucid and thorough treatment is provided by Merton (1990), who pioneered the application of stochastic calculus to financial economics. More mathematically inclined readers may also wish to consult Chung and Williams (1990).

1.2.2 Probability and Statistics Background

Basic probability theory is a prerequisite for any discipline in which uncertainty is involved. Although probability theory has varying degrees of mathematical sophistication, from coin-flipping calculations to measure-theoretic foundations, perhaps the most useful approach is one that emphasizes the
1.2. Useful Background

intuition and subtleties of elementary probabilistic reasoning. An ama-
azingly durable classic that takes just this approach is Feller (1968). Bri-
eman (1992) provides similar intuition but at a measure-theoretic level. Key con-
cepts include

- definition of a random variable
- independence
- distribution and density functions
- conditional probability
- modes of convergence
- laws of large numbers
- central limit theorems.

Statistics is, of course, the primary engine which drives the inferences
that financial econometricians draw from the data. As with probability the-
ory, statistics can be taught at various levels of mathematical sophistication.
Moreover, unlike the narrower (and some would say “purer”) focus of proba-
bility theory, statistics has increased its breadth as it has matured, giving birth
to many well-defined subdisciplines such as multivariate analysis, nonpara-
meteric, time-series analysis, order statistics, analysis of variance, decision
theory, Bayesian statistics, etc. Each of these subdisciplines has been drawn
upon by financial econometricians at one time or another, making it rather
difficult to provide a single reference for all of these topics. Amazingly,
such a reference does exist: Stuart and Ord’s (1987) three-volume tour de
force. A more compact reference that contains most of the relevant material
for our purposes is the elegant monograph by Silvey (1975). For topics in
time-series analysis, Hamilton (1994) is an excellent comprehensive text.
Key concepts include

- Neyman-Pearson hypothesis testing
- linear regression
- maximum likelihood
- basic time-series analysis (stationarity, autoregressive and ARMA pro-
cesses, vector autoregressions, unit roots, etc.)
- elementary Bayesian inference.

For continuous-time financial models, an additional dose of stochastic pro-
cesses is a must, at least at the level of Cox and Miller (1965) and Hoel, Port,
and Stone (1972).

1.2.3 Finance Theory Background

Since the raison d’être of financial econometrics is the empirical implement-
ation and evaluation of financial models, a solid background in finance
theory is the most important of all. Several texts provide excellent coverage
of this material: Duffie (1992), Huang and Litzenberger (1988), Ingersoll (1987), and Merton (1990). Key concepts include

- risk aversion and expected-utility theory
- static mean-variance portfolio theory
- the Capital Asset Pricing Model (CAPM) and the Arbitrage Pricing Theory (APT)
- dynamic asset pricing models
- option pricing theory.

1.3 Notation

We have found that it is far from simple to devise a consistent notational scheme for a book of this scope. The difficulty comes from the fact that financial econometrics spans several very different strands of the finance literature, each replete with its own firmly established set of notational conventions. But the conventions in one literature often conflict with the conventions in another. Unavoidably, then, we must sacrifice either internal notational consistency across different chapters of this text or external consistency with the notation used in the professional literature. We have chosen the former as the lesser evil, but we do maintain the following conventions throughout the book:

- We use boldface for vectors and matrices, and regular face for scalars. Where possible, we use bold uppercase for matrices and bold lowercase for vectors. Thus \mathbf{x} is a vector while \mathbf{X} is a matrix.
- Where possible, we use uppercase letters for the levels of variables and lowercase letters for the natural logarithms (logs) of the same variables. Thus if P is an asset price, p is the log asset price.
- Our standard notation for an innovation is the Greek letter ϵ. Where we need to define several different innovations, we use the alternative Greek letters η, ξ, and ζ.
- Where possible, we use Greek letters to denote parameters or parameter vectors.
- We use the Greek letter ι to denote a vector of ones.
- We use hats to denote sample estimates, so if β is a parameter, $\hat{\beta}$ is an estimate of β.
- When we use subscripts, we always use uppercase letters for the upper limits of the subscripts. Where possible, we use the same letters for upper limits as for the subscripts themselves. Thus subscript i runs from 1 to T, subscript k runs from 1 to K, and so on. An exception is that we will let subscript i (usually denoting an asset) run from 1 to N because this notation is so common. We use t and τ for time subscripts;
1.4. Prices, Returns, and Compounding

i for asset subscripts; k, m, and n for lead and lag subscripts; and j as a generic subscript.

- We use the timing convention that a variable is dated t if it is known by the end of period t. Thus R_t denotes a return on an asset held from the end of period $t-1$ to the end of period t.

- In writing variance-covariance matrices, we use Ω for the variance-covariance matrix of asset returns, Σ for the variance-covariance matrix of residuals from a time-series or cross-sectional model, and \mathbf{V} for the variance-covariance matrix of parameter estimators.

- We use script letters sparingly. \mathcal{N} denotes the normal distribution, and \mathcal{L} denotes a log likelihood function.

- We use $\Pr(\cdot)$ to denote the probability of an event.

The professional literature uses many specialized terms. Inevitably we also use these frequently, and we italicize them when they first appear in the book.

1.4 Prices, Returns, and Compounding

Virtually every aspect of financial economics involves returns, and there are at least two reasons for focusing our attention on returns rather than on prices. First, for the average investor, financial markets may be considered close to perfectly competitive, so that the size of the investment does not affect price changes. Therefore, since the investment “technology” is constant-returns-to-scale, the return is a complete and scale-free summary of the investment opportunity.

Second, for theoretical and empirical reasons that will become apparent below, returns have more attractive statistical properties than prices, such as stationarity and ergodicity. In particular, dynamic general-equilibrium models often yield nonstationary prices, but stationary returns (see, for example, Chapter 8 and Lucas [1978]).

1.4.1 Definitions and Conventions

Denote by P_t the price of an asset at date t and assume for now that this asset pays no dividends. The simple net return, R_t, on the asset between dates $t - 1$ and t is defined as

$$R_t = \frac{P_t}{P_{t-1}} - 1. \quad (1.4.1)$$

The simple gross return on the asset is just one plus the net return, $1 + R_t$.

From this definition it is apparent that the asset’s gross return over the most recent k periods from date $t - k$ to date t, written $1 + R_t(k)$, is simply
equal to the product of the k single-period returns from $t - k + 1$ to t, i.e.,

$$1 + R_t(k) = (1 + R_t) \cdot (1 + R_{t-1}) \cdots (1 + R_{t-k+1})$$

$$= \frac{P_t}{P_{t-1}} \cdot \frac{P_{t-1}}{P_{t-2}} \cdots \frac{P_{t-k+1}}{P_{t-k}} = \frac{P_t}{P_{t-k}}, \quad (1.4.2)$$

and its net return over the most recent k periods, written $R_t(k)$, is simply equal to its k-period gross return minus one. These multiperiod returns are called **compound** returns.

Although returns are scale-free, it should be emphasized that they are **not** unitless, but are always defined with respect to some time interval, e.g., one “period.” In fact, R_t is more properly called a **rate of return**, which is more cumbersome terminology but more accurate in referring to R_t as a rate or, in economic jargon, a **flow variable**. Therefore, a return of 20% is not a complete description of the investment opportunity without specification of the return horizon. In the academic literature, the return horizon is generally given explicitly, often as part of the data description, e.g., “The CRSP **monthly** returns file was used.”

However, among practitioners and in the financial press, a return-horizon of one year is usually assumed implicitly; hence, unless stated otherwise, a return of 20% is generally taken to mean an **annual** return of 20%. Moreover, multiyear returns are often **annualized** to make investments with different horizons comparable, thus:

$$\text{Annualized}[R_t(k)] = \left[\prod_{j=0}^{k-1} (1 + R_{t-j}) \right]^{1/k} - 1. \quad (1.4.3)$$

Since single-period returns are generally small in magnitude, the following approximation based on a first-order Taylor expansion is often used to annualize multiyear returns:

$$\text{Annualized}[R_t(k)] \approx \frac{1}{k} \sum_{j=0}^{k-1} R_{t-j}. \quad (1.4.4)$$

Whether such an approximation is adequate depends on the particular application at hand; it may suffice for a quick and coarse comparison of investment performance across many assets, but for finer calculations in which the volatility of returns plays an important role, i.e., when the higher-order terms in the Taylor expansion are not negligible, the approximation (1.4.4) may break down. The only advantage of such an approximation is convenience—it is easier to calculate an arithmetic rather than a geometric average—however, this advantage has diminished considerably with the advent of cheap and convenient computing power.
Continuous Compounding

The difficulty of manipulating geometric averages such as (1.4.3) motivates another approach to compound returns, one which is not approximate and also has important implications for modeling asset returns; this is the notion of continuous compounding. The continuously compounded return or log return \(r_t \) of an asset is defined to be the natural logarithm of its gross return \(1 + R_t \):

\[
 r_t = \log(1 + R_t) = \log \frac{P_t}{P_{t-1}} = p_t - p_{t-1},
\]

where \(p_t \equiv \log P_t \). When we wish to emphasize the distinction between \(R_t \) and \(r_t \), we shall refer to \(R_t \) as a simple return. Our notation here deviates slightly from our convention that lowercase letters denote the logs of uppercase letters, since here we have \(r_t = \log(1 + R_t) \) rather than \(\log(R_t) \); we do this to maintain consistency with standard conventions.

The advantages of continuously compounded returns become clear when we consider multiperiod returns, since

\[
 r_t(k) = \log((1 + R_t) \cdot (1 + R_{t-1}) \cdot \ldots \cdot (1 + R_{t-k+1}))
 = \log(1 + R_t) + \log(1 + R_{t-1}) + \ldots + \log(1 + R_{t-k+1})
 = r_t + r_{t-1} + \ldots + r_{t-k+1},
\]

and hence the continuously compounded multiperiod return is simply the sum of continuously compounded single-period returns. Compounding, a multiplicative operation, is converted to an additive operation by taking logarithms. However, the simplification is not merely in reducing multiplication to addition (since we argued above that with modern calculators and computers, this is trivial), but more in the modeling of the statistical behavior of asset returns over time—it is far easier to derive the time-series properties of additive processes than of multiplicative processes, as we shall see in Chapter 2.

Continuously compounded returns do have one disadvantage. The simple return on a portfolio of assets is a weighted average of the simple returns on the assets themselves, where the weight on each asset is the share of the portfolio’s value invested in that asset. If portfolio \(P \) places weight \(w_p \) in asset \(i \), then the return on the portfolio at time \(t \), \(R_{pt} \), is related to the returns on individual assets, \(R_{it}, i = 1 \ldots N \), by \(R_{pt} = \sum_{i=1}^{N} w_p R_{it} \). Unfortunately, continuously compounded returns do not share this convenient property. Since the log of a sum is not the same as the sum of logs, \(r_{pt} \) does not equal \(\sum_{i=1}^{N} w_p r_{it} \).

In empirical applications this problem is usually minor. When returns are measured over short intervals of time, and are therefore close to zero, the continuously compounded return on a portfolio is close to the weighted...
average of the continuously compounded returns on the individual assets:
\[r_{pt} \approx \sum_{i=1}^{N} w_{it} r_{it}. \]
We use this approximation in Chapter 3. Nonetheless it is common to use simple returns when a cross-section of assets is being studied, as in Chapters 4–6, and continuously compounded returns when the temporal behavior of returns is the focus of interest, as in Chapters 2 and 7.

Dividend Payments

For assets which make periodic dividend payments, we must modify our definitions of returns and compounding. Denote by \(D_t \) the asset’s dividend payment at date \(t \) and assume, purely as a matter of convention, that this dividend is paid just before the date-\(t \) price \(P_t \) is recorded; hence \(P_t \) is taken to be the *ex-dividend* price at date \(t \). Alternatively, one might describe \(P_t \) as an end-of-period asset price, as shown in Figure 1.1. Then the net simple return at date \(t \) may be defined as

\[R_t = \frac{P_t + D_t}{P_{t-1}} - 1. \]

(1.4.7)

Multiperiod and continuously compounded returns may be obtained in the same way as in the no-dividends case. Note that the continuously compounded return on a dividend-paying asset, \(r_t = \log(P_t + D_t) - \log(P_{t-1}) \), is a nonlinear function of log prices and log dividends. When the ratio of prices to dividends is not too variable, however, this function can be approximated by a linear function of log prices and dividends, as discussed in detail in Chapter 7.

Excess Returns

It is often convenient to work with an asset’s excess return, defined as the difference between the asset’s return and the return on some reference asset. The reference asset is often assumed to be riskless and in practice is usually a short-term Treasury bill return. Working with simple returns, the

\[r_{pt} \approx \sum_{i=1}^{N} w_{it} r_{it}. \]

\(^2\)In the limit where time is continuous, Ito’s Lemma, discussed in Section 9.1.2 of Chapter 9, can be used to relate simple and continuously compounded returns.
1.4. Prices, Returns, and Compounding

simple excess return on asset i is

$$ Z_{it} = R_{it} - R_{0t}, \quad (1.4.8) $$

where R_{0t} is the reference return. Alternatively one can define a log excess return as

$$ z_{it} = r_{it} - r_{0t}. \quad (1.4.9) $$

The excess return can also be thought of as the payoff on an arbitrage portfolio that goes long in asset i and short in the reference asset, with no net investment at the initial date. Since the initial net investment is zero, the return on the arbitrage portfolio is undefined but its dollar payoff is proportional to the excess return as defined above.

1.4.2 The Marginal, Conditional, and Joint Distribution of Returns

Having defined asset returns carefully, we can now begin to study their behavior across assets and over time. Perhaps the most important characteristic of asset returns is their randomness. The return of IBM stock over the next month is unknown today, and it is largely the explicit modeling of the sources and nature of this uncertainty that distinguishes financial economics from other social sciences. Although other branches of economics and sociology do have models of stochastic phenomena, in none of them does uncertainty play so central a role as in the pricing of financial assets—without uncertainty, much of the financial economics literature, both theoretical and empirical, would be superfluous. Therefore, we must articulate at the very start the types of uncertainty that asset returns might exhibit.

The Joint Distribution

Consider a collection of N assets at date t, each with return R_{it} at date t, where $t = 1, \ldots, T$. Perhaps the most general model of the collection of returns $\{R_{it}\}$ is its joint distribution function:

$$ G(R_{11}, \ldots, R_{N1}; R_{12}, \ldots, R_{N2}; \ldots; R_{1T}, \ldots, R_{NT}; \mathbf{x} \mid \theta), \quad (1.4.10) $$

where \mathbf{x} is a vector of state variables, variables that summarize the economic environment in which asset returns are determined, and θ is a vector of fixed parameters that uniquely determines G. For notational convenience, we shall suppress the dependence of G on the parameters θ unless it is needed.

The probability law G governs the stochastic behavior of asset returns and \mathbf{x}, and represents the sum total of all knowable information about them. We may then view financial econometrics as the statistical inference of θ, given G and realizations of $\{R_{it}\}$. Of course, (1.4.10) is far too general to...
be of any use for statistical inference, and we shall have to place further restrictions on \(G \) in the coming sections and chapters. However, (1.4.10) does serve as a convenient way to organize the many models of asset returns to be developed here and in later chapters. For example, Chapters 2 through 6 deal exclusively with the joint distribution of \(\{ R_{it} \} \), leaving additional state variables \(x \) to be considered in Chapters 7 and 8. We write this joint distribution as \(G_R \).

Many asset pricing models, such as the Capital Asset Pricing Model (CAPM) of Sharpe (1964),Lintner (1965a, b), and Mossin (1966) considered in Chapter 5, describe the joint distribution of the cross section of returns \(\{ R_{i1}, \ldots, R_{iN} \} \) at a single date \(t \). To reduce (1.4.10) to this essentially static structure, we shall have to assert that returns are statistically independent through time and that the joint distribution of the cross-section of returns is identical across time. Although such assumptions seem extreme, they yield a rich set of implications for pricing financial assets. The CAPM, for example, delivers an explicit formula for the trade-off between risk and expected return, the celebrated security market line.

The Conditional Distribution
In Chapter 2, we place another set of restrictions on \(G_R \) which will allow us to focus on the dynamics of individual asset returns while abstracting from cross-sectional relations between the assets. In particular, consider the joint distribution \(F \) of \(\{ R_{i1}, \ldots, R_{iT} \} \) for a given asset \(i \), and observe that we may always rewrite \(F \) as the following product:

\[
F(R_{i1}, \ldots, R_{iT}) = F_{i1}(R_{i1}) \cdot F_{i2}(R_{i2} \mid R_{i1}) \cdot F_{i3}(R_{i3} \mid R_{i2}, R_{i1}) \\
\vdots \\
\cdots F_{iT}(R_{iT} \mid R_{iT-1}, \ldots, R_{i1}).
\]

(1.4.11)

From (1.4.11), the temporal dependencies implicit in \(\{ R_{it} \} \) are apparent. Issues of predictability in asset returns involve aspects of their conditional distributions and, in particular, how the conditional distributions evolve through time.

By placing further restrictions on the conditional distributions \(F_{it}(\cdot) \), we shall be able to estimate the parameters \(\theta \) implicit in (1.4.11) and examine the predictability of asset returns explicitly. For example, one version of the random-walk hypothesis is obtained by the restriction that the conditional distribution of return \(R_{it} \) is equal to its marginal distribution, i.e., \(F_{it}(R_{it} \mid \cdot) = F_{it}(R_{it}) \). If this is the case, then returns are temporally independent and therefore unpredictable using past returns. Weaker versions of the random walk are obtained by imposing weaker restrictions on \(F_{it}(R_{it} \mid \cdot) \).

The Unconditional Distribution
In cases where an asset return’s conditional distribution differs from its marginal or unconditional distribution, it is clearly the conditional distribu-
tion that is relevant for issues involving predictability. However, the properties of the unconditional distribution of returns may still be of some interest, especially in cases where we expect predictability to be minimal.

One of the most common models for asset returns is the temporally independently and identically distributed (IID) normal model, in which returns are assumed to be independent over time (although perhaps cross-sectionally correlated), identically distributed over time, and normally distributed. The original formulation of the CAPM employed this assumption of normality, although returns were only implicitly assumed to be temporally IID (since it was a static “two-period” model). More recently, models of asymmetric information such as Grossman (1989) and Grossman and Stiglitz (1980) also use normality.

While the temporally IID normal model may be tractable, it suffers from at least two important drawbacks. First, most financial assets exhibit limited liability, so that the largest loss an investor can realize is his total investment and no more. This implies that the smallest net return achievable is -1 or -100%. But since the normal distribution’s support is the entire real line, this lower bound of -1 is clearly violated by normality. Of course, it may be argued that by choosing the mean and variance appropriately, the probability of realizations below -1 can be made arbitrarily small; however it will never be zero, as limited liability requires.

Second, if single-period returns are assumed to be normal, then multiperiod returns cannot also be normal since they are the products of the single-period returns. Now the sums of normal single-period returns are indeed normal, but the sum of single-period simple returns does not have any economically meaningful interpretation. However, as we saw in Section 1.4.1, the sum of single-period continuously compounded returns does have a meaningful interpretation as a multiperiod continuously compounded return.

The Lognormal Distribution
A sensible alternative is to assume that continuously compounded single-period returns r_{it} are IID normal, which implies that single-period gross simple returns are distributed as IID lognormal variates, since $r_{it} \equiv \log(1 + R_{it})$. We may express the lognormal model then as

$$r_{it} \sim \mathcal{N}(\mu_i, \sigma_i^2).$$ \hfill (1.4.12)

Under the lognormal model, if the mean and variance of r_{it} are μ_i and σ_i^2, respectively, then the mean and variance of simple returns are given by

$$E[R_{it}] = e^{\mu_i + \frac{\sigma_i^2}{2}} - 1$$ \hfill (1.4.13)

$$\text{Var}[R_{it}] = e^{2\mu_i + \sigma_i^2} [e^{\sigma_i^2} - 1].$$ \hfill (1.4.14)
Alternatively, if we assume that the mean and variance of simple returns R_{it} are m_i and s_i^2, respectively, then under the lognormal model the mean and variance of r_{it} are given by

$$
E[r_{it}] = \log \frac{m_i + 1}{\sqrt{1 + \left(\frac{s_i}{m_i + 1}\right)^2}} \quad (1.4.15)
$$

$$
\text{Var}[r_{it}] = \log \left[1 + \left(\frac{s_i}{m_i + 1}\right)^2\right]. \quad (1.4.16)
$$

The lognormal model has the added advantage of not violating limited liability, since limited liability yields a lower bound of zero on $(1 + R_{it})$, which is satisfied by $(1 + R_{it}) = e^{\nu}$ when r_{it} is assumed to be normal.

The lognormal model has a long and illustrious history, beginning with the dissertation of the French mathematician Louis Bachelier (1900), which contained the mathematics of Brownian motion and heat conduction, five years prior to Einstein’s (1905) famous paper. For other reasons that will become apparent in later chapters (see, especially, Chapter 9), the lognormal model has become the workhorse of the financial asset pricing literature.

But as attractive as the lognormal model is, it is not consistent with all the properties of historical stock returns. At short horizons, historical returns show weak evidence of skewness and strong evidence of excess kurtosis. The skewness, or normalized third moment, of a random variable ϵ with mean μ and variance σ^2 is defined by

$$
S[\epsilon] \equiv E \left[\frac{(\epsilon - \mu)^3}{\sigma^3}\right]. \quad (1.4.17)
$$

The kurtosis, or normalized fourth moment, of ϵ is defined by

$$
K[\epsilon] \equiv E \left[\frac{(\epsilon - \mu)^4}{\sigma^4}\right]. \quad (1.4.18)
$$

The normal distribution has skewness equal to zero, as do all other symmetric distributions. The normal distribution has kurtosis equal to 3, but fat-tailed distributions with extra probability mass in the tail areas have higher or even infinite kurtosis.

Skewness and kurtosis can be estimated in a sample of data by constructing the obvious sample averages: the sample mean

$$
\hat{\mu} \equiv \frac{1}{T} \sum_{t=1}^{T} \epsilon_t, \quad (1.4.19)
$$
1.4. Prices, Returns, and Compounding

the sample variance

$$\hat{\sigma}^2 \equiv \frac{1}{T} \sum_{t=1}^{T} (\epsilon_t - \hat{\mu})^2,$$

(1.4.20)

the sample skewness

$$\hat{S} \equiv \frac{1}{T\hat{\sigma}^3} \sum_{t=1}^{T} (\epsilon_t - \hat{\mu})^3.$$

(1.4.21)

and the sample kurtosis

$$\hat{K} \equiv \frac{1}{T\hat{\sigma}^4} \sum_{t=1}^{T} (\epsilon_t - \hat{\mu})^4.$$

(1.4.22)

In large samples of normally distributed data, the estimators \hat{S} and \hat{K} are normally distributed with means 0 and 3 and variances $6/T$ and $24/T$, respectively (see Stuart and Ord [1987, Vol. 1]). Since 3 is the kurtosis of the normal distribution, sample excess kurtosis is defined to be sample kurtosis less 3. Sample estimates of skewness for daily US stock returns tend to be negative for stock indexes but close to zero or positive for individual stocks. Sample estimates of excess kurtosis for daily US stock returns are large and positive for both indexes and individual stocks, indicating that returns have more mass in the tail areas than would be predicted by a normal distribution.

Stable Distributions

Early studies of stock market returns attempted to capture this excess kurtosis by modeling the distribution of continuously compounded returns as a member of the stable class (also called the stable Pareto-Lévy or stable Paretoian), of which the normal is a special case.\(^3\) The stable distributions are a natural generalization of the normal in that, as their name suggests, they are stable under addition, i.e., a sum of stable random variables is also a stable random variable. However, nonnormal stable distributions have more probability mass in the tail areas than the normal. In fact, the nonnormal stable distributions are so fat-tailed that their variance and all higher moments are infinite. Sample estimates of variance or kurtosis for random variables with

\(^3\)The French probabilist Paul Lévy (1924) was perhaps the first to initiate a general investigation of stable distributions and provided a complete characterization of them through their log-characteristic functions (see below). Lévy (1925) also showed that the tail probabilities of stable distributions approximate those of the Pareto distribution, hence the term “stable Pareto-Lévy” or “stable Paretoian” distribution. For applications to financial asset returns, see Blattberg and Gonedes (1974); Fama (1965); Fama and Roll (1971); Fielitz (1976); Fielitz and Rozell (1983); Granger and Morgenstern (1970); Hagerman (1978); Hsu, Miller, and Wichern (1974); Mandelbrot (1963); Mandelbrot and Taylor (1967); Officer (1972); Samuelson (1967, 1976); Simkowitz and Beedles (1980); and Tucker (1992).
1. Introduction

![Comparison of Stable and Normal Density Functions](image)

Figure 1.2. Comparison of Stable and Normal Density Functions

these distributions will not converge as the sample size increases, but will tend to increase indefinitely.

Closed-form expressions for the density functions of stable random variables are available for only three special cases: the normal, the Cauchy, and the Bernoulli cases. Figure 1.2 illustrates the Cauchy distribution, with density function

$$f(x) = \frac{1}{\pi} \frac{\gamma}{\gamma^2 + (x - \delta)^2}.$$ \hspace{1cm} (1.4.23)

In Figure 1.2, (1.4.23) is graphed with parameters $\delta = 0$ and $\gamma = 1$, and it is apparent from the comparison with the normal density function (dashed lines) that the Cauchy has fatter tails than the normal.

Although stable distributions were popular in the 1960's and early 1970's, they are less commonly used today. They have fallen out of favor partly because they make theoretical modelling so difficult; standard finance theory

4However, Lévy (1925) derived the following explicit expression for the logarithm of the characteristic function $\varphi(t)$ of any stable random variable X: $\log \varphi(t) \equiv \log \mathbb{E}[e^{itX}] = i\delta t - \gamma |t|^\alpha [1 - i\beta \text{sgn}(t) \tan(\alpha \pi / 2)]$, where $(\alpha, \beta, \delta, \gamma)$ are the four parameters that characterize each stable distribution. $\delta \in (-\infty, \infty)$ is said to be the location parameter, $\beta \in (-\infty, \infty)$ is the skewness index, $\gamma \in (0, \infty)$ is the scale parameter, and $\alpha \in (0, 2]$ is the exponent. When $\alpha = 2$, the stable distribution reduces to a normal. As α decreases from 2 to 0, the tail areas of the stable distribution become increasingly "fatter" than the normal. When $\alpha \in (1, 2)$, the stable distribution has a finite mean given by δ, but when $\alpha \in (0, 1]$, even the mean is infinite. The parameter β measures the symmetry of the stable distribution; when $\beta = 0$ the distribution is symmetric, and when $\beta > 0$ (or $\beta < 0$) the distribution is skewed to the right (or left). When $\beta = 0$ and $\alpha = 1$ we have the Cauchy distribution, and when $\alpha = 1/2, \beta = 1, \delta = 0$, and $\gamma = 1$ we have the Bernoulli distribution.
almost always requires finite second moments of returns, and often finite higher moments as well. Stable distributions also have some counterfactual implications. First, they imply that sample estimates of the variance and higher moments of returns will tend to increase as the sample size increases, whereas in practice these estimates seem to converge. Second, they imply that long-horizon returns will be just as non-normal as short-horizon returns (since long-horizon returns are sums of short-horizon returns, and these distributions are stable under addition). In practice the evidence for non-normality is much weaker for long-horizon returns than for short-horizon returns.

Recent research tends instead to model returns as drawn from a fat-tailed distribution with finite higher moments, such as the t distribution, or as drawn from a mixture of distributions. For example the return might be conditionally normal, conditional on a variance parameter which is itself random; then the unconditional distribution of returns is a mixture of normal distributions, some with small conditional variances that concentrate mass around the mean and others with large conditional variances that put mass in the tails of the distribution. The result is a fat-tailed unconditional distribution with a finite variance and finite higher moments. Since all moments are finite, the Central Limit Theorem applies and long-horizon returns will tend to be closer to the normal distribution than short-horizon returns. It is natural to model the conditional variance as a time-series process, and we discuss this in detail in Chapter 12.

An Empirical Illustration

Table 1.1 contains some sample statistics for individual and aggregate stock returns from the Center for Research in Securities Prices (CRSP) for 1962 to 1994 which illustrate some of the issues discussed in the previous sections. Sample moments, calculated in the straightforward way described in (1.4.19)–(1.4.22), are reported for value- and equal-weighted indexes of stocks listed on the New York Stock Exchange (NYSE) and American Stock Exchange (AMEX), and for ten individual stocks. The individual stocks were selected from market-capitalization deciles using 1979 end-of-year market capitalizations for all stocks in the CRSP NYSE/AMEX universe, where International Business Machines is the largest decile’s representative and Continental Materials Corp. is the smallest decile’s representative.

Panel A reports statistics for daily returns. The daily index returns have extremely high sample excess kurtosis, 34.9 and 26.0 respectively, a clear sign of fat tails. Although the excess kurtosis estimates for daily individual stock returns are generally less than those for the indexes, they are still large, ranging from 3.35 to 59.4. Since there are 8179 observations, the standard error for the kurtosis estimate under the null hypothesis of normality is $\sqrt{24/8179} = 0.054$, so these estimates of excess kurtosis are overwhelmingly
statistically significant. The skewness estimates are negative for the daily index returns, −1.33 and −0.93 respectively, but generally positive for the individual stock returns, ranging from −0.18 to 2.25. Many of the skewness estimates are also statistically significant as the standard error under the null hypothesis of normality is $\sqrt{6/8179} = 0.027$.

Panel B reports sample statistics for monthly returns. These are considerably less leptokurtic than daily returns—the value- and equal-weighted CRSP monthly index returns have excess kurtosis of only 2.42 and 4.14, respectively, an order of magnitude smaller than the excess kurtosis of daily returns. As there are only 390 observations the standard error for the kurtosis estimate is also much larger, 0.248. This is one piece of evidence that has led researchers to use fat-tailed distributions with finite higher moments, for which the Central Limit Theorem applies and drives longer-horizon returns towards normality.

1.5 Market Efficiency

The origins of the Efficient Markets Hypothesis (EMH) can be traced back at least as far as the pioneering theoretical contribution of Bachelier (1900) and the empirical research of Cowles (1933). The modern literature in economics begins with Samuelson (1965), whose contribution is neatly summarized by the title of his article: “Proof that Properly Anticipated Prices Fluctuate Randomly”.\(^5\) In an informationally efficient market—not to be confused with an allocationally or Pareto-efficient market—price changes must be unforecastable if they are properly anticipated, i.e., if they fully incorporate the expectations and information of all market participants.

Fama (1970) summarizes this idea in his classic survey by writing: “A market in which prices always ‘fully reflect’ available information is called ‘efficient’.” Fama’s use of quotation marks around the words “fully reflect” indicates that these words are a form of shorthand and need to be explained more fully. More recently, Malkiel (1992) has offered the following more explicit definition:

A capital market is said to be efficient if it fully and correctly reflects all relevant information in determining security prices. Formally, the market is said to be efficient with respect to some information set . . . if security prices would be unaffected by revealing that information to all participants. Moreover, efficiency with respect to an information set

\(^5\) Bernstein (1992) discusses the contributions of Bachelier, Cowles, Samuelson, and many other early authors. The articles reprinted in Lo (1996) include some of the most important papers in this literature.
1.5. Market Efficiency

Table 1.1. Stock market returns, 1962 to 1994.

<table>
<thead>
<tr>
<th>Security</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Skewness</th>
<th>Excess Kurtosis</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Daily Returns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value-Weighted Index</td>
<td>0.044</td>
<td>0.82</td>
<td>-1.33</td>
<td>34.92</td>
<td>-18.10</td>
<td>8.87</td>
</tr>
<tr>
<td>Equal-Weighted Index</td>
<td>0.073</td>
<td>0.76</td>
<td>-0.93</td>
<td>26.03</td>
<td>-14.19</td>
<td>9.83</td>
</tr>
<tr>
<td>International Business Machines</td>
<td>0.039</td>
<td>1.42</td>
<td>-0.18</td>
<td>12.48</td>
<td>-22.96</td>
<td>11.72</td>
</tr>
<tr>
<td>General Signal Corp.</td>
<td>0.054</td>
<td>1.66</td>
<td>0.01</td>
<td>3.35</td>
<td>-13.46</td>
<td>9.43</td>
</tr>
<tr>
<td>Wrigley Co.</td>
<td>0.072</td>
<td>1.45</td>
<td>-0.00</td>
<td>11.03</td>
<td>-18.67</td>
<td>11.89</td>
</tr>
<tr>
<td>Interlake Corp.</td>
<td>0.043</td>
<td>2.16</td>
<td>0.72</td>
<td>12.35</td>
<td>-17.24</td>
<td>23.08</td>
</tr>
<tr>
<td>Raytech Corp.</td>
<td>0.050</td>
<td>3.39</td>
<td>2.25</td>
<td>59.40</td>
<td>-57.90</td>
<td>75.00</td>
</tr>
<tr>
<td>Ampco-Pittsburgh Corp.</td>
<td>0.053</td>
<td>2.41</td>
<td>0.66</td>
<td>5.02</td>
<td>-19.05</td>
<td>19.18</td>
</tr>
<tr>
<td>Energen Corp.</td>
<td>0.054</td>
<td>1.41</td>
<td>0.27</td>
<td>5.91</td>
<td>-12.82</td>
<td>11.11</td>
</tr>
<tr>
<td>General Host Corp.</td>
<td>0.070</td>
<td>2.79</td>
<td>0.74</td>
<td>6.18</td>
<td>-23.53</td>
<td>22.92</td>
</tr>
<tr>
<td>Garan Inc.</td>
<td>0.079</td>
<td>2.35</td>
<td>0.72</td>
<td>7.13</td>
<td>-16.67</td>
<td>19.07</td>
</tr>
<tr>
<td>Continental Materials Corp.</td>
<td>0.143</td>
<td>5.24</td>
<td>0.93</td>
<td>6.49</td>
<td>-26.92</td>
<td>50.00</td>
</tr>
<tr>
<td>Panel B: Monthly Returns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value-Weighted Index</td>
<td>0.96</td>
<td>4.33</td>
<td>-0.29</td>
<td>2.42</td>
<td>-21.81</td>
<td>16.51</td>
</tr>
<tr>
<td>Equal-Weighted Index</td>
<td>1.25</td>
<td>5.77</td>
<td>0.07</td>
<td>4.14</td>
<td>-26.80</td>
<td>33.17</td>
</tr>
<tr>
<td>International Business Machines</td>
<td>0.81</td>
<td>6.18</td>
<td>-0.14</td>
<td>0.83</td>
<td>-26.19</td>
<td>18.95</td>
</tr>
<tr>
<td>General Signal Corp.</td>
<td>1.17</td>
<td>8.19</td>
<td>-0.02</td>
<td>1.87</td>
<td>-36.77</td>
<td>29.73</td>
</tr>
<tr>
<td>Wrigley Co.</td>
<td>1.51</td>
<td>6.68</td>
<td>0.30</td>
<td>1.31</td>
<td>-20.26</td>
<td>29.72</td>
</tr>
<tr>
<td>Interlake Corp.</td>
<td>0.86</td>
<td>9.38</td>
<td>0.67</td>
<td>4.09</td>
<td>-30.28</td>
<td>54.84</td>
</tr>
<tr>
<td>Raytech Corp.</td>
<td>0.83</td>
<td>14.88</td>
<td>2.73</td>
<td>22.70</td>
<td>-45.65</td>
<td>142.11</td>
</tr>
<tr>
<td>Ampco-Pittsburgh Corp.</td>
<td>1.06</td>
<td>10.64</td>
<td>0.77</td>
<td>2.04</td>
<td>-36.08</td>
<td>46.94</td>
</tr>
<tr>
<td>Energen Corp.</td>
<td>1.10</td>
<td>5.75</td>
<td>1.47</td>
<td>12.47</td>
<td>-24.61</td>
<td>48.36</td>
</tr>
<tr>
<td>General Host Corp.</td>
<td>1.33</td>
<td>11.67</td>
<td>0.35</td>
<td>1.11</td>
<td>-38.05</td>
<td>42.86</td>
</tr>
<tr>
<td>Garan Inc.</td>
<td>1.64</td>
<td>11.30</td>
<td>0.76</td>
<td>2.30</td>
<td>-35.48</td>
<td>51.60</td>
</tr>
<tr>
<td>Continental Materials Corp.</td>
<td>1.64</td>
<td>17.76</td>
<td>1.13</td>
<td>3.33</td>
<td>-58.09</td>
<td>84.78</td>
</tr>
</tbody>
</table>

Summary statistics for daily and monthly returns (in percent) of CRSP equal- and value-weighted stock indexes and ten individual securities continuously listed over the entire sample period from July 3, 1962 to December 30, 1994. Individual securities are selected to represent stocks in each size decile. Statistics are defined in (1.4.19)–(1.4.22).

... implies that it is impossible to make economic profits by trading on the basis of [that information set].

Malkiel’s first sentence repeats Fama’s definition. His second and third sentences expand the definition in two alternative ways. The second sentence suggests that market efficiency can be tested by revealing information to
market participants and measuring the reaction of security prices. If prices
do not move when information is revealed, then the market is efficient with
respect to that information. Although this is clear conceptually, it is hard to
carry out such a test in practice (except perhaps in a laboratory).

Malkiel's third sentence suggests an alternative way to judge the effi-
ciency of a market, by measuring the profits that can be made by trading on
information. This idea is the foundation of almost all the empirical work
on market efficiency. It has been used in two main ways. First, many re-
searchers have tried to measure the profits earned by market professionals
such as mutual fund managers. If these managers achieve superior returns
(after adjustment for risk) then the market is not efficient with respect to the
information possessed by the managers. This approach has the advantage
that it concentrates on real trading by real market participants, but it has the
disadvantage that one cannot directly observe the information used by the
managers in their trading strategies (see Fama [1970, 1991] for a thorough
review of this literature).

As an alternative, one can ask whether hypothetical trading based on
an explicitly specified information set would earn superior returns. To
implement this approach, one must first choose an information set. The
classic taxonomy of information sets, due to Roberts (1967), distinguishes
among

Weak-form Efficiency: The information set includes only the history of
prices or returns themselves.

Semistrong-Form Efficiency: The information set includes all information
known to all market participants (*publicly available* information).

Strong-Form Efficiency: The information set includes all information
known to any market participant (*private* information).

The next step is to specify a model of "normal" returns. Here the classic
assumption is that the normal returns on a security are constant over time,
but in recent years there has been increased interest in equilibrium models
with time-varying normal security returns.

Finally, abnormal security returns are computed as the difference be-
tween the return on a security and its normal return, and forecasts of the
abnormal returns are constructed using the chosen information set. If the
abnormal security return is unforecastable, and in this sense "random," then
the hypothesis of market efficiency is not rejected.

1.5.1 Efficient Markets and the Law of Iterated Expectations

The idea that efficient security returns should be random has often caused
confusion. Many people seem to think that an efficient security price should
be smooth rather than random. Black (1971) has attacked this idea rather effectively:

A perfect market for a stock is one in which there are no profits to be made by people who have no special information about the company, and in which it is difficult even for people who do have special information to make profits, because the price adjusts so rapidly as the information becomes available. . . . Thus we would like to see randomness in the prices of successive transactions, rather than great continuity. . . . Randomness means that a series of small upward movements (or small downward movements) is very unlikely. If the price is going to move up, it should move up all at once, rather than in a series of small steps. . . .

Large price movements are desirable, so long as they are not consistently followed by price movements in the opposite direction.

Underlying this confusion may be a belief that returns cannot be random if security prices are determined by discounting future cash flows. Smith (1968), for example, writes: "I suspect that even if the random walkers announced a perfect mathematic proof of randomness, I would go on believing that in the long run future earnings influence present value."

In fact, the discounted present-value model of a security price is entirely consistent with randomness in security returns. The key to understanding this is the so-called Law of Iterated Expectations. To state this result we define information sets \(I_t \) and \(J_t \), where \(I_t \subset J_t \) so all the information in \(I_t \) is also in \(J_t \) but \(J_t \) is superior because it contains some extra information. We consider expectations of a random variable \(X \) conditional on these information sets, written \(E[X \mid I_t] \) or \(E[X \mid J_t] \). The Law of Iterated Expectations says that

\[
E[X \mid I_t] = E[E[X \mid J_t] \mid I_t].
\]

In words, if one has limited information \(I_t \), the best forecast one can make of a random variable \(X \) is the forecast of the forecast one would make of \(X \) if one had superior information \(J_t \). This can be rewritten as

\[
E[X - E[X \mid J_t] \mid I_t] = 0,
\]

which has an intuitive interpretation: One cannot use limited information \(I_t \) to predict the forecast error one would make if one had superior information \(J_t \).

Samuelson (1965) was the first to show the relevance of the Law of Iterated Expectations for security market analysis; LeRoy (1989) gives a lucid review of the argument. We discuss the point in detail in Chapter 7, but a brief summary may be helpful here. Suppose that a security price at time \(t \), \(P_t \), can be written as the rational expectation of some "fundamental value" \(V^* \), conditional on information \(I_t \) available at time \(t \). Then we have

\[
P_t = E[V^* \mid I_t] = E_t V^*. \quad (1.5.1)
\]

The same equation holds one period ahead, so

\[
P_{t+1} = E[V^* \mid I_{t+1}] = E_{t+1} V^*. \quad (1.5.2)
\]
1. Introduction

But then the expectation of the change in the price over the next period is

$$E_t[P_{t+1} - P_t] = E_t[E_{t+1}[V^*] - E_t[V^*]] = 0,$$ \hspace{1cm} (1.5.3)

because \(I_t \subset I_{t+1}\), so \(E_t[E_{t+1}[V^*]] = E_t[V^*]\) by the Law of Iterated Expectations. Thus realized changes in prices are unforecastable given information in the set \(I_t\).

1.5.2 Is Market Efficiency Testable?

Although the empirical methodology summarized here is well-established, there are some serious difficulties in interpreting its results. First, any test of efficiency must assume an equilibrium model that defines normal security returns. If efficiency is rejected, this could be because the market is truly inefficient or because an incorrect equilibrium model has been assumed. This joint hypothesis problem means that market efficiency as such can never be rejected.

Second, perfect efficiency is an unrealistic benchmark that is unlikely to hold in practice. Even in theory, as Grossman and Stiglitz (1980) have shown, abnormal returns will exist if there are costs of gathering and processing information. These returns are necessary to compensate investors for their information-gathering and information-processing expenses, and are no longer abnormal when these expenses are properly accounted for. In a large and liquid market, information costs are likely to justify only small abnormal returns, but it is difficult to say how small, even if such costs could be measured precisely.

The notion of relative efficiency—the efficiency of one market measured against another, e.g., the New York Stock Exchange vs. the Paris Bourse, futures markets vs. spot markets, or auction vs. dealer markets—may be a more useful concept than the all-or-nothing view taken by much of the traditional market-efficiency literature. The advantages of relative efficiency over absolute efficiency are easy to see by way of an analogy. Physical systems are often given an efficiency rating based on the relative proportion of energy or fuel converted to useful work. Therefore, a piston engine may be rated at 60% efficiency, meaning that on average 60% of the energy contained in the engine’s fuel is used to turn the crankshaft, with the remaining 40% lost to other forms of work such as heat, light, or noise.

Few engineers would ever consider performing a statistical test to determine whether or not a given engine is perfectly efficient—such an engine exists only in the idealized frictionless world of the imagination. But measuring relative efficiency—relative to the frictionless ideal—is commonplace. Indeed, we have come to expect such measurements for many household products: air conditioners, hot water heaters, refrigerators, etc. Similarly,
1.5. Market Efficiency

Market efficiency is an idealization that is economically unrealizable, but that serves as a useful benchmark for measuring relative efficiency.

For these reasons, in this book we do not take a stand on market efficiency itself, but focus instead on the statistical methods that can be used to test the joint hypothesis of market efficiency and market equilibrium. Although many of the techniques covered in these pages are central to the market-efficiency debate—tests of variance bounds, Euler equations, the CAPM and the APT—we feel that they can be more profitably applied to measuring efficiency rather than to testing it. And if some markets turn out to be particularly inefficient, the diligent reader of this text will be well-prepared to take advantage of the opportunity.
Author Index

Ait-Sahalia, 340, 370, 392, 451, 507, 510–512
Abel, 260, 327, 328
Acharya, 175
Adams, 411
Admati, 99
Affleck-Graves, 107, 208
Ainslie, 334
Aitchison, 123
Aiyagari, 316
Aldous, 41
Alexander, G., 155
Alexander, S., 42, 65
Allen, 44
Amihud, 103, 104, 107, 316
Amin, 379, 381
Ammer, 421, 445
Andersen, 472
Anderson, 192
Andrews, 535
Arnold, 357
Arrow, 507
Aschauer, 326
Ashford, 123
Ashley, 150
Asquith, 174, 179
Atchison, 85
Bachelier, 16, 20, 32, 341
Backus, 429, 435, 454, 455, 457, 465
Bagehot, 103, 107
Bailey, 155
Bakay, 150
Balduzzi, 423
Ball, C., 107–109, 117, 122, 123, 177, 379, 392
Ball, R., 150
Banz, 211, 509
Barberis, 333
Barclay, 176
Barker, 150
Barr, 443, 445
Barron, A., 512
Barron, R., 512
Barsky, 283
Barton, 41
Basu, 211
Beckers, 379
Beedles, 17
Benartzi, 333
Bernard, 167
Bernstein, 3, 20, 339
Bertola, 423
Bertsimas, 99, 107, 365, 366
Bick, 507
Bierwag, 406
Billingsley, 341, 344
Blanchard, 259
Blattberg, 17, 208, 379
Bliss, 418, 422
Blume, L., 44
<table>
<thead>
<tr>
<th>Author Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blume, M.</td>
<td>42, 43, 65, 100, 178, 211, 323, 324</td>
</tr>
<tr>
<td>Boehmer, 167</td>
<td></td>
</tr>
<tr>
<td>Boldrin, 474</td>
<td></td>
</tr>
<tr>
<td>Bollerslev, 381, 481, 483, 488, 489, 491-494, 496</td>
<td></td>
</tr>
<tr>
<td>Bonomo, 334</td>
<td></td>
</tr>
<tr>
<td>Boudoukh, 79, 134</td>
<td></td>
</tr>
<tr>
<td>Box, 47, 140</td>
<td></td>
</tr>
<tr>
<td>Brainard, 317</td>
<td></td>
</tr>
<tr>
<td>Braun, 494</td>
<td></td>
</tr>
<tr>
<td>Breeden, 221, 298, 306, 317, 508, 509</td>
<td></td>
</tr>
<tr>
<td>Breen, 251</td>
<td></td>
</tr>
<tr>
<td>Brennan, 108, 381, 441, 449</td>
<td></td>
</tr>
<tr>
<td>Brenner, 452, 455</td>
<td></td>
</tr>
<tr>
<td>Brickley, 179</td>
<td></td>
</tr>
<tr>
<td>Brien, 7</td>
<td></td>
</tr>
<tr>
<td>Brock, 44, 470, 474, 478, 479</td>
<td></td>
</tr>
<tr>
<td>Brodsky, 472</td>
<td></td>
</tr>
<tr>
<td>Bronfman, 136</td>
<td></td>
</tr>
<tr>
<td>Broomhead, 516</td>
<td></td>
</tr>
<tr>
<td>Brown, D., 44</td>
<td></td>
</tr>
<tr>
<td>Brown, P., 150</td>
<td></td>
</tr>
<tr>
<td>Brown, R., 430, 441, 443, 452, 455</td>
<td></td>
</tr>
<tr>
<td>Brown, S., 150, 154, 157, 171, 177, 311, 443, 452</td>
<td></td>
</tr>
<tr>
<td>Burnside, 304</td>
<td></td>
</tr>
<tr>
<td>Butler, 85</td>
<td></td>
</tr>
<tr>
<td>Campbell, C., 173</td>
<td></td>
</tr>
<tr>
<td>Carleton, 409</td>
<td></td>
</tr>
<tr>
<td>Carlstein, 472</td>
<td></td>
</tr>
<tr>
<td>Cecchetti, 304, 310</td>
<td></td>
</tr>
<tr>
<td>Chamberlain, 92, 229, 238, 504</td>
<td></td>
</tr>
<tr>
<td>Chan, K., 110, 449</td>
<td></td>
</tr>
<tr>
<td>Chan, L., 107, 410</td>
<td></td>
</tr>
<tr>
<td>Chen, N., 239, 240, 424</td>
<td></td>
</tr>
<tr>
<td>Cho, 117, 121-123</td>
<td></td>
</tr>
<tr>
<td>Choi, 102</td>
<td></td>
</tr>
<tr>
<td>Chou, 381, 481</td>
<td></td>
</tr>
<tr>
<td>Christie, A., 379, 497</td>
<td></td>
</tr>
<tr>
<td>Christie, W., 107, 110</td>
<td></td>
</tr>
<tr>
<td>Chung, C., 504</td>
<td></td>
</tr>
<tr>
<td>Chung, K., 6</td>
<td></td>
</tr>
<tr>
<td>Cochrane, 48, 49, 52, 274, 302, 327, 330, 332</td>
<td></td>
</tr>
<tr>
<td>Cohen, 84, 85, 88, 104, 107</td>
<td></td>
</tr>
<tr>
<td>Collins, 167</td>
<td></td>
</tr>
<tr>
<td>Cone, 110</td>
<td></td>
</tr>
<tr>
<td>Connor, 221, 237-241</td>
<td></td>
</tr>
<tr>
<td>Constantinides, 316, 318, 326, 327, 330, 442, 507</td>
<td></td>
</tr>
<tr>
<td>Cooper, 409</td>
<td></td>
</tr>
<tr>
<td>Cootner, 65</td>
<td></td>
</tr>
<tr>
<td>Copeland, 103, 107, 108</td>
<td></td>
</tr>
<tr>
<td>Corrado, 172, 173</td>
<td></td>
</tr>
<tr>
<td>Cowles, 20, 35-37, 65</td>
<td></td>
</tr>
<tr>
<td>Cox, D., 7, 140</td>
<td></td>
</tr>
<tr>
<td>Crack, 113</td>
<td></td>
</tr>
<tr>
<td>Craig, 474</td>
<td></td>
</tr>
<tr>
<td>Curcio, 107, 109</td>
<td></td>
</tr>
<tr>
<td>Cutler, 317</td>
<td></td>
</tr>
<tr>
<td>Dahm, 123</td>
<td></td>
</tr>
<tr>
<td>Dann, 180</td>
<td></td>
</tr>
<tr>
<td>Darken, 516</td>
<td></td>
</tr>
<tr>
<td>David, 41</td>
<td></td>
</tr>
<tr>
<td>Davis, D., 84</td>
<td></td>
</tr>
<tr>
<td>Davis, M., 316</td>
<td></td>
</tr>
<tr>
<td>Day, 474</td>
<td></td>
</tr>
<tr>
<td>Deaton, 504</td>
<td></td>
</tr>
<tr>
<td>DeBondt, 212</td>
<td></td>
</tr>
<tr>
<td>Debreu, 507</td>
<td></td>
</tr>
<tr>
<td>Dechert, 470, 478, 479</td>
<td></td>
</tr>
<tr>
<td>De Long, 283</td>
<td></td>
</tr>
<tr>
<td>DeLong, 317, 333</td>
<td></td>
</tr>
<tr>
<td>Demsetz, 103, 107</td>
<td></td>
</tr>
<tr>
<td>Dent, 167</td>
<td></td>
</tr>
<tr>
<td>Derman, 442, 455, 457, 464, 507</td>
<td></td>
</tr>
<tr>
<td>Dhrymes, 220</td>
<td></td>
</tr>
<tr>
<td>Diaconis, 41</td>
<td></td>
</tr>
<tr>
<td>Diamond, 260</td>
<td></td>
</tr>
<tr>
<td>Diba, 259</td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Pages</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Dickey</td>
<td>65</td>
</tr>
<tr>
<td>Dimson</td>
<td>85</td>
</tr>
<tr>
<td>Ding</td>
<td>486</td>
</tr>
<tr>
<td>Dolley</td>
<td>149</td>
</tr>
<tr>
<td>Domowitz</td>
<td>54</td>
</tr>
<tr>
<td>Donaldson</td>
<td>283</td>
</tr>
<tr>
<td>Duffie</td>
<td>8, 318, 380, 441</td>
</tr>
<tr>
<td>Dufour</td>
<td>55</td>
</tr>
<tr>
<td>Dunn</td>
<td>327</td>
</tr>
<tr>
<td>Dupire</td>
<td>507</td>
</tr>
<tr>
<td>Durlauf</td>
<td>276–278</td>
</tr>
<tr>
<td>Dybvig</td>
<td>220, 221, 351, 433, 440, 443, 444, 452, 456, 464</td>
</tr>
<tr>
<td>Easley</td>
<td>44, 99, 103, 107, 140</td>
</tr>
<tr>
<td>Eckbo, B.</td>
<td>179</td>
</tr>
<tr>
<td>Eckbo, E.</td>
<td>175</td>
</tr>
<tr>
<td>Edwards</td>
<td>43</td>
</tr>
<tr>
<td>Eichenbaum</td>
<td>326</td>
</tr>
<tr>
<td>Eikeboom</td>
<td>102</td>
</tr>
<tr>
<td>Einstein</td>
<td>16, 32</td>
</tr>
<tr>
<td>Engle</td>
<td>54, 257, 381, 469, 481, 482, 485, 486, 489, 492, 494, 496, 531</td>
</tr>
<tr>
<td>Epstein</td>
<td>305, 315, 319, 320, 334</td>
</tr>
<tr>
<td>Estrella</td>
<td>424</td>
</tr>
<tr>
<td>Eytan</td>
<td>92</td>
</tr>
<tr>
<td>Fabozzi</td>
<td>396, 405, 406</td>
</tr>
<tr>
<td>Fang</td>
<td>387, 388</td>
</tr>
<tr>
<td>Faust</td>
<td>48, 49, 52</td>
</tr>
<tr>
<td>Feller</td>
<td>7</td>
</tr>
<tr>
<td>Ferguson</td>
<td>44</td>
</tr>
<tr>
<td>Ferson</td>
<td>327, 448, 534</td>
</tr>
<tr>
<td>Fielitz</td>
<td>17</td>
</tr>
<tr>
<td>Fischel</td>
<td>110</td>
</tr>
<tr>
<td>Fisher</td>
<td>85, 150</td>
</tr>
<tr>
<td>Fishman</td>
<td>387</td>
</tr>
<tr>
<td>Flavin</td>
<td>279</td>
</tr>
<tr>
<td>Foerster</td>
<td>534</td>
</tr>
<tr>
<td>Fong</td>
<td>412</td>
</tr>
<tr>
<td>Foresi</td>
<td>423, 457</td>
</tr>
<tr>
<td>Foster</td>
<td>381, 485</td>
</tr>
<tr>
<td>Frankel</td>
<td>84</td>
</tr>
<tr>
<td>Frees</td>
<td>117, 121–123</td>
</tr>
<tr>
<td>Friedman</td>
<td>518</td>
</tr>
<tr>
<td>Friend</td>
<td>211, 220, 323, 324</td>
</tr>
<tr>
<td>Froot</td>
<td>259, 288, 333, 424</td>
</tr>
<tr>
<td>Fuller</td>
<td>45, 46, 65</td>
</tr>
<tr>
<td>Furbush</td>
<td>110</td>
</tr>
<tr>
<td>Gabr</td>
<td>472</td>
</tr>
<tr>
<td>Galai</td>
<td>103, 107</td>
</tr>
<tr>
<td>Gallant, A.</td>
<td>522, 535</td>
</tr>
<tr>
<td>Galli</td>
<td>84</td>
</tr>
<tr>
<td>Garber</td>
<td>258</td>
</tr>
<tr>
<td>Garcia</td>
<td>334</td>
</tr>
<tr>
<td>Garman</td>
<td>380, 481, 507</td>
</tr>
<tr>
<td>Gatto</td>
<td>385, 391</td>
</tr>
<tr>
<td>George</td>
<td>107, 135</td>
</tr>
<tr>
<td>Gertler</td>
<td>316</td>
</tr>
<tr>
<td>Gibbons</td>
<td>193, 196, 199, 206, 245, 246, 298, 317, 445, 446, 448, 455</td>
</tr>
<tr>
<td>Gilles</td>
<td>275</td>
</tr>
<tr>
<td>Giovannini</td>
<td>84, 320</td>
</tr>
<tr>
<td>Girosi</td>
<td>512, 516, 517, 522</td>
</tr>
<tr>
<td>Gleick</td>
<td>473</td>
</tr>
<tr>
<td>Glosten</td>
<td>101–103, 106, 107, 135, 486, 488, 497</td>
</tr>
<tr>
<td>Godek</td>
<td>110</td>
</tr>
<tr>
<td>Goetzmann</td>
<td>311</td>
</tr>
<tr>
<td>Goldberger</td>
<td>504</td>
</tr>
<tr>
<td>Goldenberg</td>
<td>379</td>
</tr>
<tr>
<td>Goldman</td>
<td>385, 391</td>
</tr>
<tr>
<td>Goldstein</td>
<td>102</td>
</tr>
<tr>
<td>Gonudes</td>
<td>17, 208, 379</td>
</tr>
<tr>
<td>Gonzalez-Rivera</td>
<td>489</td>
</tr>
<tr>
<td>Goodhart</td>
<td>107, 109</td>
</tr>
<tr>
<td>Gordon</td>
<td>256</td>
</tr>
<tr>
<td>Gottlieb</td>
<td>121–123</td>
</tr>
<tr>
<td>Graham</td>
<td>114</td>
</tr>
<tr>
<td>Grandmont</td>
<td>474</td>
</tr>
<tr>
<td>Granger</td>
<td>17, 59, 60, 65, 91, 257, 470, 472, 486</td>
</tr>
<tr>
<td>Granito</td>
<td>406</td>
</tr>
<tr>
<td>Grassberger</td>
<td>476–478</td>
</tr>
<tr>
<td>Gray</td>
<td>452, 455</td>
</tr>
<tr>
<td>Gregory</td>
<td>435</td>
</tr>
</tbody>
</table>
Author Index

Grinblatt, 221
Grossman, H., 259
Gultekin, B., 220
Gultekin, M., 220
Gultekin, N., 369
Gurland, 123

Hagerman, 17
Hakansson, 507
Hald, 30
Hall, A., 527
Hall, R., 276, 278, 305, 311
Hammersley, 386–388
Hampel, 523
Handscomb, 387
Hansen, B., 488
Härdele, 501, 502
Hardouvelis, 424
Harjes, 452, 455
Harpaz, 92
Harris, J., 107, 110
Harris, L., 103, 107–109, 121–123, 135
Harrison, 31, 355, 380, 508
Harvey, A., 490, 493
Harvey, C., 217, 314, 494–497
Hasbrouck, 107
Hausman, 50, 51, 109, 122–124, 128, 136–138, 143
Hawawini, 85
He, H., 315, 316, 507
Heath, 455, 457, 458, 464
Heaton, 304, 316, 318, 327, 332, 360
Hegde, 107
Hentschel, 485, 488, 497
Hertz, 512
Heston, 379, 446, 448
Hicks, 418
Ho, 103, 104, 107, 455–457, 464

Hodrick, 267–270, 274, 285, 286, 448, 536
Hoel, 7, 346
Hofmann, 379
Hogarth, 332
Holden, 474
Holt, 84
Hornik, 522
Hosking, 59, 60
Hsieh, 474, 475, 479
Hsu, 17
Huang, C., 8, 380, 391, 461, 508
Huang, R., 107, 110, 135
Huberman, 221, 231
Hull, 340, 349, 378–381, 459, 464, 510
Hurst, 59, 62
Hutchinson, 340, 392, 510, 512, 519, 522
Irish, 504
Itô, 348
Jöreskog, 234
Jackwerth, 370, 507
Jacquier, 490
Jagannathan, 214, 292, 296, 301, 304, 309, 315, 486, 488, 496, 497
Jain, 177
James, 180
Jamshidian, 463
Jarrell, 178, 179
Jarrow, 455, 457, 458, 464
Jegadeesh, 212, 266, 274
Jennings, 44
Jensen, 150, 179, 211
Jerison, 348
Jobson, 196, 223, 224
Johnson, 379
Jones, H., 35–37, 65
Joyeux, 59, 60
Kagel, 84

For general queries, contact webmaster@press.princeton.edu
Author Index

Kahneman, 333
Kalay, 121–123
Kalos, 387
Kamstra, 283
Kan, 441
Kandel, E., 110
Kandel, S., 200, 215, 217, 221, 231, 286, 309, 310
Kane, 168, 396
Kanji, 507
Karaiskaki, 442
Karolyi, 449
Kaufman, 406
Kaul, 107, 135
Keim, 100, 107, 267, 421
Kendall, 65, 273
Kennan, 475
Kim, M., 79, 274
Kim, S., 490
Kindleberger, 258
Klass, 481
Kleidon, 110, 277, 278
Knut, 114
Kocherlakota, 302, 310
Kogan, 365, 366
Kohler, 474
Koo, 321
Korajczyk, 237–241, 251
Korkie, 196, 223, 224
Kothari, 212, 251
Kreps, 31, 319, 332, 355, 380, 508
Krogh, 512
Kroner, 381, 452, 455, 481, 491
Kwon, 397, 415, 420, 451, 453
Kyle, 99, 317

Laibson, 334
Lakonishok, 44, 107, 248, 249
Lam, 304, 310
Lanen, 175
Lang, 6
Leamer, 472, 523
LeBaron, 44, 475, 479
Ledoit, 113
Lee, C., 136
Lee, M., 452, 455
Lee, S., 455–457, 464, 488
Lee, T., 123
Lehmann, 236, 238, 240, 241, 246, 284
Leland, 507
LeRoy, 23, 256, 275, 276, 279, 280
Leroy, 31, 102, 508
Lévy, 17
Lilien, 494
Lintner, 14, 156, 181
Litzenberger, 8, 176, 216, 298, 317, 412, 461, 508, 509
Ljung, G., 47
Loewenstein, 334
Longstaff, 392, 429, 437–439, 442, 444, 449, 455, 507
Lorenz, 473
Lowe, 516
Lucas, D., 316, 318
Lucas, R., Jr., 9, 31, 102, 508
Lumsdaine, 488
Luttmer, 304, 315, 316
Lutz, 413, 418
Macaulay, 403, 420
MacBeth, 211, 215, 369
Mackay, 258
Maddala, 123
Madhavan, 107
Magee, 43
Magnus, 6
Maier, 84, 85, 88, 104, 107
Majluf, 179
Maksimovic, 175
Malatesta, 167, 175
<table>
<thead>
<tr>
<th>Author Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malgrange, 474</td>
</tr>
<tr>
<td>Malkiel, 20</td>
</tr>
<tr>
<td>Mandelbrot, 17, 54, 59, 62, 63, 65, 379</td>
</tr>
<tr>
<td>Mankiw, L., 260</td>
</tr>
<tr>
<td>Mankiw, N. G., 48, 49, 278, 289, 313, 317, 318, 320, 326, 337, 422, 423</td>
</tr>
<tr>
<td>Mann, 178</td>
</tr>
<tr>
<td>Mark, 274, 304, 310</td>
</tr>
<tr>
<td>Markowitz, 181</td>
</tr>
<tr>
<td>Marsh, 121, 123–125, 143, 277, 278, 289</td>
</tr>
<tr>
<td>Marx, 110</td>
</tr>
<tr>
<td>Mason, A., 410</td>
</tr>
<tr>
<td>Mason, S., 507</td>
</tr>
<tr>
<td>Mauldon, 388</td>
</tr>
<tr>
<td>Mayers, 214</td>
</tr>
<tr>
<td>McCallum, 425</td>
</tr>
<tr>
<td>McCullagh, 123</td>
</tr>
<tr>
<td>McCulloch, J., 397, 410, 411, 414, 415, 417, 420, 451, 453</td>
</tr>
<tr>
<td>McCulloch, R., 217</td>
</tr>
<tr>
<td>McCulloch, W., 512</td>
</tr>
<tr>
<td>McDonald, 208</td>
</tr>
<tr>
<td>McQueen, 149</td>
</tr>
<tr>
<td>Mech, 134</td>
</tr>
<tr>
<td>Mehr, 293, 302, 303, 307, 332, 334</td>
</tr>
<tr>
<td>Mei, 237</td>
</tr>
<tr>
<td>Melino, 308, 317, 396, 489, 490</td>
</tr>
<tr>
<td>Mendelson, 103, 104, 107, 316</td>
</tr>
<tr>
<td>Merton, 6, 8, 184, 219, 221, 277, 278, 289, 315, 318, 322, 339, 340, 346, 349–351, 354, 365, 392, 481, 507, 510</td>
</tr>
<tr>
<td>Mervis, 369</td>
</tr>
<tr>
<td>Micchieli, 517</td>
</tr>
<tr>
<td>Mikkelsen, 179</td>
</tr>
<tr>
<td>Milgrom, 101–103, 107</td>
</tr>
<tr>
<td>Miller, H., 7</td>
</tr>
<tr>
<td>Miller, M., 110, 509</td>
</tr>
<tr>
<td>Miller, R., 17, 107</td>
</tr>
<tr>
<td>Milne, 463</td>
</tr>
<tr>
<td>Miron, 423</td>
</tr>
<tr>
<td>Mishkin, 424</td>
</tr>
<tr>
<td>Mitchell, 149, 179</td>
</tr>
<tr>
<td>Modest, 92, 236, 238, 240, 241, 315, 316</td>
</tr>
<tr>
<td>Modigliani, 418</td>
</tr>
<tr>
<td>Monahan, 535</td>
</tr>
<tr>
<td>Monro, 515</td>
</tr>
<tr>
<td>Mood, 39, 41</td>
</tr>
<tr>
<td>Moody, 516</td>
</tr>
<tr>
<td>Morganstern, 17, 65</td>
</tr>
<tr>
<td>Morrison, 235, 238</td>
</tr>
<tr>
<td>Morse, 175</td>
</tr>
<tr>
<td>Morton, 455, 457, 458, 464</td>
</tr>
<tr>
<td>Mossin, 14</td>
</tr>
<tr>
<td>Muirhead, 192, 193</td>
</tr>
<tr>
<td>Muller, 472</td>
</tr>
<tr>
<td>Mullins, 174, 179</td>
</tr>
<tr>
<td>Musumeci, 167</td>
</tr>
<tr>
<td>Muth, 56</td>
</tr>
<tr>
<td>Myers, J., 150</td>
</tr>
<tr>
<td>Myers, S., 179</td>
</tr>
<tr>
<td>Naik, 452, 455</td>
</tr>
<tr>
<td>Neftci, 44</td>
</tr>
<tr>
<td>Nelson, C., 79, 274, 313, 413</td>
</tr>
<tr>
<td>Nelson, D., 381, 481, 484–486, 488, 489, 494</td>
</tr>
<tr>
<td>Nelson, W., 317</td>
</tr>
<tr>
<td>Netter, 149, 179</td>
</tr>
<tr>
<td>Neudecker, 6</td>
</tr>
<tr>
<td>Newey, 55, 130, 269, 270, 535, 536</td>
</tr>
<tr>
<td>Ng, 379, 381, 485, 486, 491</td>
</tr>
<tr>
<td>Niederhoffer, 107, 109</td>
</tr>
<tr>
<td>Nimalendran, 107, 135</td>
</tr>
<tr>
<td>Norman, 316</td>
</tr>
<tr>
<td>O'Brien, 475</td>
</tr>
<tr>
<td>O'Hara, 44, 84, 99, 103, 107, 140</td>
</tr>
<tr>
<td>Obstfeld, 259, 288</td>
</tr>
<tr>
<td>Officer, 17, 481</td>
</tr>
<tr>
<td>Ogaki, 360, 527</td>
</tr>
<tr>
<td>Ord, 7, 17</td>
</tr>
<tr>
<td>Osborne, 65, 107, 109</td>
</tr>
<tr>
<td>Pagan, 485</td>
</tr>
<tr>
<td>Palmer, 512</td>
</tr>
<tr>
<td>Papell, 474</td>
</tr>
<tr>
<td>Parkinson, 481</td>
</tr>
<tr>
<td>Partch, 179</td>
</tr>
<tr>
<td>Paskov, 388</td>
</tr>
<tr>
<td>Patashnik, 114</td>
</tr>
</tbody>
</table>
Pau, 44
Pearson, 438, 441
Pennacchi, 445
Perold, 507
Perron, 366, 372, 472
Pesaran, 475
Pfleiderer, 99
Phillips, F., 277
Phillips, S., 100
Pierce, 47
Pits, 512
Platen, 379
Poggio, 340, 392, 510, 512, 516, 517, 519, 522
Polson, 490
Port, 7, 346
Porter, 275, 276, 280
Porteus, 319
Poterba, 48, 49, 78, 79, 266, 317
Potter, 475
Poulsen, 167, 178
Powell, 516, 517
Prabhala, 175
Prelec, 334
Prescott, 293, 302, 303, 307, 332, 334
Priestley, 470, 471
Procaccia, 476–478
Radner, 508
Rady, 507
Ramaswamy, 216, 381, 445, 446, 455
Ready, 136
Reddington, 405
Reder, 332
Reinsch, 522
Richard, 295
Richardson, 47–49, 58, 79, 134, 210, 274, 422
Rietz, 310, 311
Ritter, 156
Robbins, 515
Robers, 423
Roberts, 22, 30, 65
Robins, 494
Robinson, P., 471
Rogalski, 369
Roley, 149
Rolfo, 412
Roll, 17, 72, 101–103, 106, 128, 134, 135, 143, 145, 150, 184, 213, 216, 239, 240, 243, 366
Roma, 379
Romano, 47
Romer, 278, 289
Rosenfeld, 121, 123–125, 143
Ross, D., 110
Rossi, 490
Roth, 84
Rothschild, 92, 238, 491
Roy, 55
Rozell, 17
Ruback, 179
Rubin, 234
Rubinstein, 340, 341, 349, 351, 370, 381, 461, 507, 509
Rudebusch, 423
Rui, 490, 493
Runkle, 423, 486, 488, 497
Ruud, 504
Salandro, 102
Samuelson, 17, 20, 23, 30, 256, 321
Sanders, 449
Sayers, 474
Schaefer, 412, 430, 441, 443, 452, 455
Scheinkman, 359–361, 392, 470, 475, 478, 479
Schipper, 167, 180
Schoenholtz, 408, 421, 422
Scholes, 85, 88, 177, 211, 339, 350, 351, 354, 356, 367, 462, 510
Schultz, 107
Schuss, 346
Schwartz, E., 429, 438, 439, 441, 442, 444, 449, 455
Schwartz, R., 84, 85, 88, 104, 107
Schweizer, 379
Schwert, G., 149, 485, 497
Sclove, 472

For general queries, contact webmaster@press.princeton.edu
Author Index

Scott, 276, 379
SEC, 84, 108
Sentana, 497
Shanken, 85, 193, 196, 199, 200, 206, 212, 215–217, 220, 222, 226, 233, 245, 246, 251
Shanno, 379
Shapiro, J., 107
Shapiro, M., 278, 289, 317, 320, 422
Sharpe, 14, 155, 156, 181
Shastri, 102
Shea, 412
Shephard, 490, 493
Shimko, 370, 577
Shleifer, 248, 249, 317, 333
Sias, 134
Siegel, A., 413
Siegel, J., 311
Siegmund, 472
Silvey, 7, 123, 358
Simkowitz, 17
Simonds, 85
Sims, 91
Singer, 348
Singleton, 306, 311, 314, 326, 327, 332, 418, 429
Skelton, 406
Sloan, 212, 251
Smidt, 107
Smith, A., 23
Smith, C., 100
Smith, J., 110
Smith, T., 47, 79
Sofianos, 107
Sosin, 385, 391
Stambaugh, 100, 178, 214, 215, 217, 267, 273, 286, 309, 310, 421, 422, 446, 448, 497
Starks, 134
Startz, 313, 326
Steigerwald, 279
Stewart, 474
Stiglitz, 15, 24

Stinchcombe, 522
Stock, 48, 49, 58, 79, 274, 422
Stoker, 504, 505
Stoll, 103–105, 107, 110, 135
Stone, 7, 346
Strang, 6
Stroock, 348
Stuart, 7, 17
Stuetzle, 518
Subba Rao, 472
Suits, 410
Summers, 48, 49, 78, 79, 260, 265, 266, 317, 333
Sun, 429, 435, 438, 441
Sundaresan, M., 92
Sundaresan, S., 326, 327, 330, 396
Sunier, 494
Sutch, 418
Svensson, 413

Taqqu, 63
Taylor, H., 17
Taylor, M., 44
Taylor, S., 485
Teräsvirta, 470
Thaler, 212, 333
Thayer, 234
Thisted, 123
Thombs, 47
Thompson, J., 474
Thompson, R., 167, 175, 180
Tiniç, 103, 107, 369
Tirrole, 259, 260
Titman, 212, 221
Tjøstheim, 470
Toevs, 406
Tong, 470, 472
Torous, 107–109, 177, 392
Toy, 442, 455, 457, 464
Traub, 388
Treynor, 44
Tsay, 476
Tschoegl, 107–109
Tucker, 17
Tufano, 507
Turnbull, 463, 489, 490
Tversky, 333

For general queries, contact webmaster@press.princeton.edu
Author Index

Unal, 168
van Deventer, 411
Vasicek, 412, 429, 432, 434, 441, 449
Vayanos, 316
Vishny, 248, 249, 333
Volterra, 471

Wahba, 523
Waldmann, 317, 333
Wallis, J., 59, 63
Wang, J., 92, 99, 371, 373–375, 377
Wang, Y., 387, 388
Wang, Z., 214, 496
Warner, 150, 154, 171, 177
Wasley, 173
Watson, 259
Weil, P., 305, 310, 315, 319, 320
Weil, R., 406
Weinstein, 157
West, 55, 130, 258, 269, 270, 275, 278, 280, 289, 535, 536
Whaley, 107
Wheatley, 317
Whitcomb, 84, 85, 88, 104, 107
White, A., 378–381, 464
White, H., 54, 174, 489, 512, 515, 522, 527, 536, 539
Whitelaw, 134
Whiteman, 423
Whitlock, 387
Wichern, 17
Wiener, 348
Wiggins, 378–381, 489, 490
Wilcox, 316
Williams, J., 85, 88, 175, 177
Williams, R., 6
Willig, 110
Woodford, 474, 475
Wooldridge, 488, 489, 491, 494, 497
Working, 65

Yaari, 334

Zeckhauser, 260
Zehna, 367
Zeldes, 317
Zhou, G., 217
Zhou, Z., 335
Zin, 305, 315, 319, 320, 334, 435, 454, 455, 457, 465

For general queries, contact webmaster@press.princeton.edu
Subject Index

absolute value GARCH model, 485
activation function, 513
affine-yield models of the term structure, 428, 441, 445
aggregate consumption aggregation, 305
Consumption Capital Asset Pricing Model, 316
American option, 349
amplitude-dependent exponential autoregression (EXPAR) models, 470
antipersistence, 60
arithmetetic variates method, 388
arbitrage opportunities, 339
state price vector, 295
bond excess returns, 414
Merton’s approach to option pricing, 351
arbitrage portfolios, 351
Arbitrage Pricing Theory (APT), 8, 85, 92, 219. See also Capital Asset Pricing Model, multifactor models
exact factor pricing, 221
factor risk exposure, 221
pervasive factors, 221
riskfree return, 220
well-diversified market portfolio, 221
ARCH models, 469, 482. See also GARCH models
option pricing, 381
arithmetic Brownian motion, 32, 344. See also Brownian motion
Arrow-Debreu securities, 507
artificial neural network, 512. See also learning networks
Asian options, 382
ask price, 83
asymptotic distribution
GMM estimator, 533
IV estimator, 529
ML estimator, 350, 538
asymptotic order, 343
asymptotically efficient estimator, 358, 530
autocorrelation coefficients, 44, 66, 145
autocorrelation matrices, 75, 76, 131. See also cross-autocorrelation
autocovariance coefficients, 45
autocovariance matrices, 74
Autoregressive Conditionally Heteroskedastic models, 469, 482. See also GARCH models
average derivative estimators, 505
average rate options, 382, 386
backpropagation, 515
bandwidth, 500
optimal bandwidth selection, 502
barrier models, 121
barrier options, 391
Bayesian inference, 7
BDS test, 479
BEKK model, 491
benchmark portfolio, 298
Berkeley Options Database, 107
Bernoulli distribution, 18
beta, 155, 182, 496
bias
finite-sample bias in long-horizon regressions, 273
bid price, 83
bid-ask bounce, 101, 134
bid-ask spread, 99, 146, 147
adverse-selection cost component, 103
estimating the effective bid-ask spread, 134
inventory cost component, 103
order-processing cost component, 103
bilinear model, 471
binary threshold model, 512
binomial tree for the short-term interest rate, 442
birth and death options, 391
Black-Scholes and Merton option pricing model, 339, 350. See also option pricing models
estimator for σ^2, 361
generic, 347
properties, 344
bubbles, 258
bullish vertical spread, 509
Butterfly Effect, 473
call option, 349
callable bond, 395
Capital Asset Pricing Model (CAPM), 14, 181. See also Arbitrage Pricing Theory, Intertemporal Capital Asset Pricing Model, data-snooping biases, mean-variance efficient-set mathematics, multifactor models, sample selection biases anomalies, 211
applications, 183
Black version, 182, 196
book-market effect conditional, 496
cross-sectional regression tests, 215. See also errors-in-variables heteroskedasticity, 208
intertemporal equilibrium models, 323
January effect, 100
non-normality, 208
nonsynchronous trading, 85
option pricing, 351
power of tests, 204
price-earnings-ratio effect, 211
Sharpe-Lintner effect, 182, 189
size effect, 211, 496
size of tests, 203
temporal dependence, 208
unobservability of the market portfolio, 213, 216.
CAPM. See Capital Asset Pricing Model
catching up with the Joneses, 327, 328. See also habit formation models
Cauchy distribution, 18
CCAPM. See Consumption Capital Asset Pricing Model
ceiling function, 114
chaos theory, 473. See also
deterministic nonlinear
dynamical systems
clientele effects, 412
closeness indicator, 477
Cobb-Douglas utility, 326
coefficient functions, 356
cointegration, 257
the term structure of interest
rates, 419
complete asset markets, 295
compound options, 391
conditional volatility models. See
ARCH models, GARCH models
connection strength, 513
consistent and uniformly
asymptotically normal (CUAN)
estimators, 358
constant-correlation model, 492
constant-expected-return hypothesis,
255
and vector autoregressive
methods, 281
and volatility tests, 276
Consumption Capital Asset Pricing
Model (CCAPM), 304
aggregate consumption and, 316
Epstein-Zin-Weil recursive utility
model, 319. See also
Epstein-Zin-Weil model
instrumental variables (IV)
regression, 311
investor heterogeneity, 317
power utility, 305. See also
lognormal asset pricing models
substituting consumption out of
the model, 320
consumption growth, 311, 434
consumption of stockholders and
nonstockholders, 317
continuous-record asymptotics, 364
contrarian investment strategies, 76
control variate method, 387
convexity, 406
correlation coefficient, 44
correlation dimension, 478
correlation integral, 477
cost of capital estimation, 183
coupon bonds, 396, 401
convexity, 406
coupon rate, 401
duration, 403
effective duration, 406
forward rates, 408
immunization, 405
loglinear model, 406
Macaulay's duration, 403
modified duration, 405
price, 401, 409
yield to maturity, 401
covariance stationarity, 484
Cowles-Brooks ratio, 35. See also
Random Walk 1 model
Cox, Ingersoll, and Ross model, 436
Cox-Ross option pricing technique,
390. See also risk-neutral
option-pricing method
cross-autocorrelation, 74, 75, 84, 129.
See also autocorrelation matrices
cross-sectional models, 173
cross-sectional restrictions on the
term structure, 452
cross-validation, 502
crude Monte Carlo, 386
curse of dimensionality, 504
data-snooping, 212, 240, 246, 249,
251, 523
default risk, 406
degrees of freedom, 523
Delta of an option, 353, 512
delta method, 51, 540
delta-hedging, 512, 522
derivative securities, 339, 455. See
also fixed-income derivative
securities, option pricing
forward contract, 458
futures contract, 459
deterministic nonlinear dynamical
systems, 473
logistic map, 525
sensitivity to initial conditions, 473
tent map, 474, 476, 525
testing. See testing for
deterministic nonlinear
dynamical processes
difference-stationary process, 65,
372. See also unit root process
diffusion function, 356
discount bonds, 396, 397
estimating the zero-coupon term
structure, 409
forward rate, 399
holding-period return, 398
immunization, 405
term structure of interest rates,
397
yield curve, 397
yield spread, 397
yield to maturity, 397
discount function, 410. See spline
estimation
discounted value
of future dividends, 256
of the stock price, 255
discrete-time models
of option pricing, 381
of stochastic volatility, 489
discretization, 383, 385
distribution. See asymptotic
distribution, returns
dividend-price ratio, 264, 268
dividend-ratio model, 263
dividends, 12, 254
double bottoms. See technical
analysis
down and out options, 391
drift, 31, 356
dual-currency options, 391
dual-equity options, 391
durable goods, 326, 332
duration, 403. See also coupon bonds
duration of nontrading, 87
dynamic hedging strategy, 521
dynamic trading strategies, 352, 391
Dynkin operator, 360
effective duration, 406. See also
coupon bonds
effective spread, 102
efficiency. See asymptotic efficiency
Efficient Markets Hypothesis
(EMH), 20
Semistrong-Form Efficiency, 22, 30
Strong-Form Efficiency, 22, 30
Weak-form Efficiency, 22, 30
EGARCH model, 486, 488
E.H. See expectations hypothesis
elasticity, 405
elasticity of intertemporal
substitution, 305
hyperbolic discounting and, 334
separating risk aversion from
intertemporal substitution, 319
the riskless interest rate and, 309
embedding dimension, 476
EMH. See Efficient Markets
Hypothesis
Epstein-Zin-Weil recursive utility
model, 319
consumption-wealth ratio, 321
cross-sectional asset pricing
formula, 322
equity premium puzzle, 323
factor asset pricing model, 324
substituting consumption out of
the model, 320
equity premium puzzle
catching up with the Joneses
model, 328
Hansen-Jagannathan volatility
bound, 302
lognormal asset pricing volatility
model with Epstein-Zin-Weil utility,
323
lognormal asset pricing model
with power utility, 307
equity repurchases, 256, 287
equivalent martingale measure, 355,
383, 508
errors-in-variables, 216
Euler equation, 293, 508. See also
stochastic discount factor
Cobb-Douglas utility model, 326
ratio models of habit formation,
328
European option, 349
event-study analysis, 149. See also
nonparametric tests
abnormal return, 150, 151
Arbitrage Pricing Theory, 156
Capital Asset Pricing Model, 156
clustering, 166
constant-mean-return model, 151, 154
cross-sectional models, 173
cumulative abnormal return, 160
earnings-announcement example, 152
estimation window, 152
event window, 151
event-date uncertainty, 176
factor model, 155
generalized method of moments, 154, 174
inference with changing variances, 167
law and economics, 149
legal liability, 149, 179
market model, 151, 155, 158
market-adjusted-return model, 156
nonsynchronous trading, 177
normal return, 151
post-event window, 157
sampling interval, 175
skewness of returns, 172
standardized cumulative abnormal return, 160
test power, 168
exact factor pricing, 221
interpreting deviations, 242
mean-variance efficient set
mathematics, 243
nonrisk-based alternatives, 248
optimal orthogonal portfolio, 243, 245, 248
risk-based alternative, 247
Sharpe ratio, 245, 247, 248, 252
tangency portfolio, 245, 247
excess kurtosis, 17, 488, 512. See also
kurtosis, returns
excess returns, 12, 182, 268, 291
exercise price, 349
exotic securities, 391
expansion of the states, 357
EXPAR models, 470
expectations hypothesis (EH), 413, 418, 419. See also pure
expectations hypothesis, term
structure of interest rates
empirical evidence, 418
log expectations hypothesis, 432, 437
preferred habitats, 418
yield spreads, 418
expected discounted value. See
discounted value
exponential GARCH model, 486, 488
exponential spline, 412
face value, 396
factor analysis, 234
factor model, 155. See also
multifactor models
fair game. See martingale
fat tail, 16, 480. See also kurtosis
finite-dimensional distributions
(FDDs), 344, 364
Fisher information matrix. See
information matrix
fixed-income derivative securities, 455
Black-Scholes formula, 462
Heath-Jarrow-Morton model, 457
Ho-Lee model, 456
homoskedastic single-factor
model, 463
option pricing, 461
term structure of implied volatility, 463
fixed-income securities, 395
floor function, 114
Fokker-Planck equation, 359
foreign currency, 5, 382, 386, 390
forward equation, 359
forward rate, 399, 438, 440. See also
term structure of interest rates
coupon-bearing term structure, 408
forward-rate curve, 400, 412
log forward rate, 400, 408
pure expectations hypothesis, 414, 417
yield to maturity, 400
forward trading, 399
fractionally differenced time series, 60
fractionally integrated time series.
See fractionally differenced time series
fundamental asset, 356
fundamental value, 258, 288

Gamma of an option, 353
GARCH models, 483, 486, 487
absolute value GARCH model, 485
additional explanatory variables, 488
BEKK model, 491
conditional market model, 493
conditional nonnormality, 488
constant-correlation model, 492
estimation, 487, 489
excess kurtosis in standardized residuals, 488
GARCH(1,1) model, 483, 497
GARCH-M model, 494
IGARCH model, 484
interest rate volatility, 452
multivariate, 490
persistence, 483
QGARCH model, 497
single-factor GARCH(1,1) model, 491
stationary distribution, 484
US stock returns, 488
VECH model, 491
GARCH-in-mean model, 494
GARCH-M model, 494
Gaussian kernel, 501
Generalized Autoregressive
Conditionally Heteroskedastic
models, 483. See also GARCH models
Generalized Error Distribution, 489
generalized inverse of a matrix, 244, 245
Generalized Method of Moments (GMM), 174, 208, 222, 314, 359, 448, 449, 455, 489, 494, 532
asymptotic distribution, 533
asymptotic variance, 533
Newey-West estimator, 535
stochastic differential equation, 359
weighting matrix, 533
geometric Brownian motion, 383.
See also Brownian motion
risk-neutralized process, 355, 370
GMM. See Generalized Method of Moments
Goldman-Sosin-Gatto option price formula, 385, 394
Gordon growth model, 256
dynamic Gordon growth model, 263
government spending in the utility function, 326
Granger-causality, 91
Greeks, 353

habit formation, 327
Abel model, 327
Campbell-Cochrane model, 330
Constantinides model, 330
external-habit models, 327
internal-habit models, 327
difference models, 329
ratio models, 327
Hamilton Markov-switching model, 472
Hansen’s test of overidentifying restrictions, 531
Hansen-Jagannathan volatility bound, 296. See also stochastic discount factor
benchmark portfolio, 298
Equity Premium Puzzle, 302
geometric interpretation, 298
lognormal asset pricing model
with power utility and, 309
market frictions and, 315
maximum correlation portfolio, 298
mean-variance efficiency, 298
nonnegativity constraints, 301
Heath-Jarrow-Morton model, 457. See also pricing fixed-income derivative securities
Heaviside activation function, 513
hedge portfolios, 322
hedge ratio, 352, 353. See also delta-hedging
heterogeneous investors, 318, 335
heteroskedasticity- and autocorrelation-consistent standard errors, 130, 174, 268, 534
heteroskedasticity-consistent estimators, 54
hidden layer, 514
hidden units, 514
historical volatility, 378
Ho-Lee model, 456, 464. See also pricing fixed-income derivative securities
holding-period return, 397
homoskedastic single-factor term-structure model, 429, 452, 457
Hotelling T^2 statistic, 232
Hsieh test of nonlinearity, 475
Hull and White stochastic volatility model, 380
Hurst-Mandelbrot rescaled range statistic. See rescaled range statistic
hyberbasis functions, 517
hyperbolic discounting, 334
idiosyncratic risk, 72, 92, 221, 318
IGARCH model, 484
IID. See independent and identical distribution
immunization, 405
implied volatility, 377
importance sampling, 388
income effect, 321. See also substitution effect
income risk, 318
Incomplete markets, 296, 392
independent and identical distribution (IID), 15, 33, 475
indexed bonds, 395
indirect slope estimator, 505
infinitesimal generator, 360
information matrix, 191, 358, 538
information-matrix equality, 539
input layer, 513
instrumental variables (IV) regression, 311, 313, 494, 527, 535
instruments, 447, 528
integrated GARCH model, 484
interest rate. See coupon bonds, discount bonds, forward rate, interest-rate forecasts, short-term interest rate, term structure of interest rates, yield spread, riskless interest rate
interest-rate forecasts, 418
internal rate of return, 401
interpolation problems, 516
Intertemporal Capital Asset Pricing Model (ICAPM), 219, 221, 291. See also Capital Asset Pricing Model, multifactor models
intertemporal marginal rate of substitution, 294
intertemporal substitution effect, 331. See also elasticity of intertemporal substitution
investor heterogeneity and, 317
irregularly sampled data, 363
ISE estimator, 505
isoelastic preferences. See power utility
Itô process, 348. See also Brownian motion, stochastic differential equation
Itô's Lemma, 348, 351
IV regression. See instrumental variables regression
January effect, 100
Joseph Effect, 59
kernel regression, 500
average derivative estimators, 505
convergence property, 501
curse of dimensionality, 504
optimal bandwidth selection, 502
universal approximation property, 515
weight function, 500
Kronecker product, 532
kurtosis, 16, 19, 81, 480, 488. See also returns

labor income, 318
Lagrangian function, 184
latent-variable models, 446
Law of Iterated Expectations, 24, 255
lead-lag relations. See cross-autocorrelation
learning networks, 512, 518
Black-Scholes formula and, 519
limitations, 518
multilayer perceptrons, 512
projection pursuit regression, 518
radial basis functions, 516
legal liability, 149, 179
leisure in the utility function, 326
leverage hypothesis, 497
likelihood function, 362, 537. See also maximum likelihood estimation
likelihood ratio test, 193
liquidity effects, 405
local averaging, 500, 502
local volatility, 375
log dividend-price ratio, 264
log forward rate, 400, 408. See also forward rate
log holding-period return, 398
log pure expectations hypothesis, 414
log yield, 397, 399, 408. See also yield to maturity
log-likelihood function, 190, 358, 487. See also maximum likelihood estimation
logistic function, 513
logistic map, 525
loglinear approximation, 260, 320, 406
accuracy, 262
coupon bonds, 406
intertemporal budget constraint, 320
lognormal distribution, 15
lognormal model of asset pricing, 306
Cobb-Douglas utility, 326
Epstein-Zin-Weil recursive utility, 319
external-habit model, 328
power utility, 306
long-horizon regressions, 267
R^2 statistics, 271
orthogonality tests, 279
variance ratio, 272
bias, 273
dividend-price ratio, 268
dynamic asset-allocation models, 287
finite-sample inference, 273
investment strategies, 287
long-horizon returns, 55, 78. See also variance ratio
long-range dependence, 59
Longstaff-Schwartz model, 438
lookback options, 391
loss aversion, 333

Macaulay’s duration, 403
marked to market, 459
market efficiency, 20, 30. See also Efficient Markets Hypothesis
market frictions, 314
aggregate consumption data, 316
Hansen-Jagannathan bounds, 315
market microstructure, 83. See also barrier models, bid-ask spread,
bid-ask bounce, nonsynchronous trading, price discreteness,
rounding models
market model, 155
conditional, 493
market portfolio, 155, 181, 323, 495
Markov chain, 38, 81, 145
Subject Index

Markov process, 357
Markov-switching models, 472
martingale, 28, 256
martingale convergence theorem, 484
martingale pricing technique, 354
maturity, 396
maximum correlation portfolio, 298.
See also Hansen-Jagannathan volatility bound
maximum likelihood, 7
maximum likelihood estimation, 358, 536
asymptotic distribution, 538
continuous-record asymptotics, 364
factor analysis, 234
GARCH models, 487
information matrix, 538
information-matrix equality, 539
irregularly sampled data, 363
option price, 367
quasi-maximum likelihood estimation, 539
stochastic differential equation, 357
White specification test, 539
mean reversion, 89
mean-variance efficient-set mathematics, 184, 243, 298
global minimum-variance portfolio, 185, 217
Hansen-Jagannathan volatility bound, 298
minimum-variance frontier, 185
Sharpe ratio, 188
tangency portfolio, 188, 196, 218
zero-beta portfolio, 182, 185, 218
m-histories, 112
mixed distribution, 481
mixture of normal distributions, 481
ML estimation. See maximum likelihood estimation
MLP. See multilayer perceptron modified duration, 405. See also duration
moment conditions, 359
Monte Carlo simulation methods, 340, 382, 386
antithetic variates method, 388
comparisons with closed-form solutions, 384
computational cost, 386
control variate method, 387
crude Monte Carlo, 386
discretization, 383, 385
efficiency, 386
importance sampling, 388
limitations, 390
number-theoretic method, 388
path-dependent option pricing, 382
stratified sampling, 388
variance-reduction techniques, 387
mortgage-backed securities, 406
multifactor models, 219, 324. See also Arbitrage Pricing Theory, exact factor pricing, Intertemporal Capital Asset Pricing Model, selection of factors
Black version of the CAPM, 224, 229
cross-sectional regression approach, 222, 223
empirical studies, 240
Epstein-Zin-Weil recursive utility model, 324
estimation of expected returns, 231
estimation of risk premia, 231
factor portfolios spanning the mean-variance frontier, 228
Generalized Method of Moments, 222
Hotelling T^2 statistic, 232
macroeconomic variables as factors, 226
portfolios as factors, 223
term-structure models, 440
multilayer perceptron (MLP), 512
multiplicative linear congruential generators (MLCG), 525
multipoint moment conditions, 361
multiquadrics, 517
multivariate GARCH models, 490
multivariate stochastic-volatility models, 493

Nadaraya-Watson kernel estimator, 500
network topology, 514
networks, 512. See also learning networks
neural networks, 512. See also learning networks
Newey-West estimator, 535
news impact curve, 485
n-histories, 476
no-arbitrage condition, 339
noise traders, 317
nominal bonds, 442
nominal stochastic discount factor, 443. See also stochastic discount factor
nonlinear ARMA models, 471
nonlinear autoregressive models, 471
nonlinear dynamical systems, 473. See also deterministic nonlinear dynamical systems
nonlinear-in-mean time-series models, 469
nonlinear-in-variance time-series models, 469
nonlinear least squares estimation, 515, 518
nonlinear moving-average models, 469
nonlinear time-series analysis, 468
nonlinearity testing. See testing for nonlinear structure
nonparametric estimation, 498, 515
universal approximation property, 515
nonparametric option pricing methods, 340, 392, 510
nonparametric tests, 172
nonperiodic cycles, 63
nonseparability in utility, 326
nonsynchronous trading, 84, 177

empirical findings, 128
nontrading process, 145
nontrading. See nonsynchronous trading
normal distribution, 15
number-theoretic method, 388

offer. See ask price
optimal orthogonal portfolio, 243, 245, 248. See also exact factor pricing
option pricing, 349
adjusting the Black-Scholes formula for predictability, 375
Black-Scholes and Merton option pricing model, 350
Black-Scholes formula, 371, 373
discrete-time models, 381 estimator for \(\sigma^2 \), 374
incomplete markets, 392
martingale approach, 354
maximum likelihood estimation, 367
nonparametric methods, 392
path-dependent options, 382
risk-neutral pricing method, 382
state-price densities, 509
option sensitivities, 555
ordered probit model, 122, 136
maximum likelihood estimation, 127, 141
Ornstein-Uhlenbeck process, 360, 371, 434
orthogonality condition, 528
orthogonality tests, 276
O-U process. See Ornstein-Uhlenbeck process
output layer, 513
overfitting, 498, 523
par, 401
parallel processing, 515
parametric option-pricing model, 340, 356
path-dependent derivatives, 340
path-dependent options, 340, 382
PEH. See pure expectations hypothesis
Subject Index

perfect-foresight stock price, 275
observability in finite samples, 278
perfectly hedged portfolio, 352. See also delta-hedging strategy
performance evaluation, 183
permanent shock, 65. See also unit root process
persistence in expected stock returns, 265
degree of persistence in volatility, 483, 492
peso problem, 310
piecewise-linear models, 472
plain vanilla options, 349
Poincaré section, 475
polynomial models, 471
portfolio performance evaluation, 183
power utility, 305, 434
PPR. See projection pursuit regression
precautionary savings, 310, 331
predictability of stock returns, 27, 267
Black-Scholes formula, 371, 375
Campbell-Cochrane model, 332
dividend-price ratio, 268
rational bubbles, 260
time-varying risk-aversion, 332
preferred habitats, 418
price clustering, 109, 145
discovery, 107
discreteness, 109, 143
ex-dividend, 12
impact, 107, 143
ticks, 108
price of risk, 432, 495
price-earnings-ratio effect, 211
pricing kernel, 294
principal components, 236
principle of invariance, 367
projection pursuit regression, 518
prospect theory, 333
psychological models of preferences, 332
pure expectations hypothesis (PEH), 413. See also expectations
hypothesis, term structure of interest rates
alternatives, 418
implications, 417
log pure expectations hypothesis, 414
preferred habitats, 418
put option, 349
QGARCH model, 497
Q-statistic, 47
quadratic form, 528
quadratic GARCH model, 497
quasi-maximum likelihood estimation, 489, 539
\(R^2\) statistic, 271
radial basis functions (RBFs), 516
rainbow options, 391
random number generators, 525
random walk, 27. See also long-horizon returns, long-range dependence, Random Walk 1 model, Random Walk 2 model, Random Walk 3 model, technical analysis, unit root processes, variance difference, variance ratio
continuous-time limit, 344
discrete-time random walk, 341
empirical evidence, 65
Random Walk 1 model, 28, 31, 33
R-statistics, 34
canonical correlation, 34
Cowles-Jones ratio, 35
eigenvalues of the covariance matrices, 34
Kendall \(\tau\) correlation test, 34
likelihood ratio statistic, 34
nonparametric tests, 34
runs test, 38
semiparametric tests, 34
sequences and reversals, 35
Spearman rank correlation test, 34
Spearman’s footrule test, 34
Random Walk 2 model, 28, 32, 41
filter rules, 42

For general queries, contact webmaster@press.princeton.edu
technical analysis, 43
Random Walk 3 model, 28, 33, 44.
 See also Box-Pierce Q-statistic,
 variance difference, variance ratio
portmanteau statistics, 47
rank test, 172
rational bubbles, 258
RBFs. See radial basis functions
regularization, 516, 522
replicating portfolio, 353, 380, 391
replication in Monte Carlo simulation, 383
representative agent models, 292, 305
rescaled range statistic, 62
returns, 254
 annualized, 10
 Bernoulli distribution, 18
 Cauchy distribution, 18
 compound, 10
 conditional distribution, 14
 continuously compounded, 11, 255
discount bond, 407
discreteness, 110
discreteness bias, 116
excess, 12
excess kurtosis 17, 488, 512
forecasting returns, 268
gross, 9
holding-period return, 398
independently and identically distributed (IID), 15
joint distribution, 13
kurtosis, 16, 19, 81, 480, 488
log, 11, 255
lognormal distribution, 15
net, 9
normal distribution, 15
simple, 11
skewness, 17, 81, 172, 498
stable distribution, 17
unconditional distribution, 15
unexpected stock returns, 264, 284
virtual, 85. See also
cash-flow risk, 85
credit risk, 85
default risk, 85
dependent observation, 85
difference habit-formation models, 329
Equity Premium Puzzle, 308, 323, 329
first-order, 334
loss aversion, 333
separating risk aversion from intertemporal substitution, 319
time-varying, 330, 335
risk prices, 325
risk-neutral option pricing method, 354, 370, 382, 509
risk-neutral pricing density, 508
risk-neutrality, 354
risk-neutralized process, 355
risk-return tradeoff, 14, 181
risk-sharing, 318
risk-free interest rate. See riskless interest rate
risk-free rate puzzle, 310, 329
riskless interest rate, 182, 306, 309, 319, 328, 331
rolling standard deviation, 481
rotational indeterminacy, 234
rounding models, 114
R/S statistic. See rescaled range statistic
RW1 model. See Random Walk 1 model
RW2 model. See Random Walk 2 model
RW3 model. See Random Walk 3 model
sample paths, 383
sample selection biases, 212, 251
sampling interval, 364
scale-invariance, 305
score vector, 537
SDM. See state-dependent models
security market line, 14
selection of factors, 233

For general queries, contact webmaster@press.princeton.edu
cross-sectional generalized least squares (GLS), 235
data-snooping, 240, 246, 251 factor analysis, 234 principal components, 236 rotational indeterminacy, 234 strict factor structure, 234, 239 self-exciting threshold autoregression (SETAR) models, 470 self-financing portfolio, 339, 351 sequences and reversals, 35 serial correlation, 44 SETAR models. See self-exciting threshold autoregression (SETAR) models Sharpe ratio, 188, 245, 247, 300 short-term interest rate, 430, 449. See also discount bonds, riskless interest rate GARCH effects on volatility, 452 regime-switching, 451 shortsales constraints, 315 sign test, 172 size effect, 211, 496 size-sorted portfolio, 70, 75, 129 skewness, 17, 81, 172, 498. See also returns slope estimators, 505 small stocks, 211, 496 smoothing, 499, 517. See also kernel regression solvency constraint, 315 spanning, 380, 391 SPD. See state-price density specification tests Hansen’s test, 531 White test, 539 spline estimation, 410, 412, 517 exponential spline model, 412 tax-adjusted spline model, 412 spot rate, 414, 417 spread. See bid-ask spread, yield spread spread-lock interest rate swaps, 391 square-root single-factor term-structure model, 435, 454 stable distribution, 17 standard Brownian motion, 344. See also Brownian motion state prices, 295, 507 state-dependent models (SDM), 470 state-price density (SPD), 507 stationary time-series process, 484. See also unit root process stochastic approximation, 515 stochastic differential equation, 346, 356 GMM estimation, 359 Itô’s Lemma, 348 maximum likelihood estimation, 357 multiplication rules, 347 stochastic discount factor, 294, 427, 429. See also Euler equation equity premium puzzle, 302 habit-formation difference models, 331 Hansen-Jagannathan volatility bound, 296 nominal, 443 nonnegativity, 295, 301 power utility, 309 state-price density, 508 uniqueness, 296 stochastic trend, 65. See also unit root process stochastic-volatility models, 379, 489, 493 multivariate, 493 stratified sampling, 388 strict factor structure, 234, 239 strike price, 349 STRIPS, 396 strobscopic map, 475 structural breaks, 472 Student-t distribution, 210, 489 substitution effect, 321, 331. See also elasticity of intertemporal substitution supershares, 507 support and resistance levels, 43 surplus consumption ratio, 350 survivorship bias, 311. See also
sample selection biases
synthetic convertible bonds, 391

tail thickness, 480
tax clientele, 405
tax-adjusted spline model of the
term structure, 412
technical analysis, 43. See also
Random Walk 2 model
temporary shock, 65. See also unit
root process
tent map, 474, 476, 525
term premia, 418
term structure of implied volatility,
463
term structure of interest rates, 397.
See also yield curve, term-structure
models, expectations hypothesis,
pure expectations hypothesis
cointegration, 419
forecasting interest rates, 418
spline estimation, 410
tax effects, 411
vector autoregressive (VAR)
methods, 422
term-structure models, 427. See also
fixed-income derivative securities
affine-yield models, 428, 441, 445
Cox, Ingersoll, and Ross model,
436
cross-sectional restrictions, 452
fixed-income derivative securities,
455
Ho-Lee model, 456, 464. See also
pricing fixed-income derivative
securities
homoskedastic single-factor
model, 429, 452, 457
latent-variable models, 446
Longstaff-Schwartz model, 438
square-root single-factor model,
435, 454
stochastic discount factor, 427
two-factor model, 438
Vasicek model, 434
testing for nonlinear structure
Brock-Dechert-Scheinkman test,
478
Hsieh test, 475
Tsay test, 476
Theta, 353
threshold, 472
threshold autoregression (TAR), 472
time aggregation, 94, 129
time inconsistency, 334
time-nonseparability in the utility
function, 327, 329. See also habit
formation models
trace operator, 74
Trades and Quotes (TAQ) database,
107
training a learning network, 515, 518
training path, 519
transactions costs, 315
transactions data, 107, 136
transition density function, 358
Treasury securities, 395
STRIPS, 396
Treasury bills, 396
Treasury notes and bonds, 396
when-issued market, 399
zero-coupon yield curve, 397
trend-stationary process, 65, 372. See
also unit root process
trending Ornstein-Uhlenbeck
process, 371
Tsay test of nonlinearity, 476
two-factor term-structure model, 438
two-stage least squares (2SLS)
estimation, 530
variance-covariance matrix, 531
lognormal asset pricing model
with power utility, 312
unit root process, 64, 257
term structure of interest rates,
419
volatility process, 484
volatility tests, 277
universal approximation property,
515
VAR methods. See vector
autoregressive methods
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>variance, 15, 17</td>
<td>611</td>
</tr>
<tr>
<td>variance-bounds tests, 277</td>
<td></td>
</tr>
<tr>
<td>variance difference. See variance ratio</td>
<td></td>
</tr>
<tr>
<td>variance inequality, 276</td>
<td></td>
</tr>
<tr>
<td>variance ratio, 48, 68</td>
<td></td>
</tr>
<tr>
<td>long-horizon regressions, 272</td>
<td></td>
</tr>
<tr>
<td>Random Walk 1 model, 49</td>
<td></td>
</tr>
<tr>
<td>Random Walk 3 model, 55</td>
<td></td>
</tr>
<tr>
<td>variance-bounds tests, 277</td>
<td></td>
</tr>
<tr>
<td>variance-reduction techniques, 387</td>
<td></td>
</tr>
<tr>
<td>Vasicek model, 434</td>
<td></td>
</tr>
<tr>
<td>VECCH model, 491</td>
<td></td>
</tr>
<tr>
<td>vec operator, 490</td>
<td></td>
</tr>
<tr>
<td>vector autoregressive (VAR) methods</td>
<td></td>
</tr>
<tr>
<td>multiperiod forecasts, 280</td>
<td></td>
</tr>
<tr>
<td>present-value relations, 279</td>
<td></td>
</tr>
<tr>
<td>price volatility, 280</td>
<td></td>
</tr>
<tr>
<td>return volatility, 284</td>
<td></td>
</tr>
<tr>
<td>Vega, 353</td>
<td></td>
</tr>
<tr>
<td>volatility</td>
<td></td>
</tr>
<tr>
<td>deterministic, 379</td>
<td></td>
</tr>
<tr>
<td>historical, 378</td>
<td></td>
</tr>
<tr>
<td>implied, 377</td>
<td></td>
</tr>
<tr>
<td>stochastic, 378, 380, 489, 493</td>
<td></td>
</tr>
<tr>
<td>volatility estimation. See ARCH models, GARCH models, stochastic-volatility models</td>
<td></td>
</tr>
<tr>
<td>volatility feedback, 497</td>
<td></td>
</tr>
<tr>
<td>volatility smiles, 512</td>
<td></td>
</tr>
<tr>
<td>volatility tests, 275</td>
<td></td>
</tr>
<tr>
<td>finite-sample considerations, 278</td>
<td></td>
</tr>
<tr>
<td>Marsh and Merton model, 277</td>
<td></td>
</tr>
<tr>
<td>orthogonality tests, 276</td>
<td></td>
</tr>
<tr>
<td>unit roots, 277</td>
<td></td>
</tr>
<tr>
<td>variance-bounds tests, 277</td>
<td></td>
</tr>
<tr>
<td>Volterra series, 471</td>
<td></td>
</tr>
<tr>
<td>Wald test, 192, 281, 539</td>
<td></td>
</tr>
<tr>
<td>weight function, 500</td>
<td></td>
</tr>
<tr>
<td>weighting matrix</td>
<td></td>
</tr>
<tr>
<td>GMM estimation, 532, 534</td>
<td></td>
</tr>
<tr>
<td>IV estimation, 528, 530</td>
<td></td>
</tr>
<tr>
<td>white noise, 346</td>
<td></td>
</tr>
<tr>
<td>White specification test, 539</td>
<td></td>
</tr>
<tr>
<td>Wiener process, 344. See also</td>
<td></td>
</tr>
<tr>
<td>arithmetic Brownian motion</td>
<td></td>
</tr>
<tr>
<td>wild card option, 459</td>
<td></td>
</tr>
<tr>
<td>Wishart distribution, 192</td>
<td></td>
</tr>
<tr>
<td>Wold Representation Theorem, 468</td>
<td></td>
</tr>
<tr>
<td>yield curve, 397, 432, 438, 440. See also term structure of interest rates</td>
<td></td>
</tr>
<tr>
<td>yield spread, 397, 418</td>
<td></td>
</tr>
<tr>
<td>yield to maturity, 397, 401</td>
<td></td>
</tr>
<tr>
<td>zero-beta asset, 294</td>
<td></td>
</tr>
<tr>
<td>zero-coupon bonds, 396</td>
<td></td>
</tr>
</tbody>
</table>