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1
Lifeless Brains

The Brain, in Theory
In modern mainstream culture, both popular and scientific, the brain is a sort 
of computer, a machine that processes information. It acquires data in the form 
of sensory signals, encodes them into some electrical format, then processes 
the data with neural algorithms. It broadcasts the information to specialized 
processing modules: the visual cortex for visual processing, the hippocampus 
for memory storage and retrieval, the prefrontal cortex for decision making 
and planning. Eventually, it outputs motor commands to the muscles. Obvi-
ously, the brain is not a conventional computer with transistors, hard drives, 
and USB ports, but a “biological computer” optimized by evolution. The goal 
of neuroscience, then, is to “reverse engineer” the brain, to understand its 
functional organization and biological implementation.

All these concepts are borrowed from the engineering domain. This source 
of inspiration predates the era of computers. In the seventeenth century, 
brains were likened to hydraulic mechanisms; in the nineteenth century, the 
nervous system was a telegraph (Cobb, 2020, 2021). In much of the twentieth 
century, the brain was a computer applying formal rules to mental symbols. 
Nowadays, the brain might be a neural network, but the kind that engineers 
run on massive computers with graphics cards: a vector of values updated by 
series of matrix multiplications, with parameters tuned to minimize a formally 
defined error. In fact, the modern neuroscience literature simultaneously em-
braces all of those engineering concepts: neurons are mechanisms (like hydrau-
lic machines) that communicate with codes (like telegraphs); they compute 
(like computers) with parameters tuned by learning algorithms (like formal 
neural network models).

Theoretical neuroscience, the activity of building mathematical models of 
the nervous system, heavily borrows from engineering theories: computer 
science, signal processing, data analysis, optimization, information theory, 
control theory. In fact, the main subfield of theoretical neuroscience is called 
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computational neuroscience, which aims at understanding how (not whether) 
neurons compute.

Engineering concepts have indeed been very fruitful in understanding the 
logic of living beings, and of nervous systems in particular. For example, tele-
graph theory has been used to develop the biophysics of action potential 
propagation in the 1950s by Hodgkin, Huxley, Katz, and colleagues (Hodgkin, 
1964), as axons share similarities with electrical wires. In fact, the theory of 
electrical propagation in neurons is traditionally called “cable theory” (Rall, 
2011). Optimization principles have been shown to be relevant to understand 
the structure of living organisms (Rosen, 1967) and of nervous systems in 
particular (Sterling and Laughlin, 2017). Indeed, the structure of living organ-
isms appears to be particularly efficient at various functions that are especially 
important for the survival of the organism, such as harvesting and saving en-
ergy. This is why biology has in turn been an inspiration for engineering.

But it is one thing to borrow relevant concepts from engineering to under-
stand brains, and another entirely to claim that brains actually are engineered. 
Many general views on mind and consciousness are indeed based on a strict 
identification between brains and engineered devices (mostly computers). For 
example, since we are computers and computers are not conscious, then con-
sciousness must be an illusion (eliminativism). Or conversely, since we are 
computers and we are conscious, computers must be conscious after all, 
so consciousness may actually be everywhere to different degrees (panpsy-
chism). If intelligence is just an input–output mapping fitted on large amounts 
of data, then surely with more data and computing power, “artificial intelli-
gence” will soon outrun human intelligence, leading the human species to 
extinction or slavery (an event called the “technological singularity”). If minds 
are algorithms, then we should be able to upload minds in a computer simula-
tion, indefinitely extending our lives (transhumanism). In fact, we might al-
ready be living in a simulation right now, without knowing it. If not, since 
mind simulation would allow us to create an astonishing number of new happy 
human lives, we should make all possible efforts to ensure it happens 
(longtermism).

Yet, if we were to explicitly ask a modern neuroscientist whether the brain 
is actually an engineered device, she would certainly strongly object. Brains 
are not the result of intelligent design. This is a religious view of life that 
has been discredited by Darwinism. Why then are we to “reverse engineer” 
brains, if brains were not engineered in the first place?

This terminology is typically excused by adding that brains are engineered 
by evolution, not by God. But Darwin’s insight is precisely that evolution is not 
a case of engineering. Engineering is the use of knowledge to solve technical 
problems. It presupposes an external mind that plans and assembles machines 
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according to a preexisting goal. But evolution has no goals, plans, or knowl-
edge; in other words, it is not an engineer.

Thus, living organisms are not really engineered. Therefore, they are not 
really machines, which are engineered objects, and brains are not really com-
puters, which are kinds of machines. Of course, there are features of machines 
and computers that are shared by living organisms and brains, which is why 
engineering concepts can be relevant in biology. But if the idea that we are the 
result of intelligent design is to be scandalous to a modern scientist, then 
surely this should at least make some difference to the way we conceive brains?

It is the main aim of this book to explore these differences, in particular in 
the context of making models of the brain. It appears indeed that, in main-
stream neuroscience and cognitive science, the idea that we are not engineered 
is simultaneously an extremely important opinion to hold publicly as well as 
a theoretically insignificant fact. Hillary Putnam, a major philosophical figure 
of cognitivism, explicitly claimed that our biological nature is insignificant: 
“we could be made of Swiss cheese and it wouldn’t matter” (Putnam, 1975).

To set the stage, I will briefly outline the main modern theoretical frame-
works to think about brains and cognition, starting with computationalism.

Computationalism
Computationalism holds that cognition is a form of computation, seen as the 
manipulation of formal symbols with rules. Brains are said to implement such 
computation, where symbols are represented by the state of some neurons, 
while brain processes change neural states in such a way that the correspond-
ing symbols are changed according to the formal rules of the computation. 
Usually, the relevant states are believed to be the firing activity of neurons 
(how many action potentials they fire per second). As we will see in chapter 8, 
this is problematic because activity is not a state, let alone a computational 
state. Unorthodox computational accounts propose instead that symbols are 
represented by stable molecules such as polynucleotides (Gallistel, 2017). Re-
gardless of the physical basis of computational symbols, it is the computation 
that matters for cognition, not its implementation. This doctrine is known as 
functionalism. (See Zahnoun [2023] for a critique.) Brains merely support 
computations; how they do so is largely irrelevant to understand cognition.

This functionalist perspective comes from the fact that a computer is a ma-
chine, and what matters for the behavior of a machine is the functional speci-
fication of the components, not so much their material basis. An electric car 
is still a car, because the electric motor produces a rotating motion transferred 
to the wheels, even though it works differently from a combustion engine. 
Accordingly, computationalism relies on a distinction between hardware (the 
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brain) and software (the mind). Cognition is defined at the level of algorithms, 
while neurons only implement those algorithms. Thus, biological implementa-
tion is secondary for the understanding of cognition: the mind can run on any 
material support, as long as the functional organization of computational 
states, identified to mental states, is preserved. Thus, with some imagination, 
the brain could be made of Swiss cheese.

Computationalism developed in reaction to behaviorism, which was the 
dominant conceptual framework about brains in the first half of the twentieth 
century. Behaviorism saw behavior as nested reflexes adjusted by experience, 
strengthening or weakening associations. But as early cognitivists pointed out, 
behavior is highly structured and goal-directed, and appears to depend on 
abstractions rather on the details of proximal stimuli, just like computations. 
This is obviously so in human reasoning, but it is also a well-documented 
feature of animal behavior. For example, bees can recognize whether two ob-
jects are the same or different (Giurfa et al., 2001) and can count up to four 
(Dacke and Srinivasan, 2008). Many species such as ants can return to their 
nest in a straight path after foraging (Wehner, 2020), meaning that they im-
plicitly integrate their own displacement—an ability called dead reckoning. 
This does not seem to be possible by the mere association of physical cues.

While the cognitivist critique of behaviorism is relevant, it was hardly new. 
Merleau-Ponty, a phenomenologist philosopher, already pointed out in The 
Structure of Behavior (1942) that behavior is made of actions, not reactions. An 
action is performed by an agent with certain goals, and therefore it depends 
both on the organism’s internal state and on some abstract features of the 
situation—for example, whether the given pattern of light is identified as a 
source of food. Organisms do not respond automatically to proximal stimuli. 
Rather, behavior is anticipatory: actions are taken as a function of their 
expected consequences. Computation is indeed also directed toward a goal, 
which is its result (the thing that we compute), but that is hardly surprising, 
given that computation is a kind of behavior—the kind we try to emulate in 
computers. However, the converse assertion, that all behavior and cognition 
are computational, does not follow, as we will discuss in more detail in  
chapter 4. In the same way, it seems that we can store and retrieve memories 
just like a computer, but it is the computer that was built to mimic some fea-
tures of human memory—indeed, the word memory originates from the 
mental domain, not the engineering domain. It does not follow that the com-
puter literally remembers what you wrote when you open a text file.

Computationalism led to the development of symbolic artificial intelli-
gence, also known as “good old-fashioned artificial intelligence” (GOFAI), in 
particular expert systems, which implemented logical inference on a base of 
rules gathered from experts. Those systems made spectacular progress in the 
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1960s to 1970s, raising high hopes, as recounted by Mitchell (2021). For ex-
ample, in 1960, Herbert Simon predicted that “machines will be capable, 
within twenty years, of doing any work that a man can do.” Skeptics, such as 
the philosopher Hubert Dreyfus (1978), explained that experts do not actually 
rely on rules: it is beginners who use rules to guide their learning process. This 
unpleasant rebuttal was dismissed, but expert systems were eventually aban-
doned in the 1980s.

Despite the failure of these approaches, the perspective introduced by com-
putationalism has remained dominant: cognition is a form of computation, 
and neurons encode symbols used by the brain to compute.

One of the difficulties encountered by symbolic artificial intelligence was 
with perceptual tasks, such as identifying an object. To address this difficulty, 
a very different approach was introduced, which did not use symbolic rules: 
connectionism.

Connectionism
The precursor of all artificial neural network models is the binary neuron 
model of McCulloch and Pitts (1943). In that model, the neuron is seen as 
either active or inactive, symbolized by 0 
or 1, a feature inspired by the all-or-none 
law of neural excitation. It receives inputs 
from other neurons, and its output activ-
ity is calculated as follows (figure 1.1): 
take the weighted sum of the activity of 
input neurons (weights are called synaptic 
weights), and output 1 if the sum exceeds 
a threshold (otherwise 0). This makes the 
neuron implement a logical function with 
n inputs and 1 output. One can then build 
more complicated logical functions by 
connecting neurons together. In fact, Mc-
Culloch and Pitts demonstrated that any 
logical function from n inputs to m out-
puts can be implemented with an appropriately wired neural network. Thus, 
the article was titled “A Logical Calculus of the Ideas Immanent in Nervous 
Activity.”

Philosophically, the model of McCulloch and Pitts stands with classical com-
putationalism (Dupuy, 2013): the state of each neuron represents a symbol with 
true or false value, and the model implements propositional calculus. Mental 
states are made of logical propositions. But in the 1950s and 1960s, Frank 
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figure 1.1. A network of binary 
neurons implementing the XOR 
operation. Binary inputs are 
multiplied by weights (on edges), 
and the output is 1 when the 
result is greater than a threshold.
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Rosenblatt started to apply it to visual tasks, under the name “perceptron” 
(Rosenblatt, 1962; figure 1.2). There, the input variables represented light inten-
sity at photoreceptors, the output represented the recognition of an object, and 
crucially, the synaptic weights were learned by association. The model did not 
implement logical inference anymore. Instead, Rosenblatt interpreted the model 
“in terms of probability theory rather than symbolic logic” and called his ap-
proach “connectionist” (Rosenblatt, 1958).

Despite initial interest in connectionism, it was abandoned a few years later 
in favor of symbolic approaches, when Minsky and Papert (1969) demon-
strated the fundamental limitations of the perceptron. When expert systems 
were abandoned in the 1980s, there was a renewed interest in connectionism, 
triggered by the design of efficient learning algorithms for multilayer percep-
trons, such as backpropagation (Rumelhart et al., 1986), still in use in modern 
artificial neural networks. Connectionism fell out of fashion again in the arti-
ficial intelligence community in the 1990s, in favor of more efficient statistical 
learning algorithms, such as support vector machines (Cortes and Vapnik, 
1995). It was revived in the 2010s, when improvements in model design, soft-
ware engineering techniques (such as automatic differentiation), as well as 
computing power and data availability led to impressive results in different 
areas, such as image processing (LeCun et al., 2015).

According to connectionism, cognition arises from the interaction of 
many neurons, seen as simple stereotypical input–output devices. Learning 
consists in modifications of the association strength between pairs of neurons, 
summarized by a single parameter. Thus, connectionism is explicitly associa-
tionist, and therefore conceptually closer to behaviorism than to computation-
alism. Cognition is not logical calculus anymore, but a form of calculation more 
akin to linear algebra. Furthermore, the activity of neurons in inner layers is not 
associated to mental symbols anymore, but rather to intermediate computa-
tional variables.

These differences remain a major source of mutual criticism between the 
two approaches. On one hand, (symbolic) computational models are 
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figure 1.2. Rosenblatt’s perceptron (from Rosenblatt, 1962).
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essentially incapable of dealing with real sensory inputs, such as images. On 
the other hand, connectionist models have great difficulties dealing with rela-
tional tasks, such as deciding whether an image contains two identical objects 
(Kim et al., 2018), or with compositional tasks (Dziri et al., 2023), or generally 
tasks that rely on abstraction (Lewis and Mitchell, 2024).

Despite these differences, computationalism and connectionism are con-
ceptually related in many ways. Indeed, the model of McCulloch and Pitts was 
an explicit inspiration of John von Neumann’s work on the electronic com-
puter in 1945 (von Neumann, 1993), as well as of Rosenblatt’s first connection-
ist model. Both computationalism and connectionism see cognition as a form 
of computation, consisting in applying a series of elementary operations to an 
input. This means in particular that cognition is an input–output process, 
which takes data and maps it to a response. As Hendriks-Jansen pointed out 
already in 1996, “most of the connectionist systems that have been built to date 
are models in which the inputs and outputs are assigned by the programmer 
following analysis of a particular task domain” (Hendriks-Jansen, 1996)—this 
is still the case at the time of writing.

This view preserves the behaviorist concept of the stimulus: behavior is 
made of responses to stimuli, except that there is now “cognition” between 
perception and action—the “classical sandwich” model of cognition, as Susan 
Hurley put it (Hurley, 2001). Indeed, in standard experimental sensory neu-
roscience, neural activity is almost invariably reported as a response to stimuli, 
and activity unrelated to the stimulus is called “noise”—as opposed to the 
autonomous activity of the organism. This is obviously the experimenter’s 
perspective.

The way computations are performed differs greatly between classical com-
putationalism and connectionism. Indeed, in a deep neural network model 
that identifies faces, neurons of the hidden layers do not represent anything in 
particular. This is why a common complaint about modern artificial networks 
(deep learning in particular) is that they are not explainable: we cannot easily 
explain what they do because the results of intermediate calculations are not 
meant to be interpretable as symbols. However, neurons of the output layer 
do represent: in a face recognition model, their activity represents the occur-
rence of a particular face. Therefore, the output remains symbolic, just like in 
classical computationalism. Furthermore, since these output symbols must be 
the inputs to some other computational networks—for example, those re-
sponsible for uttering the name of the face—connectionism still generally 
commits to a symbolic view of cognition, both for inputs and outputs. There 
are still “neural representations” or “neural codes” of mental content, in the 
form of the activity of specific neurons or groups of neurons, but not all neu-
rons encode; only those at the input and output of designated cognitive 
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functions. Thus, classical connectionism has a somewhat confused view of the 
symbolic nature of cognition.

Connectionism also preserves the hardware/software distinction at the 
heart of computationalism. In this case, software is the set of synaptic weights. 
Neurons are input–output devices with a few knobs, but are otherwise rigidly 
specified. This is a key requirement of modern connectionist models, where 
the tuning of synaptic weights relies on formal differentiation of neural input–
output functions, as we will see in chapter 4.

Thus, although connectionism describes cognition in terms of the opera-
tion of “neurons,” the biological nature of neurons, or of the organism, plays 
exactly no role, just like in classical computationalism. The facts that the organ-
ism lives and that brains develop (as opposed to being assembled) are  
peculiarities of “implementation” with no theoretical significance.

Because biology is just implementation, both computationalism and con-
nectionism start from the cognitive problem being solved and then try to 
figure out how the brain might solve it. This approach is typically called “top-
down”—the top being the mind. This is of course in line with the engineering 
mindset: first, we describe what the machine should do; second, we design its 
functional organization; third, we implement the functional description by 
assembling components with the right specifications. This is essentially what 
David Marr, a pioneer of computational neuroscience, proposed as the 
methodology for modeling brains (Marr, 1982): start with the “computational 
level,” the task that the model is supposed to achieve; then describe the 
“algorithmic/representational level,” the algorithm that solves the task, at an 
abstract level; and finally worry about the “implementation level,” how the 
algorithm is realized in the brain.

Of course, this methodology makes perfect sense for artificial intelligence, 
since in that case, we are indeed engineering the models. In neuroscience, an 
alternative kind of methodology, which brands itself as more empirical (“data-
driven”), consists in measuring the different components of the brain as well 
as the way they are assembled. This kind of approach is often called “bottom-
up.” It is in fact also inspired from engineering, because parts of a living organ-
ism are conceived as parts of a machine.

Bottom-Up Neuroscience
An example of a bottom-up approach in neuroscience is the Human Brain Proj
ect, which aimed at simulating an entire brain based on systematic large-scale 
measurements of the properties of neurons and synapses. In this case, the 
neuron models are not classical connectionist models with abstract variables 
such as the “activity” of a neuron, but biophysical models taking the form of 
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dynamical systems with measurable variables, such as the membrane poten-
tial. Those models were obtained from electrophysiological measurements in 
animals. In the Human Brain Project, the measurements were statistical: mod-
els of typical neurons, and average connectivity between brain areas.

Other bottom-up projects rely on more systematic measurements. For ex-
ample, a technical approach known as connectomics aims at systematically 
measuring the detailed synaptic connections between neurons in an entire 
region or in the whole brain. The graph of connections is called the connec-
tome. According to its strongest supporters, connectomics should bring a 
decisive contribution to the understanding of brains and cognition. For ex-
ample, Morgan and Lichtman (2013) assert that “it might not be so unrealistic 
to hope that in staring into such a map we might get a glimpse of the human 
mind,” and Seung (2012) claims that you literally are your connectome. Of 
course, this is simply the expression of connectionism in its most radical form: 
cognition is essentially specified by the connections between neurons.

Thus, bottom-up approaches also often embrace some variation of con-
nectionism, as well as the general framework of computationalism—in 
particular, its terminology. That is, brains are described as implementing com-
putations, processing information, and so on. But in contrast with top-down 
approaches, models of the brain are established by measurement, indepen
dently of what the brain is supposed to achieve. Function is assumed to follow 
from those measured properties. The implicit assumption is that, like in a 
machine, the properties of parts are independent of the system in which it is 
embedded (the “top”), and of what that system does. First come the parts with 
their specified properties, and then they are assembled according to a plan.

But of course, this analogy with machines is fragile, because in a living or-
ganism, parts always grow within a functional system, and so the relation be-
tween “bottom” and “top” is circular, not unidirectional. As we will see in 
chapter 3, this explains why the hopes of bottom-up approaches have not been 
realized so far.

Brains Beyond Engineering
The Neurocomputational Patchwork

In practice, models of neuroscience (as opposed to artificial intelligence) do not 
strictly adhere to either computationalism or connectionism in their classical 
form but instead borrow concepts from both approaches. In the same way, mod-
eling is rarely purely top-down or bottom-up. For example, bottom-up ap-
proaches generally use properties of the “top” as constraints, although this is 
rarely acknowledged (as we will see in chapter 3). Conversely, connectionist 
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approaches often take inspiration from structural peculiarities, such as the mod-
ular organization of the brain or the presence of dendrites. Some parts of brain 
and mind studies are dominated by connectionism, such as systems neurosci-
ence, while others are dominated by classical computationalism, such as cogni-
tive science. The most empirically driven models of neuroscience are in fact 
dynamical systems that are neither symbolic nor connectionist (such as the 
Hodgkin-Huxley model).

Thus, brain theory consists of a heterogeneous patchwork of approaches 
and models. Nonetheless, they share a common terminology borrowed from 
engineering, in particular computer science: brains and neurons compute, 
implement algorithms, encode objects and properties, represent and process 
information, and so on. For example, Sydney Brenner, who pioneered the 
neurogenetic study of C. elegans, a microscopic worm with 302 neurons, de-
scribes his approach as follows:

Behaviour is the result of a complex set of computations performed by 
nervous systems and it seems necessary to decompose the problem into 
two: one is concerned with how the genes specify the structure of the 
nervous system, the other with questions of how nervous systems work to 
produce their outputs. (Brenner, 1973)

Unlike bees, C. elegans cannot count, and so far, no one has found hints of 
symbolic representations in its neurons. Thus, Brenner meant “computation” 
in a much broader sense than classical computationalists do. Apparently, it is 
not just that the animal can compute, but all behavior results from a kind of 
computation implemented by the nervous system. This is typical of modern 
neuroscience literature, a view that I shall refer to as neurocomputationalism: 
neurons are conceived as formally specified input–output devices that com-
pute and implement the algorithms of cognition. But what is meant exactly by 
“compute,” “implement,” and “algorithms” is often rather vague, and indeed 
may differ substantially between approaches.

This terminology is not decorative: it is a theoretical commitment that 
forms the scaffold of reasoning about brains as well as of model building. 
Because the precise meaning of those words is often left unspecified, this 
scaffold is fragile and often incoherent. (Do neurons compute in the sense of 
connectionism, in the sense of computationalism, or do they just do some-
thing useful?) And because brains are not actually engineered, this scaffold is 
often poorly fitted to the subject, as we will see. In this book, we will explore 
the meaning of those words, and the extent to which they make sense when 
talking about brains, including computation (chapter 4), representations and 
codes (chapter 5), information (chapter 6), prediction (chapter 7), and imple-
mentation (chapter 8).
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First, I want to make it clear why this choice of words is indeed a theoretical 
commitment about how brains work.

Of Words and Theories

Many words we use to talk about brains come from our ordinary human ex-
perience. For example, we say that neurons communicate, or send messages. 
These words originate from our social experience as a speaking species. We 
use them for neurons because we recognize some features of communication 
in the biological phenomenon: neurons of the retina produce electrical spikes 
(action potentials) that are specific to the image being presented, and this se-
quence of spikes then travels along the axon, unchanged, up to the axonal 
terminals, as if they were Morse code messages being delivered through the 
nerves, from one neuron to the next. On the other hand, we know very well 
that the receiving neuron does not literally “read the message,” neither does it 
imagine the image that the message is supposed to stand for. There are features 
of messages that seem relevant to describe the electrical activity of neurons, 
and others that are not. When we say that spikes are messages, we focus on 
those features that we find relevant. This point about language was made elo-
quently by Lakoff and Johnson in their classic book Metaphors We Live By 
(Lakoff and Johnson, 1980): “What metaphor does is limit what we notice, 
highlight what we do see, and provide part of the inferential structure that we 
reason with.” For this reason, choosing a particular word from another domain 
is a theoretical commitment. We will discuss communication metaphors in 
more detail in chapter 5, in the context of neural codes.

The most important engineering metaphor in biology is the machine 
metaphor. In the modern view, living beings are machines, and brains are com-
puters, which are kinds of machines. We know this is a theoretical commit-
ment because the idea that living beings are machines is supposed to be an 
insight. We know quite well what machines are in real life. If we were to point 
out a rabbit to a ten-year-old and say, “look at this machine,” she would cer-
tainly object that it is not a machine but an animal. A machine is something 
made by humans to do something useful for them, it is not autonomous, it 
does not grow, it does not feed, and it does not feel. A ten-year-old, as well as 
most adults, would certainly put machines and animals in different categories. 
Thus, when the biologist Jacques Monod insists in Chance and Necessity 
(Monod, 1970) that actually a living organism is a molecular machine, he wants 
to convey something important and not obvious about life. It is not just a 
decorative term but a theoretical claim.

What was so important to Monod? Mainly, he wanted to oppose vitalism, 
according to which organisms live thanks to a nonphysical vital fluid. By 



12  Ch a p t e r  1

claiming that living organisms are machines, he meant that biological matter 
follows the same ordinary laws of physics and chemistry as inert matter, and, 
like machines, it is by virtue of its organization that the organism does what it 
is supposed to do (living and reproducing), not thanks to a special substance. 
A machine is made of components interacting together in certain ways so as 
to support the function of the machine. In the same way, a biological organism 
consists of a functional arrangement of organs—the digestive system, the cir-
culatory system, and so on—in the service of the maintenance and reproduc-
tion of the organism. Thus, Monod’s theoretical claim is that living organisms 
are goal-directed functional organizations of ordinary matter.

This is not a trivial claim at all. Surely, we can recognize parts such as organs 
in animals, but those are very unlike the parts of machines. Organs grow, for 
example. At the microscopic level, the molecular content of a cell changes in 
composition, number, and localization, at timescales of milliseconds to years. 
It is not so obvious how this molecular maelstrom can be conceptualized as 
components to which we can assign functions, like the functional diagram of 
a machine.

In fact, Monod also meant that living organisms are machines in the sense 
that their processes are essentially mechanical—that is, that their parts follow 
deterministic local interactions between discrete elements, mostly based on 
shape, like the solid macroscopic objects of our ordinary experience. Monod 
used the word “clockwork.” This is the idea of the standard “key-and-lock” 
concept of molecular biology, according to which the shape of a protein de-
termines its function. However, the claim that living processes are essentially 
mechanical in this narrow sense is demonstrably false, as Daniel Nicholson 
has clearly argued (Nicholson, 2019), and as we will see in the next chapter. A 
common example in the brain is the action potential, which is produced by 
spatially separated ionic channels that interact nonspecifically at a distance.

Thus, by claiming that living organisms are machines, Monod makes three 
assertions, corresponding to three features of machines. The first is that, 
like machines, living organisms are made of ordinary matter, following the 
same laws of physics and chemistry as inert matter. This is fairly consensual. 
The second is that living organisms are organized like machines, with parts 
arranged so as to ensure the function of the whole system. This is questionable 
or at least ambiguous (what are “parts”? what is “function”?). The third is that 
living processes are mostly mechanical, essentially deterministic local interac-
tions between discrete objects (he had proteins and nucleic acids in mind). 
This is demonstrably false.

This illustrates several important points about words and theories. First, 
the choice of engineering words is a theoretical commitment. When we 
use the word machine to designate living beings, we refer to some features of 
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machines that we think are shared by living beings. This is a convenient way 
to make theoretical claims about how living beings work. These claims may or 
may not be correct or may need to be substantiated. Second, strict identifica-
tion as in “organisms are machines” or “neurons compute” is a great source of 
confusion. In what sense are living organisms machines? Are they made of 
parts? Assembled? Are they mechanical? Are they lawful? Are they engi-
neered? These are very different claims. If one needs to carefully explain in 
what exact sense organisms are machines, and if different people pick different 
features, then organisms are not actually machines. They are somewhat similar, 
and somewhat different. This acknowledgment is crucial for conceptual 
clarification.

Biological Cognition

Cognition is a property of (at least some) living organisms. Perception, cogni-
tion, agency, free will, and consciousness are all biological phenomena. Even 
though we might try to replicate those phenomena in artifacts, the primary 
empirical source remains biology. Yet, strikingly, the study of cognition ap-
pears to be a branch of computer science rather than of biology. This dismissal 
of biology is even explicitly embraced by classical cognitive scientists, a view 
known as functionalism—biology is just “implementation.” In neuroscience, 
the standard terminology of brain theory largely refers to a nonbiological 
world, the world of machines made by humans—computation, implementa-
tion, algorithms, codes, optimization. . . . ​Ironically, scientists have abandoned 
the idea that living organisms have been designed by God, only to adopt a 
model of the living based on artifacts made by an engineer. Thus, Monod ridi-
cules vitalism as some sort of magical belief, but then identifies living organ-
isms with machines, those artifacts made by humans for a purpose using 
knowledge and planning. Is this a scientific view on life, or monotheism reject-
ing paganism?

The idea that animals result from intelligent design is scandalous to a sci-
entist. Yet, it appears to make very little difference to the way we think about 
brain and mind. On the contrary, I assert that a proper understanding of life, 
beyond engineering preconceptions, is crucial to an understanding of its cog-
nitive properties.

Why are living organisms compared to machines in the first place, rather 
than to any complex physical system like the climate? The reason is that ma-
chines are goal-directed, like living organisms. But the goals of machines are 
just the goals of their engineers, and therefore the machine view does not actu-
ally address the issue of goals, which means that the choice of the machine 
metaphor has no ground. As we will see in the next chapter, the reason why 
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living organisms have goals is not because they are machines, but because they 
are precarious entities that must exchange matter and energy with their envi-
ronment in order to maintain themselves. Cognitive properties are rooted in 
these facts of life, not in their presumed mechanistic nature.

Living organisms must feed. They have no material persistence. They 
develop by division. They evolve with no plan or direction. They are autono-
mous. This book explores the consequences of these facts of life for the under-
standing of brains, cognition, and behavior. I will start by presenting a modern 
view of life in the next chapter. In the rest of the book, we will use these lessons 
of life to revisit the standard concepts of brain theory. In chapter 3, I will ques-
tion the reductionist preconceptions of “bottom-up” (reverse-engineering) ap-
proaches. In chapter 4, I will argue that brains are not biological computers in 
any useful sense. In chapter 5, I will explain that neural codes (or neural repre
sentations) are a misleading engineering concept, which does not stand empiri-
cal scrutiny, and which is theoretically incoherent when applied to brains. In 
chapter 6, I will show that the neuroscientific concept of information is prob-
lematic in a biological setting, because it is framed as what the engineer can 
recover from a signal, and the engineer always uses preexisting knowledge in 
addition to the signal. In chapter 7, I will argue that anticipation is the core 
property that theories of cognition try to explain, but that its common iden-
tification with prediction is mistaken. Instead, I will develop an account of 
anticipation as the exploitation of regularities, rooted in the precarious nature 
of life. In chapter 8, I will show that the concept of implementation introduces 
a biased view of the organization of brain processes, mirroring the way we 
make devices rather than accounting for the autonomy of life. I will end the 
book on an alternative view of organisms and brains as colonies of living enti-
ties, and outline what it implies for the development of brain theory.
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