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1

Lifeless Brains

The Brain, in Theory

In modern mainstream culture, both popular and scientific, the brain is a sort
of computer, a machine that processes information. It acquires data in the form
of sensory signals, encodes them into some electrical format, then processes
the data with neural algorithms. It broadcasts the information to specialized
processing modules: the visual cortex for visual processing, the hippocampus
for memory storage and retrieval, the prefrontal cortex for decision making
and planning. Eventually, it outputs motor commands to the muscles. Obvi-
ously, the brain is not a conventional computer with transistors, hard drives,
and USB ports, but a “biological computer” optimized by evolution. The goal
of neuroscience, then, is to “reverse engineer” the brain, to understand its
functional organization and biological implementation.

All these concepts are borrowed from the engineering domain. This source
of inspiration predates the era of computers. In the seventeenth century,
brains were likened to hydraulic mechanisms; in the nineteenth century, the
nervous system was a telegraph (Cobb, 2020, 2021). In much of the twentieth
century, the brain was a computer applying formal rules to mental symbols.
Nowadays, the brain might be a neural network, but the kind that engineers
run on massive computers with graphics cards: a vector of values updated by
series of matrix multiplications, with parameters tuned to minimize a formally
defined error. In fact, the modern neuroscience literature simultaneously em-
braces all of those engineering concepts: neurons are mechanisms (like hydrau-
lic machines) that communicate with codes (like telegraphs); they compute
(like computers) with parameters tuned by learning algorithms (like formal
neural network models).

Theoretical neuroscience, the activity of building mathematical models of
the nervous system, heavily borrows from engineering theories: computer
science, signal processing, data analysis, optimization, information theory,
control theory. In fact, the main subfield of theoretical neuroscience is called
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computational neuroscience, which aims at understanding how (not whether)
neurons compute.

Engineering concepts have indeed been very fruitful in understanding the
logic of living beings, and of nervous systems in particular. For example, tele-
graph theory has been used to develop the biophysics of action potential
propagation in the 1950s by Hodgkin, Huxley, Katz, and colleagues (Hodgkin,
1964), as axons share similarities with electrical wires. In fact, the theory of
electrical propagation in neurons is traditionally called “cable theory” (Rall,
2011). Optimization principles have been shown to be relevant to understand
the structure of living organisms (Rosen, 1967) and of nervous systems in
particular (Sterling and Laughlin, 2017). Indeed, the structure of living organ-
isms appears to be particularly efficient at various functions that are especially
important for the survival of the organism, such as harvesting and saving en-
ergy. This is why biology has in turn been an inspiration for engineering.

But it is one thing to borrow relevant concepts from engineering to under-
stand brains, and another entirely to claim that brains actually are engineered.
Many general views on mind and consciousness are indeed based on a strict
identification between brains and engineered devices (mostly computers). For
example, since we are computers and computers are not conscious, then con-
sciousness must be an illusion (eliminativism). Or conversely, since we are
computers and we are conscious, computers must be conscious after all,
so consciousness may actually be everywhere to different degrees (panpsy-
chism). Ifintelligence is just an input-output mapping fitted on large amounts
of data, then surely with more data and computing power, “artificial intelli-
gence” will soon outrun human intelligence, leading the human species to
extinction or slavery (an event called the “technological singularity”). If minds
are algorithms, then we should be able to upload minds in a computer simula-
tion, indefinitely extending our lives (transhumanism). In fact, we might al-
ready be living in a simulation right now, without knowing it. If not, since
mind simulation would allow us to create an astonishing number of new happy
human lives, we should make all possible efforts to ensure it happens
(longtermism).

Yet, if we were to explicitly ask a modern neuroscientist whether the brain
is actually an engineered device, she would certainly strongly object. Brains
are not the result of intelligent design. This is a religious view of life that
has been discredited by Darwinism. Why then are we to “reverse engineer”
brains, if brains were not engineered in the first place?

This terminology is typically excused by adding that brains are engineered
by evolution, not by God. But Darwin’s insight is precisely that evolution is not
a case of engineering. Engineering is the use of knowledge to solve technical
problems. It presupposes an external mind that plans and assembles machines
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according to a preexisting goal. But evolution has no goals, plans, or knowl-
edge; in other words, it is not an engineer.

Thus, living organisms are not really engineered. Therefore, they are not
really machines, which are engineered objects, and brains are not really com-
puters, which are kinds of machines. Of course, there are features of machines
and computers that are shared by living organisms and brains, which is why
engineering concepts can be relevant in biology. But if the idea that we are the
result of intelligent design is to be scandalous to a modern scientist, then
surely this should at least make some difference to the way we conceive brains?

It is the main aim of this book to explore these differences, in particular in
the context of making models of the brain. It appears indeed that, in main-
stream neuroscience and cognitive science, the idea that we are not engineered
is simultaneously an extremely important opinion to hold publicly as well as
a theoretically insignificant fact. Hillary Putnam, a major philosophical figure
of cognitivism, explicitly claimed that our biological nature is insignificant:
“we could be made of Swiss cheese and it wouldn’t matter” (Putnam, 1975).

To set the stage, I will briefly outline the main modern theoretical frame-
works to think about brains and cognition, starting with computationalism.

Computationalism

Computationalism holds that cognition is a form of computation, seen as the
manipulation of formal symbols with rules. Brains are said to implement such
computation, where symbols are represented by the state of some neurons,
while brain processes change neural states in such a way that the correspond-
ing symbols are changed according to the formal rules of the computation.
Usually, the relevant states are believed to be the firing activity of neurons
(how many action potentials they fire per second). As we will see in chapter 8,
this is problematic because activity is not a state, let alone a computational
state. Unorthodox computational accounts propose instead that symbols are
represented by stable molecules such as polynucleotides (Gallistel, 2017). Re-
gardless of the physical basis of computational symbols, it is the computation
that matters for cognition, not its implementation. This doctrine is known as
functionalism. (See Zahnoun [2023] for a critique.) Brains merely support
computations; how they do so is largely irrelevant to understand cognition.
This functionalist perspective comes from the fact that a computer is a ma-
chine, and what matters for the behavior of a machine is the functional speci-
fication of the components, not so much their material basis. An electric car
is still a car, because the electric motor produces a rotating motion transferred
to the wheels, even though it works differently from a combustion engine.
Accordingly, computationalism relies on a distinction between hardware (the
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brain) and software (the mind). Cognition is defined at the level of algorithms,
while neurons only implement those algorithms. Thus, biological implementa-
tion is secondary for the understanding of cognition: the mind can run on any
material support, as long as the functional organization of computational
states, identified to mental states, is preserved. Thus, with some imagination,
the brain could be made of Swiss cheese.

Computationalism developed in reaction to behaviorism, which was the
dominant conceptual framework about brains in the first half of the twentieth
century. Behaviorism saw behavior as nested reflexes adjusted by experience,
strengthening or weakening associations. But as early cognitivists pointed out,
behavior is highly structured and goal-directed, and appears to depend on
abstractions rather on the details of proximal stimuli, just like computations.
This is obviously so in human reasoning, but it is also a well-documented
feature of animal behavior. For example, bees can recognize whether two ob-
jects are the same or different (Giurfa et al., 2001) and can count up to four
(Dacke and Srinivasan, 2008). Many species such as ants can return to their
nest in a straight path after foraging (Wehner, 2020), meaning that they im-
plicitly integrate their own displacement—an ability called dead reckoning.
This does not seem to be possible by the mere association of physical cues.

While the cognitivist critique of behaviorism is relevant, it was hardly new.
Merleau-Ponty, a phenomenologist philosopher, already pointed out in The
Structure of Behavior (1942) that behavior is made of actions, not reactions. An
action is performed by an agent with certain goals, and therefore it depends
both on the organism’s internal state and on some abstract features of the
situation—for example, whether the given pattern of light is identified as a
source of food. Organisms do not respond automatically to proximal stimuli.
Rather, behavior is anticipatory: actions are taken as a function of their
expected consequences. Computation is indeed also directed toward a goal,
which is its result (the thing that we compute), but that is hardly surprising,
given that computation is a kind of behavior—the kind we try to emulate in
computers. However, the converse assertion, that all behavior and cognition
are computational, does not follow, as we will discuss in more detail in
chapter 4. In the same way, it seems that we can store and retrieve memories
just like a computer, but it is the computer that was built to mimic some fea-
tures of human memory—indeed, the word memory originates from the
mental domain, not the engineering domain. It does not follow that the com-
puter literally remembers what you wrote when you open a text file.

Computationalism led to the development of symbolic artificial intelli-
gence, also known as “good old-fashioned artificial intelligence” (GOFAL), in
particular expert systems, which implemented logical inference on a base of
rules gathered from experts. Those systems made spectacular progress in the
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1960s to 1970s, raising high hopes, as recounted by Mitchell (2021). For ex-
ample, in 1960, Herbert Simon predicted that “machines will be capable,
within twenty years, of doing any work that a man can do.” Skeptics, such as
the philosopher Hubert Dreyfus (1978), explained that experts do not actually
rely on rules: it is beginners who use rules to guide their learning process. This
unpleasant rebuttal was dismissed, but expert systems were eventually aban-
doned in the 1980s.

Despite the failure of these approaches, the perspective introduced by com-
putationalism has remained dominant: cognition is a form of computation,
and neurons encode symbols used by the brain to compute.

One of the difficulties encountered by symbolic artificial intelligence was
with perceptual tasks, such as identifying an object. To address this difficulty,
a very different approach was introduced, which did not use symbolic rules:
connectionism.

Connectionism

The precursor of all artificial neural network models is the binary neuron
model of McCulloch and Pitts (1943). In that model, the neuron is seen as
either active or inactive, symbolized by o
or 1, a feature inspired by the all-or-none
law of neural excitation. It receives inputs
from other neurons, and its output activ-
ity is calculated as follows (figure 1.1):
take the weighted sum of the activity of
input neurons (weights are called synaptic
weights), and output 1 if the sum exceeds
a threshold (otherwise o). This makesthe ~ FIGURE 1.1. A network of binary
neuron implement alogical function with ~ neurons implementing the XOR
ninputs and 1 output. One can then build ~ operation. Binary inputs are
more complicated logical functions by ~ multiplied by weights (on edges),
connecting neurons together. In fact, Mc- and the output is 1 when the
Culloch and Pitts demonstrated that any result is greater than a threshold.
logical function from # inputs to m out-

puts can be implemented with an appropriately wired neural network. Thus,
the article was titled “A Logical Calculus of the Ideas Immanent in Nervous
Activity”

Philosophically, the model of McCulloch and Pitts stands with classical com-
putationalism (Dupuy, 2013): the state of each neuron represents a symbol with
true or false value, and the model implements propositional calculus. Mental
states are made of logical propositions. But in the 1950s and 1960s, Frank
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FIGURE 1.2. Rosenblatt’s perceptron (from Rosenblatt, 1962).

Rosenblatt started to apply it to visual tasks, under the name “perceptron”
(Rosenblatt, 1962; figure 1.2). There, the input variables represented light inten-
sity at photoreceptors, the output represented the recognition of an object, and
crucially, the synaptic weights were learned by association. The model did not
implement logical inference anymore. Instead, Rosenblatt interpreted the model
“in terms of probability theory rather than symbolic logic” and called his ap-
proach “connectionist” (Rosenblatt, 1958).

Despite initial interest in connectionism, it was abandoned a few years later
in favor of symbolic approaches, when Minsky and Papert (1969) demon-
strated the fundamental limitations of the perceptron. When expert systems
were abandoned in the 1980s, there was a renewed interest in connectionism,
triggered by the design of efficient learning algorithms for multilayer percep-
trons, such as backpropagation (Rumelhart et al., 1986), still in use in modern
artificial neural networks. Connectionism fell out of fashion again in the arti-
ficial intelligence community in the 1990s, in favor of more efficient statistical
learning algorithms, such as support vector machines (Cortes and Vapnik,
1995). It was revived in the 2010s, when improvements in model design, soft-
ware engineering techniques (such as automatic differentiation), as well as
computing power and data availability led to impressive results in different
areas, such as image processing (LeCun et al., 2015).

According to connectionism, cognition arises from the interaction of
many neurons, seen as simple stereotypical input—output devices. Learning
consists in modifications of the association strength between pairs of neurons,
summarized by a single parameter. Thus, connectionism is explicitly associa-
tionist, and therefore conceptually closer to behaviorism than to computation-
alism. Cognition is not logical calculus anymore, but a form of calculation more
akin to linear algebra. Furthermore, the activity of neurons in inner layers is not
associated to mental symbols anymore, but rather to intermediate computa-
tional variables.

These differences remain a major source of mutual criticism between the
two approaches. On one hand, (symbolic) computational models are
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essentially incapable of dealing with real sensory inputs, such as images. On
the other hand, connectionist models have great difficulties dealing with rela-
tional tasks, such as deciding whether an image contains two identical objects
(Kim et al., 2018), or with compositional tasks (Dziri et al., 2023), or generally
tasks that rely on abstraction (Lewis and Mitchell, 2024,).

Despite these differences, computationalism and connectionism are con-
ceptually related in many ways. Indeed, the model of McCulloch and Pitts was
an explicit inspiration of John von Neumann’s work on the electronic com-
puter in 1945 (von Neumann, 1993, as well as of Rosenblatt’s first connection-
ist model. Both computationalism and connectionism see cognition as a form
of computation, consisting in applying a series of elementary operations to an
input. This means in particular that cognition is an input—output process,
which takes data and maps it to a response. As Hendriks-Jansen pointed out
already in 1996, “most of the connectionist systems that have been built to date
are models in which the inputs and outputs are assigned by the programmer
following analysis of a particular task domain” (Hendriks-Jansen, 1996) —this
is still the case at the time of writing,

This view preserves the behaviorist concept of the stimulus: behavior is
made of responses to stimuli, except that there is now “cognition” between
perception and action—the “classical sandwich” model of cognition, as Susan
Hurley put it (Hurley, 2001). Indeed, in standard experimental sensory neu-
roscience, neural activity is almost invariably reported as a response to stimuli,
and activity unrelated to the stimulus is called “noise”™—as opposed to the
autonomous activity of the organism. This is obviously the experimenter’s
perspective.

The way computations are performed differs greatly between classical com-
putationalism and connectionism. Indeed, in a deep neural network model
that identifies faces, neurons of the hidden layers do not represent anything in
particular. This is why a common complaint about modern artificial networks
(deep learning in particular) is that they are not explainable: we cannot easily
explain what they do because the results of intermediate calculations are not
meant to be interpretable as symbols. However, neurons of the output layer
do represent: in a face recognition model, their activity represents the occur-
rence of a particular face. Therefore, the output remains symbolic, just like in
classical computationalism. Furthermore, since these output symbols must be
the inputs to some other computational networks—for example, those re-
sponsible for uttering the name of the face—connectionism still generally
commits to a symbolic view of cognition, both for inputs and outputs. There
are still “neural representations” or “neural codes” of mental content, in the
form of the activity of specific neurons or groups of neurons, but not all neu-
rons encode; only those at the input and output of designated cognitive
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functions. Thus, classical connectionism has a somewhat confused view of the
symbolic nature of cognition.

Connectionism also preserves the hardware/software distinction at the
heart of computationalism. In this case, software is the set of synaptic weights.
Neurons are input—output devices with a few knobs, but are otherwise rigidly
specified. This is a key requirement of modern connectionist models, where
the tuning of synaptic weights relies on formal differentiation of neural input—
output functions, as we will see in chapter 4.

Thus, although connectionism describes cognition in terms of the opera-
tion of “neurons,” the biological nature of neurons, or of the organism, plays
exactly no role, just like in classical computationalism. The facts that the organ-
ism lives and that brains develop (as opposed to being assembled) are
peculiarities of “implementation” with no theoretical significance.

Because biology is just implementation, both computationalism and con-
nectionism start from the cognitive problem being solved and then try to
figure out how the brain might solve it. This approach is typically called “top-
down”—the top being the mind. This is of course in line with the engineering
mindset: first, we describe what the machine should do; second, we design its
functional organization; third, we implement the functional description by
assembling components with the right specifications. This is essentially what
David Marr, a pioneer of computational neuroscience, proposed as the
methodology for modeling brains (Marr, 1982): start with the “computational
level,” the task that the model is supposed to achieve; then describe the
“algorithmic/representational level,” the algorithm that solves the task, at an
abstract level; and finally worry about the “implementation level,” how the
algorithm is realized in the brain.

Of course, this methodology makes perfect sense for artificial intelligence,
since in that case, we are indeed engineering the models. In neuroscience, an
alternative kind of methodology, which brands itself as more empirical (“data-
driven”), consists in measuring the different components of the brain as well
as the way they are assembled. This kind of approach is often called “bottom-
up.” Itis in fact also inspired from engineering, because parts of a living organ-
ism are conceived as parts of a machine.

Bottom-Up Neuroscience

An example of a bottom-up approach in neuroscience is the Human Brain Proj-
ect, which aimed at simulating an entire brain based on systematic large-scale
measurements of the properties of neurons and synapses. In this case, the
neuron models are not classical connectionist models with abstract variables
such as the “activity” of a neuron, but biophysical models taking the form of
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dynamical systems with measurable variables, such as the membrane poten-
tial. Those models were obtained from electrophysiological measurements in
animals. In the Human Brain Project, the measurements were statistical: mod-
els of typical neurons, and average connectivity between brain areas.

Other bottom-up projects rely on more systematic measurements. For ex-
ample, a technical approach known as connectomics aims at systematically
measuring the detailed synaptic connections between neurons in an entire
region or in the whole brain. The graph of connections is called the connec-
tome. According to its strongest supporters, connectomics should bring a
decisive contribution to the understanding of brains and cognition. For ex-
ample, Morgan and Lichtman (2013) assert that “it might not be so unrealistic
to hope that in staring into such a map we might get a glimpse of the human
mind,” and Seung (2012) claims that you literally are your connectome. Of
course, this is simply the expression of connectionism in its most radical form:
cognition is essentially specified by the connections between neurons.

Thus, bottom-up approaches also often embrace some variation of con-
nectionism, as well as the general framework of computationalism—in
particular, its terminology. That is, brains are described as implementing com-
putations, processing information, and so on. But in contrast with top-down
approaches, models of the brain are established by measurement, indepen-
dently of what the brain is supposed to achieve. Function is assumed to follow
from those measured properties. The implicit assumption is that, like in a
machine, the properties of parts are independent of the system in which it is
embedded (the “top”), and of what that system does. First come the parts with
their specified properties, and then they are assembled according to a plan.

But of course, this analogy with machines is fragile, because in a living or-
ganism, parts always grow within a functional system, and so the relation be-
tween “bottom” and “top” is circular, not unidirectional. As we will see in
chapter 3, this explains why the hopes of bottom-up approaches have not been
realized so far.

Brains Beyond Engineering
The Neurocomputational Patchwork

In practice, models of neuroscience (as opposed to artificial intelligence) do not
strictly adhere to either computationalism or connectionism in their classical
form but instead borrow concepts from both approaches. In the same way, mod-
eling is rarely purely top-down or bottom-up. For example, bottom-up ap-
proaches generally use properties of the “top” as constraints, although this is
rarely acknowledged (as we will see in chapter 3). Conversely, connectionist

For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

10 CHAPTER 1

approaches often take inspiration from structural peculiarities, such as the mod-
ular organization of the brain or the presence of dendrites. Some parts of brain
and mind studies are dominated by connectionism, such as systems neurosci-
ence, while others are dominated by classical computationalism, such as cogni-
tive science. The most empirically driven models of neuroscience are in fact
dynamical systems that are neither symbolic nor connectionist (such as the
Hodgkin-Huxley model).

Thus, brain theory consists of a heterogeneous patchwork of approaches
and models. Nonetheless, they share a common terminology borrowed from
engineering, in particular computer science: brains and neurons compute,
implement algorithms, encode objects and properties, represent and process
information, and so on. For example, Sydney Brenner, who pioneered the
neurogenetic study of C. elegans, a microscopic worm with 302 neurons, de-
scribes his approach as follows:

Behaviour is the result of a complex set of computations performed by
nervous systems and it seems necessary to decompose the problem into
two: one is concerned with how the genes specify the structure of the
nervous system, the other with questions of how nervous systems work to
produce their outputs. (Brenner, 1973)

Unlike bees, C. elegans cannot count, and so far, no one has found hints of
symbolic representations in its neurons. Thus, Brenner meant “computation”
in a much broader sense than classical computationalists do. Apparently, it is
not just that the animal can compute, but all behavior results from a kind of
computation implemented by the nervous system. This is typical of modern
neuroscience literature, a view that I shall refer to as neurocomputationalism:
neurons are conceived as formally specified input-output devices that com-
pute and implement the algorithms of cognition. But what is meant exactly by
“compute,” “implement,” and “algorithms” is often rather vague, and indeed
may differ substantially between approaches.

This terminology is not decorative: it is a theoretical commitment that
forms the scaffold of reasoning about brains as well as of model building.
Because the precise meaning of those words is often left unspecified, this
scaffold is fragile and often incoherent. (Do neurons compute in the sense of
connectionism, in the sense of computationalism, or do they just do some-
thing useful?) And because brains are not actually engineered, this scaffold is
often poorly fitted to the subject, as we will see. In this book, we will explore
the meaning of those words, and the extent to which they make sense when
talking about brains, including computation (chapter 4), representations and
codes (chapter ), information (chapter 6), prediction (chapter 7), and imple-
mentation (chapter 8).
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First, I want to make it clear why this choice of words is indeed a theoretical
commitment about how brains work.

Of Words and Theories

Many words we use to talk about brains come from our ordinary human ex-
perience. For example, we say that neurons communicate, or send messages.
These words originate from our social experience as a speaking species. We
use them for neurons because we recognize some features of communication
in the biological phenomenon: neurons of the retina produce electrical spikes
(action potentials) that are specific to the image being presented, and this se-
quence of spikes then travels along the axon, unchanged, up to the axonal
terminals, as if they were Morse code messages being delivered through the
nerves, from one neuron to the next. On the other hand, we know very well
that the receiving neuron does not literally “read the message,” neither does it
imagine the image that the message is supposed to stand for. There are features
of messages that seem relevant to describe the electrical activity of neurons,
and others that are not. When we say that spikes are messages, we focus on
those features that we find relevant. This point about language was made elo-
quently by Lakoft and Johnson in their classic book Metaphors We Live By
(Lakoff and Johnson, 1980): “What metaphor does is limit what we notice,
highlight what we do see, and provide part of the inferential structure that we
reason with.” For this reason, choosing a particular word from another domain
is a theoretical commitment. We will discuss communication metaphors in
more detail in chapter s, in the context of neural codes.

The most important engineering metaphor in biology is the machine
metaphor. In the modern view, living beings are machines, and brains are com-
puters, which are kinds of machines. We know this is a theoretical commit-
ment because the idea that living beings are machines is supposed to be an
insight. We know quite well what machines are in real life. If we were to point
out a rabbit to a ten-year-old and say, “look at this machine,” she would cer-
tainly object that it is not a machine but an animal. A machine is something
made by humans to do something useful for them, it is not autonomous, it
does not grow, it does not feed, and it does not feel. A ten-year-old, as well as
most adults, would certainly put machines and animals in different categories.
Thus, when the biologist Jacques Monod insists in Chance and Necessity
(Monod, 1970) that actually aliving organism is a molecular machine, he wants
to convey something important and not obvious about life. It is not just a
decorative term but a theoretical claim.

What was so important to Monod? Mainly, he wanted to oppose vitalism,
according to which organisms live thanks to a nonphysical vital fluid. By
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claiming that living organisms are machines, he meant that biological matter
follows the same ordinary laws of physics and chemistry as inert matter, and,
like machines, it is by virtue of its organization that the organism does what it
is supposed to do (living and reproducing), not thanks to a special substance.
A machine is made of components interacting together in certain ways so as
to support the function of the machine. In the same way, a biological organism
consists of a functional arrangement of organs—the digestive system, the cir-
culatory system, and so on—in the service of the maintenance and reproduc-
tion of the organism. Thus, Monod’s theoretical claim is that living organisms
are goal-directed functional organizations of ordinary matter.

This is not a trivial claim at all. Surely, we can recognize parts such as organs
in animals, but those are very unlike the parts of machines. Organs grow, for
example. At the microscopic level, the molecular content of a cell changes in
composition, number, and localization, at timescales of milliseconds to years.
It is not so obvious how this molecular maelstrom can be conceptualized as
components to which we can assign functions, like the functional diagram of
amachine.

In fact, Monod also meant that living organisms are machines in the sense
that their processes are essentially mechanical—that is, that their parts follow
deterministic local interactions between discrete elements, mostly based on
shape, like the solid macroscopic objects of our ordinary experience. Monod
used the word “clockwork.” This is the idea of the standard “key-and-lock”
concept of molecular biology, according to which the shape of a protein de-
termines its function. However, the claim that living processes are essentially
mechanical in this narrow sense is demonstrably false, as Daniel Nicholson
has clearly argued (Nicholson, 2019), and as we will see in the next chapter. A
common example in the brain is the action potential, which is produced by
spatially separated ionic channels that interact nonspecifically at a distance.

Thus, by claiming that living organisms are machines, Monod makes three
assertions, corresponding to three features of machines. The first is that,
like machines, living organisms are made of ordinary matter, following the
same laws of physics and chemistry as inert matter. This is fairly consensual.
The second is that living organisms are organized like machines, with parts
arranged so as to ensure the function of the whole system. This is questionable
or at least ambiguous (what are “parts”? what is “function”?). The third is that
living processes are mostly mechanical, essentially deterministic local interac-
tions between discrete objects (he had proteins and nucleic acids in mind).
This is demonstrably false.

This illustrates several important points about words and theories. First,
the choice of engineering words is a theoretical commitment. When we
use the word machine to designate living beings, we refer to some features of
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machines that we think are shared by living beings. This is a convenient way
to make theoretical claims about how living beings work. These claims may or
may not be correct or may need to be substantiated. Second, strict identifica-
tion as in “organisms are machines” or “neurons compute” is a great source of
confusion. In what sense are living organisms machines? Are they made of
parts? Assembled? Are they mechanical? Are they lawful? Are they engi-
neered? These are very different claims. If one needs to carefully explain in
what exact sense organisms are machines, and if different people pick different
features, then organisms are not actually machines. They are somewhat similar,
and somewhat different. This acknowledgment is crucial for conceptual
clarification.

Biological Cognition

Cognition is a property of (at least some) living organisms. Perception, cogni-
tion, agency, free will, and consciousness are all biological phenomena. Even
though we might try to replicate those phenomena in artifacts, the primary
empirical source remains biology. Yet, strikingly, the study of cognition ap-
pears to be a branch of computer science rather than of biology. This dismissal
of biology is even explicitly embraced by classical cognitive scientists, a view
known as functionalism—Dbiology is just “implementation.” In neuroscience,
the standard terminology of brain theory largely refers to a nonbiological
world, the world of machines made by humans—computation, implementa-
tion, algorithms, codes, optimization. . . . Ironically, scientists have abandoned
the idea that living organisms have been designed by God, only to adopt a
model of the living based on artifacts made by an engineer. Thus, Monod ridi-
cules vitalism as some sort of magical belief, but then identifies living organ-
isms with machines, those artifacts made by humans for a purpose using
knowledge and planning. Is this a scientific view on life, or monotheism reject-
ing paganism?

The idea that animals result from intelligent design is scandalous to a sci-
entist. Yet, it appears to make very little difference to the way we think about
brain and mind. On the contrary, I assert that a proper understanding of life,
beyond engineering preconceptions, is crucial to an understanding of its cog-
nitive properties.

Why are living organisms compared to machines in the first place, rather
than to any complex physical system like the climate? The reason is that ma-
chines are goal-directed, like living organisms. But the goals of machines are
just the goals of their engineers, and therefore the machine view does not actu-
ally address the issue of goals, which means that the choice of the machine
metaphor has no ground. As we will see in the next chapter, the reason why
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living organisms have goals is not because they are machines, but because they
are precarious entities that must exchange matter and energy with their envi-
ronment in order to maintain themselves. Cognitive properties are rooted in
these facts of life, not in their presumed mechanistic nature.

Living organisms must feed. They have no material persistence. They
develop by division. They evolve with no plan or direction. They are autono-
mous. This book explores the consequences of these facts of life for the under-
standing of brains, cognition, and behavior. I will start by presenting a modern
view oflife in the next chapter. In the rest of the book, we will use these lessons
oflife to revisit the standard concepts of brain theory. In chapter 3, I will ques-
tion the reductionist preconceptions of “bottom-up” (reverse-engineering) ap-
proaches. In chapter 4, I will argue that brains are not biological computers in
any useful sense. In chapter s, I will explain that neural codes (or neural repre-
sentations) are a misleading engineering concept, which does not stand empiri-
cal scrutiny, and which is theoretically incoherent when applied to brains. In
chapter 6, I will show that the neuroscientific concept of information is prob-
lematic in a biological setting, because it is framed as what the engineer can
recover from a signal, and the engineer always uses preexisting knowledge in
addition to the signal. In chapter 7, I will argue that anticipation is the core
property that theories of cognition try to explain, but that its common iden-
tification with prediction is mistaken. Instead, I will develop an account of
anticipation as the exploitation of regularities, rooted in the precarious nature
of life. In chapter 8, I will show that the concept of implementation introduces
a biased view of the organization of brain processes, mirroring the way we
make devices rather than accounting for the autonomy of life. I will end the
book on an alternative view of organisms and brains as colonies of living enti-
ties, and outline what it implies for the development of brain theory.
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