Table of Contents

Foreword to the Princeton Science Library Edition	1X
Preface to the Expanded Edition	XII
Preface (1983)	XV
Introduction	3
Chapter 1. Diffusion: Microscopic Theory	5
One-dimensional random walk	6
Two- and three-dimensional random walks	11
The binomial distribution	12
The Gaussian distribution	14
Chapter 2. Diffusion: Macroscopic Theory	17
Fick's equations	17
Time-dependent solutions to Fick's equations	21
Steady-state solutions to Fick's equations	25
Chapter 3. Diffusion to Capture	37
Probability of capture	38
Mean time to capture	42
Chapter 4. Diffusion with Drift	48
Random walk with drift	48
Fick's equations for diffusion with drift	50
Viscous drag	51
Sedimentation rate	58
Electrophoresis	62
Chapter 5. Diffusion at Equilibrium	65
Derivation of the Boltzmann equation	68
The importance of kT	70
Mean-square velocity	71
Einstein-Smoluchowski relation	71

vi—Table of Contents

Equilibrium sedimentation	72
Density-gradient sedimentation	73
Isoelectric focusing	74
Chapter 6. Movement of Self-propelled	
Objects	75
Life at low Reynolds number	75
Flagellar propulsion	78
Motility of Escherichia coli	81
Rotational diffusion	81
Random changes in direction	85
Poisson statistics	86
Bacterial diffusion	93
Chapter 7. Other Random Walks	95
Countercurrent distribution	95
Partition chromatography	100
Sedimentation field-flow fractionation	102
Autocorrelation analysis	105
Appendix A. Probabilities and Probability	
Distributions	111
Probabilities	111
Probability distributions	113
The binomial distribution	118
The Gaussian distribution	121
The Poisson distribution	123
Appendix B. Differential Equations	125
Ordinary differential equations	125
Partial differential equations	129
Numerical solutions	131

Table of Contents-vii

Appendix C Addendum to Chapter 6	134
Strategies for chemotaxis	134
Movement of cells across artificial membranes	136
Movement of ions across cell membranes	139
Appendix D Constants and Formulas	143
Bibliography	145
Index	149

Introduction

Biology is wet and dynamic. Molecules, subcellular organelles, and cells, immersed in an aqueous environment, are in continuous riotous motion. Alive or not, everything is subject to thermal fluctuations. What is this microscopic world like? How does one describe the motile behavior of such particles? How much do they move on the average? Questions of this kind can be answered only with an intuition about statistics that very few biologists have. This book is intended to sharpen that intuition. It is meant to illuminate both the dynamics of living systems and the methods used for their study. It is not a rigorous treatment intended for the expert but rather an introduction for students who have little experience with statistical concepts.

The emphasis is on physics, not mathematics, using the kinds of calculations that one can do on the back of an envelope. Whenever practical, results are derived from first principles. No reference is made to the equations of thermodynamics. The focus is on individual particles, not moles of particles. The units are centimeters (cm), grams (g), and seconds (sec).

Topics range from the one-dimensional random walk to the motile behavior of bacteria. There are discussions of Boltzmann's law, the importance of kT, diffusion to multiple receptors, sedimentation, electrophoresis, and chromatography. One appendix provides an introduction to the theory of probability. Another is a primer on differential equations. A third lists some constants and formulas worth committing to memory. Appendix A

4—Introduction

should be consulted while reading Chapter 1 and Appendix B while reading Chapter 2. A detailed understanding of differential equations or the methods used for their solution is not required for an appreciation of the main theme of this book.

Index

adsorber, diffusion to: disk-like, high-pressure liquid, partition, 100-101 27–28, 30–33; ellipsoidal, 29; planar, 18-19, 41-46; sphericoefficient, see diffusion coeffical, 26-27, 38-41, 47 cient; frictional drag coefficient; agarose, 64 partition coefficient; viscosity coefficient ampholytes, 74 aperture, circular, diffusion compound events, 112–113 through, 28, 34-36 convective flow, 15-16, 60, autocorrelation, 105-110 63 - 64correlation time, 50, 109 axon, 139-141 countercurrent distribution, bacterium: chemotaxis of, 94, 95 - 100134–138; diffusion of, 93–94, 134-138; inability to coast, density gradient, 15, 60-61, 76-77; propulsion of, 78-81; 73-74, 125-128, 131-133 Reynolds number of, 75–76 differential equations: numerical barrier, reflecting, planar, 34–36, solutions to, 131-133; ordi-43-45 nary, 125–129; partial, 129-131. See also diffusion binomial: coefficient, 118; distribution, 13, 118-121 equation; heat equation; Laplace equation; Poisson Boltzmann: constant, 5, 142; distribution, equation, 66-70, 72, equation 102-104, 143 diffusion: bacterial, 93-94; cur-Bose-Einstein statistics, 70 rent, 27-36, 39, 41-42; in a Brownian movement, 5, 77, 134 Boltzmann distribution, 67–68, bubble, viscous drag on, 56 103-104; in a pipe, 23-25, buoyancy, 58-59, 73-74 130–133; from a point source, 22-23; through a circular aperture, 28, 34-36; to an adsorbcapacitance, electrical, 29 capture: mean time to, 42-46; ing disk, 27–28, 30–33, 36; to probability of, 38-42, 46-47 an adsorbing ellipsoid, 29; to cells: diffusion through pores bean adsorbing sphere, 26–27, 38-41, 47; with drift, 48-51, tween, 35; diffusion to receptors on, 30-33; movement 94, 134-138 across membranes, 136-138; diffusion coefficient: of disk, elsedimentation of, 56, 62 lipsoid, 56-58; of small molecentrifuge, 58-62, 72-74 cule in air, 16; of small molecule in water, 10, 16, 142; cesium chloride, 64, 73 of sphere, 56, 83, 142; rotachemotaxis: bacterial, 94. 134-138; strategies for, tional, definition of, 81–83; 134-136 translational, definition of, 10,

chromatography: autocorrelation analysis of, 106–109; gas,

18 - 19

diffusion equation: derivations,

150-Index

equation

diffusion equation (cont.)

17-21, 50-51; including drift, 50-51; steady-state solutions of, 25-36, 38-39, 41-42; time-dependent solutions of, 21-25, 131-133 diffusion resistance, 31-36 disk: diffusion to, 27-28, 30-33, 36; viscous drag on, 56-58, 84 - 85distribution, see binomial distribution: Boltzmann distribution: Gaussian distribution; Poisson distribution: Poisson interval distribution DNA: diffusion of repressor along, 44-45; separation of, 64, 74 gel, 64 drag, see viscous drag drift, random walk with, 48-50, 94. 137-138 droplet, viscous drag on, 56 effective mass: definition of, 58; of a sphere, 62 Einstein-Smoluchowski relation, 139 - 14149, 71-72 electrical analogue: for diffusion current, 29, 31-34; for mean time to capture, 46 electrical potential, across membrane, 139-141 electrophoresis, 62-64, 74 Laplacian, 21 ellipsoid: diffusion to, 29; viscous drag on, 56-58, 84-85 equilibrium: distribution, 65-70, 135–136; sedimentation, 72–74 error function, 22-23 escape, see capture Escherichia coli, see chemotaxis; motility expectation value, see mean value Fermi-Dirac statistics, 70 Fick's equation, see diffusion

flagellum, see propulsion flow, see viscous flow flux: of bacteria, 135-138; of diffusing particles, 17-21; of ions, 139-141 frictional drag coefficient, rotational: definition of, 82; of disk, ellipsoid, sphere, 83–85 frictional drag coefficient, translational: definition of, 49; of bubble, disk, droplet, ellipsoid, sphere, 56–58

fish, Reynolds number of, 76

Gaussian distribution, 14-16, 22, 73, 121–123 Goldman equation, 140

heat equation, 21

ion: electrophoresis of, 62-64, 74; isoelectric focusing of, 74; movement across membrane of, isoelectric focusing, 74

kinetic energy, 5, 71, 81 kT, 5, 70-71, 81, 142

Laplace equation, 35, 47, 131 leaves, see stomata lysozyme, 5, 14, 58, 101

mean value: definition of, 114-115; of velocity of molecules during chromatography, 99, 105, 107. See also binomial distribution; Gaussian distribution; Poisson distribution: Poisson interval distribution mean-square: angular displacement, 82, 143; displacement, 9-10, 142; velocity, 5, 71. See

also root-mean-square membrane: movement of bacteria across, 136–138; movement of ions across, 139–141; potential, 139–141 methylcellulose, 53 micropipette, as a point source, 22–23 motility, bacterial, 75–86, 91–94, 134–138 mutually exclusive outcomes, 111

Nernst potential, 141 normal curve of error, 122–123 normal distribution, see Gaussian distribution numerical methods for solving differential equations, 131–133. See also simulation

ordinary differential equations, see differential equations

partial differential equations, see differential equations partition: chromatography, 100-101; coefficient, 96 pH gradient, 74 pheromones, detection of, 34 pipe: diffusion in, 23-25, 131–133; flow through thin rectangular, 53-54 plating bacteria, 90 point source, diffusion from, 22 - 23poise, units, 52 Poisson: distribution, 88–89; 123-124; equation, 46, 131; interval distribution, 87–88 polyacrylamide, 64, 100 power, to push cell, 77 pressure, driving flow, 53-54 probability: classical or a priori,

111; conditional, 112; distribu-

tions, 113–118; of capture, 37–42, 46–47; machine, 117 propulsion, flagellar, 78–79

radioactive decay, 90-91 random changes in direction, 85-86, 93-94 random walk: biased, 50, 94, 97, 134-138; computer simulation of, 11-12, 68, 91-92, 104; in one dimension, 6-7, 48-50, 81-82; in two, three dimensions, 11–12, 81, 83–84, 91-92; rotational, 81-82; step length, 14; step rate, 14; with drift, 48-50 receptors: bacterial, 134; diffusion to, 30-33resistance, diffusion, 31-36 Reynolds number, 75–76 ribosome, 59, 63 root-mean-square: displacement, 9-10; velocity, 5, 60. See also mean-square rotational diffusion, 81-85 runs, bacterial, 80-81, 86, 91-94. 134-136

scale height, 67, 103 Schlieren optics, 61 sedimentation: equilibrium, 65–68, 72–74, 102–103; fieldflow fractionation, 102-105; rate, 58–62 separation: by countercurrent distribution, 95-100; by densitygradient sedimentation, 73-74; by electrophoresis, 62-64; by isoelectric focusing, 74; by partition chromatography, 100-101, 106-109; by sedimentation field-flow fractionation, 102-105; by sedimentation rate, 58-62; criterion for, 97-

S. units. 59

152-Index

separation (cont.) 98; of variables, 126-127 simulation: of bacterial motion, 91-92; of diffusion in Boltzmann distribution, 68; of diffusion in field-flow fractionation, 104; of diffusion in finite pipe, 131–133; of elution profiles in field-flow fractionation, 105; of Poisson process, 91; of random walk, 11–12, 68, 91–92, 104; of successive trials, 117 sodium dodecyl sulfate, 64 source, diffusion from: planar, 18-19, 34-35, 41-42; point, 22–23; spherical, 38–39 sphere: adsorbing, 26-27, 38-41, 47; diffusion coefficient of, 56, 83, 142; effective mass of, 62; probability of capture by, 38-41, 47; sedimentation rate of, 62; viscous drag on, 55-56, 83, 142; with disk-like adsorbers, 30-33 standard deviation: definition of, 115; of velocity of molecules during chromatography, 99, 106-108. See also binomial distribution; Gaussian distribution; Poisson distribution; Poisson interval distribution

statistical independence, 112 stomata, diffusion through, 36 stoke, units, 52 Stokes' law, 55 sucrose gradient, 15, 60–61, 64, 125–128, 131–133 Svedberg equation, 59

torque: on a flagellar filament, 78–79; on a particle in a viscous medium, 82; on a swimming cell, 78 tumbles, bacterial, 80–81, 86, 91–94, 134–136

variance, see standard deviation viscosity coefficient: definition of, 52; of air, water, glycerol, 52 - 53viscous drag: on a bubble, 56; on a disk, 56-58, 84-85; on a droplet, 56; on a flagellar filament, 78–79; on a sphere, 55-56, 83, 142; on a swimming cell, 78; on an ellipsoid, 56-58, 84-85 viscous flow: around a sphere, 54-55; basic equation for, 54; through a thin rectangular channel, 53-54 viscous shear, 51-53, 55, 75