© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

CONTENTS

	FOR IN	Structorsxii	ii
	Rethin	ended Audience: The Broad Category of Honors Students	ii
	_	es in Pedagogical Practices	
	Opport	unitiesxv	11
	PREFAC	Exi	X
	Studen	t Perspectives x	X
	What V	Ve Owe a Student in a Revised Introductory Honors	
	Me	chanics Curriculumxx	i
		t Outcomes: What Is at Stake?	
	What I	Oo We Gain? xxi	iv
	A C K N I C)WLEDGMENTSxx	
	ACKING	DYVLEDGINEINTS XX	V
PART	1		
Kinen	atics: 7	ime, Space, Energy and Momentum	1
1	Relati:	vistic Kinematics; Time and Space	3
•	1.1	, 1	3
	1.1	1.1.1 Introduction: Classical Mechanics as the Limiting Cases of SR	J
		<u>c</u>	3
			4
	1.2	· · · · · · · · · · · · · · · · · · ·	4
	1.3		5
		1.3.1 The Lorentz Invariance of Electric Charge and the Speed	
		of Light	5
	1.4	<u>.</u>	5
		1.4.1 First Gedanken Experiment: Time Dilation	
		1.4.2 Second Gedanken Experiment: Lorentz Contraction	Λ

		1.4.3 Third Gedanken Experiment: Simultaneity Is Not Lorentz Invariant	1.2
		1.4.4 The Velocity β and Lorentz Factor γ ; Identities and Generalizing	13
		to 3-Dimensions	14
	1.5	A Coordinate System that Accounts for Light Travel Time	
	1.5	1.5.1 A Cartesian Coordinate System in 3-Space	
		1.5.2 Extending the 3D Coordinate System to Account for Light	10
		Travel Time	16
		1.5.3 The 4-Vector $x^{\mu} = (ct, x, y, z)$	
		1.5.4 The Invariant Length of a 4-Vector	
		1.5.5 The Non-Cartesian Metric: The Minus Sign	
	1.6	Lorentz Transformations Between Frames.	
		1.6.1 The Transformation Equations From Casals' Frame to Primrose's Frame	
		1.6.2 Conventions for the Units of Time and Space	
		1.6.3 Putting the Factors of <i>c</i> Back in by Dimensional Analysis	
	1.7	Problem Set 1: Vectors, Time Dilation, Lorentz Contraction, Simultaneity,	
		and the Lorentz Transformation	
2		sformations as Operators Acting on Vectors in a Space	
	2.1	Introduction	
	2.2	Events as Points in Time and Space	
	2.3	Lorentz Transformations, Indices, Vectors and Matrices	
		2.3.1 Transforming Events from One Frame to Another	29
		2.3.2 Rotations as a 3×3 Subset of the Transformation in	20
		4-Dimensions	
		2.3.3 Indices	
		2.3.4 Vectors	
	2.4	2.3.5 Matrices	
	2.4	Transformations as Operators Acting on Vectors in a Space	
	2.5	What We Have Gained With a Lorentz-Invariant Language	
		2.5.1 A Comprehensive Description of Boosts and Rotations	
		2.5.2 The Transformation Properties of 4-Vectors	
		2.5.3 The Matrices Represent a Group	
	2.6	2.5.4 Parts of Speech: Lorentz Scalars, Vectors, and Tensors	
	2.6	Successive Lorentz Transformations; an Example	
	2.7	2.6.1 The Law of Addition of Velocities	
	2.7	The Invariant Length of a Vector.	
	2.0	2.7.1 Time-like and Space-like Intervals Between Two Events	38
	2.8	Problem Set 2: Transforming Events, Histories in Different Frames;	20
		Rotations and Boosts	39
3	Relat	vivistic Kinematics; Energy and Momentum	45
	3.1	Introduction	45
	3.2	Conservation of Energy and Momentum	45

		3.2.1 Mass: The Total Energy <i>E</i> of a System in Its Rest Frame	46	
		3.2.2 Units for Energy <i>E</i> , Momentum <i>p</i> , and Mass <i>m</i>	46	
		3.2.3 Relationships of Energy E and Momentum p to Mass m for		
		a Particle	47	
	3.3	The Invariant Length of p^{μ}	47	
	3.4	The "Master" Relationship $E^2 = p^2 + m^2$	48	
		3.4.1 Photons: Energy and Momentum	48	
		3.4.2 Summary and Comment on Memorization	48	
	3.5	Problem Set 3: Energy and Momentum; Relativistic Kinematics	49	
4	The 1	The Non-Relativistic Limit $c \to \infty$ and Newtonian Mechanics		
	4.1	Introduction	55	
	4.2	Expanding γ in Powers of the Small Quantity v/c	55	
	4.3	Kinetic Energy for $v << c$: $T = \frac{1}{2}mv^2$	56	
	4.4	Momentum: $\vec{p} = m\vec{v}$	56	
	4.5	Non-Relativistic Addition of Velocities: The Galilean Transformation	57	
	4.6	Systems of Particles and the Center-of-Momentum Frame	58	
	4.7	Non-Relativistic (NR) Collisions		
		4.7.1 Collisions in Laboratory and Center-of-Mass Frames		
		4.7.2 Transforming from the Lab Frame to the CM Frame or		
		Vice Versa	59	
	4.8	Elastic Collisions	60	
		4.8.1 Setting up a 2-Body Elastic Scattering Problem	60	
		4.8.2 Example 1: Equal Masses	61	
		4.8.3 Example 2: Head-On Collision with a Particle at Rest	61	
		4.8.4 Inelastic Collisions	62	
	4.9	Problem Set 4: Newtonian Kinematics	63	
5	Non-	Non-Relativistic Dynamics: Newton's Second Law, Force, Work		
	5.1	Introduction	67	
	5.1	5.1.1 Defining the Force \vec{F} on an Object with Mass m	67	
		5.1.2 Force Is Proportional to the Time Derivative of Momentum Rather		
		Than of Velocity		
	5.2	Solving Problems with Newton's Laws—Forces		
	5.2	5.2.1 Free-Body Diagrams		
		5.2.2 A Recipe	68	
		5.2.3 Example: The Atwood Machine	69	
	5.3	Newton's Third Law: Equal and Opposite Pairs of Forces	72	
	5.4	Work: The Energy Transferred by a Force	73	
	5.1	5.4.1 Integrating <i>dW</i> Along a Path: Total Energy Expended	73	
		5.4.2 Example: Calculating the Work Done by George Moving a Mass	75	
		on a Closed Path in the Vertical Plane	73	
		5.4.3 Getting the Sign of Work Correct the Feynman Way	75	
		5.4.4 The Recipe for Calculating a Path Integral	75	
	5.5	Problem Set 5: Work, Conservative Forces, Simple Path Integrals	76	
	5.5	1 Toolem Set 3. Work, Conservative Porces, Simple Path Integrals	/ (

PART II

		Fravitational Potential, Angular Momentum, Rigid Bodies, Force Motion	. 81
6	Cons	ervative Forces, the Potential $V(r)$, and Force $\vec{F} = -\vec{\nabla}V(r)$. 85
	6.1	Force as the Derivative of a Potential.	
	6.2	Conservative Forces	
	0.2	6.2.1 The Integral Condition $\oint \vec{F} \cdot d\vec{s} = 0$ for a Conservative Force	. 86
		6.2.2 Examples of Conservative and Non-Conservative Forces	. 87
	6.3	Potential	
	0.5	6.3.1 Force as the Gradient of the Potential	
	6.4	The Differential Operator ∇ and the Gradient $\nabla f(x, y, z)$	
	٠	6.4.1 Calculating Force from the Potential: Two Gravitational	
		Examples	. 89
		6.4.2 The Differential Condition $\nabla \times \vec{F} = 0$ for a Conservative	
		Force	. 90
		6.4.3 Conservation of Energy: E = V + T	
	6.5	Our World of Macroscopic Conservative Forces: Gravity and	
		Electro-Magnetism	. 93
		6.5.1 The Gravitational Force: Newton's Law of Gravitation	
		6.5.2 The Electrostatic Force: Coulomb's Law	
	6.6	Hooke's Law and Simple Harmonic Motion	
		6.6.1 The Linear Restoring Force and the "Spring Constant" k	
		6.6.2 Harmonic Functions: Sines and Cosines as Solutions	
		6.6.3 Taylor Expansion of the Bottom of a Potential Well: Simple	
		Harmonic Oscillations.	. 95
	6.7	A Taking Stock; A Partial Summary	
	6.8	Problem Set 6: Conservative Forces, Potential $V(\vec{r})$, $\vec{F} = -\nabla V(\vec{r})$,	
		SHM	. 97
7	Angu	lar Momentum	101
	7.1	Introduction	
	7.1	Angular Momentum \vec{L} of a Particle Moving Relative to an Origin	
	1.2	7.2.1 Properties of \vec{L}	
	7.3	Why Does Angular Momentum Seem Difficult to Grasp?	
	7.4	$d\vec{L}/dt$ and Torque $\vec{\tau}$	
	7.5	Velocity and Acceleration in Polar Coordinates	
	1.5	7.5.1 Rate and Direction of Change of the Unit Vectors	
		7.5.2 Velocity in Polar Coordinates	
		7.5.2 Velocity in Folar Coordinates	
		7.5.4 Acceleration in Polar Coordinates	
	7.6	Centripetal Force and the Coriolis Effect.	
	7.0	7.6.1 Centripetal Force	
		7.6.2 The Coriolis Effect	
		7.0.2 The Contons Effect.	. 100

	7.7	Circular Motion	108
		7.7.1 Uniform Circular Motion	
		7.7.2 The Golden Rule of Circular Motion	109
		7.7.3 The Fictitious Centrifugal Force	110
		7.7.4 Angular Momentum in Polar Coordinates	
	7.8	Problem Set 7: Angular Momentum; Torque, Velocity and Acceleration	
		in Polar Coordinates, Circular Motion	
8	Rigio	l Bodies, the Moment of Inertia Tensor, Collisions	
0	_	Chasles' Theorem	115
	8.1	Introduction	
	8.2		
	0.2	Chasles' Theorem	110
			117
	8.3	Angular Momentum about the CM	
	8.3	Matrix Relationship of \vec{L} and $\vec{\omega}$	11/
		ε ,	117
		CM Frame.	
		8.3.2 The Moment of Inertia Tensor <i>I</i>	11/
		8.3.3 Angular Momentum and Moments of Inertia in Index	110
		Notation	
		8.3.4 Kinetic Energy of Rotation, T	
		8.3.5 Calculating the Matrix Elements of the Inertia Tensor	
		8.3.6 Summary of the Matrix Elements of \vec{l} in Tensor Notation	121
	8.4	The Moment of Inertia <i>I</i> for a Uniform Axially-Symmetric Body	
		Rotating about the Axis of Symmetry	122
		8.4.1 Calculating the Moment of Inertia for Some Common	
		Axially-Symmetric Bodies	123
	8.5	Problem Set 8: Chasles' Theorem, Rigid Bodies, the Moment	
		of Inertia Tensor	125
0	<i>a</i> .		100
9		ral-Force Motion	
	9.1	Introduction	
	9.2	The Central Force Two-Body Problem	
	9.3	The Equivalent One-Body Problem	
		9.3.1 Calculating the Reduced Mass μ	
	9.4	Elliptical Orbits: The Orbit Equation $r(\theta)$	
		9.4.1 The Two Ellipse Parameters <i>a</i> and <i>b</i>	
		9.4.2 The Two Ellipse Parameters α and ϵ	134
		9.4.3 Finding the Minimum (Perihelion) and Maximum (Aphelion)	
		Radii of the Orbit	
		9.4.4 Relating the Semi-Latus Rectum and the Semi-Major Axis	135
	9.5	Motion of a Mass of Energy E and Angular Momentum L in	
		a Potential Well	
		9.5.1 The Angular Momentum Barrier	136

	9.5.2	The Effective Potential: Substituting $L^2/2mr^2$ for the Angular	
		Kinetic Energy $T_{\dot{\theta}} = \frac{1}{2}m(r\dot{\theta})^2$	
	9.5.3	Visualizing the Orbit Dependence on the Physical Parameters <i>E</i> , <i>L</i> , and <i>k</i>	
9.6	Vicual	izing the Radial Behavior: Velocities at Aphelion, Perihelion	
9.7		's Three Laws	
J.1	9.7.1	Kepler's First Law	
	9.7.2	Kepler's Second Law	
	9.7.3	Kepler's Third Law	
9.8		m Set 9: Central Force Motion, Kepler's Laws	
APPF1	NDIX		144
A.1		matical Methods and Conventions	
Α.1	A.1.1	Vector and Matrix Multiplication	
	A.1.1	Total and Partial Derivatives	
	A.1.2 A.1.3	Taylor and Maclaurin Series, and the Ubiquity of	170
	11.1.5	Approximation	148
	A.1.4	Imaginary Numbers and the Unit Circle: Euler's Formula	
	A.1.5	Cartesian, Polar, Cylindrical, and Spherical Coordinates	
	A.1.6	Projection Operators	
	A.1.7	Differential Operators, and the Vector Differential Operator Del	100
		in Cartesian Coordinates	
	A.1.8	The Levi-Civita and Kronecker Delta Symbols	
	A.1.9	The Einstein Summation Convention	
RECC	MMENDE	ED READING	159
Suppl	lementary	Texts	159
		Textbooks on Classical Mechanics	
		e, History, and Humor	
		text: Original Papers	
		delines	
GLOS	SARIES		163
Gloss	ary for th	e Text	163
		roblem Sets 1 and 3	
REFER	rences		167
IN IDE	,		1.71

Relativistic Kinematics; Time and Space

Sometime in the early 1970's, Eugene Wigner, one of the architects of Quantum Mechanics and also a very thoughtful philosopher of science [3], was invited to the University of Chicago to give a talk. The conference room, with high windows and ancient stuffed leather chairs used for the weekly faculty-only seminar, was in the old Research Institutes building that housed the Franck and Fermi Institutes. Wigner's talk had been publicly advertised in Chicago; unusually, in the audience there were many old men wearing Eastern European (read Hungarian) suits from the early 20th century.

Wigner gave his talk (I don't remember the topic—it may have been Civil Defense). When he concluded the host asked for questions. From the back of the room an ancient man in an ancient suit asked, "Professor Wigner, do you think we will ever understand it all—that is, we will have a Theory of Everything?" Wigner replied: "Let me tell you a story."

"I had a dog once—a very smart dog. He was so smart: I taught him to beg, to shake hands, to roll over. He learned so quickly that I decided I should teach him to solve Diophantine equations. But you know, it was just beyond that dog."

1.1 Foundations of Classical Mechanics

1.1.1 Introduction: Classical Mechanics as the Limiting Cases of SR and QM

Classical Mechanics gives only an approximate description of motion, as it is a limiting case of each of two *theories*, Special Relativity and Quantum Mechanics (Figure 1.1). Starting with the relativistic expressions for energy and momentum we will derive in just a few lines the classical (approximate) expressions under the assumption that the speed of light is infinite. The classical limit of Quantum Mechanics (QM) is more subtle as QM is non-local in space and time. The limit is

4 CHAPTER 1

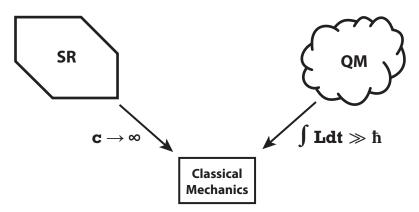


Figure 1.1. Classical Mechanics is approximate, as it is a limiting case of each of two theories, Special Relativity (SR) and Quantum Mechanics (QM). For Special Relativity, the classical approximation corresponds to a world in which the speed of light is infinite, so that we see "everything happening everywhere all at once," i.e., we ignore the time it takes light to arrive from its multiple sources. For Quantum Mechanics, the approximations hold when the energies of a moving object are high enough so that, speaking loosely, effects due to the wave nature of matter integrate to zero along all paths that differ measurably from the classical path.

unfortunately beyond the scope of a one-quarter introductory course, but may be a good subject for an introductory talk in a Discussion Session or office hours after we have learned about path integrals.

1.1.2 Principles of Invariance

Our introduction to classical mechanics rests on three principles. To state them correctly will take developing a small vocabulary for the conditions under which they apply. However, we can loosely state them here now: 1) the laws of physics should be the same for all non-accelerating observers (Lorentz invariance); 2) the laws of physics should be the same at all spatial locations (invariance under translations in space); 3) the laws of physics should be the same at all times (invariance under translations in time). These principles lead to a remarkably concise and elegant description of motion of objects in the classical physical world. Developing this description and a corresponding physical intuition in a concise mathematical language is the subject of the course.

1.2 Inertial Frames

Newton's First Law¹ states that:

All bodies at rest remain at rest or if in uniform linear motion continue in that motion unless compelled to change their state by an applied external force.

¹ Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare [8].

A reference frame in which Newton's First Law is true is called an Inertial Frame. This may seem like a tautology (true by definition), but isn't. If in a frame any object follows Newton's First Law, then all other objects will also obey the Law, and the frame is inertial.

It is easy to think of counter-examples to Newton's First Law, e.g., rotating frames such as merry-go-rounds, cars going around a curve, or a train accelerating smoothly from a stop. If you have ever tried to walk in a straight line across a merry-go-round in an arcade, you will appreciate George Atwood's First Law of Classical Mechanics:

If asked to work in a non-inertial frame, just say "NO."

1.3 Lorentz Invariance: The Principle of Special Relativity

We state the Principle of Special Relativity as:

The Laws of Physics are the same in all inertial frames, i.e., there are no preferred inertial frames of reference.

Let's take this for now to mean that the mathematical description of motion, for example the equations of motion for a particle, are the same in all inertial frames. The transformation of quantities from one inertial frame to another is called a Lorentz transformation, and invariance under a Lorentz transformation we will take to be a requirement to be a Law of Physics.

1.3.1 The Lorentz Invariance of Electric Charge and the Speed of Light

You may have been taught that the Principle of Relativity is "The speed of light is the same for all observers" [9]. Remarkably, electromagnetic waves (e.g., light), gravitational waves, and massive elementary particles all share the same value of c. We habitually call it "The Speed of Light," but it is a much more general phenomenon than purely electro-magnetic, with c being the ratio of length in space to length in time [6]. We have a highly parochial view of the Universe, limiting it to the very small fraction² that interacts electromagnetically [5].

1.4 Einstein's Three Gedanken Experiments

To describe motion of an object we need to answer the question *motion with respect* to what? We define a "Frame of Reference" as the surroundings in which position

² Known matter is only 5%. More than 98% of that 5% is in the binding energy of nucleons (protons and neutrons) that we cannot observe directly.

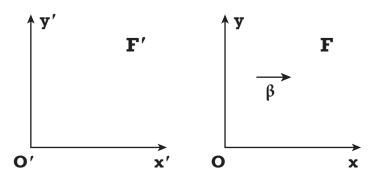


Figure 1.2. The frame convention is that frame F, described by unprimed variables, is moving to the right in frame F', described by primed variables, at velocity $\beta \equiv v/c$. The two origins coincide at t' = t = 0. To convert to the alternative convention in which frame F' is moving to the left in frame F, we have only to change β to $-\beta$ in the transformation equations.

and motion are measured. The relative positions of all points in the frame are assumed to be fixed, and are quantified in a coordinate system with an origin, coordinate axes, and scales (the units along an axis). The interior of the train and the station platform in the following Einstein thought experiments below are examples of two frames moving relative to each other (Figure 1.2).

Einstein illustrated the effects of the constant value of the speed of light as measured in different inertial frames through three Gedanken (thought) Experiments [7], each consisting of a train moving at constant speed past a station platform (or vice versa, if you are on the train).³ Mr. Casals is stationary on the train, which is consequently his frame of reference,⁴ denoted as F. Mr. Primrose is standing on the platform near the track; we will denote the platform and station as the primed frame, F'.

We will take the speed of the train in frame F' as +v along the x-axis, i.e., frame F is moving to the right in frame F' at velocity v, and frame F' is moving to the left in frame F, i.e., at velocity -v as shown in Fig. 1.2. For simplicity we assume the two origins in time, t and t', and in space, x and x', of the coordinate systems coincide, i.e., x' = x = 0 when t' = t = 0.

1.4.1 First Gedanken Experiment: Time Dilation

In the first thought experiment, Casals is traveling on a train. He has constructed a "clock" from a flashing light source on one side of the train and a mirror mounted

³ Einstein is apocryphally said to have asked a train conductor, "Excuse me, could you please tell me when Zurich will arrive?"

⁴ Our convention assigns the unprimed frame to the untransformed system in which the initial events occur, and the prime to the transformed frame. To use the opposite convention, replace β with $-\beta$ everywhere. Note that the Lorentz factor γ , which will be introduced shortly in Section 1.4.1, is unchanged. For rotations, the convention corresponds to rotating the coordinate system rather than rotating the vector.

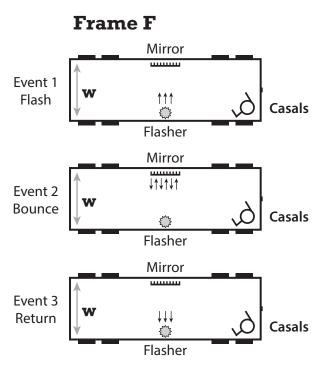


Figure 1.3. Gedanken Experiment 1, the measurement of time, as recorded by Casals. In his reference frame, F, a tick of the clock corresponds to a cycle of 3 events, shown in the 3 panels: (1) A flash of light at the source; (2) the bounce of the light at the mirror; and (3) the return of the light to the source, initiating another flash. The time between ticks of the clock is twice the light travel time across the train.

directly across the train from the light, as shown in Figure 1.3. A "tick" of the clock corresponds to a cycle of three events: (1) The source flashes a short pulse of light; (2) the light bounces off the mirror on the other side of the train; and (3) the light initiates another flash at the source after returning across the train. The clock continuously cycles, with Casals observing the flashes of the clock as his basis for measuring time.

The time it takes light to travel across the train is the width of the train, w, divided by the velocity of light, c. To go and return takes twice that, so the period (time between ticks) of the clock according to Casals is t = 2w/c.

Primrose, however, has a different story, as shown in Figure 1.4. He agrees that the sequence starts when the light flashes. However, the train is moving at velocity v, and so when the light arrives at the mirror, the mirror is not directly across from the light, but has moved along the x'-axis by a distance x' = vt'. The distance traveled by the light consequently is longer than w/c. Since light travels at the same velocity in Primrose's frame as in Casals' frame, the time between ticks will be longer, i.e., Primrose records the clock running slower than does Casals. Time is "dilated" in his frame—the separation in time between events in frame F, recorded by Casals, is recorded as longer in frame F' by Primrose.

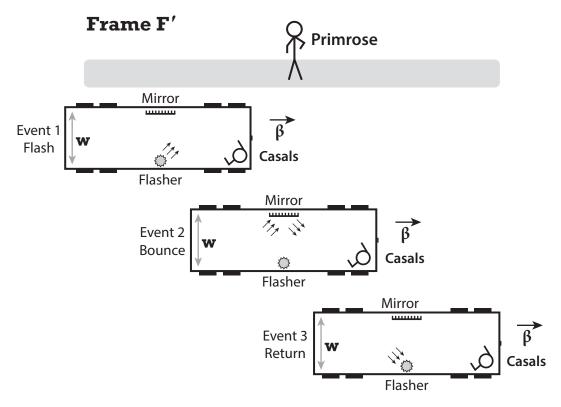


Figure 1.4. Gedanken Experiment 1 as seen in Primrose's frame on the station platform as the train goes by. Primrose records the same set of events as Casals: Event 1 is a flash; Event 2 is the bounce from the mirror; and Event 3 is another flash when the light returns to the source. However, the events occur at different places and times in Primrose's frame than in Casals' frame, in which for example, Events 1 and 3 occur at the same space point.

Casals and Primrose agree that there is a sequence of periodic flashes, but they differ on where and when in their respective frames the flashes occur. We can make this quantitative as follows.

In Figure 1.2 we defined two frames of reference each with a coordinate system: Casals observes life (lives!) in frame F, and Primrose observes life in frame F'. For each of them we will define an "event" as a point in time and space in their reference frame, concisely written as 4 numbers. For example, each flash is an event. In Casals' frame, F is unprimed, and hence a flash has unprimed coordinates (t, x, y, z). In Primrose's frame, a flash occurs at (t', x', y', z').

Figure 1.5 shows the "clock" made from the flasher and mirror in Primrose's frame F'. Let's define t' to be the time it takes the flash to get to the mirror.⁵ The distance traveled by the light is ct'. Applying Pythagoras' Theorem to the right triangle (Fig. 1.5) formed by the train width w as one side, the distance ct' traveled by the light at velocity c in the time t' as the hypotenuse, and the distance vt' traveled

⁵ The time between ticks of Primrose's clock will be twice this, as the light has to go across and come back.

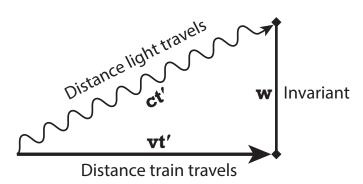


Figure 1.5. The right triangle in Primrose's frame formed by the train width w as one side, the distance ct' traveled by the light in the time t' it takes to get to the mirror as the hypotenuse, and the distance vt' traveled by the train along the x-axis in the time t'. By Pythagoras's Theorem (see Eq. 1.1), the time between flashes seen in Primrose's frame is longer than that in Casals' frame by the Lorentz factor $\gamma = \frac{1}{\sqrt{(1-(v/c)^2)}}$.

by the train in the time t' as the other side.

$$(ct')^{2} = w^{2} + (vt')^{2}$$

$$(ct')^{2} - (vt')^{2} = w^{2}$$

$$(t')^{2} (c^{2} - v^{2}) = w^{2}$$

$$(t')^{2} = \frac{w^{2}}{(c^{2} - v^{2})}$$

$$(t')^{2} = \frac{(w/c)^{2}}{(1 - (v/c)^{2})}$$

$$t' = \frac{(w/c)}{\sqrt{1 - (v/c)^{2}}}$$

$$t' = \gamma \frac{w}{c}$$

$$(1.1)$$

And thus Time Dilation $t' = \gamma t$

where γ (gamma) is the Lorentz factor,

$$\gamma \equiv \frac{1}{\sqrt{1 - (v/c)^2}}.\tag{1.2}$$

Primrose sees the 'clock' of regular flashes running more slowly (e.g., a second takes *longer*) than Casals does by the factor of γ . This effect is traditionally referred to as Time Dilation; time intervals in the moving frame F are measured as "dilated," i.e., lengthened in the laboratory frame F'.

The Lorentz factor γ corresponds to the ratio of the hypotenuse to the side transverse to the direction of motion in the Pythagorean triangle of Figure 1.5. Since the hypotenuse cannot be shorter than a side, the Lorentz factor γ is always equal to or greater than 1. Because the ratio is to the transverse side, which is invariant, the Lorentz factor is (in principle) unbounded from above.

Note that if the speed of light were infinite as it is in the non-relativistic approximation, both Casals and Primrose would measure the time between ticks of their clocks as zero, i.e., all of the events would be simultaneous.⁶

1.4.2 Second Gedanken Experiment: Lorentz Contraction

In the second Gedanken Experiment, the train is again moving at velocity v relative to a station platform. However this time the light travels the length of the train from the flasher at the rear to the mirror at the front, where it is reflected back to the flasher, as shown in Fig. 1.6. On arrival of the light at the flasher, the cycle repeats, making a "clock" as in the first Gedanken Experiment. However, the difference is that the light travels along the direction of motion of the train rather than transverse to it. Casals is on the train⁷ and measures the time between flashes and the length of the train L between the flasher and the mirror. As before we call Casals' frame F.

Primrose is on the station platform as shown in Fig. 1.7; we call this the lab (for laboratory) frame, and denote it by F'. We will calculate the length of the train, L', measured by Primrose in F' relative to the length L measured in frame F by Casals.

The first step is to calculate the time in both frames. In F, the time from the flasher to the mirror is $t_{out} = L/c$. The time back from the mirror to the flasher is $t_{back} = L/c$. The total time for one cycle is $t_{Tot} = 2L/c$.

As seen by Primrose in F', however, the train moves as the light is traveling, and so the distance from the flasher to the mirror is longer. Similarly the distance back from the mirror to the flasher will be shorter. Calculating the total time as the sum of the time to go out and the time to come back:

Time out:
$$t'_o = (L' + vt'_o)/c$$

Time back: $t'_h = (L' - vt'_h)/c$

Solving for
$$t'_o$$
: $ct'_o = (L' + vt'_o)$
 $(c - v)t'_o = L'$
 $t'_o = \frac{L'}{(c - v)}$

⁶ If this seems obvious, you have already acquired a relativistic intuition.

⁷ It doesn't matter where Casals is in the train, as long as he is not moving in it.

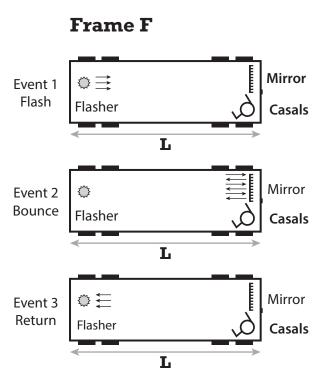


Figure 1.6. Gedanken Experiment 2, as recorded by Casals in his reference frame F. In Gedanken 2 the light travels down-and-back along the direction of motion of the train rather than across it. The 3 events that make up one cycle of the "clock," shown in the 3 panels, are: (1) a flash of light at the source; (2) the bounce of the light at the mirror; and (3) the return of the light to the source, initiating another flash. In frame F, the events occur at fixed locations, i.e., the flasher and the mirror are not moving. The time between flashes is twice the time it takes light to travel the length of the train between the source and the mirror.

Solving for
$$t'_b$$
: $ct'_b = (L' - vt'_b)$
 $(c + v)t'_b = L'$
 $t'_b = \frac{L'}{(c + v)}$ (1.3)
Total time: $t'_T = \frac{L'}{(c - v)} + \frac{L'}{(c + v)}$
 $= \frac{L'[(c + v) + (c - v)]}{(c^2 - v^2)}$
 $= \frac{2L'c}{(c^2 - v^2)}$
 $= \frac{2L'c}{c^2(1 - v^2/c^2)}$

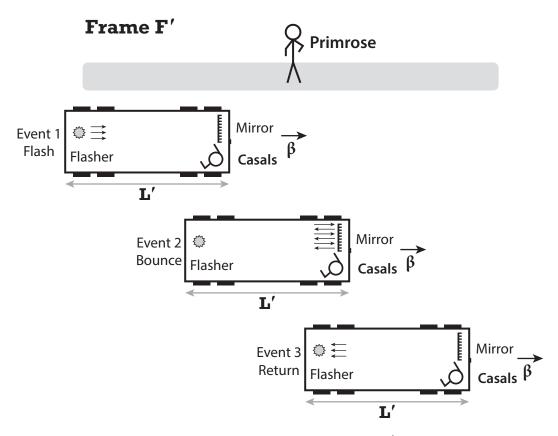


Figure 1.7. Gedanken Experiment 2 as recorded in frame F' by Primrose on the station platform. Top image, Event 1: the source emits a light flash in the direction of the train's motion toward the mirror, which is moving away from it. Middle image, Event 2: the light flash bounces off the mirror, which has moved away during the light transit time, and heads back toward the source, which is moving toward it. Bottom image, Event 3: the flash returns to the flasher, which has moved toward it. Both the times *and* space positions of the events recorded by Primrose in F' differ from those recorded by Casals in F.

$$=\frac{2L'}{c(1-v^2/c^2)}$$

$$t_T'=\frac{2L'}{c}\gamma^2$$
 Solving for L' in terms of t_T' : $L'=\frac{c}{2\gamma^2}t_T'$

where γ is the Lorentz factor.

However,⁸ from Gedanken 1 we found that the time interval in F' was a factor of γ larger than in F:

⁸ This is the final step that I always have to go back to my notes to remember.

$$t_T' = \gamma t_T = \gamma (2L/c).$$
 Substituting t_T' into Eq.1.3: $L' = \frac{c}{2\gamma^2} t_T' = \frac{c}{2\gamma^2} \gamma (2L/c)$ (1.4)

And thus Lorentz Contraction: $L' = L/\gamma$.

The length of the train in F' is shorter than in F by a factor of γ . This is Lorentz Contraction. Time intervals in F' are longer by a factor of γ (Time Dilation); space intervals along the direction of motion are shorter by a factor of γ (Lorentz Contraction).

What about lengths measured perpendicular to the direction of motion? These are invariant (unchanged) under the transformation between frames. Why are these different from lengths along the direction of motion? In the direction of motion both the times and positions of the end-points of the space interval between the two events on the moving train (in this case a light flash and a bounce) are different in the two frames. For the transverse measurement, Casals and Primrose can arrange a simultaneous measurement of the width of the train by, for example, placing metal electrical contacts with one pair jutting out from the train and the other pair on fixed posts on both sides of the tracks, respectively. The two sets of contacts will make contact at the same time and place. They can measure the distance between the contacts in their own frame, and so will agree on the width of the train.

More dramatically, there's a proof by contradiction. Suppose transverse dimensions are shrunk by a factor of γ . Consider a train approaching a tunnel that is narrower than the train. Casals isn't worried, as he says, "Not a problem—I'll slow down and the tunnel will get wider." Primrose, on the other hand, is jumping up and down shouting, "Pablo, for Heaven's sake speed up! The train needs to be narrower!" Whether or not the train crashes would definitively identify either F' or F as a preferred frame. Happily, lengths transverse to the motion are invariant.

1.4.3 Third Gedanken Experiment: Simultaneity Is Not Lorentz Invariant

The third of Einstein's Gedanken Experiments demonstrates that two events measured as being simultaneous in a frame F are typically not simultaneous in a frame F' moving with respect to F, due to the speed of light being finite and equal in the two frames. Because of the motion of F' with respect to F, the simultaneous arrival of light from two events in F requires the two events to be an equal distance from Casals. However Primrose has a different story as we will discuss below.

We have set up the experiment here, but have assigned the solution to the Problem Set. Figure 1.8 shows the same moving train and platform as in the previous two Gedanken Experiments. Casals is now in the center of the train, standing at the window on the side closest to the platform. There are two flashers, one at each end of the train. The flashers are synchronized by Casals so that they flash simultaneously; the flash from each consequently simultaneously arrives at Casals at time t = L/2c.

Primrose is standing on the edge of the platform so that his head and Casals' head are very close at the moment when the flashes arrive. Consequently Primrose also sees two simultaneous flashes, one from the rear of the train and one from the front, at the same time as Casals. However, his story is that since the train was moving while the flashes were traveling, to arrive at the same time the flash at the rear of the train had to be earlier than the flash at the front, since the rear was further away and the front closer to the place where he and Casals both saw both flashes. The two flashes are simultaneous in frame F and not simultaneous in F'.

1.4.4 The Velocity β and Lorentz Factor γ ; Identities and Generalizing to 3-Dimensions

The velocity β and Lorentz factor γ occur in so many situations that it is useful to write out the identities between them so that if given β one can find γ and vice versa. We also give the approximation for β in the limit of large γ (See Section A.1.3 of Appendix A).

$$\beta \equiv v/c$$

$$\gamma \equiv \frac{1}{\sqrt{1-\beta^2}}$$

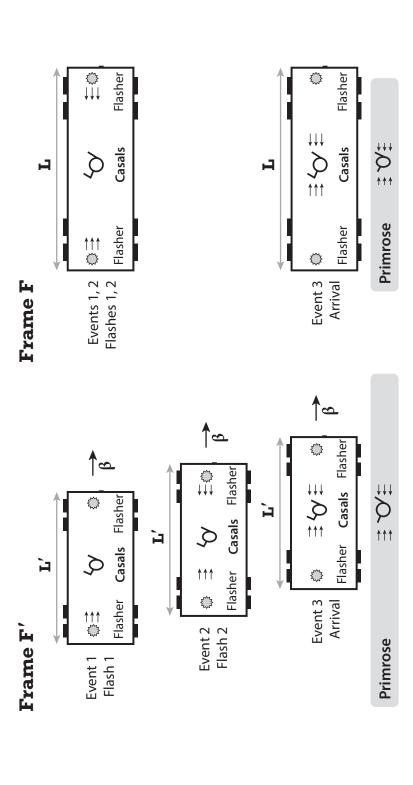
$$\gamma^2 = \frac{1}{1-\beta^2}$$

$$\beta^2 = \frac{\gamma^2 - 1}{\gamma^2}$$
For $\gamma >> 1$, $\beta \approx 1 - \frac{1}{2\gamma^2}$.

In 3 dimensions, each of x, y, and z have their respective velocities $\beta_x, \beta_y, \beta_z$, and consequently their respective Lorentz factors $\gamma_x, \gamma_y, \gamma_z$. We will largely stick with uniform motion in one dimension, which always can be taken as along the x-axis.

1.5 A Coordinate System that Accounts for Light Travel Time

Einstein constructed his three Gedanken Experiments as brilliant pedagogy for the lay public. However, we will now leave them to develop a precise mathematical



Primrose is standing on the platform close to the tracks and sees the same two flashes simultaneously at the moment that Casals is directly opposite Figure 1.8. Gedanken Experiment 3. Right: Events recorded in frame F. Casals, who is on the train, puts a light at each end of the train, set to flash simultaneously. He verifies this by standing in the middle of the train and seeing the flashes arrive at the same time. Left: Events recorded in frame F. him. However, Primrose knows he has to take into account the distance the train traveled while the light was propagating. The light from the rear end of the train had to travel further than the light from the front end to arrive at the same time. He concludes that the rear light flashed before the front light, i.e., the two flashes were not simultaneous.

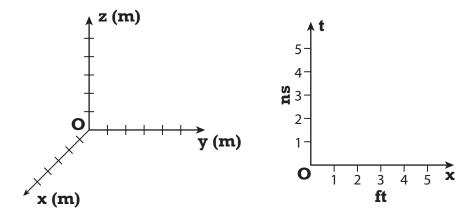


Figure 1.9. The conventions for Cartesian coordinates. Left: in 3-dimensions, a right-handed system with the positive z-axis up, x out of the page, and y to the right. Right: The 2-dimensional xt plane. In both panels note the labeling of the origin, axes, scales, and units.

language that allows us to transform any event, i.e., a time and location, from one frame into another frame.

Once we have the events in the new frame it is straightforward to calculate the intervals in space and time between one event and another event. We will find that there are invariant lengths, numerically the same in both frames. Wonderfully, the same mathematical framework applies directly to the transformation of energy and momentum from one frame to another, and to the transformations for electric charge and the Coulomb potential of classical Electromagnetism.

1.5.1 A Cartesian Coordinate System in 3-Space

Kinematics is the science of motion in the absence of applied force. To be quantitative, we need a coordinate system consisting of axes that span the space (i.e., every point in the space can be reached), and scales on the axes that provide a numerical value of the position along each axis. We will work initially in Cartesian coordinates, with three orthogonal axes. Figure 1.9 shows our conventions: a right-handed system⁹ with the positive z-axis up; x out of the page; and y to the right.

1.5.2 Extending the 3D Coordinate System to Account for Light Travel Time

We have seen in the three Einstein Gedanken experiments that both the time and the place of events are needed to characterize what is seen in a given frame. In

⁹ See Section A.1.1.3 of Appendix A for a definition of "right-handed" in vector notation.

3-dimensions vector notation provides a remarkably powerful calculational framework. 10 The fixed ratio of travel time to distance in every inertial frame, which we denote by the letter c, allows the incorporation of time into a dimensionally-correct vector framework.

1.5.3 The 4-Vector $x^{\mu} = (ct, x, y, z)$

We will define the time and place of an event in a given frame by a "4-vector" x^{μ} :

$$x^{\mu} = (ct, x, y, z)$$
 (1.6)

where μ is an index¹¹ that runs from 0 to 3, with x^0 being ct, and x^i being x,y,z for i = 1, 2, 3, respectively.¹²

1.5.4 The Invariant Length of a 4-Vector

We saw in the first Einstein Gedanken experiment that the times and places of the events—the flashes of light and the bounce from the mirror—were different for Casals and Primrose. However, we can define a "distance" in 4-dimensions that they agree on, i.e., is invariant under the transformation from one frame to another. We call this the "invariant length" of the 4-vector. ¹³ It corresponds to the side transverse to the direction of motion; both Casals and Primrose agree on the length of the side. The relationship of the sides of the triangle in Figure 1.5 is given by the Pythagorean Theorem: the square of the hypotenuse is equal to the sum of the squares of the two sides. The square of the transverse side is thus the hypotenuse squared minus the square of the side in the direction of travel. Referring to Figure 1.5, in 4-vector notation, both Casals and Primrose agree on the invariant length squared:

$$|x^{\mu}|^2 = (ct)^2 - x^2. \tag{1.7}$$

More generally,

$$|x^{\mu}|^2 = (ct)^2 - x^2 - y^2 - z^2.$$
 (1.8)

The invariant length formally is the square root of this; however, square roots are a pain for a quantity that can be positive or negative, and so I usually refer to the square as the invariant length, with the understanding that to get the correct numerical value and units one should take the square root.

¹⁰ For examples see Section A.1.1 of Appendix A.

¹¹ For practice with indices see Problem 2.

 $^{^{12}}$ There are many conventions for 4-vectors; the choice doesn't matter as long as one is consistent. Another convention we are using includes using Greek letters for 4-vectors (μ is the Greek "m" (pronounced myou rather than the bovine moo) and Roman letters for 3-vectors, for example i, j, and k. If you don't know the Greek alphabet now would be a good time to familiarize yourself with at least some of it.

¹³ The following treatment is adequate for our purposes but ignores the (unnecessary here) complexity of covariant and contravariant vectors. However, a good reference is Ref. [12] if one feels the need.

1.5.5 The Non-Cartesian Metric: The Minus Sign

The 4-dimensional space of time and 3-space dimensions is quite different from the Cartesian 3-dimensional space we wander in. One obvious difference is that in space one can go back to where one came from; one cannot go back in time. A related feature of the world is that not all points in 4-space are "reachable" from a given point; the finite velocity of light restricts communication to points for which the value of $|x^{\mu}|^2 = (ct)^2 - x^2 - y^2 - z^2$ is greater than or equal to zero. For these points there is time enough for light to travel, i.e., one can communicate. For negative values, the distance in space is larger than the light travel time, and so one cannot. These two cases are respectively called "time-like" $((ct)^2 > |\vec{x}|^2)$, i.e., the time difference is larger than the space distance, and "space-like," the spatial distance is the larger. When the two terms are equal, light from the earlier reaches the later; the surface of these points in 4-space is called "the light cone." See Problem 3 of this chapter.

1.6 Lorentz Transformations Between Frames

We close the chapter on Einstein's heuristic Gedanken Experiments with an introduction to Lorentz transformations, in this case transforming the events in Casals' frame to Primrose's frame. ¹⁴ In the next chapters we will develop a more elegant and powerful mathematical language to be able to address the transformations of energy and momentum as well as of time and space.

1.6.1 The Transformation Equations From Casals' Frame to Primrose's Frame

Consider an event in one spatial dimension in Casals' frame F, specified by position x and time t. The events as measured by Primrose in frame F' are specified by:

$$ct' = \gamma (ct) + \beta \gamma x$$

$$x' = \beta \gamma (ct) + \gamma x.$$
(1.9)

1.6.2 Conventions for the Units of Time and Space

Units, to be frank, can be painful, and most texts spend far too much time on them. Here we address the units of time and space.

We will predominantly use two systems: 1) the International System (SI), also known as MKS, for meters, kilograms, and seconds. In SI, the unit of time is the

¹⁴ We omit derivations of Lorentz transformations beyond the heuristic demonstrations. However, see Problem 4 for a "derivation" of two of the matrix elements and one constraint on the matrix.

second and the unit of space is the meter. Each of these has developed historically and independently; consequently in SI the constant of proportionality c in the 4-vector (ct, \vec{x}) has units of meters/seconds. For purely historical reasons the conversion constant between distances in time (in seconds) and space (in meters) has the numerical value 3.0×10^8 . The space is the meters of the seconds of the second of the seconds of the second of the seconds of the second of the seconds of the second of

In Natural Units the units of length and time are chosen so that the velocity of light is identically equal to 1, $c \equiv 1$. This may be familiar; astronomers have long chosen the unit of time Δt to be a year, and the unit of distance in space Δl to be a light-year, the distance light travels in one year. The conversion factor c for the speed of light in these units is then unity by definition: $c = \Delta l/\Delta t \equiv 1$.

Working particle physicists exploit an approximate relationship between 1 foot as the unit of distance and 1 nanosecond (10^{-9} s—i.e., one-billionth of a second), giving a value ¹⁷ for c within 2% of 1. We consequently will work in nsec and feet for most terrestrial relativistic problems. Note that with c=1 you can measure time in feet or length in nsec; an object 6 feet away is also 6 nsec of light-travel time away, meaning that the light from it had to leave that much earlier to arrive at the same time as light from a nearby object. You are always seeing in the past while awaiting the future. ¹⁸

1.6.3 Putting the Factors of c Back in by Dimensional Analysis

We will use natural units for relativistic problems such as occur naturally in particle physics, cosmology, and astronomy. Note that since c=1, expressions such as v/c and ct become v and t, respectively. "Okay," you say; "it's much cleaner, but how to know where to put the c's back in after you have finished a calculation and want to convert to SI units?" It becomes natural from the context. If you have a t in an expression for length, you need to make it ct. If you have a v in an expression that is dimensionless (i.e., not a length or a time, as occurs in v), you can make the dimensionless velocity v by dividing by v: v by v c.

As an example, the transformation of an event in Casals' frame F to Primrose's frame F' of Eq. 1.5 is given in natural units by:

$$t' = \gamma t + \beta \gamma x$$

$$x' = \beta \gamma t + \gamma x.$$
(1.10)

In summary, in natural units $c \equiv 1$ and we will not write it explicitly when it is a multiplier or divisor. If you want to convert back to SI, wherever there is a t as a distance multiply by $c = 3 \times 10^8$ m/s to convert seconds to meters, and likewise wherever there is a β multiply by c to get v in m/s. Not hard.

 $^{^{15}}$ So that when the time in seconds is multiplied by c one gets the number in meters.

¹⁶ We work to 2 significant figures, one more than is actually needed here.

 $^{^{17}}$ One foot is 30.48 cm; light travels 29.98 cm in 1 nsec; the ratio is 1.017. Working to two significant figures, we take c as 1.0.

¹⁸ Which may already have left its source and be on its way.

1.7 **Problem Set 1: Vectors, Time Dilation, Lorentz** Contraction, Simultaneity, and the Lorentz **Transformation**

Time Management and Study Groups: You need to work with your study group. The problem sets will go faster if you discuss the problems, with friends/colleagues, and you will have a deeper understanding. However, the work you hand in **has to be your own.**¹⁹

Problems with answers, and recycled problems: There are a limited number of easily-solved mechanics problems, and so one can find answers to most by searching on the web. We trust you to instead work them yourself; ask your fellow students, the TA's, and/or your instructor for help if you need it. Browsing other texts is recommended; however, you should write out the solution with the book closed.

Getting help: Yes, if you need help ask for it. Bring your study group with you. Do it more than once if needed.

Formulae: For the velocity β and the Lorentz factor γ :

$$\beta = v/c; \quad \gamma^2 = 1/(1-\beta^2); \quad \beta^2 = (\gamma^2 - 1)/\gamma^2; \quad For \quad \gamma >> 1, \quad \beta \approx 1 - \frac{1}{2\gamma^2}.$$

The invariant length of the 4-vector x_0, x_1, x_2, x_3 : $|x^{\mu}| = \sqrt{x_0^2 - x_1^2 - x_2^2 - x_3^2}$. Lorentz transformation for a "Boost" of frame F along the x direction relative to frame F':

$$x' = \beta \gamma t + \gamma x \qquad (1.12) \qquad \begin{pmatrix} t' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & \beta \gamma & 0 & 0 \\ \beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix}. \quad (1.13)$$

$$z' = z \tag{1.14}$$

 $t' = \gamma t + \beta \gamma x \tag{1.11}$

Problems: Solutions will be provided. ²⁰ Please do not plug in any numerical values until the end. In Problems 1 and 2 not all parts need be assigned if the set is deemed too long.

¹⁹ I once required two students who inadvertently strayed to read Egil Krogh's book *Integrity* (see Skills and Guidelines).

²⁰ Having high quality solutions available at the problem set submission deadline is essential feedback. Do not settle for less.

Problem 1: Practice with 3-Vectors²¹

Consider the two vectors $\vec{A} = (-3, 1, -2)$ and $\vec{B} = (2, -2, 3)$ respectively:

- 1. Calculate the length of \vec{A} ; (don't bother explicitly taking the square root, it's quicker to leave the length squared under the sqrt sign);
- 2. Calculate the length of $\vec{A} + \vec{B}$;
- 3. Calculate the length of $\vec{A} \vec{B}$;
- 4. Draw a diagram of the reference frame showing the x, y, and z axes and the position vectors \vec{A} and \vec{B} ;
- 5. On your diagram show $\vec{A} \vec{B}$ and $\vec{A} + \vec{B}$;
- 6. Calculate $\vec{A} \cdot \vec{B}$;
- 7. Calculate the angle between \vec{A} and \vec{B} ;
- 8. Calculate the projection of \vec{A} on \vec{B} ;
- 9. Calculate $\vec{A} \times \vec{B}$:
- 10. Find $(\vec{A} \times \vec{B}) \cdot \vec{A}$;
- 11. Find $(\vec{A} \times \vec{B}) \times (\vec{A} \times \vec{B})$.

Problem 2: Indices and Conventions

- 1. Define "Index" in the context of vectors and matrices and write down examples with 0, 1, 2, 3, and 4 indices, respectively (not trivial—discuss with your group).
- 2. Prepare a 2-minute semi-formal talk for your study group on what an index is and isn't. If you use Powerpoint or equivalent it should be no more than 1 slide.
- 3. Show that

$$\vec{A} \cdot \vec{B} = \sum_{i=1,3} A_i B_i. \tag{1.16}$$

4. Show that

$$\vec{A} \cdot \vec{B} = \sum_{i=1,3} \sum_{j=1,3} A_i B_j \delta_{ij}, \qquad (1.17)$$

where δ_{ij} is the "Kronecker delta" (see Section A.1.8 of Appendix A.) If you are bothered or confused by the problem, write out all 9 terms.

5. Show that

$$(\vec{A} \times \vec{B})_i = A_i B_k - A_k B_j \tag{1.18}$$

²¹ See Section A.1.1 of Appendix A for the scalar product. Also, if you are bold, Appendices A.1.8 and A.1.9 for the vector product and an elegant notation for both.

22

and cyclic $(i \rightarrow j \rightarrow k \rightarrow i)$.

6. Show that

$$(\vec{A} \times \vec{B})_i = \epsilon_{ijk} A_j B_k \tag{1.19}$$

and cyclic $(i \rightarrow j \rightarrow k \rightarrow i)$ where ϵ_{ijk} is the Levi-Civita tensor (see Section A.1.8 of Appendix A). If you are bothered or confused by the problem, write out all 27 terms.

Problem 3: 4-Vectors and the Invariant Length

- 1. Consider the 4-vectors $x^{\mu} = (t, x, y, z) = (13, 0, 12, 5), (0, 3, -6, -5), \text{ and } (-6, 0, -6, -5)$ -3, -2) where time is measured in nsec and space coordinates in feet. What is the invariant length squared of each?
- 2. Consider two events at space-time points $A^{\mu} = (15, 4, -16, 7)$ and $B^{\mu} =$ (2, 4, -4, 2) respectively, where time is measured in nsec and space coordinates in feet. What is the invariant distance squared in space-time between them, $|B^{\mu} - A^{\mu}|^2$? What is the distance in space between them? In time?
- 3. Suppose event A happened at time $t_A = 16$ nsec rather than 15. What is the distance in space between A and B? In time?
- 4. Suppose event A happened at time $t_A = 14$ nsec rather than 15. What is the distance in space between A and B? In time?
- 5. In each of the above three examples can event A cause event B?

Problem 4: The Lorentz Transformation of an Event in Space-Time

The Lorentz transformation for a boost of an event in frame F along the x direction relative to frame F' is given by²²

$$t' = \gamma t + \beta \gamma x \tag{1.20}$$

$$x' = \beta \gamma t + \gamma x \tag{1.21}$$

where γ is the Lorentz factor $\gamma = \frac{1}{\sqrt{1-\beta^2}}$, and β is the velocity in Natural Units, $\beta = v/c$.

1. Find the time t' in frame F' for an event at the location (t, 0) (i.e., at time t at the origin) in frame F. Which of the Einstein Gedanken experiments does this

²² We (naturally) work in natural units (NU). Distances in the first coordinate are measured in nanoseconds (10⁻⁹ seconds); distances in the next 3 coordinates are measured in feet. The speed of light (good enough for government work) is 1 ft/nsec, i.e., c = 1. If this troubles you, put a "c" next to every "t" where $c = 3 \times 10^8 \text{ m/sec}$, and work in SI units. You will get over it.

correspond to, and to which special point in frame F does x = 0 correspond? (A trivial question, but meaningful.)

- 2. Find the location x' in frame F' for an event at the location (t,0) (i.e., at time t at the origin) in frame F. Please parse this in terms of distance = velocity times time.
- 3. The structure of the transformation matrix for the Lorentz transformation, represented by Eq. 1.20 with γ as the diagonal elements and $\beta\gamma$ as the off-diagonal elements, is not easy to wrap one's mind around. Show that the invariant length of the event 4-vector position is the same in frames F' and F, i.e.,

$$|x'^{\mu}|^2 = |x^{\mu}|^2$$

$$t'^2 - x'^2 = t^2 - x^2.$$
(1.22)

Problem 5: Cosmic Rays²³

Consider a muon (a heavy cousin of the electron), identical in the form of its interactions with matter except for effects due to its being 200 times heavier,²⁴ created in the atmosphere by a cosmic ray coming from far away. Assume that in its own rest frame, this individual muon has a lifetime of $\tau = 2200$ nanoseconds,²⁵ after which it decays to a muon neutrino and an electron/anti-neutrino pair. This muon is traveling with velocity $\beta = v/c = 0.9999995$ ($\gamma = 1000$) with respect to the Earth.

- 1. Draw a clear (not too small) diagram of the process in the muon rest frame and another diagram in your own frame. Be sure to label the respective origins and axes.
- 2. Write down the 4-vector for the decay point in the coordinate frame of the muon.
- 3. Starting with the value of β , calculate the Lorentz factor γ for the transformation from the muon frame to the Earth frame.
- 4. Lorentz transform the 4-vector representing the decay point in the muon frame to get the 4-vector for the decay point in the Earth's frame.
- 5. How long is the lifetime as measured in the Earth's frame?
- 6. How far did the muon travel from where it was created to where it decayed in the Earth's frame?
- 7. How far would the muon have traveled without the factor of γ ?
- 8. Calculate the proper time (the invariant length of the 4-vector) from the coordinates of the decay event in both the muon and Earth's frame.

²³ On a personal note, I recommend the (oldie) film: Time Dilation an Experiment with Mu Mesons 1962 PSSC David Frisch, James Smith, MIT. I found it on YouTube.

²⁴ I. I. Rabi (Columbia Univ.) is famously quoted as saying, "Who ordered that?!"

²⁵ The distribution in how long muons live goes as $e^{-\frac{t}{\tau}}$, where $\tau = 2200$ nanoseconds.

Problem 6: Time Dilation

Consider the first Einstein Gedanken Experiment. A simple clock is constructed on a *very* fast Chicago Metra Electric train by mounting an LED (light-emitting diode) and a photo-diode together inside the train on one wall, and a mirror on the wall across the train and directly opposite. The LED and photodiode are pointed at the mirror, and are electrically connected so that a short LED pulse reflected from the mirror triggers the photodiode to make the LED flash. The result is that the LED flashes repeatedly at a fixed interval that corresponds to twice the light transit time across the width of the train. The train is an Express, moving at $\beta = 0.99995$, ($\gamma = 100$) relative to the station.

- 1. Set up the problem and define the relevant events in the frame of the train. (Be sure to draw a well-labeled clear diagram.)
- 2. Transform the coordinates of each event into the frame of the station.
- 3. Draw a carefully-labeled diagram of the geometry of the light path in the frame of the station.
- 4. Find the time between flashes as seen in the frame of the station.
- 5. Find the distance between flashes as seen in the frame of the station.

Problem 7: Einstein Gedanken Experiment 3: The Frame-dependence of Simultaneity

Casals is on a train moving at speed corresponding to a Lorentz factor of $\gamma = 1000$ down a set of tracks past a platform on which Primrose is standing. Casals is in the middle of the train, i.e., equidistant from both ends. Just as Casals is opposite Primrose²⁶ each of them sees two simultaneous flashes of light that were produced by a light at each end of the train. Casals measures the length of the train to be L. Ignore the width of the train as the length is much longer than the width.

- 1. Draw a picture and label the frames and axes.
- 2. Taking the origins of the two coordinate systems and clocks to be the point where Primrose and Casals are when they see the flash, write down the 4-vector in Casals' reference frame corresponding to the position of each light when it flashed.
- 3. Use the Lorentz transformation to find the 4-vectors of each light when it flashed in Primrose's frame.
- 4. Primrose can calculate the length of the train from the following reasoning: the spatial separation of the two flashes is the distance the back of the train moved

²⁶ Take them to be so close as to effectively be at the same location.

Time and Space

25

while the light was propagating plus the length of the train. In symbols,

$$\Delta x' = \beta \Delta t' + L'. \tag{1.23}$$

Find the length of the train as measured by Primrose, L' in terms of L and γ . (Remember (learn) the identity $1/\gamma^2 = (1 - \beta^2)$).

5. Casals deduces that the two lights flashed simultaneously. In contrast, Primrose claims they had to have flashed at different times for him to have seen the flashes simultaneously. What is the time interval between the two lights flashing in Primrose's frame?" (The perils of translating into English—a better way to have asked is "Transform the two light-flashing events into Primrose's frame and find the time difference.")

Italic pagination refers to figures and tables

acceleration: angular momentum and, 105–14; Cartesian coordinates and, 76; circular motion and, 118–24, 126, 128; conservative forces and, 85, 92–99; of gravity, 46n7, 64, 73, 85; Newton's Second Law and, 76; non-relativistic dynamics and, 68n3, 71, 73–79, 82; polar coordinates and, 82, 105–7; transformations and, 29 algebra, 145; angular momentum and, 102n1; central-force

algebra, 145; angular momentum and, 102n1; central-force motion and, 139; collisions and, 61; conservative forces and, 92; frames and, 38n16, 43; Lorentz transformations and, 33, 43; matrix, 37

angular momentum: acceleration and, 105-14; algebra and, 102n1; barrier of, 136-38; Cartesian coordinates and, 101; centrifugal force and, 108, 110; centripetal force and, 107–10, 113, 121–22; Chasles' Theorem and, 116; circular motion and, 108-14; conservation of, 101, 116; cross products and, 101, 104, 112; cyclic order and, 102; derivatives and, 106, 107-8; difficulty in understanding, 103-4; dimensional analysis and, 108n6; direction of change, 105-6; Earth and, 108, 109; eccentricity

and, 134, 135-36, 139-43;

energy and, 101, 118, 121, 127, 136-38; equations of motion and, 111; force and, 103-4, 105, 107-13; frames and, 101–3, 108, 110, 114; Free-Body Diagrams (FBDs) and, 114; friction and, 113; gravity and, 103; inertia and, 101, 103n3, 108–10, 118; mass and, 101, 103, 136-38; motion and, 101-3, 108-14; oscillations and, 114; particle moving relative to an origin, 101–3; polar coordinates and, 110-13; potential well and, 136-38; Problem Sets and, 111–14; rate of change of, 104; rotation and, 101-8, 109, 114; SI units and, 105; space and, 101; spin and, 103; study groups and, 111–14; symmetry and, 103; tensors and, 112; torque and, 67n2, 104-5, 111-12, 121, 122, 128; vectors and, 101–7, 110-12

aphelion, 130, 135–40 Atomic Bomb Approximation, 55n3 atoms: binding energy and, 46; conservative forces and, 87, 93; energy and, 46–47; non-relativistic limit and, 63 Atwood, George, 5, 73, 77 Atwood's First Law, 5

Atwood's First Law, 5 Atwood's Machine, 68–72, 77 Auger Observatory, 53, 164, 170n35 azimuthal frames, 77n12, 106, 108, BAC-CAB Rule, 128 Barn and Pole paradox, xiv, 40–41

before-and-after problems, 42, 59–60

binding energy, 5n2, 46, 59
Book Nobody Read, The: Chasing
the Revolutions of Nicolaus
Copernicus (Gingerich),
168n18

boosts: comprehensive description of, 33–39; energy and, 50; momentum and, 50; transformations and, 20, 22, 29, 31n6, 33–39, 41–42, 50

bosons, 51, 59 bottom quarks, 51 bowling balls, 128 Brahe, Tycho, 129, 133n9, 140

calculus, xiii, xix, 27, 145, 148

Callisto, 81
Cartesian coordinates:

4–dimensions and, 18; acceleration and, 76; angular momentum and, 101; center-of-mass (CM), 115, 117; conservative forces and, 97; conventions for, 16; cyclic order and, 120, 152; event as point in, 7–19, 22–25, 27–28; kinematics and, 16; mathematical methods and, 146, 151–56; minus sign and, 18; non-relativistic dynamics and, 69, 76–77; right-handed system and, 16, 120, 152,

nates and, 137; potentials

Cartesian coordinates (cont.) and, 133, 136-39; Problem 87, 93; Cartesian coordi-153; right-hand rule for, Sets and, 142-43; rotation nates and, 97; cyclic order and, 91; derivatives and, 85, 146-47; rigid bodies and, and, 136; semi-latus rectum and, 134-36, 140-43; 88, 91, 95-96; differentials 115, 117, 120; space and, and, 87-92; Earth and, 87, 16–18, 32, 37, 41, 69, 76–77, SI units and, 93, 97; study 97, 101, 115, 117, 120, 146, groups and, 142; Sun and, 89; electric charge and, 87; 129-32, 135-36, 140, 142; electromagnetism and, 93, 151-56; time and, 16-18; transformations and, 32, 37, two-body problem and, 96n15; electrons and, 93; 41; vectors and, 37, 41, 76, 129 - 33energy and, 85-88, 92, 96; centrifugal force, 108, 110 101, 146, 153, 156; velocity equations of motion and, 94; centripetal force: angular momenexamples of, 87; Free-Body and, 76 tum and, 107-10, 113; Casals, Pablo: clock of, 6-11, 39, Diagrams (FBDs) and, 85; 82n1; Gedanken experiments Coriolis effect and, 107gravity and, 85-89, 93, 97, and, 6–19, 24–32, 39–40, 8, 109; Loop-the-Loop roller 98n16; harmonic motion and, 59, 82n1; relativistic frames coaster and, 113; rigid bodies 93-96, 98-99; indices and, and, 6-19, 24-32, 39-40, 59, and, 121-22 91; integral condition of, CERN, 52-53 82n1; transformations and, 86-87; kinetic energy and, 27-32, 39-40 Chain Rule of calculus, 148 92; light and, 96; mass and, Cassini, 82 Chasles' Theorem, 116-17, 89-93, 97-99; momentum 125-26, 168n15 center-of-mass (CM); Cartesian and, 116; moon-planet syscircular motion: angular momencoordinates and, 115, 117; tem, 90; motion and, 85, 87, central-force motion and, tum and, 108-14; friction 93-99; Newton's Second 130-33, 142; Chasles' Theand, 128; Golden Rule of, Law, 92; operators and, 88orem and, 117; frames and, 109-10; rigid bodies and, 92; oscillations and, 95-96; 126, 128; torque and, 128; photons and, 98; planets and, 59-60, 62, 115-17, 126, 132; uniform, 108-9 laboratory collisions and, 89–90; potentials and, 85–98; 59; moment of inertia ten-Classical Dynamics (Marion), Problem Sets and, 97-100; sor and, 117-18; Newton's 68n3 protons and, 93; Quantum Second Law and, 117; non-Cohen, Leonard, 114 Mechanics and, 96; scalars Collider Detector at Fermilab, 51 relativistic limit and, 58-60, and, 85, 88-91, 96, 98; space collisions: algebra and, 61; centerand, 87-89, 96; speed of light 62; rigid bodies and, 115–17, 126; transformations and, of-mass (CM) frames and, and, 96; symmetry and, 85, 59-60 59; Chasles' Theorem and, 90; Taylor expansions and, center-of-momentum frame, 53, 116-17, 125-26, 168n15; 94-96: Taylor series and, 98: 58-59 degrees of freedom, 59, 62, tools for, 96; vectors and, 85, central-force motion: algebra and, 115-16; elastic, 60-63; equal 88-91, 96; work and, 76-78, 86-88, 92, 96 139; center-of-mass (CM) mass, 64–65; head-on, 61– and, 130-33, 142; conserved 62; inelastic, 62-63, 65; conserved quantities: angular quantities and, 130n5, 133; interaction forces and, 59; momentum and, 101; central-Earth and, 129-32, 136, kinetic energy and, 59-62; force motion and, 130n5, 137, 142; energy and, 130, laboratory, 59-60; momen-133; energy and, 45-47, 59-133, 135-39; equations of tum and, 51, 59, 62, 64, 64, 72, 92, 130, 136; mass motion and, 136; frames and, 115-16, 117n4, 126; motion and, 72, 92, 115, 117 and, 51, 59, 62, 64, 115-16, 132; gravity and, 130, 133-Copernicus, 129, 168n18 34, 137, 142; inertia and, 117n4, 126; Newton's Third Coriolis Force, 107-8, 109, 132–33; kinetic energy and, Law and, 62; non-relativistic 170n33 limit and, 51-52, 59-65; cosines, 94, 95n12, 96n15, 150 64-65, 136-39; mass and, 129-36, 140-42; matrices rigid bodies and, 115-16, Cosmic Microwave Background 117n4, 126; transformations and, 139n14; momentum (CMB), 53, 164 and, 59-60 and, 130, 134-41; orbits and, cosmic rays, 23-24, 53 129-43; oscillations and, conservative forces: acceleration Coulomb constant, 93 137, 138, 140; planets and, and, 85, 92-99; algebra Coulomb potential, 16 129, 134-43; polar coordiand, 92; angular momen-Coulomb's law, 16, 78, 93

tum and, 116; atoms and,

Cronin, Jim, 53, 164

173

cross products: angular momentum and, 101, 104, 112; Levi-Civita, 42, 112, 128, 157–58; right-hand rule for, 146-47; tensors and, 42, 128; vectors and, 91, 146, 157-58 curl, 156-57 cyclic order: angular momentum and, 102; Cartesian coordinates and, 120, 152; conservative forces and, 91: indices and, 91, 102, 157; Levi-Civita tensor and, 22; mathematical methods and, 146, 152, 157-58; sequential order and, 91n7; tensors and, 158 cylindrical coordinates, 80, 85, 104-5, 151, 154 degrees of freedom, 59, 62, 115-16 Delta, 53 derivatives: angular momentum and, 106, 107-8; conservative forces and, 85, 88, 91, 95-96; mathematical methods and, 148-50; momentum of, 68; partial, 88, 148, 149; total, 148, 149; transformations and, 34n10 differentials: conservative forces and, 87-92; cylindrical coordinates, 154; mass element, 124: operators, 88-92, 156-57; partial, 145; rigid bodies and, 119n9, 124; scalars and, 90–91; spherical, 155; vectors and, 90-91; work and, 73 dimensional analysis: angular

73
dimensional analysis: angular
momentum and, 108n6; light
and, 19; non-relativistic limit
and, 62, 65; SI units and, 19;
symmetry and, 65; time and,
19
Diophantine equations, 3
Dirac, Paul Adrien Maurice, 82–83

Dirac, Paul Adrien Maurice, 82–83 divergence, 156–57 dot products, 78n14, 128, 146–47, 158

Double Atwoods Machine, 68, 69

Earth: angular momentum and, 108, 109; central-force

motion and, 129-32, 136, 137, 142; conservative forces and, 87, 89; cosmic rays and, 23-24, 53; Eocene epoch of, 1; gravity and, 64, 73–75, 87, 89, 130, 137; Jupiter and, 82; red shift and, 50; space-time diagram and, 43; velocity and, 42 eccentricity, 134, 135-36, 139-43 Einstein, Albert, xxiiin9; Gedanken experiments and, 5-18, 22-24, 27, 39-40, 43, 82n1; Lorentz Contraction and, 10-13; mathematical methods and, 146, 157-58; motion and, 5–6, 13, 17; positrons and, 83; rigid bodies and, 118; simultaneity and, 13-14; speed of light and, 6, 13, 17, 24, 27, 82n1; summation convention and, 118, 158; time dilation and, 6–13, 20-24. See also relativity elastic collisions, 60-64 elastic forces, 93-96 electric charge: conservative forces and, 87; Coulomb potential and, 16; Lorentz factor and, 170n32; Lorentz invariance and, 5; speed of light and, 5; transformations and, 16, 35 electromagnetism, xxii; conservative forces and, 93, 96n15; Coulomb potential and, 16; Dirac and, 82; gravity and, 93; Lorentz invariant and, xxiv, 5; scalars and, 34; speed of light, 3-6, 10, 13, 19, 22n22, 27, 38, 81, 82n1, 96; transformations and, 34, 35; vectors and, 34 electrons: conservative forces and, 93; Coulomb's law and, 16, 78, 93; energy and, 46-47, 51, 53; mass and, 46-47, 51, 53, 82; muons and, 23; non-relativistic limit and, 59, 82; space and, 28; transformations and, 28 electron volts (eV), 46-47, 53

elliptical motion: eccentric, 134, 135-36, 139-43; Kepler and, 111, 129–31, 133n9, 139– 43; planets and, 82, 129-30, 133–36, 139–40, 142–43; semi-latus rectum and, 134-36, 139-43; specifying, 143; two parameters and, 134-35 End of the Certain World, The (Greenspan), 83n4 energy: 4-vector and, 45-53; angular momentum and, 101, 118, 121, 127, 136-38; atoms and, 46–47; binding, 5n2, 46, 59; boosts and, 50; centralforce motion and, 130, 133, 135-39; conservation of, 45-47, 59-64, 75, 85-88, 92, 96, 130, 136; degrees of freedom, 59, 62, 115-16; electrons and, 46–53; electron volt (eV), 46-47, 53; events and, 50; force and, 59, 73-75, 85-88, 92, 96, 130, 135; frames and, 45-53; Gedanken experiments and, 46n7; gravity and, 46; GZK cutoff and, 53; inertia and, 45-46; invariant length and, 47-50, 53; in Joules, 46, 48n10, 73; kinetic, 55-56, 59-64, 92, 118-19, 121, 127-28, 136-39: light and, 48: Lorentz factor and, 50, 52; Lorentz transformations and, 50; mass and, 46-53, 56, 59, 64, 74-75, 130, 133, 135-36; master equation and, 48-50; mathematical methods and, 151; motion and, 45-48; Newtonian approximations for, 52, 64; non-relativistic dynamics and, 73-75, 79; non-relativistic limit and, 55-56, 59–64; nuclear, 46–47, 61n9, 98n16; particle relationships of, 47, 50; photons and, 48-53; potential, 59, 85-86, 87n3, 130, 138; Problem Sets and, 49-53; quarks and, 46, 51, 59; relativistic kinematics and, 45-53; SI units and, 46-48, 52; space

electrostatic force, 16, 78, 93,

98n16

energy (cont.) and, 5, 16, 18, 45; study groups and, 49; time and, 5, 16, 18; total, 46, 73; transformations and, 35; units for, 46-47; vectors and, 45-53 Eocene epoch, 1 Epstein, Jacob, xxiiin9 equations of constraint, 69, 71, 116 equations of motion: angular momentum and, 111: centralforce motion and, 136; force and, 68, 70-71, 77, 79, 94, 136; Lorentz invariance and, 5, 45 equilibrium: harmonic motion and, 93-94, 99; Hooke's Law and, 93-94; potentials and, 85, 96 Euler's Equation, 151 Europa, 81 events: energy and, 50; frames and, 6-8, 11-19, 22-30, 39-43, 50; Gedanken experiments and, 7-18, 27-28, 33, 39; initial, 6n4; intervals between, 38; momentum and, 50; as points in time and space, 7-19, 22-25, 27-28; sequence of, 7, 27-28, 41; simultaneity and, 13-14, 20, 24-25; trans-

family tradition, xxivn11 Farmelo, Graham, 82n3 Fermi, Enrico, 53 Fermilab, 50-53, 82 Ferris, Timothy, 1 Feynman, Richard, 75 Feynman's Last rule, 75n11 force: angular momentum and, 103-4, 105, 107-13; Atwood machine and, 69-72, 77; central-force motion, 81, 129-43; centrifugal, 108, 110; centripetal, 107–10, 113, 121-22; collisions and, 59; conservative, 76-78, 85-99; Coriolis, 107-8, 109; defining, 67; elastic, 93-96; energy and, 59, 73-75, 85-88, 92, 96, 130, 135; equal

and opposite pairs of, 72;

formations and, 27–30, 31n6,

33, 38-43, 39-44

equations of constraint, 69, 71, 116; equations of motion and, 68, 70-71, 77, 79, 94, 136; frames and, 79n16, 108, 110, 117; Free-Body Diagrams (FBDs) and, 68-73, 77-80, 85, 114, 128; friction and, 68, 78-80, 87, 94; Hooke's Law and, 93-96; inverse-square, 90, 129, 140, 142; kinematics and, 16, 79; mass and, 67, 70, 73-75, 78, 89, 92-93, 97-98, 103, 115, 117, 121–23, *130*, 134–35; mathematical methods and, 156; Newton's First Law, 4-5, 108; Newton's Second Law, 67–68, 92, 96, 116–17; Newton's Third Law, 72, 96; non-conservative, 78-79, 87; non-relativistic dynamics and, 67-80; polar coordinates and, 76-79; potentials and, 85-92, 94-98, 133, 136-39; rigid bodies and, 115–17, 121-23, 128; time derivative of momentum and, 68; work and, 16, 67-68, 73, 76-78, 86-88, 92, 96, 121

4–dimensions: Cartesian coordinates and, 18; invariant length and, 17; rotation and, 30–31; space and, 17–18, 28, 30–32; time and, 17–18, 28, 30–32; transformations and, 28, 30–32

4–vector: Casals and, 17, 24; constant of proportionality and, 19; energy and, 45–53; frames and, 17, 23–24, 34, 39–42, 45–53; invariant length of, 17, 20, 22–23, 38–39, 47–50; momentum and, 34–35, 45–53; transformations and, 28, 32–35, 38–42

frames: 4-vector, 17, 23–24, 34, 39–42, 45–53; algebraic, 38n16, 43; angular momentum and, 101–3, 108, 110, 114; Atwood's First Law of Classical Mechanics and, 5; azimuthal, 77n12, 106,

108, 155; boosts and, 20, 22, 29, 31n6, 33-39, 41-42, 50; Casals and, 6-19, 24–32, 39–40, 59, 82n1; center-of-mass (CM), 59-60, 62, 115-17, 126, 132; center-of-momentum, 53, 58-59; central-force motion and, 132; energy and, 45-53; events and, 6-8, 11-19, 22-30, 39-43, 50; force and, 79n16, 108, 110, 117; histories in different, 39-44; inertial, 4-7, 17, 28, 34, 45, 55, 79, 101, 103, 108, 110, 115; kinematic, 34, 55, 79n16; Lorentz transformations and, 18-19; mathematical methods and, 145; momentum and, 45-53; Newton's First Law and, 4-5, 108; non-relativistic dynamics and, 79; non-relativistic limit and, 55, 58-65; primed, 6n4; Primrose and, 6-19, 24-25, 27-32, 39-40, 59; reference, 5-6, 8, 27-28, 43, 55, 82n1, 115; rest, 23, 28, 46-48, 50; rigid bodies and, 115-17, 123, 126, 128; simultaneity and, 13-14, 24-25; space and, 4-25; time dilation and, 6-13, 20-24: transformations and. 18-19, 27-43, 59-60; Twin Paradox and, 38n16, 43-44; unprimed, 6n4, 8, 40, 41

Free-Body Diagrams (FBDs):
angular momentum and, 114;
Atwood machine and, 69–72,
77; force and, 68–73, 77–80,
85, 114, 128; non-relativistic
dynamics and, 68–73, 77–80;
rigid bodies and, 128

frequency: angular, 94, 109, 114, 116, 118–19, *131*, 131n6; harmonic motion and, 94–96, 98

friction: angular momentum and, 113; circular motion and, 128; force and, 68, 78–80, 87, 94; rigid bodies and, 128 Frisch, David, 23n23

galaxies, 1, 50-51 134-36, 140-43; Sun and, and, 28, 34; two-body system Galileo: Gedanken experiments 130; two-body problem and, and, 132-33 and, 46n7; kinematics and, 129-33; as waves, 5 Integrity (Krogh), 20n19 invariance: equations of, 5, 45; xix; Leaning Tower of Pisa Greisen, K., 53 GZK mechanism, 53 Lorentz, xix, 4-5, 13-14, 33and, 46n7; non-relativistic limit and, 57-58; transforma-35; motion and, 4-5, 30, 45; hadrons, 49, 52-53 Noether and, 45n3; princitions and, 57-59, 65; velocity and, 57-58 Hanson, A., 77n12 ples of, 4; Special Relativity Ganymede, 81 harmonic motion: conservative and, 5 Gedanken experiments: Casals forces and, 93-96, 98-99; invariant length: 4-dimensions and, and, 6-19, 24-32, 39-40, 59, cosines and, 94-95; fre-17; 4-vector and, 17, 20, 22-23, 38-39, 47-50; energy 82n1; Einstein and, 5-18, quency and, 94-96, 98; 22-24, 27, 39-40, 43, 82n1; Hooke's Law and, 93-96; and, 47-50, 53; momenmass on spring, 99; osciltum and, 16, 47–50, 53; energy and, 46n7; events and, 7-18, 27-28, 33, 39; lations and, 95-96, 98; space and, 16-17, 20, 22-23; Galileo and, 46n7; Lorentz pendulums, 95n12, 98; phase time and, 16–17, 20, 22–23; and, 94, 151; SHM, 96-97, Contraction and, 10–13; transformations and, 37-March on, 167n7; Primrose 113; sines and, 94-95; Taylor 39, 42-43; vectors and, 17, and, 6–19, 24–25, 27–32, expansion and, 95-96 20-23, 37-39, 47-50 Higgs boson, 51, 59 39-40, 59; simultaneity and, inverse-square law, 90, 98n16, 129, Hooke, Robert, 93n10 13–14; space and, 5–18, 22, 140, 142 24; time and, 5–18, 22–24; Hooke's Law, 93-94 transformations and, 27–29, James Scott Prize, 83 33, 39-40, 43 imaginary numbers, 38, 150–52 Joules, 46, 48n10, 73 Jupiter, 81-82, 140 General Relativity, xxiii indices: conservative forces and, 91; cyclic order and, 91, 102, Geroch, Robert, xxin7 Gingerich, Owen, 133n9, 168n18 157; Kronecker delta, 21, 41, Kepler, Johannes, 129-31, 133n9, gradients, 88-91, 96, 156 128; Lorentz transformations 168n18 grading, xv, 49n12 and, 31; mathematical meth-Kepler Problem, 111, 129, 131, 140 ods and, 157-58; moments of gravitons, 53 Kepler's First Law, 130, 140, gravity: acceleration of, 46n7, 64, inertia, 118; time and, 17n11, 142-43 73, 85; angular momen-21–22; transformations and, Kepler's Second Law, 140-43 tum and, 103; central-force 28, 31-33, 38n13, 41 Kepler's Third Law, 141-43 motion and, 130, 133-34, inertia: angular momentum and, kinematics: Cartesian coordinates 137, 142; conservative forces 101, 103n3, 108–10, 118; and, 16; energy and, 45–53; and, 85-89, 93, 97, 98n16; Atwood's First Law of Clasforce and, 16, 79; frames and, Earth and, 64, 73–75, 87, sical Mechanics and, 5; 34, 55, 79n16; Higgs boson 89, 130, 137; electromagcentral-force motion and, decay and, 51; momentum netism and, 93; energy and, 132-33; energy and, 45-46; and, 45-53; Newtonian, 55frames, 4-7, 17, 28, 34, 45, 46; inverse square law and, 65; relativistic, 3–25, 45–53; 98n16; Leaning Tower of 55, 79, 101, 103, 108, 110, as science of motion, 16 Pisa and, 46n7; mass and, 46, 115; mass, 46, 68, 115, 117kinetic energy: central-force motion 25, 127, 132-33; moments 67, 70, 73–75, 78, 93, 97–98, and, 136-39; collisions and, of, 68, 117-28; Newton's 130, 133-34, 142; moon-59–62; conservative forces planet system, 90; motion First Law, 4-5, 108; nonand, 92; elastic collisions and, 81, 85, 133; Newton's relativistic dynamics and, and, 60-64; mass and, 56; law of, 93; non-relativistic 68, 79n16; non-relativistic moments and, 127-28; Newdynamics and, 67, 70, 73limit and, 55; right-handed tonian mechanics and, 55-56, system and, 122n11; rigid 75, 78; non-relativistic limit 59–64; non-relativistic limit and, 55-56, 59-62; rigid and, 64; orbital motion and, bodies and, 115-28; rotation and, 117-25; symmetry and, 78, 130, 133, *137*; planets bodies and, 118, 121, 127–28; and, 78, 89; potentials and, 115, 121-25; tensors, 115of rotation, 118; Taylor series

21, 125–28; transformations

and, 56; velocity and, 56

89; semi-latus rectum and,

Krogh, Egil, 20n19 Kronecker delta: cross products and, 42; indices and, 21, 41, 128; matrices and, 121 scalars and, 42; tensors and, 35n11, 42, 121, 128, 153, 157–58; vectors and, 128 Kuzmin, V. A., 53

lambda, 71, 124n12
Laplacians, 98, 157
Large Hadron Collider (LHC), 49, 51–53
Leaning Tower of Pisa, 46n7
Levi–Civita tensors, 42, 112, 128, 157–58; cross products and, 42, 112, 128, 157–58; indices and, 22; Lorentz invariants and, 35n11; scalars and, 42, 128, 157–58

light: conservative forces and, 96; dimensional analysis and, 19; Einstein and, 6, 13, 17, 24, 27, 82n1; energy and, 48; momentum and, 48; non-relativistic limit and, 55–65; red shift and, 50–51; relativity and, 3–5, 81; spectrum of, 51, 53; speed of, 3–6, 10, 13, 19, 22n22, 27, 38, 81, 82n1, 96; Taylor expansion and, 55; time and, 1, 3–19, 22n22, 24–25; transformations and, 27, 38, 40, 42–43

Loop-the-Loop roller coaster, 113 Lorentz Contraction, 10–13, 20 Lorentz factor: electric charge and, 170n32; energy and momentum, 50, 52; nonrelativistic limit and, 55, 64; rotation and, 6n4; space and, 14, 29; Taylor expansion and, 55; time and, 6n4, 9–10, 12, 14–15, 20, 22– 24; transformations and, 29, 36, 39

Lorentz invariance, xix; electric charge and, 5; electromagnetism and, xxiv, 5; equations of motion and, 5, 45; space and, 35; Special Relativity and, 5; time and, 4–5, 13–14; transformations and, 33–35

Lorentz scalars, 34, 35

Lorentz transformations: algebra of, 33, 43; Barn and Pole paradox, 40–41; Einstein Gedanken Experiment, 39–40; energy and, 50; frames and, 18–19, 28–30, 49; indices and, 31; matrices and, 32, 34–35, 42; non-relativistic limit and, 59; rotation and, 30–31, 35, 38; space and, 18, 22, 23; successive, 35–37; time and, 18–24; vectors and, 32–35; velocity and, 29, 35–37, 42–43, 59

M51 galaxy, 1

Maclaurin series, 148-50 March, Robert, 167n7 Marion, Jerry B., 68n3 mass: angular momentum and, 101, 103, 136-38; centerof-mass (CM), 50-60 (see also center-of-mass (CM)); center-of-momentum frame and, 53, 58-59; central-force motion and, 129-36, 140-42; conservation and, 72, 92, 115, 117; conservative forces and, 89-93, 97-99; dynamics and, 82; electrons, 46-47, 51, 53, 82; energy and, 46-53, 56, 59, 64, 74–75, 130, 133, 135-36; force and, 67, 70, 73-75, 78, 89, 92-93, 97-98, 103, 115, 117, 121–23, 130, 134-35; Free-Body Diagrams (FBDs) and, 68–70; gravity and, 46, 53, 67, 70, 73–75, 78, 93, 97–98, 130, 133-34, 142; inertia and, 46, 68, 115, 117-25, 127, 132-33; kinetic energy and, 56; master equation and, 48-50; momentum and, 46-48, 51–53, 56, 58, 64, 72, 101, 115–22, 126, 130, 134–36; moon-planet system, 90; non-relativistic dynamics and, 67-68, 71-78; nonrelativistic limit and, 56-65; on a spring, 99; particle relationships of, 47, 50; protons, 46–47, 50–53, 82; reduced, 130-35, 140-42; rest, 46n5;

rigid bodies and, 115-27; units for, 46-47 master equation, 48-50 mathematical methods: algebra, 145 (see also algebra); beauty of, 83; calculus, xiii, xix, 27, 145, 148; Cartesian coordinates, 146, 151-56; Chain Rule, 148; conventions, 146-58; cross products, 146-47; cyclic order, 146, 152, 157-58; cylindrical coordinates, 151, 154; derivatives, 148– 50; differential operators, 156-57; divergence, 156-57; Einstein, 146, 157-58; energy, 151; force, 156; frames, 145; imaginary numbers, 38, 150-52; indices, 157-58; inverse square law, 98n16; Kronecker delta, 157-58; Levi-Civita, 157-58; Maclaurin series, 148-50; matrices, 146-48, 153n7, 158; momentum, 151; motion, 149, 151; polar coordinates, 153-54; potentials, 156; Problem Sets, 145; projection operators, 155-56; Quantum Mechanics, 155-56; relativity, 83, 151; scalars, 146-48, 152-58; space, 146, 153n9, 154-55, 158; spherical coordinates, 151, 153n8, 154-55; study groups, 145; symmetry, 151; Taylor series, 149-51; tensors, 153, 157-58; transformations, 147–48; trigonometry, 64, 94-95, 153n9, 154; ubiquity of approximation, 148–50; vectors, 146-47, 151-58 matrices: algebra of, 37; centerof-mass, (CM), 117–18; central-force motion, 139n14; Einstein Summation Convention, 158; element dimensionality, 118; group representation by, 34; Lorentz transformations, 32, 34-35, 42; mathematical

methods, 146-48, 153n7,

sor, 117-21; non-relativistic dynamics, 69; rigid bodies, 115–21; symmetric, 121; time, 18n14, 21, 23; transformations, 27n1, 30-43, 147-48; vectors, 147 Merritt, Frank, 65n15 moments: inertial, 68, 117-28; kinetic energy and, 127 - 28momentum: 4-vector, 34-35, 45-53; angular, 81, 101–14; boosts and, 50; center-ofmomentum frame and, 53, 58-59; central-force motion and, 130, 134-41; Chasles' Theorem and, 116; collisions and, 51, 59, 62, 64, 115-16, 117n4, 126; conservation of, 45-47, 59, 61-64, 72, 108, 115–17, 130, 136, 140; degrees of freedom, 59, 62, 115–16; derivatives and, 68, 72; events and, 50; force and, 68; frames and, 45-53; invariant length and, 16, 47–50, 53; light and, 48; Lorentz factor and, 50, 52; mass and, 46-48, 51-53, 56, 58, 64, 72, 101, 115–22, 126, 130, 134-36; master equation and, 48-50; mathematical methods and, 151: motion and, 45-48; Newtonian approximations for, 52, 64; Newton's Second Law and, 76; Newton's Third Law and, 62; non-relativistic dynamics and, 67-68, 72, 76, 79; non-relativistic limit and, 55–64; particle relationships of, 47, 50; photons and, 48, 53; Problem Sets and, 49–53; relativistic kinematics and, 45–53; relativity and, 45; rigid bodies and, 115-22, 126; SI units and, 46–48, 52; space and, 3, 16, 18; time and, 3, 16, 18, 68; transformations and, 34-35; units for, 46-47 Moon, 81 moon-planet system, 90

158; moment of inertia ten-

motion: angular momentum and, 101-3, 108-14; boosts and, 20, 22, 29, 31n6, 33-39, 41-42, 50; central-force, 129–43; circular, 108–14, 126, 128; collisions and, 51, 59, 62, 64, 115–16, 117n4, 126; conservative forces and, 85, 87, 93-99; eccentric, 134, 135-36, 139-43; Einstein and, 5–6, 13, 17; elliptical, 82, 129-30, 133-36, 139-40, 142-43; energy and, 45–48; equations of, 5, 45, 68, 70-71, 77, 79, 94, 111, 136; frames and, 17 (see also frames); gravity and, 81, 85, 133; harmonic, 93-99, 151; inertia and, 117-25; invariance and, 4-5, 30, 45; Kepler's First Law, 130, 140, 142-43; Kepler's Second Law, 140-43; Kepler's Third Law, 141-43; kinematics and, 45; Lorentz Contraction and, 10–13; mathematical methods and, 149, 151; momentum and, 45-48; Newton's First Law, 4-5, 108; Newton's Second Law, 46, 67–68, 71, 76, 92, 96, 103n3, 116–17, 141; Newton's Third Law, 72, 96; non-relativistic dynamics and, 67-74, 77, 79; nonrelativistic limit and, 59, 61–62; non-relativistic (NR) collisions and, 59-60; orbital, 78 (see also orbital motion); oscillations, 95 (see also oscillations); planetary, 82, 129, 134, 136, 140; red shift and, 50; relativity and, 3, 45, 148; rigid bodies and, 82, 115–17, 121, 125–28; rotation, 30-39 (see also rotation); semi-latus rectum and, 134-36, 139-43; space and, 3-6, 10-17; symmetric, 61, 85, 103, 116, 136n13, 138; time dilation and, 6-13, 20-24; transformations and, 29–30, 34–35, 36, 43; uniform, 14, 151

motorcycles, 104n5 Mozzi, Giulio, 168n15 muons, 23 natural units (NU), 19, 22n22, 29, 38, 46 neutrinos, 23, 51 neutrons, 5n2 Newtonian mechanics, xiii, xxiii; energy and, 52; gravity and, 93; inverse square law and, 98n16; kinematics and, 55-65; kinetic energy and, 55-56, 59-64; momentum and, 52; non-relativistic dynamics and, 67-83; nonrelativistic limit and, 55–65; Problem Sets and, 63-65; study groups and, 63-64 Newton's Constant, 93 Newton's First Law, 4-5, 108 Newton's Second Law: acceleration and, 76; center-of-mass (CM) and, 117; Chasles' Theorem and, 117; conservation and, 92; force and, 67–68, 92, 96, 116-17; Free-Body Diagrams (FBDs) and, 68-70; momentum and, 76; rotation and, 117 Newton's Third Law, 62, 72, 96 NGC5195, 1 Nobel Prize, 41 Noether, Emmy, 45n3, 83n4 non-conservative forces, 78-79, 87 non-relativistic dynamics: acceleration and, 68n3, 71, 73, 75-79, 82; Cartesian coordinates and, 69, 76-77; energy and, 73-75, 79; force and, 67-80; frames and, 79; Free-Body Diagrams (FBDs) and, 68-73, 77-80; gravity and, 67, 70, 73-75, 78; inertia and, 68, 79n16; mass and, 67-68, 71-78; matrices and, 69; momentum and, 67-68, 72, 76, 79; motion and, 67-74, 77, 79; Newtonian mechanics and, 67-83; Problem Sets and, 76-80, 82; rotation and, 67n2; scalars and, 73, 75-76, 78n14; study groups and, 76; symmetry

non-relativistic dynamics (cont.) and, 67n2; tailers and, 80; vectors and, 67, 76-79 non-relativistic limit: atoms and, 63; before-and-after problems and, 42, 59-60; center-of-mass (CM) and, 58-60, 62; center-ofmomentum frame and, 53, 58-59; collisions and, 51-52, 59-65; dimensional analysis and, 62, 65; elastic collisions and, 60-64; electrons and, 59, 82; energy and, 55-56, 59-64; frames and, 55, 58-65; Galileo and, 57-58; gravity and, 64; inertia and, 55; kinetic energy and, 55-56, 59-62; Lorentz factor and, 55, 64; Lorentz transformations and, 59; mass and, 56-65; momentum and, 55-64; motion and, 59, 61-62; Newtonian mechanics and, 55-65; non-relativistic (NR) collisions and, 59–60; Problem Sets and, 63–65; quarks and, 59; scalars and, 62-63; SI units and, 55-57, 64; Taylor expansions and, 55-57, 64; Taylor series and, 56; vectors and, 60, 62, 64 non-relativistic (NR) collisions, 59-60 nuclear energy, 46-47, 61n9, 98n16 nucleons. See neutrons; protons

Okun, Lev, 46n5 omega, 107, 119 operators: conservative forces and, 88–92; differential, 88; projection, 41, 146, 155–56; scalar, 157; transformations as, 27–44; vector, 90–91, 156 orbital motion, 1; aphelion, 130, 135–40; central-force, 129– 43; eccentric, 134, 135–36, 139–43; elliptical, 82, 129– 30, 133–36, 139–40, 142–43; equation of, 133–36; gravity and, 78, 130, 133, 137; Jupiter-Earth distance and,

82; Kepler and, 111, 129-31,

133n9, 139–43; perihelion, 130, 135–40; physical parameter dependence and, 138; planets and, 78, 82, 89–90, 129, 134–35, 138, 140–43; radius of, 78, 89, 131, 133, 136–41; semi–latus rectum and, 134–36, 139–43 oscillations: angular momentum and, 114; central-force motion and, 137, 138, 140; conservative forces and, 95–96; harmonic motion and, 95–96, 98; Taylor expansion and, 95–96

perihelion, 130, 135-40 phase, 82, 94, 151 photons: conservative forces and, 98; energy and, 48-53; GZK cutoff and, 53; momentum and, 48, 53; space and, 1; time and, 1 Physics for Poets (March), 167n7 pions, 53 planets: central-force motion and, 129, 134-43; conservative forces and, 89-90; elliptical motion and, 82, 129–30, 133-36, 139-40, 142-43; gravity and, 78, 89; indices and, 31; orbital motion of, 78, 82, 89-90, 129, 134-35, 138, 140-43; Sun and, 129-30, 135-36, 143; transit of, 81 Pluto, 143

pendulums, 95n12, 98

polar coordinates: acceleration and, 82, 105–7; angular momentum and, 105, 110– 13; central-force motion and, 137; force and, 76–79; mathematical methods and, 153–54; polar coordinates and, 105, 110–13; velocity and, 82, 105–7 positrons, 51, 59, 83 potential energy, 59, 85–86, 87n3, 130, 138

potentials: central-force motion and, 133, 136–39; Coulomb, 16; electromagnetic, 34n10, 35; electron volt, 46; force gradient of, 88–91, 96; gravity and, 89; mathematical methods and, 156; vectors and, 34, 35, 85, 96, 156 potential well: angular momentum and, 136–38; central-force motion and, 133n8, 136, 139; conservative forces and, 85, 95–96, 98; effective, 136–38; enlargement of minimum and, 95; equilibrium and, 85; Taylor expansion and, 95–96,

and, 85-98, 133, 136-39;

Primrose, William: frames of relativity and, 6–19, 24–25, 27–32, 39–40, 59; Gedanken experiments and, 6–19, 24–32, 39–40, 59; transformations and, 27–32, 39–40

98

Problem Sets, xix; angular momentum, 111-14; central-force motion, 142-43; conservative forces, 97-100; dynamics, 82; energy, 49-53; Gedanken Experiments, 13; mathematical methods, 145; momentum, 49-53; Newtonian mechanics, 63-65; non-relativistic dynamics, 76-80; non-relativistic limit, 63-65; rigid bodies, 125-28; time, 13, 20-25; transformations, 27, 39-44 projection operators, 41, 146, 155 - 56

protons: binding energy and, 5n2; conservative forces and, 93; energy and, 46–53; GZK cutoff and, 53; mass and, 46–47, 50–53, 82

Pythagorean Theorem, 8-10, 17

Quantum Electrodynamics (QED), 75n11

Quantum Mechanics: classical limit of, 3–4; conservative forces and, 96; Dirac and, 82; mathematics and, 83, 96, 155–56; Special Relativity and, 3; Wigner and, 3

quarks, 46, 51, 59

radial velocity, 105, 137, rotation: 4-dimensions, 30-31; and, 46-48, 52; natural units 139 angular momentum, 101-(NU) and, 19, 22n22, 29, 38; radioactivity, 51 8, 109, 114; boosts, 20, 22, non-relativistic limit and, 55-57, 64; time and, 19, Ramsey Auditorium, 82 29, 31n6, 33–39, 41–42, Reddit, xxiiin10 50; central-force motion, 22n22 red shift, 50-51 136; centripetal force, 107space: 4-dimensions and, 17-18, 10, 113, 121-22; Chasles' relativity: Casals and, 6-19, 24-32, 28, 30-32; angular momen-39-40, 59, 82n1; General, Theorem, 117; comprehentum and, 101; Cartesian xxiii; Lorentz Contraction sive description of, 33–39; coordinates and, 16-18, 32, and, 10-13; mathematical Coriolis effect, 107-8, 37, 41, 69, 76–77, 97, 101, 109; Earth's, 109; inertia, methods and, 83; momentum 115, 117, 120, 146, 151–56; 117-25; kinetic energy, and, 45; motion and, 3, 45, Casals and, 6–19, 24–32, 148; Primrose and, 6-19, 24-118; Lorentz factor, 6n4; 39-40, 59, 82n1; conservative forces and, 87-89, 96; 32, 39–40, 59; simultaneity Lorentz transformations, and, 13-14; space and, 3-5; 35, 38; Newton's Second electrons and, 28; energy Special, 3 (see also Special Law, 117; non-relativistic and, 5, 16, 18, 45; equal Relativity); time dilation and, dynamics, 67n2; rigid bodies, mass, 61; event as point in, 6-13, 20-24115-18, 123, 125-26, 128; 7-19, 22-28; frames and, right-handed system: Cartesian transformations, 30-39, 42 4-25; Gedanken experiments coordinates and, 16, 120, Rubinov, Paul, 128n14 and, 5-18, 22, 24; invariant 152, 153; cylindrical coorlength and, 16-17, 20, 22dinates and, 154; moment of Saturn, 82 23; Lorentz Contraction and, inertia and, 122n11 scalars: conservative forces, 85, 10-13; Lorentz factor and, 88-91, 96, 98; degrees of right-hand rule, 103, 146-47, 14, 29; Lorentz invariance freedom, 59, 62, 115-16; 152 - 54and, 4, 35; Lorentz transdifferentials, 90-91; dot rigid bodies: Cartesian coordiformations and, 18, 22, 23; nates and, 115, 117, 120; products, 78n14, 128, 146mathematical methods and, center-of-mass (CM) and, 47, 158; electromagnetic, 34; 146, 153n9, 154–55, 158; 115-17, 126; Chasles' Thegradient of, 156; Kronecker momentum and, 3, 16, 18; orem and, 116-17, 125-26; delta, 158; Levi-Civita, 42, photons and, 1; Primrose 128, 157-58; Lorentz, 34, 35; circular motion and, 126, and, 6-19, 24-25, 27-32, 128; collisions and, 115-16, mathematical methods, 146-39-40, 59; Pythagorean 117n4, 126; differentials 48, 152-58; non-relativistic Theorem and, 8-10, 17; relaand, 119n9, 124; Einstein dynamics, 73, 75-76, 78n14; tivistic kinematics and, 3–25: and, 118; force and, 115-17, non-relativistic limit, 62simultaneity and, 13-14; ten-121-23, 128; frames and, 63; operators, 157; rigid sors and, 22; time and, 3-26; 115-17, 123, 126, 128; fricbodies, 117–18, 122, 128; transformations and, 27–29, tion and, 128; inertia and, transformations, 34-37, 42 32-38, 41, 43; vectors and, 115-28; kinetic energy and, semi-latus rectum: eccentricity 16 - 24118, 121, 127-28; mass and, 134, 135-36, 139-43; space-time, 22, 43 and, 115-27; matrices and, elliptical motion and, 134-Special Relativity, xxi, 138, 151; 115-21; momentum and, 36, 140-43; semi-major axis AP physics and, xxiii; lev-115-22, 126; motion and, and, 135-36 eling mechanism for, xxii; 82, 115-17, 121, 125-28; sigma, 124n12 light and, 3-5, 81; Lorentz Problem Sets and, 125-Simple Harmonic Motion (SHM), invariance and, 5; speed of 28; rotation and, 115-28; 96-97, 113 light and, 3–6, 10, 13, 19, scalars and, 117-18, 122, simultaneity, 13-14, 20, 24-25 22n22, 27, 38, 81, 82n1, 96; 128; symmetry and, 115-18, sine, 94, 96n15, 150 statement of, 5 121-27; tensors and, 115-SI units: angular momentum and, spectrum, 51, 53 22, 125-28; tools and, 116; 105; conservative forces speed of light: Casal's clock and, vectors and, 116, 121-22, and, 93, 97; dimensional 82n1; conservative forces 127 - 28analysis and, 19; energy and, 96; Einstein and, 6, 13, Rømer, Ole, 81-82, 1690n25 and, 46-48, 52; momentum 17, 24, 27, 82n1; electric

speed of light (cont.) and, 85, 90; dimensional 59, 82n1; dilation of, 6–13, charge and, 5; as infinite, analysis and, 65; inertia and, 20-24; dimensional analy-3-4, 10, 96; Lorentz invari-115, 121-25; mathematical sis and, 19; energy and, 5, 16, 18; event as point in, ance and, 5; red shift and, methods and, 151; matrices and, 121; motion and, 61, 7-19, 22-25, 27-28; frames 50-51; time dilation and, 6-13, 20-2485, 103, 116, 136n13, 138; and, 4-25; Gedanken expernon-relativistic dynamics iments and, 5-18, 22-24; spherical coordinates, 151–55 spin, 82, 103, 117, 120, 136n12 and, 67n2; rigid bodies and, indices and, 17n11, 21–22; spring constant, 94 115-18, 121-27 invariant length and, 16–17, Stein, Gertrude, xxiiin9 20, 22-23; light and, 1, 3tailers, 80 19, 22n22, 24-25; Lorentz STEM courses, xv tau, 104 Stokes Theorem, 91n6, 167n6 Contraction and, 10–13; Strangest Man, the (Farmelo), 82n3 tautologies, 5 Lorentz factor and, 6n4, 9students: algebraic learners, xvi-10, 12, 14–15, 20, 22–24; Taylor expansions, xix; conserxvii; AP preparation and, vative forces and, 94-96; Lorentz invariance and, 4-5, xx; changes in pedagogienergy and, 51-52; harmonic 13-14; Lorentz transformamotion and, 95-96; Lorentz cal practices and, xv-xvii; tions and, 18-24; matrices developing confidence in, factor and, 55; mathematical and, 18n14, 21, 23; momenxiii-xiv; gains for, xxiv; methods and, 150; nontum and, 3, 16, 18; photons relativistic limit and, 55-57, grading, xv, 49n12; honors, and, 1; Primrose and, 6-19, 64; oscillations and, 95–96; 24-25, 27-32, 39-40, 59; xiii-xxiii; inculcating love of physics in, xiv; instrucpotential well and, 95-96, Problem Sets and, 13, 20–25; 98 tor contact and, xxii-xxiii; relativistic kinematics and, Taylor series: conservative forces intellectual growth, xiv; 3–25; relativity and, 3–5; love of reading and, xv; and, 98; kinetic energy and, simultaneity and, 13-14, 56; Maclaurin series, 148-20, 24-25; SI units and, 19, mathematical methods and, xiv, 145-58; outcomes for, 50; mathematical methods 22n22; space and, 3-26; tenxxiii; perspectives of, xxand, 149-51; non-relativistic sors and, 22; vectors and, 6, xxi; physics department limit and, 56 16 - 24Teaching Assistants (TAs), xiv, xvi, integration and, xv; revised tools: conservative forces and, xxiv, 63, 167n6 curriculum for, xxi-xxiii; 96; mathematical methods, Teaching Assistants (TAs) tennis rackets, 103n4, 117n3 145-58; rigid bodies and, and, xiv, xvi, xxiv, 63, 167n6; tensors, xix; angular momentum 116; study groups and, 49, and, 112; cross products and, visual learners, xvi-xvii 82, 145; Taylor expansions, study groups, xxn4; angular 42, 128; cyclic order and, 51 - 52momentum and, 111-14; 22, 158; inertial, 115-21, top quarks, 51, 59 central-force motion and, 125–28; Kronecker delta, torque: angular momentum and, 142; dynamics and, 82; 35n11, 42, 121, 128, 153, 67n2, 104-5, 111-12, 121, energy and momentum, 157-58; Levi-Civita, 22, 122, 128; circular motion 49; forming, xvi; getting 35n11, 42, 112, 128, 157and, 128; motorcycles and, help, 20; mathematical meth-58; mathematical methods 104n5 ods and, 145; Newtonian and, 153, 157-58; moment transformations, xix; 4-dimensions of inertia, 117-21, 125-28; mechanics and, 63-64; nonand, 28, 30-32; 4-vector notation for, xxiii, 153, 157and, 28, 32-35, 38-42; relativistic dynamics and, 76; sustaining, xvi; time manage-58; rigid bodies and, 115-22, acceleration and, 29; beforement, 20; tools for, 49, 82, 125–28; space and, 22; time and-after, 42, 59-60; boosts 145; transformations and, 39 and, 22; transformations and, and, 20, 22, 29, 31n6, 33-Sun, 1; central-force motion and, 34-35, 42 39, 41-42, 50; Cartesian 129-32, 135-36, 140, 142; Tevatron, 52-53 coordinates and, 32, 37, 41; Casals and, 27-32, 39-40; Earth's rotation and, 109; T-handle, xxiiin10 gravity and, 130; planets and, time: 4-dimensions and, 17-18, center-of-mass (CM) and, 129-30, 135-36, 143 28, 30-32; Cartesian coor-59-60; collisions and, 59symmetry: angular momentum dinates and, 16–18; Casals 60; derivatives and, 34n10; and, 103; conservative forces and, 6-19, 24-32, 39-40, electric charge and, 16, 35;

electromagnetism and, 34, 35; electrons and, 28; energy and, 35; events and, 27–30, 31n6, 33, 38-44; frames and, 18-19, 27-43, 59-60; Galilean, 57-59, 65; Gedanken experiments and, 27-29, 33, 39-40, 43; indices and, 28, 31–33, 38n13, 41; inertia and, 28, 34; invariant length and, 37–39, 42–43; light and, 27, 38, 40, 42-43; Lorentz factor and, 29, 36, 39; Lorentz invariance and, 33-35; Lorentz, 18-19 (see also Lorentz transformations); mathematical methods and, 147-48; matrices and, 27n1, 30-43, 147–48; momentum and, 34-35; motion and, 29-30, 34-35, 36, 43; Primrose and, 27-32, 39-40; Problem Sets and, 27, 39-44; rotation and, 30-39, 42; scalars and, 34-37, 42; space and, 27-29, 32-38, 41, 43; study groups and, 39; successive, 35-37; tensors and, 34-35, 42; vectors and, 27-42, 147; velocity and, 35-37 trigonometry, 64, 94-95, 153n9, 154 Twain, Mark, 34n10, 164 Twin Paradox, 38n16, 43-44 two-body problem, 129–33

uniform motion, 14, 151

vectors: 4-vector, 17 (see also 4-vector); angular momentum and, 101-7, 110-12; Cartesian coordinates and, 37, 41, 76, 101, 146, 153, 156; conservative forces and, 85, 88-91, 96; cross products and, 91, 146, 157–58; curl of, 156–57; differential operators and, 156-57; differentials and, 90–91; direction of change of, 105-6; divergence and, 157; electromagnetic, 34; energy and, 45–53; invariant length and, 17, 20-23, 37-39, 47-50; Kronecker delta and, 158; Lorentz transformations and, 32-35; mathematical methods and, 146-47, 151-58; Newton's Third Law and, 62; non-relativistic dynamics and, 67, 76-79; non-relativistic limit and, 60, 62, 64; operators and, 90-91, 156; potentials and, 34, 35, 85, 96, 156; righthanded, 16n9; rigid bodies and, 116, 121-22, 127-28; space and, 16-24; time and, 6, 16–24; transformations and, 27–42, 147; unit, 41,

76–77, 90, 105–7, 110, 111, 152 - 54velocity: addition of, 35-37, 42, 57-58, 64; azimuthal, 106; Cartesian coordinates and, 76; center-of-momentum frame and, 53, 58-59; Earth and, 42; Galileo and, 57-58; kinetic energy and, 56; Lorentz transformations and, 29, 35–37, 42–43, 59; polar coordinates and, 82, 105-7; radial, 105, 137, 139; rotation at constant angular, 107; super-luminal, 37; Taylor expansion and, 55 Visualizing Quaternions (Hanson), 77n12

Watson, Alan, 53, 164
W boson, 51
Wigner, Eugene, 3
work: conservative forces and, 78, 86–88, 92, 96; cyclic triplets and, 91n7; differentials and, 73; as energy transferred, 73–76; Feynman and, 75; force and, 16, 67–68, 73–78, 86–88, 92, 96, 121; path integral for, 73–78; in vertical plane, 73–75

YouTube, xxiiin10

Zatsepin, G. T., 5