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CHAPTER 1

Simple discrete-time models
of single populations

Fibonacci's rabbit model

In the year 1202, the Italian mathematician Fibonacci considered the following problem:

A certain man had one pair of rabbits together in a certain enclosed place. One wishes
to know how many are created from the pair in one year when it is the nature of them
in a single month to bear another pair and in the second month those born to bear also.

Fibonacci’s rabbit problem may be the first published example of what we would now
call a problem in theoretical ecology. Ecology seeks to explain the interactions among or-
ganisms and between organisms and their environment. Theoretical ecologists use verbal,
conceptual, graphical, mathematical, and computational models of ecological systems to ex-
plore the logical consequences of assumptions and to make testable predictions that can be
compared against data from field or laboratory studies. Before we go further, let us define
the terms theory and model, as well as the related term hypothesis:

A theory typically constitutes a broad and general set of ideas that are independent
of any particular model. For example, we may have a theory of rabbit population dy-
namics that describes how growth rates respond to food availability, predator abun-
dance, and so on.

A model falls under the umbrella of a theory and makes more specific and more de-
tailed assumptions. Models can be conceptual or verbal, but in this book we focus
mainly on quantitative models, which can generate not only qualitative but quanti-
tative predictions. A single theory may encapsulate many models. For example, later
in the book we will meet the Lotka—Volterra competition model, which falls under
the general umbrella of niche theory and makes very specific assumptions about how
niches operate, thus facilitating quantitative modelling. We will primarily be con-
cerned with mathematical models, but we will often motivate these with verbal,
graphical, and conceptual models, and we implement many of them as computa-
tional models. Fibonacci’s statement of his rabbits problem is a verbal model that he
then turned into a mathematical model, as we will see below.

For general queries, contact info@press.princeton.edu



2

Chapter 1

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

o The term “hypothesis” is sometimes used interchangeably with “theory;” but typically
a hypothesis has a more limited focus or less empirical support than a theory. For
example, we may hypothesise that a rabbit population will grow without bound if
there is no constraint on food availability.

There are grey areas between these terms and they are not always used as strictly de-
fined above, but, for the purposes of clarity, in this book we will endeavour to stick to these
definitions.

Fibonacci’s statement of his rabbits problem is a verbal model that makes some of its
assumptions explicit: the initial condition is one pair of rabbits; a pair of rabbits produces a
new pair of offspring every month; and the time frame of interest is one year. But the verbal
model is unsatisfactory, because other assumptions remain unstated: How long do rabbits
live? When do new rabbits reach reproductive age? Is there some carrying capacity imposed
by the environment? If we want to tackle the rabbits problem rigorously, we have to formu-
late a mathematical model. Mathematical modelling is really just a way of forcing ourselves
to make all of our assumptions explicit and of exploring the logical consequences of these
assumptions in a rigorous and unambiguous way. We can draw inspiration from the senti-
ments of Ronald Ross, a pioneering epidemiologist of the early 1900s who was working on
disease ecology and emphasised the need to treat the subject mathematically, because “to
say that a disease depends upon certain factors is not to say much, until we can also form an
estimate as to how largely each factor influences the whole result. And the mathematical
method of treatment is really nothing but the application of careful reasoning to the prob-
lems at issue” Ross’s sentiment applies universally: treating a problem mathematically or
computationally is just a way of forcing ourselves to be rigorous and logical.

Fibonacci did formulate his rabbit population mathematically and in so doing made the
following more explicit assumptions: the rabbits can begin to reproduce in their second
month of life; and the rabbits never die. He did not assume any kind of environmental carry-
ing capacity, so the rabbit population can keep growing indefinitely. In modern notation,
his mathematical model can be written as

F . =F+F,_, (LD

where F, is the number of pairs of rabbits at time ¢. In words, Eq. (1.1) says that the number
of pairs of rabbits in month ¢+1is equal to the number alive in the previous month t (because
all rabbits survive) plus a number of offspring equal to the number alive in month -1
(because only rabbits at least one month old can breed). Assume that prior to the start of
the year there are no rabbits (F,=0) but then a pair of newborn rabbits is introduced in
month 1 (F,=1). Then according to Eq. (1.1) we will have F,=F,+ F,=1, which biologically
means that the pair survives to month 2 but can't yet breed. In month 3, Eq. (1.1) then gives
us F;=F, + F, =2, because now the original pair has produced one pair of young, and so on.
We can easily iterate Eq. (1.1) by hand to compute the first several values of F, for t>1 as
{1,1,2,3,5,8,13,21, 34,55, 89,144 . . .}. The last value here gives us the answer to Fibonacci’s
problem: in month 12 there will be F,, =144 rabbits. For higher values of , we can easily com-
pute F, with a simple computer program that iterates Eq. (1.1) for us (Box 1.1). A time series
of the Fibonacci model is shown in Fig. 1.1.
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Box 1.1. R code for the Fibonacci rabbit model

To iterate the Fibonacci model (Eq. (1.1)) in R, we can use the following code:

# number of timesteps (months) over which to iterate model
t max = 12

# initialise an empty vector to store the population sizes
# over time; the first value will correspond to month 0,
# i.e., t=0

Fs = numeric (t_max+1)

# set the initial population size to zero

Fs[1] = 0
# introduce a pair of rabbits in month t=1
Fs[2] =1

# execute a loop from month t=2 to t=t max, in each step
# calculating the value of the population size at month t
# from the Fibonacci formula
for ( t in 2:t max )

Fs[t+1l] = Fs[t] + Fs[t-1]

# plot the results
plot (0:t max,Fs,pch=19,type='0o',xlab="'t"',ylab="'F")

Lines 1-11 set up the initial conditions and the object Fs for storing the population
sizes. Lines 16-17 perform the work of iterating the model with a loop. Line 20 graphs
the results. In line 20 the pch argument is set to 19 to draw the time series as solid
points, and type is set to 'o' to draw both (“0” for “overplotted”) points and lines. A
sample output graph is shown in Fig. 1.1. Longer time series can be generated by increas-
ing the t max parameter on line 2.

Be careful with indexing when converting a mathematical model to computer code.
In mathematics (and some computer programming languages such as C4++), indexing
often starts at zero, but in R indexing starts at one, and thus line 9 sets Fs [1] = 0, which
corresponds to the mathematical statement F,=0 (see text). For the same reason, we
plot 0:t max on the horizontal axis instead of 1 : (t_max+1).

A notational convention in code samples throughout this book is to use the charac-
ter s at the end of an object name to indicate that the object is a vector comprising many
individual values. Hence the object Fs comprises multiple values of F, with the s in-
tended to evoke the English plural.

A final note: We recommend that any good R program start with the command
rm(list=1s()) to remove any existing objects in memory that may affect program
execution, but for brevity we omit this command in the scripts presented in this book.
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Eq. (11) is an example of a difference equa-
tion. A difference equation relates the value of a
variable at time ¢+ 1 to the value of the variable in
previous timesteps. In this case the variable of in-
terest is the rabbit population size, F. A defining
characteristic of a difference equation is that the
timesteps are discrete, so difference equations are
discrete-time models. Eq. (1.1) is also an exam-
ple of a dynamical system, a rule that describes
how some variable changes over time. And it is
a one-dimensional system because there is only
< one time-dependent variable and correspond-
ingly only one dynamical equation. A two-
« dimensional system, for example, would require
two equations. In this chapter we stick to one-

dimensional systems, but in later chapters we
0 2 4 6 8 10 12 move on to higher-dimensional systems.
Time (t) We will leave the Fibonacci rabbit model for

. now. The Fibonacci model, our first ecological
Fig. 1.1. Time series for the Fibonacci rabbit model (Eq. (1.1)),

showing the number of pairs of rabbits F, in each month t over model in this book, was also arguably the first
one year (see code in Box L.1). ecological model in history. It is very simple and

perhaps unlikely to be applicable to any real

population. Despite this, we have already learnt
from it some basic modelling concepts and gleaned at least one biological insight, albeit one
that is obvious to most ecologists: in the absence of an environmental carrying capacity, a
population will tend to grow without bound. The Fibonacci numbers (i.e., the sequence of
numbers generated by Eq. (1.1)) are important in mathematics and have found various ap-
plications in biology, beyond population models. We will revisit the Fibonacci rabbit model
in Chapter 3. Next let us explore an even simpler model.

120
1

80
I

Population size (F)

Geometric-growth model

Consider a population that grows at a constant rate each year so that the population in one
year is double that in the previous year. We can express this mathematically as

N,1=2N, (12)

This model is simpler than the Fibonacci rabbit model in the sense that the population now
depends only on the population size in the previous timestep, not on the population size
two timesteps ago. For a given initial population size N, the model can be projected for-
ward in time by iterating Eq. (1.2) either by hand or on a computer. For example, if N, =20,
our first few values of N, are {20, 40, 80, 160, 320, 640, . . .}.

We can generalise the model specified by Eq. (1.2) by allowing arbitrary fixed per capita
birth and death rates, denoted by b and d, respectively. This leads to the equation
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N,,;=N,+bN,—dN,
which can be rewritten as

N,,,=(1+b-d)N, (13)

For this model to make biological sense, the birth and death rates must be nonnegative (=0,
d>0), and the maximum value of the death rate must be d=1, which would imply that all
extant individuals die every timestep (as in, say, a model of annual plant population
dynamics).

Because b—d is just a fixed value, we can define r=b—d and write Eq. (1.3) as

N, =(1+7)N, (1.4)

We refer to the quantity r as the per capita population growth rate (it is sometimes called
the discrete growth factor, and the factor 1+ is called the finite rate of increase). The re-
strictions on b and d given above imply that r>— 1. If r> 0 the population will grow over
time, whereas if r <0 the population will shrink over time (Fig. 1.2; see also code in Box 1.2).
We refer to quantities that do not change over time, such as r, b, and d, as parameters. Let
us clearly define what we mean by variables, parameters, and constants.

o A variable is a quantity that changes over time, e.g., population size N. Time (?) is
itself a variable in the geometric-growth model and in most of the models we will
consider. We can refer to variables in
our models other than time as time-

dependent variables. °
+ A parameter is a quantity that does not =
vary over time and that is not given a nu-
merical value in the model specification, o
e.g., rin Eq. (1.4). - °
o By “constant” we usually mean a numer- £
ical constant, such as 2 or 7 or e. Note '§ 2
that sometimes parameters are also re- s
ferred to as “constants,” because they are =
constant over time. Ambiguity can be §. SN
avoided by using the terms “parameter” o
and “numerical constant” °
N
Note that the time variable ¢ in the geometric-
growth model does not have units, because the
timescale arises naturally here from the discrete 7 . . . . . .
mathematical treatment of time. Similarly, the 0 2 4 6 8 10
parameters b and d, which refer to the rates at Time (f)
which individuals are born and die per timestep,
do not have units either. Fig. 1.2. Time series for the geometric-growth model (Eq. (1.4))

Let us get back to analysing the model. As
shown in Boxes 1.1 and 1.2, although it is straight-
forward to iterate a difference equation such as indicated (see code in Box 1.2).
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Box 1.2. R code for the geometric-growth model

To iterate the geometric-growth model (Eq. (1.4)) in R, we can use the following code:

1 # number of timesteps to iterate the model
2t max = 10

3

4 # initial population size

5 NO = 20

6

7 # population growth rate

8 r = 0.2

10 # initialise an empty vector to store the population sizes
11  # over time

12 Ns = numeric(t max+1)

13 # set the population size in the first timestep to NO

14 Ns[1l] = NO

15

16 # execute a loop from time t=1 to t=t max, iterating the map
17 for ( t in 1:t max )

18 Ns [t+1] = (1+r) *Ns([t]

20  # plot the results
21 plot(0:t _max,Ns,pch=19,type='0o',xlab="'t"',ylab='N",
22 ylim=c (0, max(Ns)))

The structure of the program is similar to that in Box 1.1, but now we must define a
value for the growth-rate parameter r (line 8). In line 22, the ylim argument to the
plot () function is used to expand the range of the y-axis to encompass y=0. This is
done for aesthetic purposes (it is often desirable to see a graph’s y-axis start at zero). You
can generate Fig. 1.2 by running the code above, which produces a time series for the
growth rate r=0.2, and then the code below, which produces a time series for a growth
rate r=—0.2 and plots it on the same set of axes:

23 r = -0.2
24 for ( t in 1:t max )
25 Ns[t+1] = (1+r)*Ns|[t]

26 points(0:t max,Ns,pch=1,type='0")

The points () command here tells R to use the same set of axes as for the previous
graph, instead of drawing a new figure, and pch=1 tells it to use open points, so we can
visually distinguish this time series from the first one. The option type="'o" again tells
R to draw both points and lines, which is possible (perhaps counterintuitively) even
though the command used is points () (we could instead use 1ines () and the out-
put would be exactly the same).
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Eq. (1.4) using a computer, this can be time consuming for large ¢ or for complex models. For
some models it is possible to obtain a mathematical solution, also called an analytical solu-
tion, that allows us to quickly compute the values of our variables at some arbitrary time ¢
without computing all the intermediate values. The geometric-growth model (Eq. (1.4)) has
such an analytical solution for N; as an explicit function of time t and the model parameters:

N,=(1+7)N, (15)

This solution can be verified by plugging it back into Eq. (1.4) (Box 1.3).

Not all models have analytical solutions. The more complex a model is, the less likely it
is to admit an analytical solution. As it turns out, the Fibonacci rabbit model (Eq. (1.1)) also
has an analytical solution, but the derivation is somewhat more complicated and we leave it
to Chapter 3. Whenever we can find analytical solutions they are very useful because

« they are fast to compute numerically;

o they reveal insights about the relationships between parameters and variables that
are hard to glean from numerical simulations; and

« theyallow us to draw general conclusions about model behaviour that apply over all
possible values of the parameters, rather than just for specific numerical choices of
parameter values.

For example, from Eq. (1.5), with the help of a computer, we can quickly compute the value
of Ny, for given values of r and N,. Computing N,,, iteratively using the code in Box 1.2
would be comparatively slow (though still lightning fast on a modern computer). For the
Fibonacci rabbit model, the analytical solution in addition gives us insights about the
long-term growth rate of the population that would be difficult to obtain from numerical
iteration (see Chapter 3).

Box 1.3. Analytical solution of the geometric-growth model

The geometric-growth model is specified by the following difference equation (Eq.
(1.4)):

N,.1=1+71)N, (BLI)
To verify that a solution is (Eq. (1.5)):
N,=(1+7r)'N, (BL2)
we plug Eq. (B1.2) into both the left- and right-hand sides of Eq. (B1.1):
1+ N,=1+7r)(1+1r)'N,

which is true by the laws of indices, verifying the solution as required.
This solution (Eq. (B1.2)) is a key result that we use throughout the book as part of
our solutions to more complicated models.
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What else can we learn from the geometric-growth model? In general, we are interested
in computing equilibria of our models. An equilibrium (sometimes also called a fixed point)
is a state where the system will remain at rest, i.e., the system state does not change over
time. Biologically, we care about equilibria because an undisturbed system may tend to an
equilibrium after a sufficiently long period of time. The mathematical way of saying “the
system state does not change over time” in a discrete-time model is N,,,; = N,. Any value of
N that satisfies this equation is an equilibrium, and we can denote it by a special symbol,
typically N*, N, or N. In this book, we use the latter notation, N, but readers should be
careful not to confuse this with the use of the same notation in statistics to denote the mean
of a variable.

In the geometric-growth model (Eq. (1.4)), for an equilibrium we require

N=1+r)N (1.6)

Let us assume that 7#0 (the case r=0 could be of interest to mathematicians, but in biology
no growth rate is precisely equal to 0 and such borderline cases can usually be safely ignored).
In this case, the only solution to the equation is N =0, i.e., the only equilibrium is to have
zero individuals in our population. This makes intuitive sense. The model describes a closed
population, and if there are zero individuals now, there will be zero individuals in the future;
i.e., the population size will not be changing over time and we will have an equilibrium. But
if there is a nonzero number of individuals, then the population will be either growing (> 0)
or shrinking (r<0); i.e., we will not be at equilibrium. (Note that for the Fibonacci rabbit
model defined by Eq. (1.1), there is an equilibrium at F =0.)

The next question we might ask of our model is whether the equilibrium we just found
is stable. A stable equilibrium is one towards which the system will return after a perturba-
tion from the equilibrium; an unstable equilibrium is one from which the system will move
away after a perturbation. The concepts of stable and unstable equilibria are illustrated in
Fig. 1.3. We can visualise a stable equilibrium as the bottom of a rounded cup in which we
place a ball (Fig. 1.3a). If the ball is given a small perturbation, it will return to the bottom.
We can visualise an unstable equilibrium as the
top of an inverted cup (Fig. 1.3b). If a ball is
placed in this position and then given a small
perturbation, it will roll away, never to return.

For the geometric-growth model, we can
see intuitively that if the system is at the zero
equilibrium (N =0) and we perturb it by add-
ing some individuals to the system, the sys-
tem will return towards the zero equilibrium

if and only if the growth rate r is less than 0.

Fig. 1.3. A visual representation of the concepts of stable and un- This is because if <0 the population is de-
stable equilibria. (a) A stable equilibrium: The ball will remain in creasing at each timestep. On the other hand,

its current state if unperturbed, and if perturbed it will return to
the original state. (b) An unstable equilibrium: Again the ball will
remain in its current state if unperturbed, but now if perturbed it
will move further away from the original state.

if r>0 the zero equilibrium will be unstable.
These properties can also be expressed in
terms of the eigenvalue of the system at equi-
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librium, which for the geometric-growth model is 1+r (for a single-variable discrete-
time model, such as Eq. (1.4), the eigenvalue is obtained by differentiating the right-hand
side of the difference equation with respect to N, and then plugging in the equilibrium value
N, =N). Eigenvalues determine the growth rates of variables over time near an equilib-
rium. For a single-variable discrete-time system an equilibrium is stable if the systems ei-
genvalue at the equilibrium has magnitude less than one and unstable if it has magnitude
greater than one, consistent with our intuitive deductions above about how r governs sta-
bility. Later in the book we will learn more about eigenvalues, including why they govern
stability of equilibria and how to compute them for more general classes of models.

We have described the model specified by Eq. (1.4) as the geometric-growth model, but
another name for it is the discrete-time exponential-growth model. We can see how the term
“exponential” is relevant by writing k=log(1+r), such that the analytical solution to the
model (Eq. (1.5)) becomes

N,=é" N, (17)

where e is the base of the natural logarithm. Note that e is a numerical constant (2.71828 . . .),
and in this book we use log(x) to represent the natural logarithm of x, as is standard in ecol-
ogy. Our trick of switching from a model with parameter r to a model with parameter k here
is an exercise in reparameterisation. Reparameterisation is a handy tool for expressing our
model in a different mathematical way and potentially getting new insights. We use repa-
rameterisation repeatedly in this book.

Applications of the geometric-growth model

The geometric-growth model (Eq. (1.4)) makes many simplifying assumptions that are un-
characteristic of most real species populations. These assumptions include the following:

1. Constant per capita growth rate. The per capita growth rate is defined as (N,,,—N,)/N,,
which for this model is equal to r, a fixed value that is independent of population size.
In reality, we might expect that the per capita growth rate changes with population size.
In particular, it might become lower as the population grows and the environment
becomes saturated.

2. Deterministic behaviour. There is no stochasticity (randomness) in this model. In real-
ity, most populations are subject to stochasticity of various kinds.

3. No age structure. In most real populations, individuals of different ages have different
vital rates (birth, death, and growth rates), and this affects overall population growth. In
contrast, in the geometric-growth model all individuals are assumed to have the same
vital rates regardless of age.

4. Population size treated as a continuous quantity. For r=0.2 and N;=20 in this model
we obtain, for example, a population size of N=28.8 at time t=2. Obviously, in reality
we cannot have 28.8 individuals. For small populations, the treatment of N as a contin-
uous variable can be particularly problematic, as we will see in later chapters. (For now,
when interpreting a model such as Eq. (1.4), the reader may assume that N measures the
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population size in thousands or some other large multiplier, in which case the effects of
biologically unrealistic fractional individuals turn out not to be too important.)

5. No sexual reproduction. The geometric-growth model does not define how new indi-
viduals are actually produced, and in particular there is no notion of sexual reproduc-
tion. Many real populations reproduce sexually, which can affect growth rates, especially
when there is an uneven sex ratio.

6. No spatial structure. Real populations have spatial structure and this can affect their
growth rates too. For example, the population growth rate may be locally higher where
the population density is lower and the environment is less saturated.

7. No influences from other species. Most real populations interact with other species, for
example, via competitive, mutualistic, and predator—prey interactions.

8. Closed population. This assumption may be realistic in some cases, but many popula-
tions are affected by immigration and emigration.

9. Population growth in discrete timesteps. This assumption is suitable for populations with
non-overlapping generations or a fixed breeding schedule. But it may not be appropri-
ate for populations that breed continuously over time.

We might wonder, given that no real population satisfies all these assumptions, whether
the geometric-growth model is actually useful for anything. The answer is yes: the model
can be useful in situations where the violations of the assumptions, in particular the first
assumption that the per capita growth rate is constant, are not too severe.

For instance, imagine a laboratory experiment in which a population of bacteria is ini-
tialised with just a small number of cells and left to grow in a medium. For several hours
this population may exhibit close to geometric growth, and if we had an estimate of the
growth rate r, we could start the experiment and then use Eq. (1.5) to estimate how long it
would take to reach some target population size, which could correspond to the bacterial
density required for the next phase of the experiment. To do this, we would need to invert
Eq. (1.5) to express t as a function of N:

log(N]
__\No) (1.8)

~log(1+7)

Imagine that we start with a population of N, =10 cells, that the target population size is
N,=10* cells, and that we have previously estimated the growth rate to be r=0.1 per hour.
We can then set our timestep length to be one hour and estimate from Eq. (1.8) that it will
take about =72 hours to reach the target. We can then happily go home from the lab after
lunch on Friday and enjoy the weekend, knowing that our bacteria will be ready for the next
phase of the experiment by Monday afternoon. The key to the geometric-growth model being
potentially useful here is that the population starts far below carrying capacity, so its per
capita growth rate may be nearly independent of population size for some time, consistent
with assumption 1 above. In addition, most of the other assumptions may be close to satis-
fied (e.g., there is asexual reproduction and the population is closed).

The simple geometric-growth model can also be applicable to problems involving in-
vasive species or species recovering from very low numbers. For example, the sea otter
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1

(Enhydra lutris) was extensively hunted for its
fur in the nineteenth century, and declined pre-
cipitously in California to a low of about 50 in-
dividuals in the early twentieth century. After
the species was protected, it recovered and un-
derwent a period of almost geometric growth,
which is well described by Eq. (1.5) (Fig. 1.4).
Another general application of geometric
growth is to systems where the population size
starts small and the per capita growth rate is
negative (r<0). In such a scenario, the model’s
behaviour at high values of population size is
irrelevant, and thus the absence of a carrying ca-
pacity is not a major limitation. For example, if
we have an endangered species that is rare and
declining, a geometric-growth model may yield o -

1,500

1,000

Estimated population size

500
1

a meaningful estimate of the species’ expected 19|20 19I40
time to extinction. Year

In many real scenarios, however, we are in-
terested in populations that are close to their

T
1960

T
1980

Fig. 1.4. Populations starting from low densities can exhibit
growth that is close to geometric for a period of time. Points

carrying capacity or may become so within the show estimated population sizes of sea otters in California
time frame of interest (see Chapter 2). In addi- over the period 1914-1986. The curve shows a fit of the ana-

tion, violations of the other assumptions listed
above may in some cases render the geometric-
growth model inappropriate for projecting a 1988.)

population into the future.

But a general lesson here is that models can be useful even when their assumptions are
not perfectly satisfied in nature. Indeed no model’s assumptions will ever be perfectly satis-
fied. An imperfect model (i.e., every model) can be useful in two ways. Firstly, if the assump-
tions are not too severely violated, the model may be useful for making predictions and
projections (e.g., Fig. 1.4). Alternatively, if a model’s assumptions are severely violated, the
inconsistency between the model’s predictions and data can inform us of this fact and point
to important mechanisms that are operating in nature and missing from our model. For
example, when we see the sea otter population trajectory in Fig. 1.4 dropping below the
geometric trend in later decades, we can infer that some process is operating that is not
encapsulated in the geometric-growth model, for instance, food limitation.

Why and how do we model ecological systems?

The insights from the previous section are the basis for statistician George Box’s well-worn
aphorism that “All models are wrong but some are useful.” A more nuanced version of this
statement might be that “All models make unrealistic assumptions but some can neverthe-
less be useful” Before building a model, any ecologist, whether a novice student or a seasoned
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researcher, would do well to ponder the motivation for model building. What makes a
model useful?

There are, broadly speaking, two uses of ecological models. The first is to make quanti-
tative predictions. Predictions can be useful for practical applications, e.g., for predicting
the spread of an invading or reinvading species (e.g., Fig. 1.4). Predictions can also be useful
for testing the validity of ecological theories, as we will see at several points in this book.
The second broad use of models is to give general insights into how ecological systems work.
For example, the geometric-growth model allows us to attain a minimalist but very general
understanding of population dynamics in the absence of a carrying capacity, stochasticity,
or other more complicating factors. In 1798 Thomas Malthus used a geometric model of
human population growth to predict a future demographic catastrophe. This catastrophe has
at the time of writing not materialised, but the insights from Malthus’s simple model did
inspire both Charles Darwin and Alfred Wallace while they were developing their ideas about
evolution by natural selection.

After we know why we want to build a model, how do we actually go about model build-
ing? Model building involves answering the following questions:

(i) What will the state variables be? In the geometric-growth model, there is one state
variable: population size. Other models may have multiple state variables, which may
refer to multiple species, multiple subpopulations within a species, or other groupings
of individuals. There may also be state variables for resources and other abiotic factors.

(ii) What mechanisms will be included in the model? Do we need to include density de-
pendence, stochasticity, species interactions, and so on? For a model with multiple
state variables, it can be helpful to construct a flowchart indicating how the different
variables influence one another (see, e.g., Chapter 5).

(iii) What will the algebraic structure of the model be? In other words, how do we go from
a verbal or graphical statement of (i) and (ii) to a mathematical statement? The kinds
of decisions we have to make here include whether to treat variables continuously or
discretely, and what precise mathematical forms to choose for functional relationships,
such as those that relate population growth to population size. We must also choose
names for our variables and parameters. There are no strict rules about such names,
but it is sensible to choose names that convey some meaning, e.g., N for number of
individuals or ¢ for time.

For each of steps (i)-(iii), we have to make judgements about the complexity of our
model. All models make unrealistic assumptions, but how complicated a model should we
choose for a given application? Should we strive to include all mechanisms imaginable, thus
making our models as complicated and close to reality as possible? Or should we opt for
simpler models, since they are at least easier to analyse? There is no straightforward answer
to these questions. Theoretical ecologist Simon Levin has mused that “the general philoso-
phy is to incorporate a minimum of necessary detail, complicating the model only when
necessary” (Levin 1992). Here “necessary” refers to how much complexity is needed to
make the model useful for its intended purpose, whether this purpose is producing insights
about a particular ecological phenomenon or generating predictions. Following this advice,
we should not throw all conceivable processes into a model at once. Doing so would lead to
a model whose behaviour is too complicated to yield general insights, impossible to anal-
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yse, and very unlikely to make accurate predictions. In a similar way, a chemist exploring
chemical reactions would not throw all reagents into a beaker at once, but would start by
exploring the properties of single reagents, then move on to reactions between pairs of re-
agents, and from there gradually increase the complexity and sophistication of the experi-
ments. By analogy with the prudent chemist, we will usually start with a well-understood
model (e.g., the geometric-growth model; Eq. (1.4)) and add in one or two processes at a
time to explore their effects on model behaviour.

We empbhasise that building models is as much an art as a logical exercise—one that must
be taught by way of multiple examples and guiding principles rather than firm rules. Good
model-building skills are essential for a theoretical ecologist. No amount of fancy mathe-
matical and computational analysis can save a poorly structured model or one for which
the scientific motivation is unclear. In this book, we follow these sentiments and aim not
only to impart the technical skills required for model analysis but to help the reader develop
the experience and intuition to build models appropriate for the ecological problems at hand.
Building mathematical models can seem intimidating at first, but the reader is encouraged
to jump in and learn by trial and error (e.g., see Exercises 4 and 5). Even before any analysis
takes place, the process of building a mathematical model can itself be instructive in pin-
pointing aspects of a verbal model that are vague or imprecise. Biologists familiar with field
or laboratory work may rightly be apprehensive about jumping into a project without a care-
ful accounting of material costs, health and safety risks, feasibility, and likelihood of suc-
cess. But the entry barrier to modelling is much lower. Exploring a model that turns out to
be flawed may have some minimal costs in terms of time, paper, and ink (or computer power),
but even then one is likely to learn something from one’s mistakes and can easily screw up
the paper and start again.

Let us take the example of the geometric-growth model (Eq. (1.4)) and consider build-
ing possible extensions to it. One obvious limitation of this model is its lack of a carrying
capacity. Let us then state our research question as, “How does a carrying capacity affect
population dynamics?” and be clear that we are looking for general insights rather than pre-
dictions for a specific system. For model-building step (i), it would be reasonable to stick
with just one state variable, because to explore the effects of a carrying capacity in a mini-
mal way we need only one population. For step (ii), it is clear that we need some kind of
density dependence to implement the carrying capacity, but again following the minimalist
approach there is no need for other mechanisms. For step (iii), there are multiple possible
algebraic choices of the functional form of density dependence, and we will explore some
of these in the next chapter.

Exercises

1. The Fibonacci rabbit model is F,,,=F,+F,_,, where F, is the number of pairs of rabbits
at time t (Eq. (1.1)). Solve the Fibonacci rabbit model to find the equilibria (or
equilibrium).

2. In the Fibonacci rabbit model, rabbits live forever and after the first month of life each
rabbit pair produces one pair of offspring per month. Below are several variations on
this model. In each case, write a short verbal description of the biology underlying the
model.
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(@) F,=F+2F,_,
(b) F,=F+F,_,

1
(C) E+1 =EE + Ft—l

(d) F=F+F,_+F_,
(e) F,,=2F,

. Write R code to iterate the models in Exercise 2 and draw time series of the rabbit pop-

ulation size (you may use the code from Box 1.1 as a template).

. [*] Consider a version of the Fibonacci rabbit model in which 10% of the adult rabbits

(i.e., rabbits of reproductive age) die every month. Can you write a mathematical for-
mulation of this model? Is the verbal statement of the model sufficiently precise to allow
an unambiguous mathematical formulation?

. [*] Come up with your own modification of the Fibonacci model. Start with a verbal

statement of the model and then write down the mathematical formulation. What bio-
logical question would you be answering by analysing your modified model?

. Consider a model of population growth governed by N, ,=RN,, where R>0.

(a) How does this model relate to the model defined by Eq. (1.4)?

(b) What is the time-dependent solution of this model? (That is, express N, explicitly
in terms of R and time t.)

(¢) What is the equilibrium of this model?

. In this chapter we gave an incomplete list of simplifying assumptions underlying the

geometric-growth model (Eq. (1.4)). Can you add to this list by identifying more sim-
plifying assumptions, i.e., features of a real population that are ignored by the model?

. In this chapter, we described a few applications where the geometric-growth model could

be useful, despite its simplicity. Can you think of further applications where it might be
useful?
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niche models, 170, 193, 223, 282, 283. See
also competition models; predator—
prey models

niche-neutral model, 281-84, 282; R code
for, 283

niche theory, 1, 170, 218, 223. See also niche
models

Nicholson, Alexander, 131

Nicholson-Bailey host-parasitoid model,
130-33, 134-41; cyclic behaviour of
136, 138-39, 138; R code for, 137

nitrogen. See nutrient-flux model

nonautonomous systems, 187

nonlinear models, 34

numerical integration, 51-54, 53; using
Euler method, 51-52; using ode ()
function in R, 53-54

nutrient-flux model: three-pool model,
310, 311, 312-16; two-pool model,
306-10. See also carbon-flux model

ode () function in R, 53-54

orbit, 34

orca (Orcinus orca), population model,
69-70, 70, 72-73

oscillations. See cycles

paradox of enrichment, 203-9, 210, 211-12,
211, 220

Paramecium species, 143; Gause’s
experiments, 47, 144, 157-58, 163

parameter, 5

parasitoid. See Nicholson-Bailey
host-parasitoid model

partial differentiation, multivariable
calculus, 109, 125

percolation threshold, 291, 291

period-doubling cascade, 30

phase diagram, 155-57, 155, 159, 184,
185, 186, 189, 203-4, 204, 205, 208,
210, 298

phenomenological model, 23

Plantago lanceolata (plant species), 90

point speciation, 259, 268

Poisson distribution, demographic
stochasticity and, 164-68, 275, 278

positive density dependence. See density
dependence

population growth rate, per capita, 5.
See also intrinsic population
growth rate

predator—prey models. See grazing model;
Lotka-Volterra predator-prey model;
Nicholson-Bailey host-parasitoid

model; Rosenzweig’s predator-prey
models

predictions, from ecological models, 1,
11-13, 73, 120, 161, 179, 180, 328-29

quasiperiodic motion, 35

rabbit-jumping model, 104-7, 105, 107, 121;
R code for, 105-6

range expansion, 103, 103, 119-20

R code: basic island biogeography model,
229-30; Beverton-Holt model, 18-19;
biomass in a multispecies, multi-
resource model, 326-27; biomass in a
multispecies, single-resource model,
319-20; carbon-flux model, 305;
computing eigenvalues and eigenvec-
tors, 66; continuous-time logistic-
growth model, 45-46; drift-only
neutral model, 257-58; Fibonacci
rabbit model, 3; fire simulation model,
289-90; geometric-growth model, 6;
grazing model, 216; integrating
continuous-time models using Euler
method, 51-52; integrating
continuous-time models using
ode (), 53-54; logistic-growth model,
18-19; logistic map, 28-29; Lotka-
Volterra competition model, 153;
lottery model, 192; matrix operations,
61-62; metapopulation model, 97-98;
Moore neighbourhoods, 288-89;
multispecies Lotka—Volterra
competition model, 176; niche-neutral
model, 283; Nicholson-Bailey
host-parasitoid model, 137; projecting
matrix models forward in time, 71;
rabbit-jumping model, 105-6;
reaction-diffusion model, 118-19;
resource competition model, 180-81;
resource competition model with
species sorting, 243-44; Ricker model,
18-19; solving Euler’s equation
numerically, 80-81; spatially explicit
neutral model, 270-71; spatially
implicit neutral model, 265-66;
speciation—drift neutral model,
262-63; stochastic geometric-growth
model, 167-68; stochastic Lotka—
Volterra model, 277-78; two-species
predator—prey models, 203

reaction-advection models, 118, 122

reaction—diffusion-advection models, 116,
122,170

reaction—diffusion models, 116-22, 117, 121;
R code for, 118-19

real number, 133

reparameterisation/reparameterise, 9, 17,
27-28, 36-37, 91, 146, 188, 207

reproductive value, 82, 82, 83, 85-88

rescue effect, 93, 98, 100-101

resource competition model, 177-87, 180,
185; biomass—diversity relationship
and, 317-27, 319, 324, 325; cycles and
chaos in, 193, 194; metacommunity
version, 237, 238, 239, 241-44, 242,
246-47, 247, 249; nutrient-flux model
and, 307-8; R code for, 180-81; R code
for biomass in multispecies multi-
resource, 326-27; R code for biomass
in multispecies single-resource,
319-20; R code for species sorting in,
243-44, 242

Ricker model, 16, 19, 23-27, 25, 34, 36, 55,
130, 136; R code for, 18-19

Riemann sum, 51

Rosenzweig’s predator-prey models,
207-12, 210, 211, 220; R code for, 203.
See also paradox of enrichment

Ross, Ronald, 2

Routh-Hurwitz criteria, 150, 158, 209, 248,
294, 313-14, 323, 330

Runge-Kutta methods, 52

sampling effects, in biomass-diversity
relationship, 317-20, 319, 319, 325, 326

sea otter. See California sea otter (Enhydra
lutris)

selection, 161; classification of community
models, 170

selection-immigration model. See
deterministic selection-immigration
model

sensitivity to initial conditions, 32, 33

separation of timescales, 89, 239, 242, 244,
264

separatrix, 214, 215, 217

singular matrix, 61, 64

source-sink model, 244-46

spatial models, 103-23, 12I; Eulerian
approach, 113-16, 121; Lagrangian
approach, 110-12, 121; spatially explicit
neutral model, 267-71; spatially
implicit neutral model, 264-67. See
also advection; diffusion; metacom-
munity theory; metapopulation
models; rabbit-jumping model;
reaction-advection models;
reaction-diffusion-advection models;
reaction-diffusion models;
vegetation—fire model

speciation, 162, 168, 194; classification
of community models, 170; in island
biogeography model, 232-35, 234;
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in neutral models, 252, 253, 259-73,
261, 264, 265, 267, 269; in simple
speciation—extinction model, 169-70,
172

speciation—extinction model. See
deterministic speciation-extinction
model

species abundance distribution, 161,
255-56, 261-62, 261, 265-67, 267, 273

species—area relationship, 161, 224, 225,
233-34, 234, 268, 269, 271, 273

species interactions, 1, 10, 12, 144, 146, 161,
170-71, 202, 218. See also competition
models; predator—prey models

species sorting, 241-44, 242, 242

square matrix, 59

stability: global, 156, 240; local, 19; visual
representation of, 8, 202. See also local
stability analysis

stable-age distribution, 78-82, 82, 86;
continuous-age case, 84-85, 88. See
also stable-stage distribution

stable equilibrium, 8; visual representation
of, 8, 202

stable limit cycle, 157

stable-stage distribution, 67, 70, 72, 74

stage classes, 57

stage-structured models, 57-75. See also
Fibonacci rabbit model; orca (Orcinus
orca)
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stochasticity, 9, 12, 34-35, 73, 95, 162, 166,
168, 247, 284; temporal environmental,
166, 189-93, 196, 284. See also
demographic stochasticity

stochastic geometric-growth model. See
geometric-growth model

stochastic Lotka—Volterra competition
model. See Lotka—Volterra competi-
tion model

storage effects, 190

strange attractor, 35

Synedra filiformis (algal species), 179, 180,
187,242, 242, 247, 324

Tabellaria flocculosa (algal species), 242,
242, 247

target area effect, 225

Taylor series approximation, 48, 128

temporal environmental stochasticity. See
stochasticity

tent map, 36

theory, 1,2

Tilman’s resource competition model. See
resource competition model

time-dependent variable, 5

topological mixing, 32, 34

trace, matrix, 60

transcritical bifurcation, 208, 211

transpose, matrix, 60

travelling waves, 117, 120, 122
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trophic level, 159, 161, 173, 195, 202, 208
two-cycle, 30

unified theories of community ecology,
170,171, 275-86. See also Lotka—
Volterra competition model with
demographic stochasticity; Lotka-
Volterra competition model with
demographic stochasticity and
immigration; niche-neutral model

unstable equilibrium, 8; visual representa-
tion of, 8, 202

unstable limit cycle, 157

unstable -cycle, 30, 32, 34; two-cycle,
30-31

variable, 5

vector: column, 59; in R, 61-62; row, 59.
See also matrix

vegetation—fire model, 287-92, 291; R code
for, 289-90

vegetation models. See dynamic vegetation
models

von Neumann neighbourhood, 288, 298

Wallace, Alfred, 12
Wilson, Edward O., 223, 225-26, 229

zero isoclines, 154
zero sum, 252; neutral models, 251-73





