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Fibonacci’s rabbit model

In the year 1202, the Italian mathematician Fibonacci considered the following problem:

A certain man had one pair of rabbits together in a certain enclosed place. One wishes 
to know how many are created from the pair in one year when it is the nature of them 
in a single month to bear another pair and in the second month those born to bear also.

Fibonacci’s rabbit problem may be the first published example of what we would now 
call a problem in theoretical ecology. Ecology seeks to explain the interactions among or-
ganisms and between organisms and their environment. Theoretical ecologists use verbal, 
conceptual, graphical, mathematical, and computational models of ecological systems to ex-
plore the logical consequences of assumptions and to make testable predictions that can be 
compared against data from field or laboratory studies. Before we go further, let us define 
the terms theory and model, as well as the related term hypothesis:

•	 A theory typically constitutes a broad and general set of ideas that are independent 
of any particular model. For example, we may have a theory of rabbit population dy-
namics that describes how growth rates respond to food availability, predator abun-
dance, and so on.

•	 A model falls under the umbrella of a theory and makes more specific and more de-
tailed assumptions. Models can be conceptual or verbal, but in this book we focus 
mainly on quantitative models, which can generate not only qualitative but quanti-
tative predictions. A single theory may encapsulate many models. For example, later 
in the book we will meet the Lotka–Volterra competition model, which falls under 
the general umbrella of niche theory and makes very specific assumptions about how 
niches operate, thus facilitating quantitative modelling. We will primarily be con-
cerned with mathematical models, but we will often motivate these with verbal, 
graphical, and conceptual models, and we implement many of them as computa-
tional models. Fibonacci’s statement of his rabbits problem is a verbal model that he 
then turned into a mathematical model, as we will see below.

CHAPTER 1
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•	 The term “hypothesis” is sometimes used interchangeably with “theory,” but typically 
a hypothesis has a more limited focus or less empirical support than a theory. For 
example, we may hypothesise that a rabbit population will grow without bound if 
there is no constraint on food availability.

There are grey areas between these terms and they are not always used as strictly de-
fined above, but, for the purposes of clarity, in this book we will endeavour to stick to these 
definitions.

Fibonacci’s statement of his rabbits problem is a verbal model that makes some of its 
assumptions explicit: the initial condition is one pair of rabbits; a pair of rabbits produces a 
new pair of offspring every month; and the time frame of interest is one year. But the verbal 
model is unsatisfactory, because other assumptions remain unstated: How long do rabbits 
live? When do new rabbits reach reproductive age? Is there some carrying capacity imposed 
by the environment? If we want to tackle the rabbits problem rigorously, we have to formu-
late a mathematical model. Mathematical modelling is really just a way of forcing ourselves 
to make all of our assumptions explicit and of exploring the logical consequences of these 
assumptions in a rigorous and unambiguous way. We can draw inspiration from the senti-
ments of Ronald Ross, a pioneering epidemiologist of the early 1900s who was working on 
disease ecology and emphasised the need to treat the subject mathematically, because “to 
say that a disease depends upon certain factors is not to say much, until we can also form an 
estimate as to how largely each factor influences the whole result. And the mathematical 
method of treatment is really nothing but the application of careful reasoning to the prob
lems at issue.” Ross’s sentiment applies universally: treating a problem mathematically or 
computationally is just a way of forcing ourselves to be rigorous and logical.

Fibonacci did formulate his rabbit population mathematically and in so doing made the 
following more explicit assumptions: the rabbits can begin to reproduce in their second 
month of life; and the rabbits never die. He did not assume any kind of environmental carry
ing capacity, so the rabbit population can keep growing indefinitely. In modern notation, 
his mathematical model can be written as

	 Ft + 1 = Ft + Ft − 1	 (1.1)

where Ft is the number of pairs of rabbits at time t. In words, Eq. (1.1) says that the number 
of pairs of rabbits in month t + 1 is equal to the number alive in the previous month t (because 
all rabbits survive) plus a number of offspring equal to the number alive in month t − 1 
(because only rabbits at least one month old can breed). Assume that prior to the start of 
the year there are no rabbits (F0 = 0) but then a pair of newborn rabbits is introduced in 
month 1 (F1 = 1). Then according to Eq. (1.1) we will have F2 = F1 + F0 = 1, which biologically 
means that the pair survives to month 2 but can’t yet breed. In month 3, Eq. (1.1) then gives 
us F3 = F2 + F1 = 2, because now the original pair has produced one pair of young, and so on. 
We can easily iterate Eq. (1.1) by hand to compute the first several values of Ft for t ≥ 1 as 
{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 . . .}. The last value here gives us the answer to Fibonacci’s 
problem: in month 12 there will be F12 = 144 rabbits. For higher values of t, we can easily com-
pute Ft with a simple computer program that iterates Eq. (1.1) for us (Box 1.1). A time series 
of the Fibonacci model is shown in Fig. 1.1.
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Box 1.1. R code for the Fibonacci rabbit model

To iterate the Fibonacci model (Eq. (1.1)) in R, we can use the following code:

	 1	 # number of timesteps (months) over which to iterate model
	 2	 t_max = 12
	 3	
	 4	 # initialise an empty vector to store the population sizes
	 5	 # over time; the first value will correspond to month 0,
	 6	 # i.e., t=0
	 7	 Fs = numeric(t_max+1)
	 8	 # set the initial population size to zero
	 9	 Fs[1] = 0
	10	 # introduce a pair of rabbits in month t=1
	11	 Fs[2] = 1
	12	
	13	 # execute a loop from month t=2 to t=t_max, in each step
	14	 # calculating the value of the population size at month t
	15	 # from the Fibonacci formula
	16	 for ( t in 2:t_max )
	17	   Fs[t+1] = Fs[t] + Fs[t-1]
	18	
	19	 # plot the results
	20	 plot(0:t_max,Fs,pch=19,type='o',xlab='t',ylab='F')

Lines 1–11 set up the initial conditions and the object Fs for storing the population 
sizes. Lines 16–17 perform the work of iterating the model with a loop. Line 20 graphs 
the results. In line 20 the pch argument is set to 19 to draw the time series as solid 
points, and type is set to 'o' to draw both (“o” for “overplotted”) points and lines. A 
sample output graph is shown in Fig. 1.1. Longer time series can be generated by increas-
ing the t_max parameter on line 2.

Be careful with indexing when converting a mathematical model to computer code. 
In mathematics (and some computer programming languages such as C++), indexing 
often starts at zero, but in R indexing starts at one, and thus line 9 sets Fs[1] = 0, which 
corresponds to the mathematical statement F0 = 0 (see text). For the same reason, we 
plot 0:t_max on the horizontal axis instead of 1:(t_max+1).

A notational convention in code samples throughout this book is to use the charac-
ter s at the end of an object name to indicate that the object is a vector comprising many 
individual values. Hence the object Fs comprises multiple values of F, with the s in-
tended to evoke the English plural.

A final note: We recommend that any good R program start with the command 
rm(list=ls()) to remove any existing objects in memory that may affect program 
execution, but for brevity we omit this command in the scripts presented in this book.
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Eq. (1.1) is an example of a difference equa-
tion. A difference equation relates the value of a 
variable at time t + 1 to the value of the variable in 
previous timesteps. In this case the variable of in-
terest is the rabbit population size, F. A defining 
characteristic of a difference equation is that the 
timesteps are discrete, so difference equations are 
discrete-time models. Eq. (1.1) is also an exam-
ple of a dynamical system, a rule that describes 
how some variable changes over time. And it is 
a one-dimensional system because there is only 
one time-dependent variable and correspond-
ingly only one dynamical equation. A two-
dimensional system, for example, would require 
two equations. In this chapter we stick to one-
dimensional systems, but in later chapters we 
move on to higher-dimensional systems.

We will leave the Fibonacci rabbit model for 
now. The Fibonacci model, our first ecological 
model in this book, was also arguably the first 
ecological model in history. It is very simple and 
perhaps unlikely to be applicable to any real 
population. Despite this, we have already learnt 

from it some basic modelling concepts and gleaned at least one biological insight, albeit one 
that is obvious to most ecologists: in the absence of an environmental carrying capacity, a 
population will tend to grow without bound. The Fibonacci numbers (i.e., the sequence of 
numbers generated by Eq. (1.1)) are important in mathematics and have found various ap-
plications in biology, beyond population models. We will revisit the Fibonacci rabbit model 
in Chapter 3. Next let us explore an even simpler model.

Geometric-growth model

Consider a population that grows at a constant rate each year so that the population in one 
year is double that in the previous year. We can express this mathematically as

	 Nt + 1 = 2Nt	 (1.2)

This model is simpler than the Fibonacci rabbit model in the sense that the population now 
depends only on the population size in the previous timestep, not on the population size 
two timesteps ago. For a given initial population size N0, the model can be projected for-
ward in time by iterating Eq. (1.2) either by hand or on a computer. For example, if N0 = 20, 
our first few values of Nt are {20, 40, 80, 160, 320, 640, . . .}.

We can generalise the model specified by Eq. (1.2) by allowing arbitrary fixed per capita 
birth and death rates, denoted by b and d, respectively. This leads to the equation
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Fig. 1.1. Time series for the Fibonacci rabbit model (Eq. (1.1)), 
showing the number of pairs of rabbits Ft in each month t over 
one year (see code in Box 1.1).
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	 Nt + 1 = Nt + bNt − dNt

which can be rewritten as
	 Nt + 1 = (1 + b − d)Nt	 (1.3)

For this model to make biological sense, the birth and death rates must be nonnegative (b ≥ 0, 
d ≥ 0), and the maximum value of the death rate must be d = 1, which would imply that all 
extant individuals die every timestep (as in, say, a model of annual plant population 
dynamics).

Because b − d is just a fixed value, we can define r ≡ b − d and write Eq. (1.3) as

	 Nt +1 = (1 + r)Nt	 (1.4)

We refer to the quantity r as the per capita population growth rate (it is sometimes called 
the discrete growth factor, and the factor 1 + r is called the finite rate of increase). The re-
strictions on b and d given above imply that r ≥ − 1. If r > 0 the population will grow over 
time, whereas if r < 0 the population will shrink over time (Fig. 1.2; see also code in Box 1.2). 
We refer to quantities that do not change over time, such as r, b, and d, as parameters. Let 
us clearly define what we mean by variables, parameters, and constants.

•	 A variable is a quantity that changes over time, e.g., population size N. Time (t) is 
itself a variable in the geometric-growth model and in most of the models we will 
consider. We can refer to variables in 
our models other than time as time-
dependent variables.

•	 A parameter is a quantity that does not 
vary over time and that is not given a nu-
merical value in the model specification, 
e.g., r in Eq. (1.4).

•	 By “constant” we usually mean a numer-
ical constant, such as 2 or π or e. Note 
that sometimes parameters are also re-
ferred to as “constants,” because they are 
constant over time. Ambiguity can be 
avoided by using the terms “parameter” 
and “numerical constant.”

Note that the time variable t in the geometric-
growth model does not have units, because the 
timescale arises naturally here from the discrete 
mathematical treatment of time. Similarly, the 
parameters b and d, which refer to the rates at 
which individuals are born and die per timestep, 
do not have units either.

Let us get back to analysing the model. As 
shown in Boxes 1.1 and 1.2, although it is straight-
forward to iterate a difference equation such as 
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Fig. 1.2. Time series for the geometric-growth model (Eq. (1.4)) 
for initial population size N0 = 20 and two values of the growth 
rate: r = 0.2 (solid points) and r = −0.2 (open points). Each time 
series shows the number of individuals Nt at the values of time t 
indicated (see code in Box 1.2).
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Box 1.2. R code for the geometric-growth model

To iterate the geometric-growth model (Eq. (1.4)) in R, we can use the following code:

	 1	 # number of timesteps to iterate the model
	 2	 t_max = 10
	 3	
	 4	 # initial population size
	 5	 N0 = 20
	 6	
	 7	 # population growth rate
	 8	 r = 0.2
	 9	
	10	 # initialise an empty vector to store the population sizes
	11	 # over time
	12	 Ns = numeric(t_max+1)
	13	 # set the population size in the first timestep to N0
	14	 Ns[1] = N0
	15	
	16	 # execute a loop from time t=1 to t=t_max, iterating the map
	17	 for ( t in 1:t_max )
	18	   Ns[t+1] = (1+r)*Ns[t]
	19	
	20	 # plot the results
	21	 plot(0:t_max,Ns,pch=19,type='o',xlab='t',ylab='N',
	22	       ylim=c(0,max(Ns)))

The structure of the program is similar to that in Box 1.1, but now we must define a 
value for the growth-rate parameter r (line 8). In line 22, the ylim argument to the 
plot() function is used to expand the range of the y-axis to encompass y = 0. This is 
done for aesthetic purposes (it is often desirable to see a graph’s y-axis start at zero). You 
can generate Fig. 1.2 by running the code above, which produces a time series for the 
growth rate r = 0.2, and then the code below, which produces a time series for a growth 
rate r = −0.2 and plots it on the same set of axes:

	23	 r = -0.2
	24	 for ( t in 1:t_max )
	25	   Ns[t+1] = (1+r)*Ns[t]
	26	 points(0:t_max,Ns,pch=1,type='o')

The points() command here tells R to use the same set of axes as for the previous 
graph, instead of drawing a new figure, and pch=1 tells it to use open points, so we can 
visually distinguish this time series from the first one. The option type='o' again tells 
R to draw both points and lines, which is possible (perhaps counterintuitively) even 
though the command used is points() (we could instead use lines() and the out-
put would be exactly the same).
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Eq. (1.4) using a computer, this can be time consuming for large t or for complex models. For 
some models it is possible to obtain a mathematical solution, also called an analytical solu-
tion, that allows us to quickly compute the values of our variables at some arbitrary time t 
without computing all the intermediate values. The geometric-growth model (Eq. (1.4)) has 
such an analytical solution for Nt as an explicit function of time t and the model parameters:

	 Nt = (1 + r)t N0	 (1.5)

This solution can be verified by plugging it back into Eq. (1.4) (Box 1.3).
Not all models have analytical solutions. The more complex a model is, the less likely it 

is to admit an analytical solution. As it turns out, the Fibonacci rabbit model (Eq. (1.1)) also 
has an analytical solution, but the derivation is somewhat more complicated and we leave it 
to Chapter 3. Whenever we can find analytical solutions they are very useful because

•	 they are fast to compute numerically;
•	 they reveal insights about the relationships between parameters and variables that 

are hard to glean from numerical simulations; and
•	 they allow us to draw general conclusions about model behaviour that apply over all 

possible values of the parameters, rather than just for specific numerical choices of 
parameter values.

For example, from Eq. (1.5), with the help of a computer, we can quickly compute the value 
of N100 for given values of r and N0. Computing N100 iteratively using the code in Box 1.2 
would be comparatively slow (though still lightning fast on a modern computer). For the 
Fibonacci rabbit model, the analytical solution in addition gives us insights about the 
long-term growth rate of the population that would be difficult to obtain from numerical 
iteration (see Chapter 3).

Box 1.3. Analytical solution of the geometric-growth model

The geometric-growth model is specified by the following difference equation (Eq. 
(1.4)):

	 Nt + 1 = (1 + r)Nt	 (B1.1)

To verify that a solution is (Eq. (1.5)):

	 Nt = (1 + r)t N0	 (B1.2)

we plug Eq. (B1.2) into both the left- and right-hand sides of Eq. (B1.1):

	 (1 + r)t + 1 N0 = (1 + r)(1 + r)t N0

which is true by the laws of indices, verifying the solution as required.
This solution (Eq. (B1.2)) is a key result that we use throughout the book as part of 

our solutions to more complicated models.
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What else can we learn from the geometric-growth model? In general, we are interested 
in computing equilibria of our models. An equilibrium (sometimes also called a fixed point) 
is a state where the system will remain at rest, i.e., the system state does not change over 
time. Biologically, we care about equilibria because an undisturbed system may tend to an 
equilibrium after a sufficiently long period of time. The mathematical way of saying “the 
system state does not change over time” in a discrete-time model is Nt + 1 = Nt. Any value of 
N that satisfies this equation is an equilibrium, and we can denote it by a special symbol, 
typically N*, Ñ, or N . In this book, we use the latter notation, N , but readers should be 
careful not to confuse this with the use of the same notation in statistics to denote the mean 
of a variable.

In the geometric-growth model (Eq. (1.4)), for an equilibrium we require

	 N = (1+ r)N 	 (1.6)

Let us assume that r ≠ 0 (the case r = 0 could be of interest to mathematicians, but in biology 
no growth rate is precisely equal to 0 and such borderline cases can usually be safely ignored). 
In this case, the only solution to the equation is N = 0, i.e., the only equilibrium is to have 
zero individuals in our population. This makes intuitive sense. The model describes a closed 
population, and if there are zero individuals now, there will be zero individuals in the future; 
i.e., the population size will not be changing over time and we will have an equilibrium. But 
if there is a nonzero number of individuals, then the population will be either growing (r > 0) 
or shrinking (r < 0); i.e., we will not be at equilibrium. (Note that for the Fibonacci rabbit 
model defined by Eq. (1.1), there is an equilibrium at F = 0.)

The next question we might ask of our model is whether the equilibrium we just found 
is stable. A stable equilibrium is one towards which the system will return after a perturba-
tion from the equilibrium; an unstable equilibrium is one from which the system will move 
away after a perturbation. The concepts of stable and unstable equilibria are illustrated in 
Fig. 1.3. We can visualise a stable equilibrium as the bottom of a rounded cup in which we 
place a ball (Fig. 1.3a). If the ball is given a small perturbation, it will return to the bottom. 

We can visualise an unstable equilibrium as the 
top of an inverted cup (Fig. 1.3b). If a ball is 
placed in this position and then given a small 
perturbation, it will roll away, never to return.

For the geometric-growth model, we can 
see intuitively that if the system is at the zero 
equilibrium (N = 0) and we perturb it by add-
ing some individuals to the system, the sys-
tem will return towards the zero equilibrium 
if and only if the growth rate r is less than 0. 
This is because if r < 0 the population is de-
creasing at each timestep. On the other hand, 
if r > 0 the zero equilibrium will be unstable. 
These properties can also be expressed in 
terms of the eigenvalue of the system at equi-

a b

Fig. 1.3. A visual representation of the concepts of stable and un-
stable equilibria. (a) A stable equilibrium: The ball will remain in 
its current state if unperturbed, and if perturbed it will return to 
the original state. (b) An unstable equilibrium: Again the ball will 
remain in its current state if unperturbed, but now if perturbed it 
will move further away from the original state.
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librium, which for the geometric-growth model is 1 + r (for a single-variable discrete-
time model, such as Eq. (1.4), the eigenvalue is obtained by differentiating the right-hand 
side of the difference equation with respect to Nt and then plugging in the equilibrium value 
Nt = N ). Eigenvalues determine the growth rates of variables over time near an equilib-
rium. For a single-variable discrete-time system an equilibrium is stable if the system’s ei-
genvalue at the equilibrium has magnitude less than one and unstable if it has magnitude 
greater than one, consistent with our intuitive deductions above about how r governs sta-
bility. Later in the book we will learn more about eigenvalues, including why they govern 
stability of equilibria and how to compute them for more general classes of models.

We have described the model specified by Eq. (1.4) as the geometric-growth model, but 
another name for it is the discrete-time exponential-growth model. We can see how the term 
“exponential” is relevant by writing k = log(1 + r), such that the analytical solution to the 
model (Eq. (1.5)) becomes

	 Nt = ekt N0	 (1.7)

where e is the base of the natural logarithm. Note that e is a numerical constant (2.71828 . . .), 
and in this book we use log(x) to represent the natural logarithm of x, as is standard in ecol
ogy. Our trick of switching from a model with parameter r to a model with parameter k here 
is an exercise in reparameterisation. Reparameterisation is a handy tool for expressing our 
model in a different mathematical way and potentially getting new insights. We use repa
rameterisation repeatedly in this book.

Applications of the geometric-growth model

The geometric-growth model (Eq. (1.4)) makes many simplifying assumptions that are un-
characteristic of most real species populations. These assumptions include the following:

	 1.	Constant per capita growth rate. The per capita growth rate is defined as (Nt + 1 − Nt)/Nt , 
which for this model is equal to r, a fixed value that is independent of population size. 
In reality, we might expect that the per capita growth rate changes with population size. 
In particular, it might become lower as the population grows and the environment 
becomes saturated.

	 2.	Deterministic behaviour. There is no stochasticity (randomness) in this model. In real
ity, most populations are subject to stochasticity of various kinds.

	 3.	No age structure. In most real populations, individuals of different ages have different 
vital rates (birth, death, and growth rates), and this affects overall population growth. In 
contrast, in the geometric-growth model all individuals are assumed to have the same 
vital rates regardless of age.

	 4.	Population size treated as a continuous quantity. For r = 0.2 and N0 = 20 in this model 
we obtain, for example, a population size of N = 28.8 at time t = 2. Obviously, in reality 
we cannot have 28.8 individuals. For small populations, the treatment of N as a contin-
uous variable can be particularly problematic, as we will see in later chapters. (For now, 
when interpreting a model such as Eq. (1.4), the reader may assume that N measures the 
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population size in thousands or some other large multiplier, in which case the effects of 
biologically unrealistic fractional individuals turn out not to be too important.)

	 5.	No sexual reproduction. The geometric-growth model does not define how new indi-
viduals are actually produced, and in particular there is no notion of sexual reproduc-
tion. Many real populations reproduce sexually, which can affect growth rates, especially 
when there is an uneven sex ratio.

	 6.	No spatial structure. Real populations have spatial structure and this can affect their 
growth rates too. For example, the population growth rate may be locally higher where 
the population density is lower and the environment is less saturated.

	 7.	No influences from other species. Most real populations interact with other species, for 
example, via competitive, mutualistic, and predator–prey interactions.

	 8.	Closed population. This assumption may be realistic in some cases, but many popula-
tions are affected by immigration and emigration.

	 9.	Population growth in discrete timesteps. This assumption is suitable for populations with 
non-overlapping generations or a fixed breeding schedule. But it may not be appropri-
ate for populations that breed continuously over time.

We might wonder, given that no real population satisfies all these assumptions, whether 
the geometric-growth model is actually useful for anything. The answer is yes: the model 
can be useful in situations where the violations of the assumptions, in particular the first 
assumption that the per capita growth rate is constant, are not too severe.

For instance, imagine a laboratory experiment in which a population of bacteria is ini-
tialised with just a small number of cells and left to grow in a medium. For several hours 
this population may exhibit close to geometric growth, and if we had an estimate of the 
growth rate r, we could start the experiment and then use Eq. (1.5) to estimate how long it 
would take to reach some target population size, which could correspond to the bacterial 
density required for the next phase of the experiment. To do this, we would need to invert 
Eq. (1.5) to express t as a function of N0:

	 t =
log N

N0

⎛
⎝⎜

⎞
⎠⎟

log(1+ r)
	 (1.8)

Imagine that we start with a population of N0 = 10 cells, that the target population size is 
N0 = 104 cells, and that we have previously estimated the growth rate to be r = 0.1 per hour. 
We can then set our timestep length to be one hour and estimate from Eq. (1.8) that it will 
take about t = 72 hours to reach the target. We can then happily go home from the lab after 
lunch on Friday and enjoy the weekend, knowing that our bacteria will be ready for the next 
phase of the experiment by Monday afternoon. The key to the geometric-growth model being 
potentially useful here is that the population starts far below carrying capacity, so its per 
capita growth rate may be nearly independent of population size for some time, consistent 
with assumption 1 above. In addition, most of the other assumptions may be close to satis-
fied (e.g., there is asexual reproduction and the population is closed).

The simple geometric-growth model can also be applicable to problems involving in
vasive species or species recovering from very low numbers. For example, the sea otter 
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(Enhydra lutris) was extensively hunted for its 
fur in the nineteenth century, and declined pre-
cipitously in California to a low of about 50 in-
dividuals in the early twentieth century. After 
the species was protected, it recovered and un-
derwent a period of almost geometric growth, 
which is well described by Eq. (1.5) (Fig. 1.4).

Another general application of geometric 
growth is to systems where the population size 
starts small and the per capita growth rate is 
negative (r < 0). In such a scenario, the model’s 
behaviour at high values of population size is 
irrelevant, and thus the absence of a carrying ca-
pacity is not a major limitation. For example, if 
we have an endangered species that is rare and 
declining, a geometric-growth model may yield 
a meaningful estimate of the species’ expected 
time to extinction.

In many real scenarios, however, we are in-
terested in populations that are close to their 
carrying capacity or may become so within the 
time frame of interest (see Chapter 2). In addi-
tion, violations of the other assumptions listed 
above may in some cases render the geometric-
growth model inappropriate for projecting a 
population into the future.

But a general lesson here is that models can be useful even when their assumptions are 
not perfectly satisfied in nature. Indeed no model’s assumptions will ever be perfectly satis-
fied. An imperfect model (i.e., every model) can be useful in two ways. Firstly, if the assump-
tions are not too severely violated, the model may be useful for making predictions and 
projections (e.g., Fig. 1.4). Alternatively, if a model’s assumptions are severely violated, the 
inconsistency between the model’s predictions and data can inform us of this fact and point 
to important mechanisms that are operating in nature and missing from our model. For 
example, when we see the sea otter population trajectory in Fig.  1.4 dropping below the 
geometric trend in later decades, we can infer that some process is operating that is not 
encapsulated in the geometric-growth model, for instance, food limitation.

Why and how do we model ecological systems?

The insights from the previous section are the basis for statistician George Box’s well-worn 
aphorism that “All models are wrong but some are useful.” A more nuanced version of this 
statement might be that “All models make unrealistic assumptions but some can neverthe-
less be useful.” Before building a model, any ecologist, whether a novice student or a seasoned 
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Fig. 1.4. Populations starting from low densities can exhibit 
growth that is close to geometric for a period of time. Points 
show estimated population sizes of sea otters in California 
over the period 1914–1986. The curve shows a fit of the ana
lytical solution of the geometric-growth model (Eq. (1.5)) to 
the first seven data points up to the year 1959. After this point, 
population growth slowed down. (Data from Lubina & Levin 
1988.)
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researcher, would do well to ponder the motivation for model building. What makes a 
model useful?

There are, broadly speaking, two uses of ecological models. The first is to make quanti-
tative predictions. Predictions can be useful for practical applications, e.g., for predicting 
the spread of an invading or reinvading species (e.g., Fig. 1.4). Predictions can also be useful 
for testing the validity of ecological theories, as we will see at several points in this book. 
The second broad use of models is to give general insights into how ecological systems work. 
For example, the geometric-growth model allows us to attain a minimalist but very general 
understanding of population dynamics in the absence of a carrying capacity, stochasticity, 
or other more complicating factors. In 1798 Thomas Malthus used a geometric model of 
human population growth to predict a future demographic catastrophe. This catastrophe has 
at the time of writing not materialised, but the insights from Malthus’s simple model did 
inspire both Charles Darwin and Alfred Wallace while they were developing their ideas about 
evolution by natural selection.

After we know why we want to build a model, how do we actually go about model build-
ing? Model building involves answering the following questions:

	 (i)	What will the state variables be? In the geometric-growth model, there is one state 
variable: population size. Other models may have multiple state variables, which may 
refer to multiple species, multiple subpopulations within a species, or other groupings 
of individuals. There may also be state variables for resources and other abiotic factors.

	 (ii)	What mechanisms will be included in the model? Do we need to include density de-
pendence, stochasticity, species interactions, and so on? For a model with multiple 
state variables, it can be helpful to construct a flowchart indicating how the different 
variables influence one another (see, e.g., Chapter 5).

	(iii)	What will the algebraic structure of the model be? In other words, how do we go from 
a verbal or graphical statement of (i) and (ii) to a mathematical statement? The kinds 
of decisions we have to make here include whether to treat variables continuously or 
discretely, and what precise mathematical forms to choose for functional relationships, 
such as those that relate population growth to population size. We must also choose 
names for our variables and parameters. There are no strict rules about such names, 
but it is sensible to choose names that convey some meaning, e.g., N for number of 
individuals or t for time.

For each of steps (i)–(iii), we have to make judgements about the complexity of our 
model. All models make unrealistic assumptions, but how complicated a model should we 
choose for a given application? Should we strive to include all mechanisms imaginable, thus 
making our models as complicated and close to reality as possible? Or should we opt for 
simpler models, since they are at least easier to analyse? There is no straightforward answer 
to these questions. Theoretical ecologist Simon Levin has mused that “the general philoso-
phy is to incorporate a minimum of necessary detail, complicating the model only when 
necessary” (Levin 1992). Here “necessary” refers to how much complexity is needed to 
make the model useful for its intended purpose, whether this purpose is producing insights 
about a particular ecological phenomenon or generating predictions. Following this advice, 
we should not throw all conceivable processes into a model at once. Doing so would lead to 
a model whose behaviour is too complicated to yield general insights, impossible to anal-



Simple discrete-time models    13

yse, and very unlikely to make accurate predictions. In a similar way, a chemist exploring 
chemical reactions would not throw all reagents into a beaker at once, but would start by 
exploring the properties of single reagents, then move on to reactions between pairs of re-
agents, and from there gradually increase the complexity and sophistication of the experi-
ments. By analogy with the prudent chemist, we will usually start with a well-understood 
model (e.g., the geometric-growth model; Eq. (1.4)) and add in one or two processes at a 
time to explore their effects on model behaviour.

We emphasise that building models is as much an art as a logical exercise—one that must 
be taught by way of multiple examples and guiding principles rather than firm rules. Good 
model-building skills are essential for a theoretical ecologist. No amount of fancy mathe-
matical and computational analysis can save a poorly structured model or one for which 
the scientific motivation is unclear. In this book, we follow these sentiments and aim not 
only to impart the technical skills required for model analysis but to help the reader develop 
the experience and intuition to build models appropriate for the ecological problems at hand. 
Building mathematical models can seem intimidating at first, but the reader is encouraged 
to jump in and learn by trial and error (e.g., see Exercises 4 and 5). Even before any analysis 
takes place, the process of building a mathematical model can itself be instructive in pin-
pointing aspects of a verbal model that are vague or imprecise. Biologists familiar with field 
or laboratory work may rightly be apprehensive about jumping into a project without a care-
ful accounting of material costs, health and safety risks, feasibility, and likelihood of suc-
cess. But the entry barrier to modelling is much lower. Exploring a model that turns out to 
be flawed may have some minimal costs in terms of time, paper, and ink (or computer power), 
but even then one is likely to learn something from one’s mistakes and can easily screw up 
the paper and start again.

Let us take the example of the geometric-growth model (Eq. (1.4)) and consider build-
ing possible extensions to it. One obvious limitation of this model is its lack of a carrying 
capacity. Let us then state our research question as, “How does a carrying capacity affect 
population dynamics?” and be clear that we are looking for general insights rather than pre-
dictions for a specific system. For model-building step (i), it would be reasonable to stick 
with just one state variable, because to explore the effects of a carrying capacity in a mini-
mal way we need only one population. For step (ii), it is clear that we need some kind of 
density dependence to implement the carrying capacity, but again following the minimalist 
approach there is no need for other mechanisms. For step (iii), there are multiple possible 
algebraic choices of the functional form of density dependence, and we will explore some 
of these in the next chapter.

Exercises

	 1.	The Fibonacci rabbit model is Ft + 1 = Ft + Ft − 1, where Ft is the number of pairs of rabbits 
at time t (Eq. (1.1)). Solve the Fibonacci rabbit model to find the equilibria (or 
equilibrium).

	 2.	In the Fibonacci rabbit model, rabbits live forever and after the first month of life each 
rabbit pair produces one pair of offspring per month. Below are several variations on 
this model. In each case, write a short verbal description of the biology underlying the 
model.



14    Chapter 1

(a)	 Ft + 1 = Ft + 2Ft − 1

(b)	 Ft + 1 = Ft + Ft − 2

(c)	 Ft +1 =
1
2
Ft + Ft −1

(d)	 Ft + 1 = Ft + Ft − 1 + Ft − 2

(e)	 Ft + 1 = 2Ft

	 3.	Write R code to iterate the models in Exercise 2 and draw time series of the rabbit pop-
ulation size (you may use the code from Box 1.1 as a template).

	 4.	[*] Consider a version of the Fibonacci rabbit model in which 10% of the adult rabbits 
(i.e., rabbits of reproductive age) die every month. Can you write a mathematical for-
mulation of this model? Is the verbal statement of the model sufficiently precise to allow 
an unambiguous mathematical formulation?

	 5.	[*] Come up with your own modification of the Fibonacci model. Start with a verbal 
statement of the model and then write down the mathematical formulation. What bio-
logical question would you be answering by analysing your modified model?

	 6.	Consider a model of population growth governed by Nt + 1 = RNt , where R ≥ 0.

(a)	 How does this model relate to the model defined by Eq. (1.4)?
(b)	 What is the time-dependent solution of this model? (That is, express Nt explicitly 

in terms of R and time t.)
(c)	 What is the equilibrium of this model?

	 7.	In this chapter we gave an incomplete list of simplifying assumptions underlying the 
geometric-growth model (Eq. (1.4)). Can you add to this list by identifying more sim-
plifying assumptions, i.e., features of a real population that are ignored by the model?

	 8.	In this chapter, we described a few applications where the geometric-growth model could 
be useful, despite its simplicity. Can you think of further applications where it might be 
useful?
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multivariable calculus, partial differentia-

tion, 109, 125
muskrat (Ondatra zibethicus), 103, 120
mutualism, 159

negative density dependence. See density 
dependence

neutral ecological theory, 251. See also 
neutral models

neutrally stable cycles, 200, 201–2, 204, 
206, 211, 219

neutrally stable equilibrium, 200; visual 
representation of, 202

neutral models, 251–73, 253; drift-only 
model, 251–58, 254; R code for 
drift-only neutral model, 257–58; R 
code for spatially explicit neutral 
model, 270–71; R code for spatially 
implicit neutral model, 265–66; R code 
for speciation–drift neutral model, 
262–63; spatially explicit neutral 
model, 121, 267–68, 269, 270–71; 
spatially implicit neutral model, 
264–67, 265, 267, 282; speciation–drift 
model, 259–64, 261, 264. See also 
niche–neutral model
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biomass–diversity models
niche models, 170, 193, 223, 282, 283. See 

also competition models; predator–
prey models

niche–neutral model, 281–84, 282; R code 
for, 283

niche theory, 1, 170, 218, 223. See also niche 
models
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Nicholson–Bailey host–parasitoid model, 

130–33, 134–41; cyclic behaviour of 
136, 138–39, 138; R code for, 137

nitrogen. See nutrient-flux model
nonautonomous systems, 187
nonlinear models, 34
numerical integration, 51–54, 53; using 

Euler method, 51–52; using ode() 
function in R, 53–54

nutrient-flux model: three-pool model, 
310, 311, 312–16; two-pool model, 
306–10. See also carbon-flux model

ode() function in R, 53–54
orbit, 34
orca (Orcinus orca), population model, 

69–70, 70, 72–73
oscillations. See cycles

paradox of enrichment, 203–9, 210, 211–12, 
211, 220

Paramecium species, 143; Gause’s 
experiments, 47, 144, 157–58, 163

parameter, 5
parasitoid. See Nicholson–Bailey 

host–parasitoid model
partial differentiation, multivariable 

calculus, 109, 125
percolation threshold, 291, 291
period-doubling cascade, 30
phase diagram, 155–57, 155, 159, 184, 

185, 186, 189, 203–4, 204, 205, 208, 
210, 298

phenomenological model, 23
Plantago lanceolata (plant species), 90
point speciation, 259, 268
Poisson distribution, demographic 

stochasticity and, 164–68, 275, 278
positive density dependence. See density 

dependence
population growth rate, per capita, 5. 

See also intrinsic population 
growth rate

predator–prey models. See grazing model; 
Lotka–Volterra predator–prey model; 
Nicholson-Bailey host–parasitoid 

model; Rosenzweig’s predator–prey 
models

predictions, from ecological models, 1, 
11–13, 73, 120, 161, 179, 180, 328–29

quasiperiodic motion, 35

rabbit-jumping model, 104–7, 105, 107, 121; 
R code for, 105–6

range expansion, 103, 103, 119–20
R code: basic island biogeography model, 

229–30; Beverton–Holt model, 18–19; 
biomass in a multispecies, multi-
resource model, 326–27; biomass in a 
multispecies, single-resource model, 
319–20; carbon-flux model, 305; 
computing eigenvalues and eigenvec-
tors, 66; continuous-time logistic-
growth model, 45–46; drift-only 
neutral model, 257–58; Fibonacci 
rabbit model, 3; fire simulation model, 
289–90; geometric-growth model, 6; 
grazing model, 216; integrating 
continuous-time models using Euler 
method, 51–52; integrating 
continuous-time models using 
ode(), 53–54; logistic-growth model, 
18–19; logistic map, 28–29; Lotka–
Volterra competition model, 153; 
lottery model, 192; matrix operations, 
61–62; metapopulation model, 97–98; 
Moore neighbourhoods, 288–89; 
multispecies Lotka–Volterra 
competition model, 176; niche–neutral 
model, 283; Nicholson–Bailey 
host–parasitoid model, 137; projecting 
matrix models forward in time, 71; 
rabbit-jumping model, 105–6; 
reaction–diffusion model, 118–19; 
resource competition model, 180–81; 
resource competition model with 
species sorting, 243–44; Ricker model, 
18–19; solving Euler’s equation 
numerically, 80–81; spatially explicit 
neutral model, 270–71; spatially 
implicit neutral model, 265–66; 
speciation–drift neutral model, 
262–63; stochastic geometric-growth 
model, 167–68; stochastic Lotka–
Volterra model, 277–78; two-species 
predator–prey models, 203

reaction–advection models, 118, 122
reaction–diffusion–advection models, 116, 

122, 170
reaction–diffusion models, 116–22, 117, 121; 

R code for, 118–19
real number, 133

reparameterisation/reparameterise, 9, 17, 
27–28, 36–37, 91, 146, 188, 207

reproductive value, 82, 82, 83, 85–88
rescue effect, 93, 98, 100–101
resource competition model, 177–87, 180, 

185; biomass–diversity relationship 
and, 317–27, 319, 324, 325; cycles and 
chaos in, 193, 194; metacommunity 
version, 237, 238, 239, 241–44, 242, 
246–47, 247, 249; nutrient-flux model 
and, 307–8; R code for, 180–81; R code 
for biomass in multispecies multi-
resource, 326–27; R code for biomass 
in multispecies single-resource, 
319–20; R code for species sorting in, 
243–44, 242

Ricker model, 16, 19, 23–27, 25, 34, 36, 55, 
130, 136; R code for, 18–19

Riemann sum, 51
Rosenzweig’s predator–prey models, 

207–12, 210, 211, 220; R code for, 203. 
See also paradox of enrichment

Ross, Ronald, 2
Routh–Hurwitz criteria, 150, 158, 209, 248, 

294, 313–14, 323, 330
Runge–Kutta methods, 52

sampling effects, in biomass–diversity 
relationship, 317–20, 319, 319, 325, 326

sea otter. See California sea otter (Enhydra 
lutris)

selection, 161; classification of community 
models, 170

selection–immigration model. See 
deterministic selection–immigration 
model

sensitivity to initial conditions, 32, 33
separation of timescales, 89, 239, 242, 244, 

264
separatrix, 214, 215, 217
singular matrix, 61, 64
source–sink model, 244–46
spatial models, 103–23, 121; Eulerian 

approach, 113–16, 121; Lagrangian 
approach, 110–12, 121; spatially explicit 
neutral model, 267–71; spatially 
implicit neutral model, 264–67. See 
also advection; diffusion; metacom-
munity theory; metapopulation 
models; rabbit-jumping model; 
reaction–advection models; 
reaction–diffusion–advection models; 
reaction–diffusion models; 
vegetation–fire model

speciation, 162, 168, 194; classification 
of community models, 170; in island 
biogeography model, 232–35, 234; 
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261, 264, 265, 267, 269; in simple 
speciation–extinction model, 169–70, 
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speciation–extinction model. See 
deterministic speciation–extinction 
model

species abundance distribution, 161, 
255–56, 261–62, 261, 265–67, 267, 273

species–area relationship, 161, 224, 225, 
233–34, 234, 268, 269, 271, 273

species interactions, 1, 10, 12, 144, 146, 161, 
170–71, 202, 218. See also competition 
models; predator–prey models

species sorting, 241–44, 242, 242
square matrix, 59
stability: global, 156, 240; local, 19; visual 

representation of, 8, 202. See also local 
stability analysis

stable-age distribution, 78–82, 82, 86; 
continuous-age case, 84–85, 88. See 
also stable-stage distribution

stable equilibrium, 8; visual representation 
of, 8, 202

stable limit cycle, 157
stable-stage distribution, 67, 70, 72, 74
stage classes, 57
stage-structured models, 57–75. See also 

Fibonacci rabbit model; orca (Orcinus 
orca)

stochasticity, 9, 12, 34–35, 73, 95, 162, 166, 
168, 247, 284; temporal environmental, 
166, 189–93, 196, 284. See also 
demographic stochasticity

stochastic geometric-growth model. See 
geometric-growth model

stochastic Lotka–Volterra competition 
model. See Lotka–Volterra competi-
tion model

storage effects, 190
strange attractor, 35
Synedra filiformis (algal species), 179, 180, 

187, 242, 242, 247, 324

Tabellaria flocculosa (algal species), 242, 
242, 247

target area effect, 225
Taylor series approximation, 48, 128
temporal environmental stochasticity. See 

stochasticity
tent map, 36
theory, 1, 2
Tilman’s resource competition model. See 

resource competition model
time-dependent variable, 5
topological mixing, 32, 34
trace, matrix, 60
transcritical bifurcation, 208, 211
transpose, matrix, 60
travelling waves, 117, 120, 122

trophic level, 159, 161, 173, 195, 202, 208
two-cycle, 30

unified theories of community ecology, 
170, 171, 275–86. See also Lotka–
Volterra competition model with 
demographic stochasticity; Lotka–
Volterra competition model with 
demographic stochasticity and 
immigration; niche–neutral model

unstable equilibrium, 8; visual representa
tion of, 8, 202

unstable limit cycle, 157
unstable -cycle, 30, 32, 34; two-cycle, 

30–31

variable, 5
vector: column, 59; in R, 61–62; row, 59. 

See also matrix
vegetation–fire model, 287–92, 291; R code 

for, 289–90
vegetation models. See dynamic vegetation 

models
von Neumann neighbourhood, 288, 298
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zero isoclines, 154
zero sum, 252; neutral models, 251–73




