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CHAPTER 1

Etale Morphisms

A flat morphism is the algebraic analogue of a map whose fibers form
a continuously varying family. For example, a surjective morphism of
smooth varieties is flat if and only if all fibers have the same dimension.
A finite morphism to a reduced scheme is flat if and only if, over any
connected component, all fibers have the same number of points (counting
multiplicities). The image of a flat morphism of finite-type is open, and
flat morphisms that are surjective on the underlying spaces are epimor-
phisms in a very strong sense.

An étale morphism is a flat quasi-finite morphism Y — X with no
ramification (that is, branch) points. Locally Y is then defined by an
equation T" + a,T"" ! + --- + a, = 0, where a,,...,a, are func-
tions on an open subset U of X and all roots of the equation over a
point of U are simple. An étale morphism induces isomorphisms on the
tangent spaces and so might be expected to be a local isomorphism. This
is true over the complex numbers if local is meant in the sense of the
complex topology, but the Zariski topology is too coarse for this to hold
algebraically. However, an étale morphism induces an isomorphism on
the completions of the local rings at a point where there is no residue
field extension. Moreover, it has all the uniqueness properties of a local
isomorphism.

A local scheme is Henselian if, for any scheme étale over it, any section
of the closed fiber extends to a section of the scheme. It is strictly Henselian,
or strictly local, if any scheme étale and faithfully flat over it has a sec-
tion. The strictly local rings play the same role for the étale topology as
local rings play for the Zariski topology.

The fundamental group of a scheme classifies finite étale coverings of
it. For a smooth variety over the complex numbers, the algebraic funda-
mental group is simply the profinite completion of the topological
fundamental group. There are algebraic analogues for many of the results
on the topological fundamental group.
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4 I: ETALE MORPHISMS
§1. Finite and Quasi-Finite Morphisms

Recall that a morphism of schemes f:Y — X is affine if the inverse
image of any open affine subset U of X is an open affine subset of Y.
If, moreover, I'(f ~(U), Oy) is a finite ['(U, Oy)-algebra for every such U,
then f is said to be finite. These conditions need only be checked for
all U in some open affine covering of X (Mumford [3, 111.1, Prop. 5]).

Examples of finite morphisms abound. Let X be an integral scheme
with field of rational functions R(X), and let L be a finite field extension
of R(X). The normalization of X in L is a pair (X', f) where X' is an
integral scheme with R(X') = L and f:X' — X is an affine morphism
such that, for all open affines U of X, ['(f ~!(U), Oy) is the integral
closure of T(U, Oy) in L.

PROPOSITION 1.1.  If X is normal and f:X' — X is the normalization of
X in some finite separable extension of R(X), then f is finite.

Proof. One has only to show that I'(f ~}(U), 0y) is a finite T(U, Oy)-
algebra for U an open affine in X, but this is done in Atiyah-Macdonald
[1, 5.17].

Remark 1.2.  The above proposition holds for many schemes X with-
out the separability assumption, for example, for reduced excellent
schemes and so for varieties ((EGA. IV.7.8] and Bourbaki [2, V.3.2]).
(A field is excellent and a Dedekind domain A is excellent if the comple-
tion K of its field of fractions K at any maximal ideal of A is separable
over K; any scheme of finite type over an excellent scheme is excellent.)

PROPOSITION 1.3, (a) A closed immersion is finite.

(b) The composite of two finite morphisms is finite.

(c) Any base change of a finite morphism is finite, that is, if f:Y — X
is finite, then so also is fx: Yx-, = X' for any morphism X' — X.

Proof. These reduce easily to statements about rings, all of which are
obvious.

The “going up” theorem of Cohen-Seidenberg has the following

geometric interpretation.

PROPOSITION 1.4.  Any finite morphism f:Y — X is proper, that is, it is
separated, of finite-type, and universally closed.

Proof. For any open affine covering (U;) of X, f restricted to
S YUy — U, is separated for all i, and so f is separated. (Hartshorne
[2, 11.4.6]). To show that finite morphisms are universally closed it
suffices, according to (1.3c), to show that they are closed, and for this
it suffices, according to (1.3a,b), to show that they map the whole space
onto a closed set. Thus we must show that f(Y) is closed. This re-
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§1. FINITE AND QUASI-FINITE MORPHISMS 5

duces easily to the affine case with, for example, f = %g where g:4 — B
is finite. Let 3 = ker (g). Then f factors into spec B — spec 4/3 —
spec A. The first map is surjective (Atiyah-Macdonald [1, 5.10]), and the
second is a closed immersion.

For morphisms X — spec k, with k a field, there is a topological
characterization of finiteness.

PROPOSITION 1.5. Let f: X — spec k be a morphism of finite-type with
k a field. The following are equivalent :

(a) X is affine and T'(X, Oy) is an Artin ring;

(b) X is finite and discrete (as a topological space);

(c) X is discrete;

(d) fis finite.

Proof. See Atiyah-Macdonald [1, Chapter VIII, especially exercises
2,3,4]

A morphism f:Y — X is quasi-finite if it is of finite-type and has finite
fibers, that is, f ~(x) is discrete (and hence finite) for all x € X. Similarly
an A-algebra B is quasi-finite if it is of finite-type and if B ®, k(p) is a
finite k(p)-algebra for all prime ideals p = A.

Exercise 1.6. (a) Let A be a discrete valuation ring. Show that
A[T]/(P(T)) is a quasi-finite A-algebra if and only if some coefficient of
P(T) is a unit, and that it is finite if and only if the leading coefficient of
P(T) is a unit.

(b) Let A be a Dedekind domain with field of fractions K. Show that
spec K — spec A is never finite, that it is quasi-finite if it is of finite-type,
and that it is of finite-type if and only if A has only finitely many prime
ideals.

PROPOSITION 1.7. (a) Any immersion is quasi- finite.

(b) The composite of two quasi-finite morphisms is quasi- finite.

(c) Any base change of a quasi-finite morphism is quasi-finite.

Proof. (a) Let f:Y — X be an immersion. Clearly f has finite fibers,
and to show that it is of finite-type it suffices to show that fYU) is
quasi-compact for any open affine U in X. But Uisa Noetherian topolog-
ical space (recall that all schemes are locally Noetherian), and [~ }(U) =
U n Y is a subset of U.

(b) This is obvious.

(c) Let f:Y — X be quasi-finite and X' — X arbitrary. If x" = x under
X' - X, then the fiber

Fah(x) = f71x) B k(x)

and hence is discrete.
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6 I: ETALE MORPHISMS

If f:Y — X is finite and U is an open subscheme of Y, then it follows
from the above proposition that U — X is quasi-finite. The remarkable
thing is that essentially every quasi-finite morphism comes in this way.

THEOREM 1.8. (Zariski’s Main Theorem). If X is a quasz-compact then

any separated, quasi-finite morphism f:Y — X factors as Y Lysx
where [’ is an open immersion and g is finite.

Proof. The most elementary proof may be found in Raynaud [3,
Chapter IV]. We sketch the deduction of (1.8) from the following affine
form of it, proved in Raynaud [3, p. 42]: let B be an A-algebra that is
quasi-finite, and let A’ be the integral closure of A in B; then the map
spec B — spec A’ is an open immersion.

Consider a scheme X. Associated with any quasi-coherent sheaf 4 of
() x-algebras, there is a pair (X', g) where X' is a scheme and g: X' —» X
is an affine morphism such that g,0y. = A (Hartshorne [2, II. Ex. 5.17]
and [EGA. 1.9.1.4]). One writes X’ = spec A. For any X-scheme Y 5 X,
to give an X-morphism Y — X' is the same as to give a homomorphism
A - f,0y of Oy-algebras.

Now let f:Y — X be separated and of finite-type. Then f 0y is a
quasi-coherent (y-algebra [EGA. 1.6.7.1], and the @x-algebra A’ such
that I'(U, A4’) is the integral closure of I'(U, Oy) in I'(U, f,0y) for all open
affines U < X is also quasi-coherent [EGA. 11.6.3.4]. The associated
X-scheme X' = spec A’ is called the normalization of X in Y.

Assume further that f is quasi-finite. It follows easily from the affine
result quoted above, that the morphism Y — X’ induced by the inclusion
A" < f,0yis an open immersion. Now let (4;) be the family of all coherent
Ox-subalgebras of 4". One checks easily that the morphism Y — spec A;,
induced by the inclusion 4; < f, @y, is an open immersion for all suffi-
ciently large A; (using the fact that 4’ = (J4;; compare the proof of
Raynaud [ 3, p. 42, Cor. 2(2)]). Since spec 4; is finite over X, this proves (1.8).

Remark 1.9. Zariski’s main theorem is, more correctly, the main theo-
rem of Zariski [2]. There he was interested in the behavior of a singularity
on a normal variety under a birational map. The original statement is
essentially that if f:Y — X is a birational morphism of varieties and
Oy is integrally closed, then either f~'(x) consists of one point and the
inverse morphism f ~! is defined in a neighborhood of x or all compo-
nents of f~!(x) have dimension >1. To relate this to Grothendieck’s
version, note that if in (1.8) X and Y are varieties, [ is birational and X
is normal, then g is an isomorphism. For a more complete discussion of
the theorem, see Mumford [3, I11.9].

CoROLLARY 1.10.  Any proper, quasi-finite morphism f:Y — X is finite.
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§2. FLAT MORPHISMS 7

Proof. Let f = gf’ be the factorization as in (1.8). As g is separated
and [ is proper, [ is proper. (Use the factorization

I = fiyye DY > ¥ x4 Y/ > Y')

Thus f’ is an immersion with closed image, that is, a closed immersion.

Now both f’ and g are finite.
Remark 1.11. The separatedness is necessary in both of the above

results; for if X is the affine line with the “origin doubled” (Hartshorne
[2, 11.2.3.6]), and f:X — A' is the natural map, then f is universally
closed and quasi-finite, but is not finite. (It is even flat and étale; see the
next two sections.)

Exercise 1.12. Let f:Y — X be separated and of finite-type with X
irreducible. Show that if the fiber over the generic point # is finite, then
there is an open neighborhood U of # in X such that f~'(U) - U is
finite.

§2. Flat Morphisms

A homomorphism f:A — B of rings is flat if B is flat when regarded
as an A-module via f. Thus, f is flat if and only if the functor —®,B
from A-modules to B-modules is exact. In particular, if 3 is any ideal of
A and f is flat, then 3 ®, B > A ®, B = B is injective. The converse to

this statement is also true.

PROPOSITION 2.1. A homomorphism [ : A — B is flat if (a ® b f(a)b):
3 ®4 B — B is injective for all ideals 3 in A.

Proof. Let g:M’ — M be an injective map of 4-modules where, fol-
lowing Atiyah-Macdonald [1, 2, 19], we may assume M to be finitely

generated.
Case (a) M is free. We prove this case by induction on the rank r of

M. If r = 1, then we may identify M with 4 and M’ with an ideal in 4;
then the statement to be proved is the statement given. If r > 1, then
M =M, ®M, with M, and M, free of rank <r. Consider the exact

commutative diagram:

M, —— M M, —— 0

N

0 — g7 'M) — M — pgM') — 0

0

When tensored with B, the top row remains exact, and g, and g, remain
injective. This implies that g ® 1 is injective.

Case (b) M arbitrary (finitely generated). Let x, ..., x, generate M,
let M* be the free A-module on x,,...,Xx,, and consider the exact
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8 1. ETALE MORPHISMS
commutative diagram:

00— N —L— M* h s M >0

L

0 —> N — h'gM) — M — 0.

By case (a) i ® 1 is injective, and it follows that g ® 1 is injective.

PROPOSITION 2.2. If f:A — B is flat, then so also is S™*A - T™'B
for all multiplicative subsets S = A and T < B such that f(S) < T. Con-
versely, if Ag-1y = B, is flat for all maximal ideals n of B, then A -~ B
is flat.

Proof. S™'A — S™!Bis flat according to Atiyah-Macdonald [ 1, 2.20],
and S”'B —» T 'B is flat according to Atiyah-Macdonald [1, 3.6]. For
the converse, let M’ — M be an injective map of A-modules. To show
that B®, M’ - B ®, M is injective, it suffices to show that

B, ® (B ®4M') > B, ®(B®, M)

is injective for all n, but this follows from the flatness of A, — B, with
p = f~!(n) and the isomorphism B, ®z (B ®4 N) ~ B, Ry, (A, ®4 N),
which exists for any 4-module N-.

Remark 2.3. If ae A is not a zero-divisor and f:4 — B is flat, then
f(a) is not a zero-divisor in B because the injectivity of (x > ax):4 - A
implies that of (x — f(a)x):B - B = A ®, B. Thus, if A is an integral
domain and B # 0, then f is injective. Conversely, any injective homo-
morphism f: A4 — B, where A is a Dedekind domain and B is an integral
domain, is flat, In proving this, we may localize and hence assume that
A is principal. According to (2.1), it suffices to prove that for any ideal
J # 00of A, 3 ®, B — B is injective, but I ®, B is a free B-module of
rank one, and we know that the generator of 3 is not mapped to zero in B.

A morphism f:Y — X of schemes is flat if, for all points y of Y, the
induced map Oy ,,, — Oy, is flat. Equivalently f is flat if for any pair
V and U of open affines of Y and X such that f(V) = U, the map
(U, 0y) - T(V, 0y) is flat. From (2.2) it follows that the first condition
needs only to be checked for closed points y of Y.

PROPOSITION 2.4. (a) An open immersion is flat.

(b) The composite of two flat morphisms is flat.

(c) Any base extension of a flat morphism is flat.

Proof. (a) and (b) are obvious.

(c) If f:A —» Bis flat and A — A’ is arbitrary, then to see that 4’ —
B ®,4 A’ is flat, one may use the canonical isomorphism (B ®, A') ®,
M =~ B ®4 M, which exists for any A’-module M.
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§2. FLAT MORPHISMS 9

In order to get less trivial examples of flat morphisms we shall need the
following criterion.

PROPOSITION 2.5.  Let B be a flat A-algebra, and consider b € B. If the
image of b in B/mB is not a zero-divisor for any maximal ideal m of A,
then B/(b) is a flat A-algebra.

Proof. After applying (2.2), we may assume that 4 — B is a local
homomorphism of local rings. By assumption, if ¢ € B and bc = 0, then
¢ € mB. We shall show by induction that in fact ¢ e m'B for all r, and
hence c e (\m'B = (\n" = (0), where n is the maximal ideal of B. Assume
that ¢ e n’B, and write

c=)Y ab,

where the g; form a minimal generating set for m". Then

0= bC = Z a,-b,-b,

and so, by one of the standard flatness criteria (proved in (2.10b’) below),
there are equations

bb = Zau '
with the b’ € B, a;; € A such that
Zaiaij = 0

for all j. From the choice of the g;, all a;; € m. Thus h;b € mB, and since

b is not a zero-divisor in B/mB, this implies that b, e mB. Thus c e m"* !B,

which completes the induction. We have shown that b is not a zero-

divisor in B, and the same argument, with A replaced by 4/3 and B by

B/3B, shows that b is not a zero-divisor in B/3B for any ideal J of A.
Fix such an ideal, and consider the exact commutative diagram:

S®B — I@B — I® (Bb)) ——— 0

0 — T /‘[ —_ 0
0 —— B/3B —U  B/IB — (B/(b) /f B/(b)) —— O
0 0 0
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10 [: ETALE MORPHISMS

in which b means multiplication by b. An application of the snake lemma
shows that 3 ® B/(b) — B/(b) is injective, which shows that B/(b) is flat
over A, according to (2.1).

Remarks 2.6. (a) For any ring A, A[Xy,..., X,] is a free A-module,
and so A is flat over A. Let Z be a hypersurface in A’, that is, a scheme
of the form spec (A[ X4, ..., X,]/(P)), P # 0. Then (2.5) shows that Z is
flat over spec 4 <> for all maximal ideals m of 4, Z ®, k(m) # A}, <
the ideal generated by the coefficients of P is A (assuming that spec 4 is
connected). Similar statements hold for hypersurfaces in P.

(b) We may restate (a) as follows: a hypersurface Z is flat if and only if
its closed fibers over spec A all have the same dimension. This generalizes.
Firstly, if /: Y — X is flat, then

dlm (Coyx’y) = dlm ((OY,y) - dlm ((OX,X)’

where x = f(y). For varieties this means that dim (Y,) = dim(Y) —
dim (X) for any closed point x of X with Y, nonempty. The proof, which
is quite elementary, may be found in [EGA. IV.6.1] or Hartshorne 2,
I111.9.5]. Secondly, if X and Y are regular schemes and f:Y — X is such
that

dlm ((ny’y) = dlm ((9}',}1) - d‘m ((OX.X)

for all closed points y of Y, where x = f(y), then f is flat. The proof
again may be found in [EGA. IV.6.1]. (See also Hartshorne [2, IlI.
Ex. 10.9].)

(c) There is another criterion for flatness that is frequently very useful.
It is easy to construct examples Z 4 Y % X in which g and gf are flat,
but f is not flat. However, if one also knows that the maps on fibers
fx:Z, — Y, are flat for all closed x € X, then f is flat ([SGA. 1, IV.5.9],
or Bourbaki [2, I11.5.4 Prop. 2,3]).

(d) If B is flat over A4 and by, ..., b, is a sequence of elements of B
whose image in B/mB is regular for each maximal ideal m of A, that is,
b; is not a zero-divisor in B/m + (by, b,,..., b;_;) for any i, then
B/(by, ..., b,)is flat over A. This follows by induction from (2.5).

(e) There is a second generalization of (a). Let X be an integral scheme
and Z a closed subscheme of P; for each x € X, let p, € Q[T] be the
Hilbert polynomial of the fiber Z, < Pj},,; then Z is flat over X if and
only if p, is independent of x (Hartshorne [2, I11.9.9]).

A flat morphism f:A4 — B is faithfully flat if B ®, M is nonzero for
any nonzero A-module M. On taking M to be a principal ideal in A4, we
see that such a morphism is injective.

PrROPOSITION 2.7. Let f:A — B be a flat morphism with A # 0. The
Sollowing are equivalent:
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§2. FLAT MORPHISMS 1
(a) fis faithfully flat;
(b) a sequence M' - M — M" of A-modules is exact whenever
B /M ->B®,M - B®,M"is exact,
(c) ?f :spec B — spec A is surjective;
(d) for every maximal ideal m of A, f(m)B # B. In particular, a flat local
homomorphism of local rings is automatically faithfully flat.

Proof. (a) = (b). Suppose that M’ &3 M B M" becomes exact after
tensoring with B. Then im (g,g,) = 0 because

B ®,im(g,9,) = im ((1 ® g,)(1 ® g,)) = 0,
and im (g,) = ker (g,) because
B ® (ker g,/im g,) = ker (1 ® g,)/im (1 ® g,) = 0.

(b) = (a). M > M — 0 is exact if and only if M = 0.

(a) = (c). For any prime ideal p of A, B ®, k(p) # 0, and so*f ~!(p) =
spec (B ®, k(p)) is nonempty.

(¢) = (d). This is trivial.

(d) = (a). Let x e M, x # 0. Because f is flat, it suffices to show that
B®, N # 0, where N = Ax =« M. ButN =~ A/J for some ideal J of 4,
and hence B ® N =~ B/3B. If in is a maximal ideal of A containing J,
then 3B < f(m)B # B, and so B/3B # 0.

COROLLARY 2.8. Let f:Y — X be flat; let ye Y, and let x' be such

that x = f(y) is in the closure {x'} of {x'}. Then there is a y' such that

ye () and f(y) = x' .

Proof. The x' such that x € {x’} are exactly the points in the image
of the canonical map spec (¢, — X. The corollary therefore follows from
the fact that the map spec ¢, — spec O, induced by f is surjective.

A morphism f:Y — X is faithfully flat if it is flat and surjective. Ac-
cording to (2.7c), this agrees with the previous definition for rings.

We now consider the question of flatness for finite morphisms. The
next theorem shows that, for such a morphism f:Y — X, flatness has a
very explicit interpretation in terms of the properties of f, 0y as an
Ox-module.

THEOREM 2.9. Let M be a finitely generated A-module. The following
are equivalent:

(a) M is flat;

(b) M,, is a free A, -module for all maximal ideals m of A;

(c) M is a locally free sheaf on spec A;

(d) M is a projective A-module.
Moreover, if A is an integral domain, they are equivalent to:

(e) dimy,, (M ®, k(p)) is the same for all prime ideals p of A.
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12 I: ETALE MORPHISMS

Proof. (d) = (a). This implication does not use the finite generation
of M. As tensor products commute with direct sums, any free module is
flat, and any direct summand of a filat module is flat.

(b) = (c). Let m be a maximal ideal of A, and let x,,..., x, be ele-
ments of M whose images in M,, form a basis for M,, over A,. Then
the homomorphism

g:A" > M, glay,...,a) =) ax,

induces an isomorphism A’ — M, for some a e A, a ¢ m, because the
kernel and cokernel of g are zero at m and, being finitely generated, have
closed support in spec A.

(c) = (a). Leta,,...,aq,beeclements of A such that the ideal (a,,...,q,) =
Aand M, is a free A, -module for all i. Let B = [ | A4, . Then Bis faithfully
flatover 4,and B ®, M = [| M, isclearly a flat B-module. It follows that
M is a flat A-module (apply (2.7b)).

To prove the remaining implications, (a) = (d), (a) = (b), we shall
need the following lemma. '

LEMMA 2.10. Let 0 » N — F 5 M — 0 be an exact sequence of A-

modules with N a submodule of F.
(@) If M and F are flat over A, then N n 3F = 3N for all ideals 3

of A. )
(b) Let M be flat and F free, with basis (y;) over A. If

n=)y ayeN,
then there exist n; € N such that
n = Z (l,n,».

(b') Let M be any flat A-module. If
Z aix; = 0,
i
a; € A, x; € M, then there are equations
Xi = Y, a;X;
j

with x;€ M, a;; € A, such that
Z aia,'j = O

for uall j.
(c) Let M be flat and F free. For any finite set {n,, ..., n,} of elements
of N, there exists an A-linear map f:F — N with f(n) = n;, j = 1,...,r.
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Proof. a. From the given exact sequence, we obtain exact sequences,
0 —— NN 3JF » JF > IM > 0,

As M and F are flat, 3 ® F and 3 ® M may be identified with JF
and 3M, and then the image of 3 ® N in 3 ® F = JF becomes identi-
fied with IN. But from the first sequence, this is also N n JF.

(b) Let 3 be the ideal generated by the ¢; occurring in

n = Z aiy".
Then ne N n 3F = 3N, and so there are n; € N such that
n=7y an.

(b’) Write M as a quotient of a free module, as in (b), and let a,x, +
- 4 a,x, = 0. It is possible to choose F so that it has a basis ( ;) with
g(y) = x, i =1,...,r Then

n=Yy ayeN,
and so it may be written
n=>y an,
np =Yy — Z aijVj,

n = Z an, = n — Z Z (aiaij)yjs
. i

n;e N. Write

some a;;. Then

and so
Z (l,-al-j = 0
each j. Also
X; = Zaijg(yj)s
and so xj may be taken to be g(y)).
(c) We use induction on r. Assume first that r = 1, and write

s
ny = Z ajyil

j=1

where (y,) is a basis for F. Then

s
’
nl e Z ajnj

j=1
for some n; € N, and f may be taken to be the map such that f(y;) = nj,
j=1,...,s and f(y) = O otherwise. Now suppose that r > 1, and
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there are maps f,, f,:F — N such that fi(n,) = n; and

fz("i”fx(”i))="i"f1(ni), i=2,...,r
Then
fiF—>N, [y =L+ Ly = L40)

has the required property.
We now complete the proof of (2.9).
(a) = (d). Embed M into an exact sequence

O->-N->F->-M-0

in which F is free and N and F are both finitely generated. According to
(2.10c), this sequence splits, and so M is projective.

(a) = (b). We may assume that M is a finitely generated flat module
over a local ring A. Let x,,...,x,€ M be such that their images in
M/mM form a basis for this over the field A/m. Embed M in a sequence

0-N-sFLM-0

where F is free with basis {y,, ..., } and g(y;) = x;. As N c mF,
mN = N n(mF) = N, and N is zero according to Nakayama’s lemma.
(c) = (e). This is obvious.
(€) = (c). Fix a prime ideal p of 4, and choose elements x,, ..., x, of
M,, some a ¢ p, whose images in M ®, k(p) form a basis. According to
Nakayama’s lemma the map

g: A" - M,, glay,...,a) =Y ax;

defines a surjection A, — M. On changing a, we may assume that g
itself is surjective. For any prime ideal q of 4,, the map k(q)" - M ®, k(q)
is surjective, and hence is an isomorphism because dim (M ®, k(q)) = r.
Thus ker (g) = qA}, for any q, which implies that it is zero as A, is re-
duced. Thus M, is free.

Remark 2.11. Let f:Y — X be finite and flat. I claim that f is open.
Following (2.9), we may assume that X = spec A, Y = spec B,and B ~ A"
as an A-module. Let T" + a, 7"~ ! + - -+ + a, be the characteristic poly-
nomial over 4 of an element b € B. A prime ideal p of A4 is in the image
of spec (B,) — spec (4) exactly when B,/pB, is nonzero. But B,/pB, ~
(B/pB); and so this ring is nonzero exactly when b is not nilpotent in
B/pB or, equivalently, when some coefficient of 7" + a, T""! + - -+ + q,
is nonzero in A/p. Thus the image of spec B, in spec 4 is |J spec As
which is open. A much more general statement holds.

THEOREM 2.12.  Any flat morphism that is locally of finite-type is open.

LEmMMA 2.13. Let f:Y — X be of finite-type. For all pairs (Z, U) where
Z is a closed irreducible subset of Y and U is an open subset such that
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Un Z # (&, there is an open subset V of X such that f(U N Z) > V n
f(Z) # . (Here, f(Z) denotes the closure of the set f(Z)).

Proof. First note the following statements.
(a) The lemma is true for closed immersions.
(b) The lemma is true for f if it is true for

fred: Yred e Xred'

(c) The lemma is true for gf if it is true for f and g.

For, if V' satisfies the conclusion of the lemma for the pair (f(Z), V)
and the map g, then it also satisfies the conclusion for the pair (Z, U)
and the map gf.

(d) It suffices to check the lemma locally on Y and X.

(e) Inchecking the lemma for a given Z, we note that X may be replaced
by f(Z), and hence may be assumed to be irreducible.

Using (a), (c), and (d), we may reduce the proof to the case that f is
the projection A" x X — X where X is affine. Using (b) and (e), we
reduce the proof further to the case that X = spec 4, A an integral
domain. Finally, using (c) again, we reduce the proof to the case that f
is the projection A' x X — X.

Let Z be a closed irreducible subset of A}, say Z = spec B where
B = A[T]/q. We may assume that q # 0, for otherwise the lemma is
easy. We may also assume, according to (e), that q n A = (0), that is,
that f(Z) = X. Let K be the field of fractions of A, and let t = T (mod q).
Since q contains a nonconstant polynomial, ¢ is algebraic over K, and
so there is an ae€ 4, a # 0, such that at is integral over A. Then B, is
finite over A4,, and so spec B, — spec A, is surjective (Atiyah-Macdonald
[1, 5.10]). Thus we are reduced to showing that the image of a non-
empty open subset U of spec B, contains a nonempty open subset of
spec A. But if U contains (spec B,),, and b satisfies the polynomial
™ +a,T" ' + - + a, = 0,q;€ A, then f(U) > | (spec Ag),,-

Proof of (2.12). (Compare Hartshorne [2, IIL. Ex.9.1]) Let f:Y —» X
be as in the proposition. It suffices to show that f(Y) is open. We may
assume that X is quasi-compact. Let W = X — f(Y)andletZ,,...,Z,
be the irreducible components of W. Let z; be the generic point of Z;.
If z;e f(Y),say z; = f(y), then (2.13) applied to (fy_}, Y) shows that there
exists an open U in X such that f(Y) > U n Z; o {z;}. But then

f¥Y)=2Un <X - U Z,) > {z},
i#j
and, as U and (X — U,-H Z,) are open, this implies that z; ¢ W, which

is a contradiction. Thus z; € W, and, according to (2.8), all specializations
of z; belong to W. Thus W o Z;, W > UZ, = W, and f(Y) is open.
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Remark 2.14. If /.Y — X is finite and flat, then it is both open and
closed. Thus, if X is connected, then f is surjective and hence faithfully

flat (provided Y # ).
Exercise 2.15.  Give an example to show that (2.12) is false without

the finiteness condition, even if f is surjective. (Start with the example in
(1.6b)).

If f:Y - X is finite, and for some y e Y, O, is free as an O,-module,
then clearly I'(f ~}(U), Oy) is free over I'(U, Oy) for some open affine U
in X containing f(y). (See the proof of (b) = (c) in (2.9.) Thus the set of
points y € Y such that O, is flat over 0O, is open in Y and is even non-
empty if X is integral and f(Y) = X. Again this holds more generally.

THEOREM 2.16. Let f:Y — X be locally of finite-type. The set of points
y € Y such that C, is flat over O, is open in Y it is nonempty if X is
integral.

Proof. A reasonably self-contained proof of this may be found in
Matsumura [1, Chapter VIII]. See also [EGA, IV.11.1.1].

Recall that, in any category with fiber products, a morphism Y — X
is a strict epimorphism if the sequence

Y xy Y23 ¥ o X
P2
is exact, that is, if the sequence of sets
Hom (X, Z) - Hom (Y, Z) == Hom (Y x Y, Z)

is exact for all Z, that is, if the first arrow maps Hom (X, Z) bijectively
onto the subset of Hom (Y, Z) on which p¥ and p% agree.

Clearly the condition that a morphism of schemes be surjective is not
sufficient to imply that it is a (strict) epimorphism (consider spec k —
spec 4, where A is a local Artin ring with residue field k), but for flat
morphisms it is (almost).

THEOREM 2.17.  Any faithfully flat morphism f:Y — X of finite-type is
a strict epimorphism.
[t is convenient to prove the following result first.

ProposITION 2.18.  If f: A — B is faithfully flat, then the sequence
0-ALBS B®2 ..., ger ! goret ...
is exact, where
B =B®,B® - ®,B (r times)
' =3 (—1)¢
€by® ®@b_1)=b®@  ®b_, ®I®b®@ - ®b,_,.
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Proof. The usual argument shows that d"d"~' = 0. We assume first
that f admits a section, that is, that there exists a homomorphism
g:B - A such that gf = 1, and we construct a contracting homotopy
k,:B®*2 - B®*! Define

kr(bo®"'®br+1)=y(bo)b1®bz®"'®br+1, r=>—1

It is easily checked that k,,,d"*' + dk, = 1, » > —1, and this shows
that the sequence is exact.

Now let A’ be an A-algebra, let B = A’ ®, B, and let ' =1® f:
A’ - B'. The sequence corresponding to f” is obtained from the sequence
for f by tensoring with A’ (because B®" ®, A’ ~ B'®"). Thus, if 4" is a
faithfully flat A-algebra, it suffices to prove the theorem for f'. Take
A" = B, and then " = (b b ® 1):B —» B ®, B has a section, namely,
g(b ® b’) = bb’, and so the sequence is exact.

Remark 2.19. A similar argument to the above shows that if f:4 — B
is faithfully flat and M is an A-module, then the sequence

1®d°

0>M->-M®B——> M®,B% - -
—>M®B®r 1®dr ! M®B®r+l“""

is exact. Indeed, one may assume again that f has a section and con-
struct a contracting homotopy as before.

Proof of 2.17. We have to show that for any scheme Z and any
morphism h:Y — Z such that hp, = hp,, there exists a unique morphism
g:X — Z such that gf = h.

Case (@) X = spec A, Y = spec B, and Z = spec C are all affine. In
this case the theorem follows from the exactness of

€o €y

()—»A—)B———»B@AB

(since “eq = p,, “e; = py).

Case(b) X = spec A and Y = spec B affine, Z arbitrary. We first
show the uniqueness of g. If g;, g,: X — Z are such that g, f = g, f, then
g, and g, must agree on the underlying topological space of X because
f is surjective. Let x e X; let U be an open affine neighborhood of
g,(x) (=g,(x)) in Z, and let ae A be such that xe X, and g,(X,) =
go(X,) = U. Then B,, where b is the image of a in B is faithfully flat over
A,, and it therefore follows from case (a) that ¢, |X, = 9,| X,

Now let h:Y — Z have hp, = hp,. Because of the uniqueness just
proved, it suffices to define g locally. Let xe X, ye f~ (x), and let U be
an open affine neighborhood of h(y) in Z. Then f(h~*(U)) is open in X
(2.12), and so it is possible to find ana e 4 such that x e X, < f(h™*(U)).
I claim f~!(X,) is contained in h~'(U). Indeed, if f(y,) = f(y,), there
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isayeY x Y such that p,(y) =y, and p,(y') = y,; if y, € h"}(U),
then :
h(y,) = hpy(y) = hp(y') = h(y,) e U,

which proves the claim. If now b is the image of a in B, then h(Y,) =
h(f~YX,) = U, and B, is faithfully flat over A4,. Thus the problem is
reduced to case (a).

Case (¢) General case. It is easy to reduce to the case where X is
affine. Since f is quasi-compact, Y is a finite union, ¥ = Y, u---u Y,
of open affines. Let Y* be the disjoint union Y, 1L --- 1L Y,. Then Y* is
affine and the obvious map Y* — X is faithfully flat. In the commutative
diagram,

Hom (X, Z) —— Hom(Y,Z) ———= Hom (Y x Y, Z)

Hom (X, Z) —— Hom (Y*, Z) =3 Hom (Y* x Y*, Z),

the lower row is exact by case (b) and the middle vertical arrow is obviously
injective. An easy diagram chase now shows that the top row is exact.

Exercise 2.20. Show that spec k[ T] — spec k[T3, T®] is an epi-
morphism, but is not a strict epimorphism.

Remark 2.21. Let f:A — B be a faithfully flat homomorphism, and
let M be an A-module. Write M’ for the B-module f,M = B ®, M.
The module eq.M’ = (B ®, B) ®; M’ may be identified with B ® ;, M’
where B ®, B acts by (by ® b,)(b ® m) = b;b ® b,m, and e;.M’ may
be identified with M’ ®, B where B ®, B acts by (b; ® b,)(m ® b) =
bym ® b,b. There is a canonical isomorphism ¢: e,;.M' — e,.M" arising
from

epM' = (e, )M = (egf) M = ep.M’;

explicitly it is the map
M ®,B—->B®,M, bXmMb bR (b ® m), me M.
Moreover, M can be recovered from the pair (M’, ¢) because
M={meM|l®m=¢(m® 1)}

according to (2.19).
Conversely, every pair (M’ ¢) satisfying certain conditions does arise
in this way from an A-module. Given ¢: M’ ®, B - B ®, M’ define
¢ B M ®,B—->BR,BR, M,
$»M ®,B®,B->B®,B®,M,
¢3:M ®,B®,B->B,M ®,B
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by tensoring ¢ with idy in the first, second, and third positions respec-
tively. Then a pair (M', ¢) arises from an A-module M as above if and
only if ¢, = ¢,¢;. The necessity is easy to check. For the sufficiency,
define M = {me M'|1 ® m = ¢(m ® 1)}. There is a canonical map
(b® m— bm):B®,M — M', and it suffices to show that this is an
isomorphism (and that the map arising from M is ¢). Consider the
diagram

M'®AB_%.—~§—+;_,B®AM'®AB
[ ¢

B@uM =3 B®B ®uM

in which a(m) = 1 ® mand (m) = ¢(m ® 1). As the diagram commutes
with either the upper or the lower horizontal maps (for the lower maps,
this uses the relation ¢, = ¢,¢;), ¢ induces an isomorphism on the
kernels. But, by definition of M, the kernel of the pair (¢ ® 1, f ® 1) is
M ®, B, and, according to (2.19), the kernel of the pair (¢, ® 1, e; ® 1)
is M’. This essentially completes the proof.

More details on this, and the following two results may be found in
Murre [ 1, Chapter VII] and Knus-Ojanguren [1, Chapter II].

PROPOSITION 2.22. Let [:Y — X be faithfully flat and quasi-compact.
To give a quasi-coherent Oy-module M is the same as to give a quasi-
coherent ©y-module M’ plus an isomorphism ¢:p¥M' — piM’ satisfying

P3i(@) = p3y(P)p3i(9).

(Here the p;; are the various projections Y x Y x Y - Y x Y, that is

PiilY1s Y2s y3) = (yp, v J > i).
Proof. Inthecasethat Y and X are affine, this is a restatement of (2.21).

By using the relation between schemes affine over a scheme and quasi-
coherent sheaves of algebras (Hartshorne [ 2, I1. Ex. 5.17]), one can deduce
from (2.22) the following result.

THEOREM 2.23. Let f:Y — X be faithfully flat and quasi-compact. To
give a scheme Z affine over X is the same as to give a scheme Z' affine over
Y plus an isomorphism ¢:ptZ' — p3Z' satisfying

P3i(@) = P33 ().

Remark 2.24. The above is a sketch of part of descent theory. Another
part describes which properties of morphisms descend. Consider a
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Cartesian square

Y —Y

b
X —— X'

in which the map X’ — X is faithfully flat and quasi-compact. If f’ is
quasi-compact (respectively separated, of finite-type, proper, an open
immersion, affine, finite, quasi-finite, flat, smooth, étale), then f is also
[EGA. 1V.2.6,2.7]. The reader may check that this statement implies the
same statement for faithfully flat morphisms X' —» X that are locally of
finite-type. (Use (2.12)).

Of a similar nature is the result that if /: Y — X is faithfully flat and Y
is integral (respectively normal, regular), then so also is X [EGA. Oy,
17.3.3].

Finally, we quote a result that may be regarded as a vast generalization
of the Hilbert Nullstellensatz. The Nullstellensatz says that any morphism
of finite-type f:X — speck, k a field, has a quasi-section, that is, that
there exists a k-morphism g:spec k' — X with k' a finite field extension
of k.

PROPOSITION 2.25. Let X be quasi-compact, and let f:Y — X be a
Saithfully flat morphism that is locally of finite-type. Then there exists an
affine scheme X', a faithfully flat quasi-finite morphism h: X' — X, and an
X-morphism g: X' — Y.

Proof. One has to show that, locally, there exist sequences satisfying
the conditions of (2.6d) and of length equal to the relative dimension of
Y/X.(See [EGA. IV.17.16.2] for the details.)

§3. Etale Morphisms

_ Let k be a field and k its algebraic closure. A k-algebra A is separable if
A = A ®, k has zero Jacobson radical, that is, if the maximal ideals of
A have intersection zero.

PROPOSITION 3.1.  Let A be a finite algebra over a field k. The following
are equivalent :

(a) A is separable over k;

(b) A is isomorphic to a finite product of copies of k;

(c) A is isomorphic to a finite product of separable field extensions of k;

(d) the discriminant of any basis of A over k is nonzero (that is, the trace
pairing A x A — k is nondegenerate).
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Proof. (a) = (b). From (1.5) we know that 4 has only finitely many
prime ideals and that they are all maximal. Now (a) implies that their
intersection is zero and (b) follows from the Chinese remainder theorem
(Atiyah-Macdonald [1, 1.10]).

(b) = (c). The Chinese remainder theorem implies that A4/I,, where I,
is the Jacobson radical of A, is isomorphic to a finite product [] k; of
finite field extensions of k. Write [ K: k], for the separable degree of a field
extension K/k. Then Hom,_,,, (4, k) has

) Z [ki:k]s
elements. But
Homk-alg (A, 7(.) X Homli-alg (;1_! E),

and this set has [ 4:k] elements by (b). Thus

[A:k] = Y [ki:k], < Y [ki:k] = [A/,:k] < [A:k].

Since [4:k] = [A:k], equality must hold throughout and we have (c).

(c)=(d). If4 = H k;, where the k; are separable field extensions of k,
then disc (4) = ﬂ disc (k;), and this is nonzero by one of the standard
criteria for a field extension to be separable.

(d) = (a). The discriminants of A and A are the same. If x is in the
radical of 4, then xa is nilpotent for any a € A, and so Trz;(xa) = Oall a.
Thus x = 0.

A morphism f:Y — X that is locally of finite-type is said to be un-
ramified at y € Y if Oy ,/m,0y , is a finite separable field extension of k(x),
where x = f(y). In terms of rings, this indicates that a homomorphism
f:A — Boffinite-type is unramified at q € spec Bifand only ifp = f~!(q)
generates the maximal ideal in B, and k(q) is a finite separable field
extension of k(p). Thus this terminology agrees with that in number

theory.
A morphism f:Y — X is unramified if it is unramified at all ye Y.

PROPOSITION 3.2. Let f:Y — X be locally of finite-type. The following
are equivalent :

(a) f is unramified;

(b) for all x € X, the fiber Y, — spec k(x) over x is unramified;

(c) all geometric fibers of f are unramified (that is, for all morphisms
spec k — X, with k separably closed, Y x yspec k — spec k is unramified ),

(dy for all x e X, Y, has an open covering by spectra of finite separable
k(x)-algebras;

(e) forall x € X, Y, is a sum | ] spec k;, where the k; are finite separable
field extensions of k(x),
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(If f is of finite-type, then Y, itself is the spectrum of a finite separable
k(x)-algebra in(d), and Y, is a finite sum in(e); in particular f is quasi-finite).

Proof. (a) <> (b). This follows from the isomorphism Oy ,/m, 0y ,
(9YX,_V'

(b) = (d). Let U be an open affine subset of Y,, and let q be a prime
ideal in B = I'(U, 0y ). According to (b), B, is a finite separable field
extension of k(x). Also

k(x) = B/q < B,/qB, = B,,

and so B/q is also a field. Thus q is maximal, B is an Artin ring (Atiyah-
Macdonald [1, 8.5]), and B = [[ B,, where q runs through the finite set
spec B. This proves (d).

A similar argument shows that (c) = (d), and (d) = (e) = (c) and
(d) = (b) are trivial consequences of (3.1).

Notice that according to the above definition, any closed immersion
Z o X is unramified. Since this does not agree with our intuitive idea of
an unramified covering, for example, of Riemann surfaces, we need a
more restricted notion. A morphism of schemes (or rings) is defined to be
étale if it is flat and unramified (hence also locally of finite-type).

PROPOSITION 3.3. (a) Any open immersion is étale.

(b) The composite of two étale morphisms is étale.

(c) Any base change of an étale morphism is étale.

Proof. After applying (2.4), we only have to check that the three
statements hold for unramified morphisms. Both (a) and (b) are obvious
(any immersion is unramified). Also, (c) is obviously true according to
(3.1) if the base change is of the form k — k', where k and k' are fields,
but, according to (3.2), this is all that has to be checked.

Example 3.4. Let k be a field and P(T) a monic polynomial over k.
Then the monogenic extension k[ T]/(P) is separable (or unramified or
étale) if and only if P is separable, that is, has no multiple roots in k.

This generalizes to rings. A monic polynomial P(T) € A[ T ] is separable
if (P, P') = A[T], that is, if P(T) is a unit in A[T]/(P) where P(T) is
the formal derivative of P(T). It is easy to see that P is separable if and
only if its image in k(p)[ 7] is separable for all prime ideals p in A.

Let B = A[T]/(P), where P is any monic polynomial in A[T]. As an
A-module, B is free of finite rank equal to the degree of P. Moreover,
B ®,4 k(p) = k(p)[ T ]/(P) where P is the image of P in k(p)[ T]. It follows
from (3.2b) that B is unramified and so étale over A4 if and only if P is
separable. More generally, for any b € B, B, is étale over A if and only if
P’ is a unit in B,,.

For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

§3. ETALE MORPHISMS 23

For example, B = A[T]/T" — a) is étale over 4 if and only if ra is
invertible in A (for ra e A* <> ra e k(p)*, all p <> T" — @ is separable in
k(p)[T] all p).

For algebras generated by more than one element, there is the following
Jacobian criterion: let C = A[T,,..., T,], let P,,...,P,eC, and let
B = C/(P,,...,P,); then B is étale over A4 if and only if the image of
det (0P;/0T;) in B is a unit. That B is unramified over A4 if and only if the
condition holds follows directly from (3.5b) below. (The B-module Qj,
has generators dT, ..., dT, and relations Y “(9P;/0T;)" dT; = 0.) That
B is flat over 4 may be proved by repeated applications of (2.5). (See
Mumford [3, III. §10. Thm. 3'] for the details.)

Note that if Y = spec B and X = spec A were analytic manifolds, then
this criterion would indicate that the induced maps on the tangent spaces
were all isomorphisms, and hence Y — X would be a local isomorphism
at every point of Y by the inverse function theorem. It is clearly not true
in the geometric case that spec B — spec 4 is a local isomorphism (unless
local is meant in the sense of the étale topology: see later). For example,
consider spec Z[ T]AT? — 2) - spec Z, which is étale on the comple-
ment of {(2)}.

PROPOSITION 3.5. Let f:Y — X be locally of finite-type. The following
are equivalent :

(a) f is unramified;

(b) the sheaf Qyx is zero;

(c) the diagonal morphism Ay;x:Y — Y xx Y is an open immersion.

Proof. (a) = (b). Since Qyx behaves well with respect to base change,
one can reduce the proof to the case that Y = spec B and X = spec A
are affine, then to the case that 4 — B is a local homomorphism of local
rings and using Nakayama’s lemma to the case where 4 and B are fields.
Then B is a separable field extension of A4, and it is a standard fact that
this implies that Qp,, = 0.

(b) = (c). Since the diagonal is always at least locally closed, we may
choose an open subscheme U of Y xy Y such that Ay x:Y — U is a closed
immersion and regard Y as a subscheme of U. Let I be the sheaf of ideals
on U defining Y. Then I/I? regarded as a sheaf on Y, is isomorphic to
Q) x and hence is zero. Using Nakayama’s lemma, one sees this implies
that I, = 0 for all ye Y, and it follows that I = 0 on some open subset
V of U containing Y. Then (Y, Oy) = (V, 0y) is an open subscheme of
Y x Y.

(c) = (a). By passing to the geometric fiber over a point of X, we may
reduce the problem to the case of a morphism f:Y — spec k where k
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is an algebraically closed field. Let y be a closed point of Y. Because k is
algebraically closed, there exists a section g:spec k — Y whose image is
{y}. The following square is Cartesian:

Iy I(y/. 1)

{y} —— Y.

Since A is an open immersion, this implies that {y} is open in Y.

Moreover, spec 0, = {y} — spec k still has the property that spec 0, %
spec (0, ®, 0,) is an open immersion. But @, is a local Artin ring with
residue field k, and so spec O, ®, O, has only one point, and 0, ®, O, —
O, must be an isomorphism. By counting dimensions over k, one sees
then that 0, = k. Thus, by applying (3.1) and (3.2), we have (a).

COROLLARY 3.6. Consider morphisms f:X - S, g:Y - X. If fg is
étale and f is unramified, then g is étale.

Proof. Write g = p,I'y where I',;:Y — Y x5 X is the graph of g and
p2:Y xg X — X is the projection on the second factor. I'; is the pull-back
of the open immersion Ay;s: X = X xgX by g x 11Y xg X —» X x5 X,
and p, is the pull-back of the étale map fg:Y — S by f:X — S. Thus, by
using (3.3), we see that g is étale.

Remark 3.7. Let f:Y — X be locally of finite-type. The annihilator
of Qy yx (an ideal in (")) is called the different by of Y over X. That this
definition agrees with the one in number theory is proved in Serre [7,
I1.7].

Tt?e closed subscheme of Y defined by dy,y is called the branch locus
of Y over X. The open complement of the branch locus is precisely the
set on which Q},y = 0, that is, on which f:Y — X is unramified. The
theorem of the purity of branch locus states that the branch locus (if
nonempty) has pure codimension one in Y in each of the two cases:
(a) when f is faithfully flat and finite over X; or (b) when f is quasi-finite
and dominating, Y is regular and X is normal. (See Altman and Kleiman
[1, VL6.8], [SGA. 1, X.3.1], and [SGA. 2, X.3.4])

PropOSITION 3.8. If f:Y — X is locally of finite-type, then the set of
points y of Y, such that Cy , is flat over Oy 5, and Qyx., = 0, is openin Y.
Thus there is a unique largest open set U in Y on which f is étale.

Proof. This follows immediately from (2.16).

Exercise 3.9. Let f:Y — X be finite and flat, and assume that X is
connected. Then f, 0y is locally free, of constant rank r say. Show that
there is a sheaf of ideals Dy, on X, called the discriminant of Y over
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X, with the property that if U is an open affine in X such that B =
I'(f~Y(U), Oy) is free with basis {b),..., b} over A = [(U, Oy), then
I'(U, Dy/x) is the principal ideal generated by det (Trg, 4(b;b;)). Show that
/ is unramified, hence étale, at all y € f~'(x) if and only if (Dy,x), = Oy ,
(use (3.1d)). Use this to show that if f is unramified at all y e f ~(x) for
some x € X, then there exists an open subset U < X containing x such
that f: f~'(U) - U is étale. Show that if B = A[ T]/(P(T)) with P monic,
then the discriminant Dg,, = (D(P)), where D(P) is the discriminant of
P, that is, the resultant, res (P, P’), of P and P’. Show also that the different
0p.4 = (P'(t)) where t = T (mod P). (See Serre |7, I11.§6].)

The next proposition and its corollaries show that étale morphisms
have the uniqueness properties of local isomorphisms.

PROPOSITION 3.10. Any closed immersion f:Y — X that is flat (hence
étale) is an open immersion.

Proof. According to (2.12), f(Y) is open in X and so, after replacing
X by f(Y), we may assume f to be surjective. As f is finite, f, Oy is locally
free as an (y-module (2.9). Since [ is a closed immersion, this implies
that Oy ~ f,0y, that is, that f is an isomorphism.

Remark 3.11. By using Zariski’s main theorem, we may prove a
stronger result, namely, that any étale, universally injective, separated
morphism f:Y — X is an open immersion. (Universally injective is equiv-
alent to injective and all maps k(f(y)) — k(y) radicial [EGA. 1.3.7.1].) In
fact, by proceeding as above, one can assume that f is universally bijec-
tive, hence a homeomorphism (2.12), hence proper, and hence finite (1.10).
Now f being étale and radicial implies that f, ¢y must be free of rank one.

COROLLARY 3.12. If X is connected and .Y — X is étale (respectively
étale and separated), then any section s of f is an open immersion (respec-
tively an isomorphism onto an open connected component). Thus there is a
one-to-one correspondence between the set of such sections and the set of
those open (respectively open and closed) subschemes Y; of Y such that f
induces an isomorphism Y, — X. In particular, a section is known when its
value at one point is known if [ is separated.

Proof. Only the first assertion requires proof. Assume first that [ is
separated. Then s is a closed immersion because fs = 1 is a closed im-
mersion, and f is separated (compare with the proof of (3.6)). According
to (3.6) s is étale, and hence it is an open immersion. Thus s is an isomor-
phism onto its image, which is both open and closed in Y. If f is only
assumed to be étale, then it is separated in a neighborhood of y and
x = f(y), and hence the above argument shows that s is a local isomor-

~ phism at x.
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COROLLARY 3.13. Let f,g:Y' — Y be X-morphisms where Y' is a con-
nected X-scheme and Y is étale and separated over X. If there exists a
point y' € Y' such that f(y') = g(y') = y and the maps k(y) — k(y') induced
by f and g coincide, then = g.

Proof. The graphs of fand g, ', I';:Y" = Y' x4 Y, are sections to
pi:Y' xx Y — Y’ The conditions imply that I', and ', agree at a point,
and so I'; and I', are equal (3.12). Thus f = p,I'; = p,I', = g.

We saw in (3.4) above that given a monic polynomial P(T’) over A4, it
is possible to construct an étale morphism spec C — spec A by taking
C = B, where B = A[T]/(P) and b is such that P(T) is a unit in B,.
We shall call such an étale morphism standard. The interesting fact is
that locally every étale morphism Y — X is standard. Geometrically this
means that in a neighborhood of any point x of X, there are functions
ai,...,a,such that Y is locally described by the equation T" + a, T" ! +
-+ + a, = 0, and the roots of the equation are all simple (at any geo-
metric point).

THEOREM 3.14.  Assume that f:Y — X is étale in some open neighbor-
hood of y € Y. Then there are open affine neighborhoods V and U of y and
S(y), respectively, such that f|V:V — U is a standard étale morphism.

Proof. Clearly, we may assume that Y = spec C and X = spec A are
affine. Also, by Zariski’s main theorem (1.8), we may assume that C is a
finite A-algebra. Let q be the prime ideal of C corresponding to y. We
have to show that there is a standard étale 4-algebra B, such that B, ~ C,
for some c ¢ q. It is easy to see (because everything is finite over A) that
it suffices to do this with 4 replaced by A,, where p = f~!(q), that is,
that we may assume that A is local and that g lies over the maximal ideal
p of A.

Choose an element ¢t € C whose image ¢ in C/pC generates k(q) over
k(p), that is, 7 is such that k(p)[T] = k(q) = C/pC. Such an element exists
because C/pC is a product k(q) x C’, and k(q)/k(p) is separable. Let
q' = qn Aft]. I claim that A[t],. —» C, is an isomorphism. Note first
that q is the only prime ideal of C lying over q’ (in checking this, one may
tensor with k(p)). Thus the semilocal ring C ®,, A[t], is actually local
and so equals C,. As A[t] — C is injective and finite, it follows that

Alt]y = C ®qy Alt]y = C,

is injective and finite. It is surjective because k(q') — k(q) is surjective,
and Nakayama’s lemma may be applied.

A[t] is finite over A (it is a submodule of a Noetherian 4-module), and
the isomorphism A[t], — C, extends to an isomorphism A[t]. 5 C,
for some c ¢ q, ¢’ ¢ q". Thus C may be replaced by A[¢], that is, we may
assume that ¢ generates C over A.
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Let n = [k(q):k(p)], so that 1,7,...,7"" "' generate k(q) as a vector
space over k(p). Then 1,1, ..., 1"~ ! generate C = A[t] over A (according

to Nakayama’s lemma), and so there is a monic polynomial P(T) of
degree n and a surjection h:B = A[T]/(P) » C. Clearly P(T) is the
characteristic polynomial of 7 in k(q) over k(p) and so is separable. Thus
B, is a standard étale A-algebra for some b ¢ h™*(q). With a suitable choice
of b and ¢ we get a surjection h': B, —» C, with both B, and C, étale A-
algebras. According to (3.6), h' is étale, and “h':spec C. — spec B, is a
closed immersion. Hence, according to (3.10), 4’ is an open immersion,
which completes the proof.

Remark 3.15. The fact that f was flat was used only in the last step of
the above proof. Thus the argument shows that locally every unramified
morphism is a composite of a closed immersion with a standard étale
morphism.

COROLLARY 3.16. A morphism f:Y — X is étale if and only if for
every ye Y, there exist open affine neighborhoods V = spec C of y and
U = spec A of x = f(y) such that

C=A[T,...,T,J/(Py,...,P,)

and det (¢P;/dT;) is a unit in C.

Proof. Because of (3.4), we only have to prove the necessity. From the
theorem, we may assume that Y — X is standard étale, for example
X =spec A, Y = spec C, C = B,, B= A[T]/(P). Then C ~ A[T, U]/
(P(T), bU — 1), and the determinant corresponding to this is P'(T)b.
Since the image of P'(T)b is a unit in C, this proves the corollary with the
added information that n may be taken to be two.

With this structure theorem, it is relatively easy to prove thatif Y — X
is étale, then Y inherits many of the good properties of X. (For the opposite
inheritance, see (2.24).)

ProPOSITION 3.17. Let f:Y — X be étale.

(a) Dim (Oy,) = dim (Ox ) forall ye Y.

(b) If X is normal, then Y is normal.

(c) If X is regular, then Y is regular.

Proof. (a) We may assume that X = spec A where 4 (=0,) is local
and that Y = spec B. The proof uses only the assumption that B is
quasi-finite and flat over A. Let q be the prime ideal of B corresponding to
y (so q lies over p, the maximal ideal of A). Then spec B, — spec 4 is
surjective (2.7), so dim (B,) > dim (4). Conversely we may assume
B = B,, where B'is finite over A (1.8). Then dim (4) > dim (B') (>dim B,)
(Atiyah-Macdonald [1, 5.9]).

(b) We may assume that X = spec 4 where A is local (hence normal)
and that T = spec C where C = B, is a standard étale A-algebra with
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B = A[T]/(P(T)). Let K be the field of fractions of 4, let L = C ®, K =
K[T]/(P(T)), and let A" be the integral closure of 4 in L. Note that L
is a product of separable field extensions of K. Then we have the inclusions

Cc A, cL
uou
Ac Bc A

Write t = T (mod P(T)). Choose an a e A’. We have to show that a/b’,
or equivalently just g, is in C.

Let K be the algebraic closure of K and ¢, . . ., ¢, the homomorphisms
L — K over K such that ¢,(t), ..., ¢,(t) are the roots of P(T) (so r =
degree P). Write

a=ay+at+-+a 47 a;e K.
Then we have r equations,
dila) = ag + ayt; + -+ a, ;!

where t; = ¢;(t). Let D be the determinant of these equations, regarding
the a; as unknowns, so that D = +[];<;(t; — 1)), that is, D*> = dis-
criminant of P(T) = Dy, (compare (3.9)). Since the ¢;(a) and t} are
integral over A, it follows from Cramer’s rule that the Da;, i = 1,...,r,
are also integral over A. Since the Da; € K and A is normal, they belong to
A, and this implies that Da € B = C. Since D is a unit in C, it follows that
aeC.

(c) Let ye Y. Then dim (Cy,) = dim (O ), and m, = m,0y , can
be generated by dim (U ;) elements.

Remark 3.18. An argument, similar to that in (b), shows that if X is
reduced, then Y is reduced (Raynaud [3, p. 74]).

We now determine the structure of étale morphisms ¥ — X when X
is normal.

PROPOSITION 3.19. Let [:Y — X be étale, where X is normal. Then
locally f is a standard étale morphism of the form spec C — spec A where
A is an integral domain, C = B,, B = A[T]/(P(T)), and P(T) is irre-
ducible over the field of fractions of A.

Proof. The only new fact to be shown is that P(T) may be chosen to be
irreducible over the field of fractions K of 4. Clearly we may reduce the
problem to the case that X = spec A where A is a local ring and assume
that Y = spec C with C a standard étale A-algebra, say C = B,, B =
A[T]/(P(T)) with P(T) possibly reducible. Fix a prime ideal q in C such
that p = q N A is the maximal ideal of A.
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Note that any monic factor Q(T) of P(T) in K[ T] automatically has
coefficients in A. (Let K' be a splitting field for Q(T); the roots of Q(T) in
K’ are also roots of P(T') and hence are integral over A4; it follows that the
coefficients of Q(T') are also integral over A4 since they can be expressed in
terms of the roots.) Choose P,(T) to be a monic irreducible factor of
P(T) whose image in k(q) is zero, and write P(T) = P,(T)Q(T) with
P;,Q € A[T]. Then the images P, and Q of P, and Q in k(p)[T] are
coprime since P(T) is separable and so has no multiple roots. It follows
that (P,, Q) = A[T] (compare (4.1a) below), and the Chinese remainder
theorem shows that B ~ A[ T ]/(P;) x A[T]/(Q). Let b, be the image of
bin B, = A[T]/(P,). Obviously C, = (B,),, is the standard A-algebra
sought.

THEOREM 3.20. Let X be a normal scheme and f:Y — X an unramified
morphism. Then f is étale if and only if, for any ye Y, Oy ;) = Oy, is
injective.

Proof. If f is flat, then O, — 0, is injective according to (2.3). For
the converse, note that locally f factors into Y Ly 4% X with [ a
closed immersion and g €tale (3.15). Write A = Oy ,,; following (3.19),
we may write Oy. ., = C, where C = A[T]/(P(T)) with P(T) irre-
ducible over the field of fractions K of A. We have A - C, - Oy ,, which,
when tensored with K, becomes K - C, ®, K - 0y, ®, K. As 4 -
Oy, isinjective, K = 0y , ®, K isinjective, which shows that C, ® 4 K —
Oy,, ®4 K is not the zero map. But C, ®, K = K[T]/(P) is a field, and
so this last map is injective. Hence C, — Oy , is injective, and we already
know that it is surjective because f” is a closed immersion. Thus Oy , = C,
is flat over A.

THEOREM 3.21. Let X be a connected normal scheme, and let K = R(X).
Let L be a finite separable field extension of K, let X' be the normalization
of X in L, and let U be any open subscheme of X' that is disjoint from
the support of Qyx. Then U — X is étale, and conversely any separated
étale morphism Y — X of finite-type can be written Y =[JU; » X
where each U; — X is of this form.

Proof. Qyx = Qy,x|U =0, and so U — X is unramified according
to (3.5). It is étale according to (3.20).

Conversely, let Y — X be separated, étale, and of finite-type. The
connected components Y; of Y are irreducible (because the irreducible
components of Y containing y are in one-to-one correspondence with
the minimal prime ideals of Oy , and Y is normal). If spec L; — spec K
is the generic fiber of Y; » X and X, is the normalization of X in L,
then Zariski’s main theorem implies that ¥; —» X; is an open immersion
(see (1.8), especially the proof).

For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

30 1. ETALE MORPHISMS

Remark 3.22. In[EGA. 1V.17] the following functorial definitions are
made. Let X be a scheme and F a contravariant functor Sch/X — Sets.
Then F is said to be formally smooth (lisse) (respectively, formally un-
ramified (net), formally étale) if for any affine X-scheme X' and any
subscheme Xj of X’ defined by a nilpotent ideal 3, F(X') —» F(Xj) is
surjective (respectively, injective, bijective).

A scheme Y over X is said to be formally smooth, formally unramified, or
formally étale over X when the functor hy = Homy (—, Y) it defines has
the corresponding property. If, in addition, Y is locally of finite presenta-
tion over X, then one says simply that Y is smooth, unramified, or étale
over X.

We show that a morphism f:Y — X that is étale in our sense is also
étale in the above sense. (The converse, which is more difficult, may be
found, for example, in Artin [9, 1.1.1].) Thus, given an X-morphism
go: X — Y, we must show that there is a unique X-morphism g: X' —» Y
lifting it:

Y —— Xp
]
X — X'

The uniqueness implies that it sufficies to do this locally. Thus we may
assume that f is standard, for example, X = spec A, Y = spec C, C = B,,
B = A[T}/P) = A[t]. Let X' = spec R, X, = spec R, and R, = R/3.
Then we are given an A-homomorphism g,:C — R,, and we want to
find a unique g:C — R lifting it:

C—*> Ro =R/3

AN
\\g
N
N

A —"R

By using induction on the length of 3, we may reduce the question to the
case that J2 = 0. Let r € R be such that go(t) = r (mod J). We have to
find an r’ € R such that ¥ = r (mod 3) and P(r) = 0. Write ¥ = r + h,
he 3. Then h must satisfy the equation P(r + h) = 0. But P(r + h) =
P(r) + hP'(r), where P(r) € 3 and P'(r) is a unit (since P'(t) e C* = P'(r) €
R¥), and so there is a unique h.

Alternatively, this may be proved by applying (3.12)to ¥ x, X'/X".

THEOREM 3.23.  (Topological invariance of étale morphisms.) Let X,
be the closed subscheme of a scheme X defined by a nilpotent ideal. The
functor Y- Yy = Y xy X, gives an equivalence between the categories
of étale X-schemes and étale X ,-schemes.
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Proof. To give an X-morphism Y — Z of étale X-schemes is the same
as to give its graph, that is, a section to Y x, Z — Y. According to (3.12),
such sections are in one-to-one correspondence with the open subschemes
of Y xx Z that map isomorphically onto Y. Since the same is true for
X o-morphisms Y, — Z,, it is easy to see using (3.10) or (3.11) that our
functor is faithfully full. Thus it remains to show that it is essentially
surjective on objects. Because of the uniqueness assertion for morphisms,
it suffices to locally lift an étale X ,-scheme Y, to an X-scheme Y. But then
we may assume that Y, — X, is standard, and the assertion is obvious.

For completeness, we list some conditions equivalent to smoothness.

PROPOSITION 3.24. Let f:Y — X be locally of finite-type. The following
are equivalent:

(a) fis smooth (in the sense of (3.22));

(b) for any y € Y, there exist open affine neighborhoods V of y and U of
f(y) such that f|V factors into V.- V' - U & X where V— V' is étale
and V' is affine n-space over U ;

(€) for any y € Y, there exist open affine neighborhoods V = spec C of
yand U = spec A of x = f(y) such that

C=A[T,....,T,J(P,,...,P,), m<n,

and the ideal generated by the m x m minors of (0P;/0T})is C;

(d) f is flat and for any algebraically closed geometric point X of X,
the fiber Y; — X is smooth;

(e) f is flat and for any algebraically closed geometric point X of X,
Y; is regular;

() fis flat and Qyx is locally free of rank equal to the relative dimension
of Y/X.

Proof. See [SGA. 1, 11] or Demazure-Gabriel: [1, 1. §4.4].

Remark 3.25. (a) In the case that f is of finite-type, conditions (d) and
(e) may be paraphrased by saying that Y is a flat family of nonsingular
varieties over X.

(b) Condition (b) shows that for a morphism of finite-type étale is

equivalent to smooth and quasi-finite.
Finally we note that (2.25) has an analogue for smooth morphisms.

PROPOSITION 3.26. Let f:Y — X be smooth and surjective, and assume
that X is quasi-compact. Then there exists an affine scheme X', a surjective
étale morphism h: X' — X, and an X-morphism g: X' — 'Y,

Proof. See [EGA.IV.17.16.3].

Exercise 3.27. (Hochster). Let A be the ring k[T?, T3] localized at its
maximal ideal (T2, T3) (that is, A is the local ring at a cusp on a curve);
let B = A[S]/(S3Y? + S + T?), and let C be the integral closure of 4
in B. Show that B is étale over A4, but that C is not flat over A. (Hint: show
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that TS and T2S are in C; hence TS € (T?:T3)c. If C were flat over 4,
then

(T2: T3 = (T2:TY),C = (T? T);
but TS € (T?, T?) would imply Se C.)

Exercise 3.28. Let Y and X be smooth varieties over a field k; show
that a morphism Y — X is étale if and only if it induces an isomorphism
on tangent spaces for any closed point of Y.

Exercise 3.29. Do Hartshorne [2, I1I. Ex. 10.6].

§4. Henselian Rings

Throughout this section, 4 will be a local ring with maximal ideal m
and residue field k. The homomorphisms A — k and A[T] — k[ T] will
be written as (a + @) and (f — ). _

Two polynomials f(T), g(T) with coefficients in a ring B are strictly
coprime if the ideals (f) and (g) are coprime in B[ T], that is, if (f, g) =
B[ T]. For example, f(T) and T — a are coprime if and only if f(a) # 0
and are strictly coprime if and only if f(a) is a unit in B.

If A is a complete discrete valuation ring, then Hensel’s lemma (in
number theory) states the following: if f is a monic polynomial with
coefficients in A4 such that f factors as f = goh, with g, and h, monic
and coprime, then f itself factors as /' = gh with g and h monic and such
that § = go, h = ho. In general, any local ring 4 for which the con-
clusion of Hensel’s lemma holds is said to be Henselian.

Remark 4.1. (a) The g and h in the above factorization are strictly
coprime. More generally, if f, g € A[T] are such that f, g are coprime in
k[T] and f is monic, then f and g are strictly coprime in A[ T']. Indeed,
let M = A[T]/(f, g). As f is monic, this is a finitely generated A-module;
as (f,9) = k[T], (f,9) + mA[T] = A[T] and mM = M, and so
Nakayama’s lemma implies that M = 0.

(b) The factorization f = gh is unique, for let f = gh = g'h’ with g, h,
g', " all monic, g = g, h = k', and g and h coprime. Then g and h’ are
strictly coprime in A[T], and so there exist r, s € A[ T] such that gr +
h's = 1. Now

g =gygr+ ghs=ggr+ ghs,

and so g divides g'. As both are monic and have the same degree, they
must be equal.

THEOREM 4.2.  Let x be the closed point of X = spec A. The following
are equivalent:
(a) A is Henselian;

(continued...)
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action of sheaf, 120

acyclic morphism, 232

acyclic object, 83, 86

affine morphism, 4

algebra; Azumaya, 136-54; central
separable, 141; central simple, 137;
maximal étale sub-, 139; opposite, 136

algebraic space, 116, 122, 157-59

arithmetic genus, 217

Artin character, 186-87

Artin neighborhood, 117

Artin-Schreier sequence, 67

Artin-Schreier theory, 127-28

associated sheaf, 57, 60-62; stalk of, 63

Azumaya algebra, see algebra, Azumaya

Bertini’s theorem, 209

Betti numbers, 166, 205

bilinear, 79

branch locus, 24; purity of, 24

Brauer group, 136-54; cohomological,
136, 147; of Henselian ring, 138, 148;
of local ring, 136-40: of regular
scheme, 149; of scheme, 140-54;
of smooth variety, 149

Brauer-Severi schemes, 134-35

Cartesian, 144

Cartier divisor, 73

Cartier dual, 130

Cartier operator, 129
Castelnuovo's criterion, 217-19
Cayley-Hamilton polynomial, 139
Char (X), 230

Chern class, 204; étale, 271 -76; total, 273
Chern polynomial, 273

Chern roots, 274

Chow ring CH(X), 274

cofiltered category, 305

cofinal, 306

cohomological dimension, 220-22, 246,
253-56, 283; of curves, 183 -84

cohomology, 84; Amitsur, 97; of
blowing-up, 203, 229-30, 247; Cech,
95-105; Cech and derived, 99, 100, 103,
104-105; with compact support, 93-94,
229-30; of complete intersection, 246;
complex and étale, 11719, 164, 229, 241;
of curves, 175-97; of direct limits, 113;
étale and flat, 114-17; finiteness of,
222-27, 232, 244, 246; flat and Zariski,
113-14; of G, 106-110; invariance,
224, 231; and inverse limits, 88-89, 119;
nonabelian, 122; and Picard scheme,
130-33; of P™, 245-46, 270; of smooth
group schemes, 114-17; with support
on Z, 91-94; of surfaces, 197-219

complex, bounded, 310; double, 309;
perfect, 263; total, 309;

conductor, 188

connected category, 305

constructible function, 161

cospecialization map, 77, 162, 230

covering, E-, 47; geometric, 126;
infinitesimal, 128-29; of Picard type,
126; refinement of, 95

cycle, algebraic, 268 prime, 268

cycle map, 26871, 275--76

derived functor, 82, 310-12

descent theory, 16-20, 158

different, 24, 25

direct image, higher, 85, 88; higher with
compact support, 227-30; of presheaf,
56-9; of sheaf, 68-77

discriminant, 20, 24

elementary fibration, 117
étale closure, 44
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étale morphism, 3, 22-35; of algebraic
spaces, 157; to normal scheme, 29;
standard, 26, 28; topological invariance
of, 30

étale neighborhood, 36, 38

Euler-Poincare characteristic, 166, 190-95,
202, 204-205

exact, 16, 122

excellent scheme, 4

excision, 92

extension by zero, 76, 78, 81

faithfully flat morphism, 10-20; is strict
epimorphism, 16

fibered category, 144

finite morphism, 4--7

filtered category, 305

flat morphism, 3, 7-20, 31; is open, 14

formally étale, 30

formally smooth, 30

formally unramified, 30

Frobenius elements, arithmetic, 292;
geometric, 292

Frobenius endomorphism, 109, 185

fundamental class, 24752

fundamental group, 39-45; of curve,
42-43, 194, tame, 42, 193-5, 208; true,
45

Galois covering, 40, 43-44, 49, 99
generators, family of, 83

generically locally constant, 77
gerbe, 144

Grodement resolution, 90, 171
group scheme, 52; Cartier dual, 130
Gysin map, 244, 250, 253, 283 -84
Gysin sequence, 243-44, 250-52

hard Lefschetz theorem, 207
Hasse-Witt matrix, 128

Hensel’s lemma, 32, 35

Henselian ring, 3, 32-39, 41, 239-40
Henselization, 36

Hilbert's theorem 90, 124
homotopic, 167, 257
hypercohomology, 310-12

injective, 82
internal Hom, 79

inverse image, in fibered category, 144;
preserves injectives, 87; of presheaf,
56-59; of sheaf, 68-76; twisted, 285

Jacobian criterion, 23
Jacobson scheme, 65, 90

Kazdan-Margulis theorem, 211
Kummer covering, 41, 42
Kummer sequence, 66

Kummer theory, 125-27

Kiinneth formula, 256-68, 271-72

L, 197

Lefschetz pencils, 197-99

Lefschetz theorems, 207

Lefschetz theory, local, 199-207; global,
207-214

Lefschetz trace formula, 287-88, 292, 295,
298; for curves, 185, 195, 205

limits, 304-306

lisse, 164

L-series, 195-97, 289-303; Artin, 293,
195-97

map of degree r, 167

mapping cone, 174

Mayer-Vietoris sequence, 110

Milnor number, 193

monodromy, 207-211

Mordell-Weil theorem, 133

morphism, acyclic, 232-41; base change,
223; compactifiable, 227, 229;
continuous, 56; Frobenius, 290-91;
locally acyclic, 232-41; of presheaves,
48; of sheaves, 50; of sites, 56; of smooth
S-pairs, 241; universally acyclic, 232-41;
universally injective, 25

Néron minimal model, 192-93

Neron-Severi group, 131-32, 284; finite
generation of, 215--16

normalization, 4

numerical equivalence, 215, 284

Ogg-Safarevic-Grothendieck formula,
190-95

Ogg-Tate formula, 193

Order, 150
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Pairing, canonical of Exts, 167; cup
product, 171-74

perfect complex, 263

Picard-Lefschetz formula, 206-207

Picard scheme, 130-33

plurigenus, 217

Poincaré duality, 276-86; curves,
175-85; local, 181-82

presheaf, 47; basically bounded, 57;
category of, 48; constant, 48; free, 79;
section of, 47; separated, 49;

principal homogeneous space, 120-33

projection formula, cycles, 268; sheaves,
250

proper base change theorem, 72, 89,
222-21, 260

pseudofiltered, 304-305

purity, of Azumaya algebras, 153; of
branch locus, 24; cohomological, 241-47

quasi-finite morphism, 4-7
quasi-isomorphism, 310
quasi-section, 20

Riemann existence theorem, 40, 118
Riemann hypothesis, 286

S, S,,8,,49

separable, algebra, 20; polynomial, 22

sheaf, 49; category of, 63; constant, 65, 156;
constructible, 155-56, 160-64; étale
over field, 53; étale over discrete
valuation ring, 75; finite, 155-56; with
finite stalks, 155-56; flabby, 87--89, 91,
101-103, 113; flasque, 87; free, 79;
generically locally constant, 77; induced,
90; l-adic, 163; locally constant, 155, 156,
162; I-torsion, 220; locally constructible,
160-64, 225; locally free, 163 -64;
pseudo-coherent, 80, 95; of Q,-vector
spaces, 164; represented by algebraic
space, 159; Tate twist of, 163; torsion,
220; twisted-constant, 65, 155, 164;
of Z,-modules, 163

sieve, 55

similar, 137, 141

site, 47, 112-13

Skolem-Noether theorem, 138, 141

smooth base change theorem, 230-41

smooth morphism, 30, 31, 39

smooth S-pair, 241

smooth specialization, 230

spectral sequence, 307-309; Cech to
derived, 100-101; for closed subschemes,
94; with closed support, 241;
Hochschild-Serre, 105; Leray, 89, 228;
local-global for Exts, 91

splits, 139

stack, 144

stalk, 60, 63-65, 80; of direct image, 70, 71;
of higher direct image, 88; of inverse
image, 69

Stein factorization, 72

strict epimorphism, 16

strict Henselization, 38

strictly coprime, 32

strictly Henselian (local), 3, 38, 41

support of sheaf, 75

Swan character, 188

tamely ramified, 41-42

tensor product, of complexes, 257,
of sheaves, 79

topology, 47, 54; comparison of, 110-19

tor-dimension, 263

torsor, 120-33

trace map, 168-71, 276, 284,
noncommutative, 301

twisted forms, 134

universally injective morphism, 25
unramified morphism, 21-32, 36

vanishing cycle, 200; canonical, 205;
conjugacy of, 208; space of, 207

weak Lefschetz theorem, 253-56
Weierstrass minimal equation, 193
Weil conjectures, 286

Weil divisor, 73

Zariski’s main theorem, 6
Zeta function, 286-303; of curves, 185-86
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