© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

The h-cobordism theorem can be generalized in several directions. No one has succeeded in removing the restriction that V and V' have dimension > 4. (See page 113.) If we omit the restriction that V and (hence) V' be simply connected, the theorem becomes false. (See Milnor [34].) But it will remain true if we at the same time assume that the inclusion of V (or V') into W is a simple homotopy equivalence in the sense of J. H. C. Whitehead. This generalization, called the s-cobordism theorem, is due to Mazur [35], Barden [33] and Stallings. For this and further generalizations see especially Wall [36]. Lastly, we remark that analogous h- and s-cobordism theorems hold for piecewise linear manifolds.

Contents

§ 0.	Introduction	p.iii
§1.	The Cobordism Category	p.1
§2.	Morse Functions	p.7
§3.	Elementary Cobordisms	p.20
§4.	Rearrangement of Cobordisms	p.37
§5.	A Cancellation Theorem	p.45
§6.	A Stronger Cancellation Theorem	p.67
§7.	Cancellation of Critical Points in the Middle Dimensions	p.85
\$8.	Elimination of Critical Points of Index O and 1	p.100
§9.	The h-Cobordism Theorem and Some Applications	p.107

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Section 1. The Cobordism Category

First some familiar definitions. Euclidean space will be denoted by $R^n = \{(x_1, \dots, x_n) | x_i \in R, i = 1, \dots, n\}$ where R = the real numbers, and Euclidean half-space by $R_{\perp}^n = \{(x_1, \dots, x_n) \in R^n | x_n \geq 0\}$.

Definition 1.1. If V is any subset of R^n , a map $f: V \longrightarrow R^m$ is smooth or differentiable of class C^∞ if f can be extended to a map $g: U \longrightarrow R^m$, where $U \supset V$ is open in R^n , such that the partial derivatives of g of all orders exist and are continuous.

Definition 1.2. A smooth n-manifold is a topological manifold

W with a countable basis together with a smoothness structure

on M. S is a collection of pairs (U,h) satisfying four conditions:

- (1) Each $(U,h) \in \mathcal{S}$ consists of an open set $U \subset W$ (called a coordinate neighborhood) together with a homeomorphism h which maps U onto an open subset of either \mathbb{R}^n or \mathbb{R}^n_+ .
 - (2) The coordinate neighborhoods in S cover W.
 - (3) If (U_1,h_1) and (U_2,h_2) belong to \searrow , then $h_1h_2^{-1} \colon h_2(U_1 \cap U_2) \longrightarrow \mathbb{R}^n \text{ or } \mathbb{R}^n_+$

is smooth.

(4) The collection of is maximal with respect to property (3); i.e. if any pair (U, h) not in is adjoined to then property (3) fails.

The boundary of W, denoted Bd W, is the set of all points in W which do not have neighborhoods homeomorphic to R^n (see Munkres [5, p.8]).

If $(W; V_0, V_1)$, $(W'; V_1', V_2')$ are two smooth manifold triads and $h: V_1 \longrightarrow V_1'$ is a diffeomorphism (i.e. a homeomorphism such that h and h^{-1} are smooth), then we can form a third triad $(W \cup_h W^i; V_0, V_2^i)$ where $W \cup_h W$ is the space formed from W and W^i by identifying points of V_1 and V_1^i under h, according to the following theorem.

Theorem 1.4. There exists a smoothness structure of for

W Uh W' compatible with the given structures (i.e. so that each

inclusion map W -> W Uh W', W' -> W Uh W' is a diffeomorphism

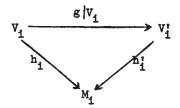
onto its image.)

I is unique up to a diffeomorphism leaving V_0 , $h(V_1) = V_1'$, and V_2' fixed.

The proof will be given in § 3.

Definition 1.5. Given two closed smooth n-manifolds M_O and M_1 (i.e. M_O , M_1 compact, $\operatorname{Bd} M_O = \operatorname{Bd} M_1 = \emptyset$), a cobordism from M_O to M_1 is a 5-tuple, (W; V_O , V_1 ; h_O , h_1), where (W; V_O , V_1) is a smooth manifold triad and $h_i \colon V_i \longrightarrow M_i$ is a diffeomorphism, i = 0, 1. Two cobordisms (W; V_O , V_1 ; h_O , h_1) and (W'; V_O , V_1 ; h_O , h_1) from M_O to M_1 are equivalent if there exists a diffeomorphism $g \colon W \longrightarrow W'$ carrying V_O to V_O' and V_1 to

V: such that for i = 0,1 the following triangle commutes:



Then we have a category (see Eilenberg and Steenrod, [2,p.108]) whose objects are closed manifolds and whose morphisms are equivalence classes c of cobordisms. This means that cobordisms satisfy the following two conditions. They follow easily from 1.4 and 3.5, respectively.

- (1) Given cobordism equivalence classes c from M_{0} to M_{1} and c' from M_{1} to M_{2} , there is a well-defined class cc' from M_{0} to M_{2} . This composition operation is associative.
- (2) For every closed manifold M there is the identity cobordism class ι_{M} = the equivalence class of $(M \times I; M \times O, M \times I; p_{O}, p_{1}), p_{1}(x,i) = x, x \in M, i = 0,1.$ That is, if c is a cobordism class from M_{1} to M_{2} , then

Notice that it is possible that cc' = ι_{M} , but c is not ι_{M} . For example

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

FIGURE 1

c is shaded.

c' is unshaded.

4.

Here c has a right inverse c', but no left inverse. Note that the manifolds in a cobordism are not assumed connected.

Consider cobordism classes from M to itself, M fixed. These form a monoid $\mathbf{H}_{\mathbf{M}}$, i.e. a set with an associative composition with an identity. The invertible cobordisms in $\mathbf{H}_{\mathbf{M}}$ form a group $\mathbf{G}_{\mathbf{M}}$. We can construct some elements of $\mathbf{G}_{\mathbf{M}}$ by taking $\mathbf{M}=\mathbf{M}'$ below.

Given a diffeomorphism h: M \longrightarrow M', define c_h as the class of $(M \times I; M \times 0, M \times 1; j, h_1)$ where j(x,0) = x and $h_1(x,1) = h(x), x \in M$.

Theorem 1.6. $c_h c_h^{\dagger} = c_{h^{\dagger}h}$ for any two diffeomorphisms h: $M \longrightarrow M^{\dagger}$ and $h^{\dagger} : M^{\dagger} \longrightarrow M^{\dagger \dagger}$.

$$g(x,t) = j_h(x,2t) 0 \le t \le \frac{1}{2}$$

$$g(x,t) = j_h(h(x),2t-1) \frac{1}{2} \le t \le 1.$$

Then g is well-defined and is the required equivalence.

<u>Definition 1.7.</u> Two diffeomorphisms h_0 , $h_1: M \longrightarrow M'$ are (smoothly) <u>isotopic</u> if there exists a map $f: M \times I \longrightarrow M'$ such that

- (1) f is smooth,
- (2) each f_t , defined by $f_t(x) = f(x,t)$, is a diffeomorphism,
- (3) $f_0 = h_0$, $f_1 = h_1$.

Two diffeomorphisms h_0 , h_1 : $M \longrightarrow M^t$ are <u>pseudo-isotopic</u>* if there is a diffeomorphism $g \colon M \times I \longrightarrow M^t \times I$ such that $g(x,0) = (h_0(x),0)$, $g(x,1) = (h_1(x),1)$.

Lemma 1.8. Isotopy and pseudo-isotopy are equivalence relations.

Proof: Symmetry and reflexivity are clear. To show transitivity, let h_0 , h_1 , h_2 : $M \longrightarrow M'$ be diffeomorphisms and assume we are given isotopies f, g: $M \times I \longrightarrow M'$ between h_0 and h_1 and between h_1 and h_2 respectively. Let m: $I \longrightarrow I$ be a smooth monotonic function such that m(t) = 0 for $0 \le t \le 1/3$, and m(t) = 1 for $2/3 \le t \le 1$. The required isotopy k: $M \times I \longrightarrow M'$ between h_0 and h_1 is now defined by k(x,t) = f(x,m(2t)) for $0 \le t \le 1/2$, and k(x,t) = g(x,m(2t-1)) for $1/2 \le t \le 1$. The proof of transitivity for pseudo-isotopies is more difficult and follows from Lemma 6.1 of Munkres [5,p.59].

In Munkres' terminology h_0 is "I-cobordant" to h_1 .

In Munkres' terminology h is "I-cobordant" to h.

(See [5,p.62].) In Hirsch's terminology h is "concordant" to h.

It is clear that if h_0 and h_1 are isotopic then they are pseudo-isotopic, for if $f\colon M\times I\longrightarrow M'$ is the isotopy, then $\hat{f}\colon M\times I\longrightarrow M'\times I$, defined by $\hat{f}(x,t)=(f_t(x),t)$, is a diffeomorphism, as follows from the inverse function theorem, and hence is a pseudo-isotopy between h_0 and h_1 . (The converse for $M=S^n$, $n\geq 8$ is proved by J. Cerf [39].) It follows from this remark and from 1.9 below that if h_0 and h_1 are isotopic, then $c_{h_0}=c_{h_1}$.

Theorem 1.9. $c_{h_0} = c_{h_1}$ \longrightarrow h_0 is pseudo-isotopic to h_1 Proof: Let g: $M \times I \longrightarrow M^* \times I$ be a pseudo-isotopy between h_0 and h_1 . Define $h_0^{-1} \times I$: $M^* \times I \longrightarrow M \times I$ by $(h_0^{-1} \times 1)(x,t) = (h_0^{-1}(x),t)$. Then $(h_0^{-1} \times 1) \circ g$ is an equivalence between c_{h_0} and c_{h_0} .

The converse is similar.