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The h-cobordism theorem can he generalized in several direc-
tions. No one has succeeded in removing the restriction that V
and V' have dimension > k. (See page 113.) If we omit the
restriction that V and (hence) V' be simply connected, the
theorem becomes false. (See Milnor [34].) But it will remain
true if we at the same time assume that the inclusion of V
{or V') into W is a simple homotopy equivalence in the sense
of J. H. C. Whitehead, This generalization, called the s-cobor-
dism theorem, is due to Mazur [35], Barden [33) and Stallings.
For this and further generalizations see especially Wall [36].
Lastly, we remark that asnalogous h- and s-cobordism theorems

hold for piecewise linear manifolds,
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Section 1. The Cobordism Category
— S

Flrst some familiar definitions. Fuclidean space will be
dencted by R = [(xl,...,xn)lxi €R, i=1,,..,,n) vwhere
R = the real numbers, and Euclidean half-space by

R:l_ = ((Xye00,%)) € Rnlxn >0} .

Definition 1,1, If V dis any subset of R, a map
£f: V—> Rm 18 smooth or differentisble of class ¢ if £ can

be extended to a map g: U —> K, where U DV is open in R,
such that the partial derivatives of g of all orders exist and

are continuous,

Definition 1,2, A smooth n-manifold i1s a topologicel manifold

W with a countsble basis together with a smoothness structure J

on M, J is a collection of pairs (U,h) satisfying four conditioms:
(1) Each (U,h) € J consists of an open set UCW

(called a coordinate neighborhood) together with a homecmorphism h

which maps U onto en open subset of either Rn or Rf:_ .
(2) The coordinate neighborhoods in :8 cover W.

(3) 1f (U;,b;) emd (U,h,) belomg to »d, then

-1
Biho: By(Uy N U,) —> B or R’;

is smooth,
(4) The collection J is maximal with respect to property
(3)s i.e. if any pair (U, h) not in )8 is adjoined to

Ji, then property (3) falls.
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2.

The boundary of W, denoted BAd W, is the set of all points
in W which do not have neighborhoods hameamorphic to e (see

Munkres (5, p.8]).

Definition 1.3. (W; V 0? Vl) is a smooth manifold triad if
W 1is a compact smooth n-manifold and Bd W is the disjoins union

of two open and closed submanifolds V.

o and Vl

It (W; Voo V1), (W' 1» V4) sare tvo smooth manifold triads

and h: v, —> Vi is a diffeomorphism (i.e. : homeomorphism such
that h and h™> are smooth ), then we can form a third triad
(w U, WY ) where W U W is the space formed from W and

W' by 1dent1fying points of V. and V!

1 under h, according to

1
the following theorem.

Theorem 1,4, There exists a smoothness structure J for

W U, W' compatible with the given structures (i.e. so that each

inclusion map W ~—>V Uh W', W'—>1W Uh Wt is ) diffeomorphism
onto }I._s_ image.)
J is unique up to a diffecmorphism leaving Vo h(Vl) =V,

amd vy

2 fixed,

The proof will be given in § 3 .

Definition 1.5. Given two closed smooth n-manifolds MO and

M (i.e. My, M, compact, BAM, =BdM = ¢), & cobordism from M,
to M, is a 5-tuple, (W; V o Vi3 By 1), vhere (W; V o’ v)) isa

smQoth manifold triad and hi: V1 — M1

Tvwo cobordisms (W; Voo Vy5 by h) and (W'; V &

Mo to Ml are equivalent if there exists a diffeomorphism & W—>W'

carrying Vo to Vé and vl to

is a diffeomorphism, i =0, 1,

, hi) from
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3.
V]'_ such that for i = 0,1 the following triangle commutes:
glv,
Vi > Vi
by i
Y

Then we have a category (see Eilenberg and Steenrod,
{2,p.108]) whose objects are closed manifolds and whose morphisms
are equivalence classes ¢ of cobordisms, This mesns that cobordisms
satisfy the following two conditions. ‘They follow easily fram 1.k
and 3,5, respectively,

(1) ociven cobordism equivalence classes ¢ fram M 0 to
Ml and c!' from Ml to M2, there is a well-defined class cc!
from M 0 to M?‘ This composition operation is associstive,

(2) For every closed manifold M there is the identity
cobordism class b = the equivalence clase of
(MxI; Mx0, Mx1; Py pl), pi(x,i) =X, xeM 1i=0,1.

That is, if ¢ is a cobordism class from Ml. to M2, then

LMlc s C =0LM2.

Notice that it is possible that cec! by but ¢ is not

by ° For example
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¢ is shaded, ¢! 1is unsheaded,

Here c¢ has a right inverse c?!, but no left inverse. Note that the
menifolds in a cobordism are not assumed connected.

Consider cobordism classes from M to itself, M fixed.
These form a monold HM s l.e, a set with an aessociative composition
with an identity, The invertible cobordisms in HM form e group
GM . We can construct some elements of GM by taking M = M!
below,

Given a diffecmorphism h: M —~——> M', define ¢, as the
class of (M X I; Mx 0, M x 1; J, b)) vhere J(x,0) =x and

hl(x,l) =h(x), xeM.

Theoren 1,6. =c,,, for any two diffeomorphisms

cCht
h: M—> M' and h': M' —>M"

Proof: Iet W=Mx1I Uh M! X I and let Jh: MXI —> W,
Jh,: M' X I ———> W be the inclusion maps in the definition of

CuCye ¢ Define g: MX I —> W as follows:

g(x,t) = 3y (x,2t) 0<t<

-

N

g(x,t) = 3, \(n(x),2t-1) <t<1.

Then g is well-defined and is the required equivalence,
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5.

Definition 1,7. Two diffecmorphisms ho, hl: M ——— M!
are (smoothly) isotopic if there exists amap £: M X I —> M!
such that
(1) £ is smooth,
(2) each £y, defined by ft(x) = £(x,t) , is a diffeomorphism,
(3) H=K » £ =h .

Two diffecmorphisms % ’ hl: M —> M! are pseudo-:lsotopic*

if there is a diffeomorphism g: M X I ———> M! X I such that

g(x,0) = (ho(x),O) » 8(x,1) = (hl(x):l) .

Temms 1.8. Isotopy and pseudo-isotopy are equivalence

relations,

Proof: Symmetry and reflexivity are clear, To show transi-

tivity, let ho, h h2: M —> M! be diffeomorphisms and assume

l)
we are given isotopies f, g: M X I ——> M! Detween ho and hl
and betveen hl end h2 respectively, let m: I —>» I be a
smooth monotonic function such that m(t) =0 for 0 <t < 1/3,
and m(t) =1 for 2/3 <t <1, The required isctopy

k: MX I —> M' between ho and hl is now defined by

k(x,t) = £(x,m(2t)) for 0 <t <1/2, end k(x,t) = g(x,m(2t-1))
for 1/2 <t 5 1. The proof of transitivity for pseudo-isotopies

is more difficult end follows from Lemma 6,1 of Munkres [5,p.591.

* In Munkres' terminology lb is "I-cobordant™ to hl .

(See [5,p.62].) 1In Hirsch's terminology hO is "concordant® to h,.
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6.

It is clear that if ho and hl

pseudo-isotopic, for if f£: M x I ~——> M' is the isoctopy, then

are isotopic then they are

£f: MXI~—> M XI, defined by £(x,t) = (ft(x),t), is &
diffeomorphism, as follows from the inverse functiom theorem, and

hence is a pseudo-igsotopy between h., and h {The converse

0 1°
for M= Sn, n> 8 is proved by J. Cerf [39],) It follows from

this remark and from 1.9 below that if ho and hl are isotopic,

then ¢ = C .
ho h

Theorem 1.9. c =c, G ho is pseudo-isotopic to hl

L 1

o

Proof: Let g: MXI —> M* X I be a pseudo-isotopy

between h0 and hl. Define h(')l XI: M XTI —>MxI by

(h(')l X 1)(x,t) = (hal(x),t) o Then (hal X 1) ©og is an

equivalence between c and ¢, .
Hy By

The converse is similar.

For general queries, contact info@press.princeton.edu





