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Introduction

Why Study the Ecology of Honeybees?

The honeybee is a wonderful example of adaptation. In this it resembles all
forms of life, but because it is an extremist its adaptations are striking. The
honeybee’s waggle dance, with which forager bees share information about
the locations of new patches of flowers, is unsurpassed among animal com-
munication systems in its capacity for coding precise yet flexible messages.
Honeybee workers display an extraordinarily elaborate division of labor by
age, switching their labor roles at least four times as they grow older. When
a honeybee colony needs a new home, several hundred scout bees comb some
100 square kilometers of forest, discover a few dozen possible nest cavities,
and harmoniously choose the best dwelling place through a sort of plebiscite.
In winter, the thousands of honeybees in a colony form a tight, well-insulated
cluster and pool their metabolic heat—fueled by about 20 kilograms of honey
stores—to keep warm despite subfreezing temperatures, a method of winter
survival which is unique among insects. The honeybee, then, has an extremely
elaborate social life. It is therefore an unusually rewarding subject for eco-
logical studies of social behavior.

Besides possessing a wealth of adaptations associated with group living,
the honeybee’s attractiveness for ecological investigation is heightened by the
remarkable ease with which it is studied. Honeybee colonies thrive as managed
colonies in apiaries or as wild colonies in nature, or both, throughout most
regions of the world. Unlike most other social insects, honeybees prosper in
brightly illuminated, glass-walled nests and so allow humans to observe easily
the internal operations of their societies. Furthermore, individual honeybees
are relatively large social insects, large enough so that colony members can
be labelled with color codes for individual identification. This sets the stage
for truly detailed observations of interactions among colony members. Count-
less experimental manipulations of the honeybee’s social environment, such
as colony fusions, brood transplantations, and alterations of nest design, were
made possible by the invention of hives with movable combs in the mid
1800’s. Nests which are readily dissected and reassembled also facilitate the
collection of such basic ecological data as colony population size, age struc-
ture, and metabolic rate. Even manipulations of the kinship relations among
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colony members are possible with honeybees, a fortuitous byproduct of in-
strumental insemination techniques developed for bee breeding.

Given the richness of the honeybee’s adaptations for social life and its
advantages as a study animal, it is somewhat surprising that a strong imbalance
exists between mechanistic and functional studies of honeybee sociality. We
know a great deal about how honeybee societies work but comparatively little
about the forces of natural selection which have shaped their finely tuned
social systems. Perhaps the most vivid illustration of this imbalance is found
in our understanding of the honeybee’s social organization for food collection.
The central mechanism of their foraging strategy is recruitment of nestmates
by successful foragers via the dance language. The physiological processes
underlying the dance language have been the prime subject of investigation
by several dozens of researchers over four decades, and the dance is certainly
one of the best understood examples of animal behavior. In contrast, our
knowledge of how foraging efficiency is enhanced by this social machinery
is still nascent. Undoubtedly there are numerous reasons for this difference
in emphasis between physiological and ecological approaches. In part, it is
a reflection of the history of scientific studies on animal behavior, which
focused first on questions of behavioral mechanisms and only relatively re-
cently on topics of behavioral ecology. Perhaps more importantly, though, it
reflects the ease with which one can culture honeybees in apiaries and perform
experiments with them. Thus honeybee scientists seem to have been consis-
tently attracted to experimental studies conducted in man-made environments,
rather than broadly observing the organism living undisturbed in nature, the
essential first stage of behavioral-ecological studies.

This book is an attempt to redress the imbalance between physiological
and ecological studies of honeybee social life by emphasizing ecological
studies of the honeybee societies. It will focus on how honeybees live in
nature and why their social organization has the design that it does. Honeybee
research has historically been concentrated in Europe and North America,
and so has inevitably emphasized just one species of honeybee, Apis mellifera,
and the way it lives in the northern latitudes of these regions. Unless stated
otherwise, the discussion can be assumed to refer to these studies of the
temperate-zone races of A. mellifera. However, in the final chapter, I will
emphasize the ecology of the other species in the genus Apis and the races
of A. mellifera having non-European origins. Though the mechanisms of
honeybee social life will not be the prime subject of this book, they will be
discussed frequently, since understanding the minute operational details of
an adaptation often casts light on underlying selective pressures. Moreover,
knowledge of the machinery of an animal’s behavior provides behavioral
ecologists with ways to probe the adaptive significance of the behavior ex-
perimentally. Reciprocally, the ecological view illuminates the path to un-
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derstanding the mechanisms of social life. By studying how an animal lives
in its natural environment, a biologist gains a clear picture of its full behavioral
repertoire, and develops a heightened intuition for the physiological processes
which underlie its behavioral adaptations. One main theme of this book is,
therefore, to exemplify the synergism which arises from a balanced combi-
nation of physiological and ecological studies of social behavior.

Individual-Level versus Colony-Level Selection

The logical first step toward understanding adaptation in honeybees is to
identify the level (or levels) of biological organization at which natural se-
lection operates in social insects. Since the founding of the theory of evolution
by natural selection, most biologists interested in insect sociality have em-
phasized selection at the level of colonies (Darwin 1859, Weismann 1893,
Wheeler 1911, Sturtevant 1938, Emerson 1960, Wilson 1971, Oster and
Wilson 1978). According to this view, the morphology, physiology, and
behavior of an individual social insect are adapted to benefit its colony’s
reproductive success, not necessarily its own. This is a group-selection view
of evolution, but one which is at least plausible, given that social insect
colonies are discrete groups and that they possess variation, heritability, and
fitness differences—three properties an entity must possess if it is to evolve
by natural selection (Lewontin 1970). Relatively recently, students of the
social insects have emphasized colony-level selection less and have focused
attention instead on individual-level (or even gene-level) selection (Hamilton
1964, 1972, Williams 1966a, Alexander 1974, West Eberhard 1975, Dawkins
1976, 1982). According to this view, each member of a social insect colony
has been selected to maximize its own reproductive success (inclusive fitness),
even if this creates inefficiency and reduces its colony’s overall fitness. The
impressive group behaviors of social insects, such as cooperative food col-
lection and precise control of nest temperature are, according to this viewpoint,
simply statistical summations of many individuals’ ultimately selfish actions.

There can be little doubt that individual-level selection is important in social
insect evolution and therefore that colony-level selection is not of universal
importance. Proof of selection having operated on individuals comes from
numerous reports, involving a wide array of species, of workers laying eggs
(reviewed by Hamilton 1972, Oster and Wilson 1978) or of dominance in-
teractions among colony members (reviewed by Wilson 1971; see also Cole
1981, Franks and Scovell 1983). Such behaviors certainly decrease efficiency
at the colony level but make sense in terms of individuals competing for
reproductive success.

In honeybees, there are two dramatic examples of conflict among individ-

For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

6 « INTRODUCTION

uals that leads to a decrease in colony efficiency. The most familiar is the
fights to the death (by stinging) among newly emerged queens. The benefit
to an individual queen of killing her rivals is clear: undivided motherhood of
the colony’s next crop of reproductives. However, this combat between queens
may work to the detriment of the colony if all the queens kill each other, or
if the lone survivor is later preyed upon when she ventures outside the nest
for mating. A second, even clearer product of individual-level selection is
the behavior of workers in a colony that loses its queen and fails to rear a
replacement. The best thing that the workers can do in this situation in order
to maximize colony fitness is to produce one final crop of male reproductives
reared from the unfertilized eggs which workers can lay. But rather than rear
these males as cooperatively and efficiently as possible, disharmony erupts
in the nest as workers compete to provide the eggs that will produce the
males. Workers with active ovaries are mauled by workers with inactive
ovaries (Sakagami 1954, Korst and Velthuis 1982). Frequently a half a dozen
or more eggs will be laid in each cell in the broodnest, in stark contrast to
the orderly one-egg-per-cell pattern when a queen is present and despite the
fact that only one drone at a time can be reared in a cell (Fig. 1.1). A third
possible product of individual selection among honeybees is the production
by some colonies of several small reproductive swarms following the large
primary swarm (Allen 1956, Winston 1980). Although no data are available
to prove the point, it seems likely that these ‘‘afterswarms’” are detrimental

Figure 1.1 Comparison of egg laying patterns in queennght (left) and queenless (right)
colonies. Queen-laid eggs are neatly deposited one to a cell, an arrangement which
fosters efficiency in brood rearing In the absence of a queen, a less efficient pattern
of multiple eggs per cell appears as the workers compete among themselves for repro-
ductive success
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to the parent colony, both because they further deplete the parent colony’s
worker force and because they are so small that they probably have little
chance of surviving to maturity. On the other hand, the queen departing with
an afterswarm may stand a better chance of survival than if she had remained
to fight for control of the parent colony, and the workers closely related to
her may achieve higher reproductive success by leaving with her to found a
new daughter colony, as compared with staying with the parent colony and
helping a more distantly related queen (Getz et al. 1982).

Clearly individuals are an important unit of selection in social insects, even
in the honeybee with its complex colonial organization, but this by no means
precludes the importance of colony-level selection. Just how potent is colony-
level selection? Unfortunately, this question is not readily answered, in large
measure because individual-level and colony-level selection should frequently
promote the same pattern of adaptation. For example, in a queenright honeybee
colony (one in which the workers are not laying eggs and thus achieve re-
productive success indirectly via their mother queen [see Chapter 3]), both
an individual worker’s inclusive fitness as well as her colony’s fitness are
promoted by the worker performing such tasks as brood rearing, comb con-
struction, and food collection as efficiently as possible. The larger the pool
of resources assembled by the colony and the higher the efficiency of their
use, the greater the number of reproductives the colony can manufacture and
the higher each worker’s inclusive fitness. In fact, it may be precisely because
selection at individual and colony levels can operate in concert that certain
species, such as the honeybee, possess such elaborate social organization. It
might seem that a colony member working so as to decrease her inclusive
fitness but increase colony fitness would prove the superior importance of
colony-level selection. One could argue, for example, that this explains why
workers refrain from rearing sons and instead help their mother rear their
brothers even though they are more closely related to their sons than to their
brothers (see Chapter 3). However, such apparently altruistic behavior can
also be explained by adaptation at the individual level. One possible expla-
nation is that the seemingly selfless worker simply has been manipulated by
another individual seeking to boost its own inclusive fitness. The phenomenon
of worker bees not laying eggs when a queen is in the nest could reflect
precisely this process, with the queen perhaps dominating the reproductive
activities of the workers via her inhibitory, ‘‘queen-substance’’ pheromone.
In summary, I know of no observation on honeybee biology which unequiv-
ocally demonstrates the action of colony-level selection working at the expense
of individual interests.

Our fascination with a colony of honeybees, army ants, or other advanced
social insects is born largely out of curiosity about its overall achievements
as an animal group. The intricate internal organization of a colony’s foraging
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behavior, the efficiency expressed in nest design, the high precision of nest
temperature control, all suggest functional, adapted organization of the colony
as a whole. This intuitive feeling may be correct, but given that strong evidence
exists only for selection at the level of individual social insects, it seems
correct for now to explore adaptation in honeybees as far as possible in terms
of individual-level selection, but also to keep in mind the possible role of
colony-level selection, especially wherever individual and colony interests
coincide.
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107-118; ventilation, 116-118; of Apis cer-
ana, 11, 13, 150, 158; of A. dorsata, 11,
13, 150, 157; of A. florea, 11, 13, 150,

For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

nest (cont.)
156-157; of A. mellifera, 11, 13, 71-79,
142

Nosema apis, 132-133

nuptial flights, 38, 67-70

nurse bees, 31-33, 78, 118, 134

odor, see colony odor, flower scent, phero-
mones

Oecophylla smaragdina, 152, 156-157

olfactory communication, see pheromones

orientation flights, 130

ovarian development in workers, 22-25, 30

oviposition, see eggs
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sex ratio: investment, 26, 29, 49-54, 59; nu-
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For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

SUBJECT INDEX =« 201
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tactile: communication, 60-61, 65, 74, 97-
98, 118; sense, 65, 78-79
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