bt d pod
WD —-=O

W IOk WO~

©

© 00 NSOk Wb~

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

CONTENTS

Foreword to the 2010 Edition ix

Preface xvii

Acknowledgements | xix
CHAPTER I

STATIC MAXIMAL FLOW

Introduction . 1
. Networks . e e e 2
. Flows in networks 4
. Notation 565 o 6 o © o 6 o 5 o 5 o o 9
LCuts . . . o L o L L L L L L. .. .10
. Maximal flow . . . S |
. Disconnecting sets and cuts B 4

Multiple sources and sinks 15
. The labeling method for solving max1mal ﬁow problems S |
. Lower bounds on arc flows . . . N 2.
. Flows in undirected and mixed networks T
. Node capacities and other extensions 23
. Linear programming and duality principles 26
. Maximal flow value as a function of two arc capacities . . . 30

References 3

CHAPTER 11
FEASIBILITY THEOREMS AND COMBINATORIAL
APPLICATIONS

Introduction . . - {1
. A supply-demand theorem .o .o 36
. A symmetric supply-demand theorem e 3
. Circulation theorem 580
. The Koénig-Egerviry and Menger graph theorems S . 53
. Construction of a maximal independent set of admissible cells 55
. A bottleneck assignment problem 57
. Unicursal graphs 59
. Dilworth’s chain decompos1t10n theorem for partlally ordered

sets . . . 61
. Minimal number of md1v1duals to meet a ﬁxed schedule of tasks 64
. Set representatives 67

vii

For general queries, contact info@press.princeton.edu

11.
12.

S O W

[

RERCORTO NI

S SR ORORST

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

CONTENTS
The subgraph problem for directed graphs
Matrices composed of 0’s and 1’s
References

CHAPTER III
MINIMAL COST FLOW PROBLEMS

Introduction

. The Hitchcock ploblem .

. The optimal assignment problem

. The general minimal cost flow problem . .
. Equivalence of Hitchcock and minimal cost flow problems
. A shortest chain algorithm . o o o o =
The minimal cost supply-demand problem non-negative

directed cycle costs

The warehousing problem
The caterer problem .
Maximal dynamic flow

. Project cost curves .o
. Constructing minimal cost cu'culatlons

References

CHAPTER IV
MULTI-TERMINAL MAXIMAL FLOWS

Introduction .

. Forests, trees, and spanning subtrees .

Realization conditions
Equivalent networks

. Network synthesis

References

Index

viii

For general queries, contact info@press.princeton.edu

79
91

93
95
111
113
127
130

134
137
140
142
151
162
169

173
173
176
177
187
191

193

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

CHAPTER I

STATIC MAXIMAL FLOW

Introduction

The mathematical problem which forms the subject matter of this
chapter, that of determining a maximal steady state flow from one point
to another in a network subject to capacity limitations on arcs, comes up
naturally in the study of transportation or communication networks. It
was posed to the authors in the spring of 1955 by T.E.Harris, who, in
conjunction with General F.S.Ross (Ret.), had formulated a simplified
model of railway traffic flow, and pinpointed this particular problem as the
central one suggested by the model [11]. It was not long after this until the
main result, Theorem 5.1, which we call the max-flow min-cut theorem,
was conjectured and established [4]. A number of proofs of this theorem
have since appeared [2, 3, 5, 14]. The constructive proof given in § 5 is the
simplest and most revealing of the several known to us.

Sections 1 and 2 discuss networks and flows in networks. There are
many alternative ways of formulating the concept of a flow through a
network ; two of these are described in § 2. After introducing some notation
in § 3, and defining the notion of a cut in § 4, we proceed to a statement and
proof of the max-flow min-cut theorem in § 5. Sections 6, 7, 9, 10, and 11
amplify and extend this theorem. In § 8, the construction implicit in its
proof is detailed and illustrated. This construction, which we call the
‘““labeling process,” forms the basis for almost all the algorithms presented
later in the book. A consequence of the construction is the integrity theorem
(Theorem 8.1), which has been known in connection with similar problems
since G. B. Dantzig pointed it out in 1951 [1]. It is this theorem that makes
network flow theory applicable in certain combinatorial investigations.

Section 12 provides a brief presentation of duality principles for linear
programs. Since no proofs are included, the reader not familiar with linear
inequality theory may find this section too brief to be very illuminating.
But excellent discussions are available [8, 9, 10]. We include § 12 mainly
to note that the max-flow min-cut theorem is a kind of combinatorial
counterpart, for the special case of the maximal flow problem, of the more
general duality theorem for linear programs.

Section 13 uses the max-flow min-cut theorem to examine maximal flow
through a network as a function of a pair of individual arc capacities. The

1

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

I. STATIC MAXIMAL FLOW

main conclusion here, which may sound empty but is not, is that any two
arcs either always reinforce each other or always interfere with each other.

1. Networks

A directed network or directed linear graph G = [N; /] consists of a
collection N of elements z, ¥, . . ., together with a subset .7 of the ordered
pairs (z, y) of elements taken from N. It is assumed throughout that N is a
finite set, since our interest lies mainly in the construction of computational
procedures. The elements of N are variously called nodes, vertices, junction
points, or points; members of &7 are referred to as arcs, links, branches, or
edges. We shall use the node-arc terminology throughout.

A network may be pictured by selecting a point corresponding to each
node z of N and directing an arrow from z to y if the ordered pair (, y) is
in /. For example, the network shown in Fig. 1.1 consists of four nodes
s, x, ¥, t, and six arcs (s, z), (s, ¥), (%, ¥), (¥,), (z,¢) and (y, t).

Figure 1.1

Such a network is said to be directed, since each arc carries a specific
orientation or direction. Occasionally we shall also consider undirected
networks, for which the set &/ consists of unordered pairs of nodes, or
mized networks, in which some arcs are directed, others are not. We can of
course picture these in the same way, omitting arrowheads on arcs having
no orientation. Until something is said to the contrary, however, each arc
of the network will be assumed to have an orientation.

We have not as yet ruled out the possibility of arcs (z,) leading from a
node z to itself, but for our purposes we may as well do so. Thus, all arcs
will be supposed to be of the form (z, y) with « # y. Also, while the exist-
ence of at most one arc (z, y) has been postulated, the notion of a network
frequently allows multiple arcs joining z to y. Again, for most of the
problems we shall consider, this added generality gains nothing, and so we
shall continue to think of at most one arc leading from any node to another,
unless an explicit statement is made to the contrary.

2

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

§1. NETWORKS

Let 21, %2, .. ., zn (n > 2) be a sequence of distinct nodes of a network
such that (z;, 2;+1) is an arc, foreach s = 1,..., » — 1. Then the sequence
of nodes and arcs
(1.1) x1, (%1, X2), X2, . . ., (Tn—1, Tn), Tn
is called a chain; it leads from z; to x,. Sometimes, for emphasis, we call
(1.1) a directed chain. If the definition of a chain is altered by stipulating
that x, = 1, then the displayed sequence is a directed cycle. For example,
in the network of Fig. 1.1, the chain s, (s, z), , (z,t), ¢leads from s to ¢; this
network contains just one directed cycle, namely, z, (z, ¥), ¥, (v,), .

Let 21, 2o, . . ., n be a sequence of distinct nodes having the property
that either (4, ¢;41) or (241, 2;) is an arc, for each ¢ = 1,...,n — 1.
Singling out, for each 7, one of these two possibilities, we call the resulting
sequence of nodes and arcs a path from x; to x,. Thus a path differs from a
chain by allowing the possibility of traversing an arc in a direction opposite
to its orientation in going from x; to x,. (For undirected networks, the two
notions coincide.) Arcs (z;, 2;4+1) that belong to the path are forward arcs of
the path; the others are reverse arcs. For example, the sequence s, (s,), ¥,
(@, ¥), z, (x, t), tis a path from s to ¢ in Fig. 1.1; it contains the forward arcs
(8, ¥), (%, t) and the reverse arc (z, y). If, in the definition of path, we
stipulate that ; = x,, then the resulting sequence of nodes and arcs is a
cycle.

We may shorten the notation and refer unambiguously to the chain
xy, Zg, . . ., Zn. Occasionally we shall also refer to the path x;, z, .. ., Zs;
then it is to be understood that some selection of arcs has tacitly been
made.

Given a network [N ; 27], one can form a node-arc incidence matrix as
follows. List the nodes of the network vertically, say, the arcs horizontally,
and record, in the column corresponding to arc (z,y), a 1 in the row
corresponding to node x, a —1 in the row corresponding to y, and zeros
elsewhere. For example, the network of Fig. 1.1 has incidence matrix

(s, @) (s,) (x,9) (y,) (2, ¢) (y,¢)
sf' 1 1 0 0 0 0
xf-1 0 1 -1 1 0
yl 0 -1 -1 1 o0 1
tL o o o o0 -1 -1

Clearly, all information about the structure of a network is embodied in its
node-arc incidence matrix.

If x e N, we let A(x) (“after x”’) denote the set of all y € N such that
(¢, y) e
(1.2) A@) = {y e N|(x, y) e).

3

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

I. STATIC MAXIMAL FLOW

Similarly, we let B(z) (‘““before z”’) denote the set of all y € N such that
(y,2) e

(13) B(z) = {y € N|(y, %) € }.
For example, in the network of Fig. 1.1,
A(s) = {=, y}, B(s) = & (the empty set).

We shall on occasion require some other notions concerning networks.
These will be introduced as needed.

2. Flows in networks

Given a network G = [N; .2Z], suppose that each arc (z,y) € &7 has
associated with it a non-negative real number c(z, y). We call c(z, y) the
capacity of the arc (z, y); it may be thought of intuitively as representing
the maximal amount of some commodity that can arrive at y from x per
unit time. The function ¢ from .7 to non-negative reals is the capacity
Sfunction. (Sometimes it will be convenient to allow infinite arc capacities
also.)

The fundamental notion underlying most of the topics treated sub-
sequently is that of a static or steady state flow through a network, which
we now proceed to formulate. (Since dynamic flows will not be discussed
until Chapter III, the qualifying phrase ““static’’ or “steady state’ will
usually be omitted.)

Let s and t be two distinguished nodes of N. A static flow of value v from
stotin [N; .o/]is a function f from .o/ to non-negative reals that satisfies
the linear equations and inequalities

v, x =8,

(21) > faey - D> fwe)={ o, x# st
ye A(x) ye B(z) —v, z =t

(2:2) f@y) <o, y) all (z, y) € .

We call s the source, ¢t the sink, and other nodes intermediate. Thus if the
net flow out of x is defined to be

> fa@y) = D f(y.),

yeA(z) y € B(x)

then the equations (2.1) may be verbalized by saying that the net flow out
of the source is v, the net flow out of the sink is — v (or the net flow into the
sink is v), whereas the net flow out of an intermediate node is zero. An
equation of the latter kind will be called a conservation equation.

When necessary to avoid ambiguity, we shall denote the value of a flow f
by v(f). Notice that a flow f from s to ¢ of value v is a flow from ¢ to s of
value —v.

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

§2. FLOWS IN NETWORKS

An example of a flow from s to ¢ is shown in Fig. 2.1, where it is assumed
that arc capacities are sufficiently large so that none are violated. The
value of this flow is 3.

Figure 2.1

Given a flow f, we refer to f(x, y) as the arc flow f(x, y) or the flow in arc
(z, y). Each arc flow f(x, y) occurs in precisely two equations of (2.1), and
has a coefficient 1 in the equation corresponding to node z, a coefficient --1
in the equation corresponding to node y. In other words, the coefficient
matrix of equations (2.1), apart from the column corresponding to v, is the
node-arc incidence matrix of the network. (By adding the special arc (¢, s)
to the network, allowing multiple ares if necessary, a non-negative flow
value v can be thought of as the “return flow” in (¢, s), and all equations
taken as conservation equations.)

A few observations. There is no question concerning the existence of
flows, since f = 0, v = 0 satisfy (2.1) and (2.2). Also, while we have
assumed that .27 may be a subset of the ordered pairs (z, y), # y, with
the capacity function ¢ non-negative on .27, we could extend &7 to all
ordered pairs by taking ¢ = 0 outside of .7, or we could assume strict
positivity of ¢ by deleting from o7 arcs having zero capacity. Finally, the
set of equations (2.1) is redundant, since adding the rows of its coefficient
matrix produces the zero vector. Thus we could omit any one of the
equations without loss of generality. We prefer, however, to retain the
one-one correspondence between equations and nodes.

The static maximal flow problem is that of maximizing the variable »
subject to the flow constraints (2.1) and (2.2). Before proceeding to this
problem, it is worth while to point out an alternative formulation that is
informative and will be useful in later contexts. This might be termed the
arc-chain notion of a flow from s to ¢.

Suppose that Ay, ..., Ap is an enumeration of the arcs of a network,
the arc 4; having capacity ¢(4;); and let C1, . . ., Cy, be a list of all directed
5

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

I. STATIC MAXIMAL FLOW

chains from s to ¢. Form the m by n incidence matrix (a;;) of arcs versus

chains by defining

(2 3) fl if At ECj,
’ H = 10 otherwise.

Now let & be a function from the set of chains (4, . . ., U, to non-negative

reals that satisfies the inequalities

(2.4) > ah(Cy) < c(4a), i=1,...,m.

i=1

We refer to & as a flow from s to ¢t in arc-chain form, and call A(C;) a chain
Jlow or the flow in chain C;. The value of h is

(2.5) v(h) = > h(C)).
j=1

When we need to distinguish the two notions of a flow from s to ¢ thus far
introduced, we shall call a function f from the set of arcs to non-negative
reals which satisfies (2.1) and (2.2) for some v, a flow from s to t tn node-arc
form. There will usually be no need for the distinction, since we shall work
almost exclusively with node-arc flows after this section.

Let us explore the relationship between these two formulations of the

intuitive notion of a flow. Suppose that z1, . . ., 2; is a list of the nodes, and
let (bgi), k=1,...,1, + =1,...,m, be the node-arc incidence matrix
introduced earlier. Thus
i if 4; = (2x, y),
(2.6) b =< —1, if 4¢ = (y, zx),
0, otherwise.

Then
1, if 4; = (a2, y) and A;€Cy,
bmaij = = 1, if Ai = (y, .’L‘k) and Ai € Cj,
0, otherwise,
and it follows that

m 1, ifxp = s,
(2.7) > briayy =< —1, if 2y = ¢,
o= 0, otherwise.

If b is a flow from s to ¢ in arc-chain form, and if we define
(2.8) f(4) = ZWW@) i=1...,m,

then f is a flow from s to ¢ in node-arc form, and »(f) = »(k). For, by (2.4)
and (2.8),

f(4i) < o(4y),
6

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

§2. FLOWS IN NETWORKS
and by (2.7),

m N

Z brif (4

= 1=1 j=1

= i (i bkﬂu) (@)

S

l|
[\/l=

b laﬁh 01)

ij=1 \i=1
(Z h(Cj); if xp = S,
j=1
={ = 2 kO, if 2 = ¢,
j=1
.\ O, otherwise.

But these are precisely equations (2.1) for the function fand v=27_, A(C)).
On the other hand, we can start with a flow f in node-arc form having
value v, and obtain from it a flow k in arc-chain form having value
v(kh) > v. Intuitively, the reason the inequality now appears is that the
node-arc formulation permits flow along chains from ¢ to s.
There are various ways of obtaining such an arc-chain flow % from a
given node-arc flow f. One way is as follows. Define

(2.9) hCj) = ‘:IAlinAfj(A{), j=1...,m,
where ,
ji=1
(2.10) Silds) = f(4i) — 2 aiph(Cp), j=1,...,n+ L
p=1

In words, look at the first chain ', reduce fi = f by as much as possible
(retaining non-negativity of arc flows) on arcs of Cy; this yields fa. The
process is then repeated with Cp and f2, and so on until all chains have been
examined. It follows that fj; is a node-arc flow from s to ¢ having value

v(fi+1) = v — 33 _, k(Cp), since

i brifj+1(As) = % brif (4:) — i Z briaiph(Cp),
i=1 i=1

i=1 p=1
(j
v — > h(Cy), if 7 = s,
p=1
j
={—v+ > h(Cy), if 2 = ¢,
p=1
L O, otherwise.
7

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

I. STATIC MAXIMAL FLOW

Moreover, fj+1(4:) < fi(4:), all A;, and fj11(4s) = 0 for some A;€Cy.
Hence the node-arc flow f,41 vanishes on some arc of every chain from
s to t. This implies that v(fp+1) < 0, as the following lemma shows.

Lemma 2.1, If fis a node-arc flow from s to t having value v(f) > 0, then
there is a chain from s to t such that f > 0 on all arcs of this chain.

Proor. Let X be the set of nodes defined recursively by the rules

(a) se X,

(b) if x € X, and if f(z, y) > O, then y € X.
We assert that ¢t € X. For, suppose not. Then, summing the equations (2.1)
over z € X, and noting cancellations, we have

of) = D [f@y) — fy, 2)].

relX
vex

But by (b), if («, y) is an arc with € X, y ¢ X, then f(x, y) = 0. This and
the last displayed equation contradict v(f) > 0. Thus ¢ € X. But for any
x € X, the definition of X shows that there is a chain from s to x such that
f > 0 on ares of this chain. Hence there is a chain from s to ¢ with this
property.

It follows from the lemma that the value of f, 41 is non-positive, that is

v(fn+1) =0 - Z h(Cp) < 0.
p=1

Consequently v(k) > v. This proves

THEOREM 2.2. If h is an arc-chain flow from s to t, then f defined by (2.8)
18 a node-arc flow from s to t and v(f) = v(h). On the other hand, if f is a
node-arc flow from s to t, then h defined by (2.9) and (2.10) s an arc-chain
flow from s to t, and v(h) > v(f).

A consequence of Theorem 2.2 is that it is immaterial whether the
maximal flow problem is formulated in terms of the node-arc incidence
matrix or the arc-chain incidence matrix. Thus, for example, since ares of
the form (z, s) or (¢,) can be deleted from .27 without changing the list of
chains from s to ¢, we may always suppose in either formulation of the
maximal flow problem that all source ares point out from the source, and
all sink ares point into the sink. (For such networks, one has v(h) = v(f)
in the second part of Theorem 2.2 as well as the first part.)

A function h defined from f as in (2.9) and (2.10) will be termed a chain
decomposition of f. A chain decomposition of f will, in general, depend on the
ordering of the chains. For example, if in Fig. 1.1 we take f = 1 on all arcs,
and take C; = (s,2,t),Ca = (s,y,t), C3 = (s,2,y,t), Cy = (s, y,2,t),
then 2(C;) = k(C2) = 1, k(C3) = h(C4) = 0. But, examining the chains in
reverse order would lead to h(C4) = h(C3) = 1, h(Cq) = k(C1) = 0.

8

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

§3. NOTATION

From the computational point of view, one would certainly suppose the
node-arc formulation of the maximal flow problem to be preferable for
most networks, since the number of chains from s to ¢ is likely to be large
compared to the number of nodes or the number of arcs. A computing
procedure that required as a first step the enumeration of all chains from
s to t would be of little value. There are less obvicus reasons why the node-

arc formulation is to be preferred from the theoretical point of view as
well.t

3. Notation

To simplify the notation, we adopt the following conventions. If X and
Y are subsets of N, let (X, Y) denote the set of all arcs that lead from
x € X toye Y; and, for any function g from &7 to reals, let

(3.1) > g y) =g(X, Y
(z,y)e(X,Y)
Similarly, when dealing with a function A defined on the nodes of N,
we put

(3.2) Z h(z) = h(X).

We customarily denote a set consisting of one element by its single element.
Thus if X contains the single node z, we write (z, Y), g(z, Y), and so on.

Set unions, intersections, and differences will be denoted by U, N, and
—, respectively. Thus X U Y is the set of nodes in X orin ¥, X N Y the
set of nodes in both X and Y, and X — Y the set of nodes in X but not
in Y. We use < for set inclusion, and < for proper inclusion. Comple-
ments of sets will be denoted by barring the appropriate symbol. For
instance, the complement of X in Nis X = N — X.

Thus, if X, Y, Z < N, then

(3.3) 9(X, YU Z) = g(X, Y) + 9(X, Z) — g(X, Y N 2),
34) gYUZX)=gY,X) +gZX) - g(¥ 0 Z X).
Hence if Y and Z are disjoint,

g(X, YU Z) = g(X, ¥) + ¢(X, 2),
g(Y U Z,X) = g(Y, X) + ¢(Z, X).

t Two comments are in order here. First, one can describe a computing procedure
for the arc-chain formulation of the maximal flow problem that does not require an
explicit enumeration of all chains [6]. Second, a strong theoretical reason for adopting
the node-arc formulation, nonetheless, is that the node-arc incidence matrix has a
desirable property not shared by the arc-chain incidence matrix. This is the uni-

modularity property, that is, every submatrix has determinant + 1 or 0. See [12] for a
full discussion of this property and its implications for linear programming problems.

9

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

I. STATIC MAXIMAL FLOW

Notice that
(B(z),) = (N, 2),

(ZIZ, A(.’E)) = (.’E, N):

and
gIN, X) = > g(N,z) = > g¢(B),2),
reX zeX
g X, N) = > gz, N) = > gz, A()).
zeX zelX

Later on (Chapter II) we shall use the notation |X| to denote the
number of elements in an arbitrary set X.

4. Cuts

Progress toward a solution of the maximal network flow problem is
made with the recognition of the importance of certain subsets of arcs,
which we shall call cuts. A cut € in [N; 7] separating s and t is a set of
arcs (X, X) where s € X, t € X. The capacity of the cut (X, X) is ¢(X, X).

For example, the set of ares € = {(s, y), (z, y), (z, t)} with X = {s, 2}, is
a cut in the network of Fig. 1.1 separating s and ¢.

Notice that any chain from s to ¢ must contain some arc of every cut
(X, X). For let x1, x3, . . ., 5 be a chain with x; = s, ¥, = ¢. Since 71 € X,
xn € X, there is an 2; (1 < ¢ < n) with 2; € X, 2;.; € X. Hence the arc
(5, £511) is a member of the cut (X, X). It follows that if all arcs of a cut
were deleted from the network, there would be no chain from s to ¢t and
the maximal flow value for the new network would be zero.

Since a cut blocks all chains from s to £, it is intuitively clear (and indeed
obvious in the arc-chain version of the problem) that the value v of a flow

f cannot exceed the capacity of any cut, a fact that we now prove from
(2.1) and (2.2).

LemMma 4.1, Let f be a flow from s to t in a network [N ; o7], and let f have
value v. If (X, X) is a cut separating s and t, then
(4.1) v = f(X, X) - f(X, X) < X, X).

Proor. The equality of (4.1) was actually proved in Lemma 2.1.
We re-prove it here, using the notation introduced in the preceding section.
Since f is a flow, f satisfies the equations

f(S:N) _f(N’ S) =70,
f(x, N) — f(N,z) =0, T # s, t,
fit, N) — f(N, t) = —v.

Now sum these equations over € X. Since s € X and ¢ € X, the result is

v= > (fx, N) - f(N,2)) = f(X, N) — f(N, X).

reX

10

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

§5. MAXIMAL FLOW
Writing N = X U X in this equality yields
v=Ff(X,XUX)-fXUX,X)
=X, X) + /X, X) - f(X, X) - f(X, X),

thus verifying the equality in (4.1). Since f(X, X) > 0 and f(X, X) <
¢(X, X) by virtue of (2.2), the inequality of (4.1) follows immediately.

In words, the equality of (4.1) states that the value of a flow from s to ¢
is equal to the net flow across any cut separating s and ¢.

5. Maximal flow

We are now in a position to state and prove the fundamental result
concerning maximal network flow [4, 5].

THEOREM 5.1. (Max-flow min-cut theorem.) For any network the
maximal flow value from s to t s equal to the minimal cut capacity of all cuts
separating s and ¢.

Before proving Theorem 5.1, we illustrate it with an example. Consider
the network of Fig. 1.1 with capacity function ¢ and flow f as indicated in
Fig. 5.1, ¢(x, y) being the first member of the pair of numbers written

Figure 5.1

adjacent to arc (2, y), and f(z, y) the second. Here the flow value is 3.
Since the cut composed of arces (s, z), (y, x), and (y, t) also has capacity 3,
it follows from Lemma 4.1 that the flow is maximal and the cut minimal.

Proor oF THEOREM 5.1. By Lemma 4.1, it suffices to establish the
existence of a flow f and a cut (X, X) for which equality of flow value and
cut capacity holds. We do this by taking a maximal flow f (clearly such
exists) and defining, in terms of f, a cut (X, X) such that

f(X: —X_) = C(X’ X_))
f(X’ X) = 01
so that equality holds throughout (4.1).
11

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

I. STATIC MAXIMAL FLOW

Thus, let f be a maximal flow. Using f, define the set X recursively as
follows :
(a) se X;
(b) if x € X and f(x, y) < c(z, y), then y € X;
if x € X and f(y, z) > 0, then y € X.
We assert that ¢ € X. For, suppose not. It then follows from the defini-
tion of X that there is a path from s to ¢, say

S =X1,%2,...,Tp =1,
having the property that for all forward arcs (z1, x;+1) of the path,

f@s, w41) < e(@g, T441),

whereas for all reverse ares (z;+1, ;) of the path,
f(@e41, 2) > 0.

Let &1 be the minimum of ¢ — f taken over all forward arcs of the path, e
the minimum of f taken over all reverse arcs, and let ¢ = min (eg, €2) > 0.
Now alter the flow f as follows: increase f by ¢ on all forward arcs of the
path, and decrease f by ¢ on all reverse arcs. It is easily checked that the
new function thus defined is a flow from s to ¢ having value v + &. But then
f is not maximal, contrary to our assumption, and thus ¢ € X.

Consequently (X, X) is a cut separating s and ¢. Moreover, from the
definition of X, it follows that

Sz, T) = c(z, T) for (z, 7) € (X, X),
f(& x) =0 for (&, x) € (X, X),

since otherwise & would be in X. Thus
fX, X) =c¢X,X), fX, X)=0,

so that equality holds in 4.1.

Several corollaries can be gleaned from Lemma 4.1, Theorem 5.1, and
its proof.

We shall call a path from s to ¢ a flow augmenting path with respect to a
flow f provided that f < ¢ on forward ares of the path, and f > 0 on
reverse arcs of the path. Then we have

CoroLLARY 5.2. A flow f is maximal if and only if there is no flow
augmenting path with respect to f.

Proor. If f is maximal, then clearly no flow augmenting path exists.
Suppose, conversely, that no flow augmenting path exists. Then the set X
defined recursively using f as in the proof of Theorem 5.1 cannot contain
the sink ¢. Hence, as in the proof of Theorem 5.1, (X, X) is a cut separating
s and ¢ having capacity equal to the value of f. Consequently f is maximal.

12

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

§5. MAXIMAL FLOW

Corollary 5.2 is of fundamental importance in the study of network
flows. It says, in essence, that in order to increase the value of a flow, it
suffices to look for improvements of a very restricted kind.

We say that an arc (x, y) is saturated with respect to a flow fif f(x, y)
= c¢(z, y) and is flowless with respect to fif f(x, y) = 0. Thus an arc that is
both saturated and flowless has zero capacity. Corollary 5.3 characterizes
a minimal cut in terms of these notions.

CoROLLARY 5.3. 4 cut (X, X) is minimal if and only if every maximal
flow f saturates all arcs of (X, X) whereas all arcs of (X, X) are flowless with
respect to f.

Using Corollary 5.3 it is easy to prove

CoROLLARY 5.4. Let (X,X) and (Y, Y) be minimal cuts. Then
(XY, XuY)and (XN Y, XN Y) are also minimal cuts.

The following theorem shows that the minimal cut (X, X) singled out in
the proof of Theorem 5.1 does not, in actuality, depend on the maximal

flow f.

TuroreM 5.5. Let (Y, Y) be any minimal cut, let f be a maximal flow,
and let (X, X) be the minimal cut defined relative to f in the proof of Theorem
51. Then X < Y.

Proor. Suppose that X is not included in Y. Then X N Y < X, and
(XN Y, XN Y)is a minimal cut by Corollary 5.4. Let « be a node in X
that is not in X N Y. Since z € X and = # s, there is a path from s to z,
say § = 1, T2, ..., &x = x, such that each forward arc of the path is
unsaturated with respect to f, while each reverse arc carries positive flow.
But since se XN Y and x € X N Y, there is a pair z;, 2341 (1 < ¢ < k)

path, then f(xs, 2;41) < c(, 2s+1), contradicting Corollary 5.3. Similarly
if (2341, 24) is a reverse arc of the path, Corollary 5.3 is contradicted.
Hence X < Y.

Thus if (X;, X;), 4 = 1,..., m, are all the minimal cuts separating
source and sink, the set X defined relative to a particular maximal flow in
the proof of Theorem 5.1 is the intersection of all X; and hence does not
depend on the selection of the flow.

Although the minimal cut (X, X) was picked out in the proof of Theorem
5.1 by a recursive definition of the source set X, symmetrically we could
have generated a minimal cut (¥, Y) by defining its sink set ¥ in terms of
a maximal flow f as follows:

(@) te Y,
(b') ifye Y and f(z, y) < c(x,y), thenze T;
ifye Y and f(y,x) > 0, thenz e Y.

13

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

I. STATIC MAXIMAL FLOW

Equivalently, one can think of reversing all arc orientations and arc
flows, interchanging source and sink so that ¢ becomes the source, s the
sink, and then use the definition given in the proof of Theorem 5.1 to
construct Y. Again, although its definition is made relative to a particular
maximal flow, the set ¥ does not actually depend on the selection, since
Y is the intersection of the sink sets X; of all minimal cuts (X;, X;).

Using both definitions, we can state a criterion for uniqueness of a
minimal cut.

THEOREM 5.6. Let X be the set of nodes defined in the proof of Theorem
5.1, let Y be the set defined above, and assume that c is strictly positive. The
minimal cut (X, X) is unique if and only if (X, X) = (¥, Y).

Proor. We must show that if (X, X) = (Y, Y), and if (Z, Z) is any
minimal cut, then (X, X) = (Z, Z).

First note that if (X, X) = (Y, Y), then both equal (X, ¥). For,
X < Y by Theorem 5.5, hence (X, Y) < (Y, Y). On the other hand, if
(w,v)e(X,X) = (Y, Y),thenue X andve Y, so (u,v) e (X, Y).

For the arbitrary minimal cut (Z, Z), we have, again by Theorem 5.5
and its analogue for (Y, Y), that X < Z, ¥ < Z. Thus (X, Y) < (%, Y)
< (Z, Z). Hence ¢(X, Y) < ¢(Z, Z). Now if (X, Y) < (Z, Z), then either
some arcs of (Z, Z) have zero capacity, contradicting our assumption
¢ > 0,orc¢(X, Y) < ¢(Z, Z), contradicting the minimality of (Z, Z). Thus
(X, X)=(X,Y) = (%, 2).

Notice that Theorem 5.6 is not valid if the assumption ¢ > 0 is relaxed
toc > 0. For instance, in the network shown in Fig. 5.2, X = {s}, Y = {t},

Figure 5.2

and (X, X) = (Y, Y) = (s, t). However, (Z, Z) with Z = {s, z} is another
minimal cut that contains both arcs.

6. Disconnecting sets and cuts

We have characterized cuts as sets of arcs of the form (X, X) with
s€ X, te X, and have noted that a cut blocks all chains from s to ¢. Thus
if we call a set of arcs a disconnecting set if it has the chain blocking property,

14

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

§7. MULTIPLE SOURCES AND SINKS

then a cut is a disconnecting set. The converse, however, is not necessarily
true. For example, the set of all arcs in a network is a disconnecting set,
but may not be a cut.

That every disconnecting set contains a cut can be seen easily as follows.
Let 2 denote the disconnecting set, and define a subset X of nodes by the
rule

(a) se X;
(b) ifre X and (z,y) e &/ — 2, then y e X.

It is clear that t € X and (X, X) < 2. Notice that if 2 is a proper dis-
connecting set, that is, a disconnecting set whose proper subsets are not
disconnecting, then (X, X) = 2. Thus every proper disconnecting set is a
cut. The converse may not hold, though. For example, in Fig. 5.2, the cut
(X, X) with X = {s, 2} is not a proper disconnecting set.

We may summarize the discussion thus far by saying:

(1) the class of proper disconnecting sets is included in the class of cuts,
which, in turn, is included in the class of disconnecting sets, and that
each of these inclusions may be proper;

(2) every disconnecting set contains a cut.

It follows that the notion of a cut could be replaced by either that of
disconnecting set or proper disconnecting set in the statement of the
max-flow min-cut theorem.

We have chosen to focus attention on cuts rather than disconnecting
sets because the former are more convenient to work with when dealing
with flows in node-arc form; the latter are convenient for an arc-chain
formulation of the maximal flow problem. (See [4], where a proof of
Theorem 5.1 which uses the arc-chain formulation is given.)

Notice that, in any case, restricting attention to proper disconnecting
sets is as far as one can go in narrowing the class of sets of arcs that require
consideration, since every proper disconnecting set of a network has
minimal capacity for some capacity function: for instance, c(x, y) = 1 if
(%, ¥) € 2, c(x, y) = oo otherwise, singles out the proper disconnecting set
2 as the unique minimal cut.

7. Multiple sources and sinks

Although the assumption has been that the network has a single source
and single sink, it is easy to see that the situation in which there are
multiple sources and sinks, with flow permitted from any source to any
sink, presents nothing new, since the adjunction of two new nodes and
several arcs to the multiple source, multiple sink network reduces the
problem to the case of a single source and sink.

15

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

I. STATIC MAXIMAL FLOW

In more detail, suppose that the nodes N of a network [N; .2/] are
partitioned into three sets:

S (the set of sources),
T (the set of sinks),
R (the set of intermediate nodes),

and consider the problem of finding a maximal flow from S to 7'.
A flow from S to 7' may be thought of as a real valued function f defined
on &7 that satisfies

(7.1) fx, N) — f(N,x) =0 for x € R,
(7.2) 0 < f(z,y) < clx, y) for (¢, y) e #,
the flow value being

(7.3) v =f(S,N) — f(N,9).

Extend [V; &7] to a network [N*; .27*] by adjoining two nodes u, v and
all ares (u, S), (T, v), and extend the capacity function ¢ defined on ./ to
c* defined on &/* by

c*(u, r) = oo, zes,
c*¥(x, v) = o0, zeT,
c*x, y) = c(x, y), (x,y) e A.

Thus the restriction f of a flow f* from u to v in [N*; o/*] is a low from
Sto Tin[N; &]. Vice versa, aflow ffrom S to 7'in [N ; /] can be extended
to a flow f* from u to v in [N*; .&7*] by defining

f*(u,x):f(x,N)—f(N,x), xeS,
¥, v) = f(N, z) — f(z, N), zeT,
[, y) = f(x, y), otherwise.

Consequently the maximal flow problem from S to 7 in [N; 7] is equiva-
lent to a single source, single sink problem in the extended network.

Relevant cuts for the case of many sources S and sinks 7' are those
separating S and 7': that is, a set of ares (X, X) with S < X, T < X. Or,
in terms of disconnecting sets, the appropriate notion would be a set of
arcs that blocks all chains from S to 7'. The max-flow min-cut theorem and
its corollaries, as well as the other theorems of § 5, remain valid, mutatis
mutandis, as can be seen either from the equivalent extended problem or
by making slight changes in the proofs throughout.

The situation in which there are several sources and sinks, but in which
certain sources can ‘‘ship” only to certain sinks, is distinctly different.
For such a problem, which might be thought of in terms of the simultaneous

16

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

§8. THE LABELING METHOD FOR SOLVING MAXIMAL FLOW PROBLEMS

flow of several commodities, the maximal flow value can be less than the
minimal disconnecting set capacity. Here a disconnecting set means a
collection of arcs that blocks all chains from sources to corresponding
sinks. For example, consider the network shown in Fig. 7.1 with sources

P £3

Figure 7.1

1, Sg, 83, and sinks t1, ¢s, t3. Each arc has unit capacity. Assume that s;, ¢;
(¢ = 1, 2, 3) are the source and sink for commodity ¢. Then the maximal
flow value is 3/2, obtained by sending a half unit of commodity ¢ along the
unique chain from s; to ¢;. However, the arcs (z, y) and (y, z) are a minimal
disconnecting set having capacity 2.

8. The labeling method for solving maximal flow problems

Under mild restrictions on the capacity function, the proof of the max-
flow min-cut theorem given in § 5 provides a simple and efficient algorithm
for constructing a maximal flow and minimal cut in a network [5].

The algorithm may be started with the zero fiow. The computation then
progresses by a sequence of “labelings’ (Routine A below), each of which
either results in a flow of higher value (Routine B below) or terminates
with the conclusion that the present flow is maximal.

To ensure termination, it will be assumed that the capacity function c is
integral valued. This is not an important restriction computationally,
since a problem with rational arc capacities can be reduced to the case of
integral capacities by clearing fractions, and of course, for computational
purposes, confining attention to rational numbers is really no restriction.

Given an integral flow f, we proceed to assign labels to nodes of the
network, a label having one of the forms (z*, ¢) or (x-, ¢), where x € N

.and ¢ is a positive integer or oo, according to the rules delineated in
Routine A.

17

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

I. STATIC MAXIMAL FLOW

During Routine A, a node is considered to be in one of three states:
unlabeled, labeled and scanned, or labeled and unscanned. Initially all
nodes are unlabeled.

Routine A (labeling process). First the source s receives the label
(—, &(s) = o0). (The source is now labeled and unscanned ; all other nodes
are unlabeled.) In general, select any labeled, unscanned node x. Suppose
it is labeled (2%, g(x)). To all nodes y that are unlabeled, and such that
f(@, y) < c(z, y), assign the label (zt, ¢(y)), where

(8.1) &(y) = min [&(x), c(z, y) — f(x, y)].

(Such y are now labeled and unscanned.) To all nodes y that are now
unlabeled, and such that f(y, x) > 0, assign the label (z~, ¢(y)), where

(8.2) &(y) = min [&(z), f(y, 2)].

(Such y are now labeled and unscanned and z is now labeled and scanned.)
Repeat the general step until either the sink ¢ is labeled and unscanned, or
until no more labels can be assigned and the sink is unlabeled. In the
former case, go to Routine B; in the latter case, terminate.

Routine B (flow change). The sink ¢ has been labeled (y=, ¢(¢)). If ¢ is
labeled (y+, &(t)), replace f(y, t) by f(y, t) + &(¢); if ¢ is labeled (y—, &(¢)),
replace f(¢, y) by f(¢, y) — €(t). In either case, next turn attention to
node y. In general, if y is labeled (x*, &(y)), replace f (z, y) by f(z, y) + &(t),
and if labeled (z-, &(y)), replace f(y,) by f(y,) — &(¢), and go on to
node z. Stop the flow change when the source s is reached, discard the old
labels, and go back to Routine A.

The labeling process is a systematic search for a flow augmenting path
from s to t (Corollary 5.2). Enough information is carried along in the labels
so that if the sink is labeled (henceforth we term this case breakthrough),
the resulting flow change along the path can be made readily. If, on the
other hand, Routine A ends and the sink has not been labeled (non-
breakthrough), the flow is maximal and the set of arcs leading from labeled
to unlabeled nodes is a minimal cut, since the labeled nodes correspond to
the set X defined in the proof of Theorem 5.1.

A main reason underlying the computational efficiency of the labeling
process is that once a node is labeled and scanned it can be ignored for the
remainder of the process. Labeling a node z corresponds to locating a path
from s to x that can be the initial segment of a flow augmenting path.
While there may be many such paths from s to z, finding one suffices.

If the flow f is integral and Routine A results in breakthrough, then the
flow change &(t) of Routine B, being the minimum of positive integers, is a
positive integer. Hence if the computation is initiated with an integral
flow, each successive flow is integral. Consequently the algorithm is finite,
since the flow value increases by at least one unit with each occurtence of

18

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

§8. THE LABELING METHOD FOR SOLVING MAXIMAL FLOW PROBLEMS

breakthrough; upon termination, a maximal flow has been constructed
that is integral. Although this fact is a trivial consequence of the con-
struction, the fact itself is important and will be used time and again in the
solution of combinatorial problems. We therefore state it as a theorem.

THEOREM 8.1 (Integrity theorem). If the capacity function c is integral
valued, there exists a maximal flow f that is also integral valued.

The following numerical example illustrates the use of the labeling
method in constructing a maximal flow.

ExampLE. Let the given network be that of Fig. 1.1 with arc capacities
and initial flow as indicated in Fig. 8.1, the pair ¢(z,), f(, y) being written
in that order adjacent to are (z, y).

Figure 8.1

Start Routine A by assigning s the label (—, o0), see Fig. 8.2. From s,

(y+,n

(st,3)

Figure 8.2

label y with (s*, min (3, o0)) = (s*, 3), thus completing the labeling from s.
From y,x can be labeled (y+, 1) (or (¥, 1)), and is the only unlabeled node

19

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

I. STATIC MAXIMAL FLOW

that can be labeled from y. Again select a labeled, unscanned node (x is the
only such), and continue assigning labels. This time breakthrough occurs :
the sink ¢ can be labeled (z+, 1). This locates a flow augmenting path,
found by backtracking from the sink according to the directions given in
the labels, along which a flow change of ¢(¢) = 1 can be made. Here the
path is the chain s, y, x, t. The new flow of value 2 is shown in Fig. 8.3.

(r=,n

(st,2)
Figure 8.3

Now discard the old labels and repeat the labeling process. This time the
labels shown in Fig. 8.3 are obtained. Again breakthrough has resulted and
a flow improvement of ¢(t) = 1 can be made along the path s, (s, y), ¥,
(%, y), x, (x, t), t, yielding the flow shown in Fig. 8.4.

(s*,n

Figure 8.4

Repetition of Routine A now results in non-breakthrough, the labeled
set of nodes being those shown in Fig. 8.4. Thus the flow of Fig. 8.4 is
maximal and a minimal cut consists of the arcs (s, z), (y,), and (y, t).

Labeling backward from the sink by rules corresponding to (a’), (b’) of

20

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

§8. THE LABELING METHOD FOR SOLVING MAXIMAL FLOW PROBLEMS

§ 5 locates the same cut, and hence by Theorem 5.6 this is the unique
minimal cut separating s and ¢.

We conclude this section with an example indicating that the labeling
process might fail to terminate if arc capacities are irrational. Specifically,
the example shows that if the process is interpreted broadly enough to
permit the selection of any flow augmenting path at each stage of the
computation, then finite termination may not occur when arc capacities
are irrational.

Before describing this example, we make one definition which will be
helpful in the description. If [V; 27] is a network with capacity function
¢, and if fis a flow from s to ¢ in [V ; 2], then c(x, y) — f(x, y) is the residual
capacity of are (x, y) with respect to f.

Now consider the recursion

An+2 = Ap — An+1.

This recursion has a solution a, = r*, where r = (—1 + V4 5)/2 < 1.
Thus the series >°_, a, converges to some sum S. We construct a directed
network with four “special arcs”

Ay = (1, y1),
Az = (22, y2),
A3 = (3, ¥3),
Ay = (24, ya),

and the additional ares (yi, ¥;), (@i, ¥5), (¥s, 2;), for ¢ # j, together with
source arcs (8, z;) and sink ares (y;, t). The four special arcs have capacities
ag, a1, ag, ag, respectively; all other arcs have capacity S.

Step 1. Find a chain from s to ¢ that includes, from among the special
arcs, only 41, and impose a¢ units of flow in this chain. For example, take
the chain s, z1, y1, ¢. (The special arcs now have residual capacities 0, a1,
ag, az, respectively.)

Inductive step. Suppose the special arcs 47, 4}, A5, A} (some rearrange-
ment of Ay, Ag, A3, A4) have residual capacities 0, ap, @y+1, @n+1. Find a
chain from s to ¢ that includes, from among the special arcs, only 45 and
A}, and impose a4 +1 additional units of flow along this chain. For example,
the chain s, x}, y5, x4, y5, t will do. (The special arcs now have residual
capacities 0, @, — @nt1 = An+2, 0, an+1.) Next find a path from s to # that
contains 4} as a forward are, 47 and 4} as reverse arcs, the latter being
the only reverse arcs of the path, and impose an additional flow of a4+2
units along this path. For example, the path s, z3, v3, ¥1, 21, ¥3, *3, Y5, ¢
containing the reverse arcs (y;, 2}), (v, z5) will do. (The special arcs now
have residual capacities @512, 0, @n42, An41.)

The inductive step increases the flow value by @n+1 + an+2 = ay. Hence
no non-special arc is ever required to carry more than >*_; a, = S units

21

For general queries, contactbinfo@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

I. STATIC MAXIMAL FLOW

of flow in repeating the inductive step. The process converges to a flow
having value S, whereas the maximal flow value for this network is 48.

9. Lower bounds on arc flows

Although lower bounds of zero have been assumed on all arc flows, there
is no real necessity for this assumption in constructing maximal flows. If
the conditions

(9.1) 0 < flw,y) < (=, y)
are replaced by
(9.2) Uz, y) < f(=@ 9) < =, 9),

where [is a given real valued function defined on arcs of .7 that satisfies
(9.3) 0 < Uz, y) < ¢z, y),

the labeling process can be varied to handle this situation provided one
has an initial flow to start the computation. There may be no function f
satisfying the equations (2.1) and the inequalities (9.2) (e.g., take I = ¢ in
the example of the preceding section), but assuming that these constraints
are compatible for a given integral valued ! and ¢, and that an initial f
satisfying them has been found, the only change in the labeling rules for
constructing a maximal flow is the following. If = has been labeled (z%,),
then y may be labeled [z, min (¢, f(y,) — l(y, x))] provided f(y, x)
> Uy, x).
It is also easy to see that the analogue of Theorem 5.1 becomes

THEOREM 9.1. If there ts a function f satisfying (2.1) and (9.2) for some
number v, then the maximal value of v subject to these constraints is equal to
the minimum of ¢(X, X) — UX, X) taken over all X < N withse X, te X.

On the other hand, still assuming the existence of a function f satisfying
(2.1) and (9.2) for some v, the minimal value of v may be found in a similar
way: if x is labeled (z%, ¢) and if f(x,y) > l(, y), attach the label
[z, min (¢, f(z, y) — l(x, y))] toy; orif f(y, x) < c(y, x), assign y the label
[x+; min (8? C(?/, x) - f(?/: .’l?))]

Here the analogue of Theorem 5.1 is

THEOREM 9.2. If there is a function f satisfying (2.1) and (9.2) for some
number v, the minimal value of v subject to these constraints is equal to the
mazximum of (X, X) — ¢(X, X) taken over all X = N withse X, te X.

The questions that still remain are those of determining conditions
under which the constraints (2.1) and (9.2) are compatible, and of con-
structing a function f satisfying them when these conditions hold. We
postpone these questions for the moment. They, and similar questions,
will be taken up in Chapter II.

22

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

§10. FLOWS IN UNDIRECTED AND MIXED NETWORKS

10. Flows in undirected and mixed networks

Let us suppose that the network is undirected or mixed, and that each
arc has a non-negative flow capacity. If the arc (z, y) is undirected with
capacity c(z, y), we intepret this to mean that

f@,y) < clz, y),
(10.1) f(y, x) < c(x,),

That is, f (z, y) is the flow from 2 to y in (z, y), and the arc (z, y) has a flow
capacity ¢(z, y) in either direction, but flow is permitted in only one of the
two directions.

For example, one might think of a network of city streets, each street
having a traffic flow capacity, and ask the question: how should one-way
signs be put up on streets not already oriented in order to permit the
largest traffic flow from some set of points to another?

At first glance, it might appear that this problem would involve ex-
amination of a large number of maximal flow problems obtained by
orienting the network in various ways. But a moment’s thought shows
that the problem can be solved by considering only one directed network :
namely, that obtained by replacing each undirected arc with a pair of
oppositely directed arcs, each having capacity equal to the old arc. The
reason for this is that, given any solution f, v of the flow constraints (2.1)
and (2.2), one can produce a solution f’, v in which

f’(x! y)f,(y: z) =0
by taking

(10.2) f'(@, y) = max (0, f(z, y) — f(y, 2)).

In words, we can cancel arc flows in opposite directions.

Thus, since it is clear that the maximal flow value for any specific
orientation of the given network is no greater than the maximal flow value
obtained by replacing each undirected arc by a pair of directed ares,
allowing both orientations for each undirected arc solves the original
problem of maximizing v subject to the flow equations (2.1), capacity
constraints (2.2) for directed arcs, and constraints (10.1) for undirected
arcs.

11. Node capacities and other extensions

Other kinds of inequality constraints in addition to bounds on arc flows
can be imposed without altering the character of the maximal flow
problem. For instance, suppose that each node z has a flow capacity
k(z) > 0, and that it is desired to find a maximal flow from s to ¢ subject to
both arc and node capacities.

23

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

I. STATIC MAXIMAL FLOW

More explicitly, let us assume that all source arcs are directed from the
source and all sink arcs into the sink, and that it is desired to maximize
f(s, N) subject to

(11.1) f(x, N) — f(N, 2) = 0, x# st
(11.2) 0 < f(z,) < clz,y), (x, y) e,
(11.3) f(x, N) < k(z), x # ¢,
(11.4) F(N,£) < k(t).

This problem can be reduced to the arc capacity case by a simple device.
Define a new network [N*; &/*] from [N;./] as follows. To each z € IV
we make correspond two nodes z', " € N*;if (z, y) € <7, then (¥, y") € &/*;
in addition, (z", x2’) € &/* for each x € N. The (arc) capacity function
defined on o7* is
(11.5) X', y") = c(z, y), (x,y) e .o,
(11.6) X', x') = k(x), xeN.

Thus, for example, if the given network [V; .o/] is that of Fig. 11.1, the
network [N*; .o/*] is shown in Fig. 11.2.

Figure 11.1

Figure 11.2

24

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

§11. NODE CAPACITIES AND OTHER EXTENSIONS

In effect, each node x has been split into two parts, a ““left” part 2" and
a “right” part 2’, so that all arcs entering x now enter its left part,
whereas all arcs leaving x now leave its right part. The capacity k(z) is
then imposed as an arc capacity on the new arc leading from the left part
of x to its right part.

Thus any function f satisfying (11.1)—(11.4), that is, any flow from s to ¢
in [NV; «/] that does not exceed the node capacities, yields an equivalent
flow f* from s” to ¢’ in [N*; &/*] by defining

(1L.7) f*@,y") = f= 9), (x, y) e ,
(11.8) f*(x”’ x') = f(x, N), x # t,
(11.9) X",) = f(N,),

and conversely.

If the notion of a disconnecting set is extended to include nodes as well
as arcs, the analogue of the max-flow min-cut theorem asserts that the
maximal flow value is equal to the capacity of a disconnecting set of nodes
and arcs having minimal capacity.

In a similar way, more general kinds of constraints on the low out of or
into node z can be reduced to the case of arc capacities by enlarging the
network. For example, suppose that the nodes of the set 4(x) are put into
subsets

(11.10) A1), .-y Ay (%)
with the proviso that
(1IL1.11) Ayx) N Aj(x) # g = di(x) < 4j(x) or Ajx) = 4i(x),
and assume, in addition to the flow equations,
(11.12) [z, Ay(x)) < ki(z), 1 =1,..., m(x).
Constraints of the form (11.12), under the assumption (11.11), can be
handled as indicated schematically in Fig. 11.3 and Fig. 11.4 for a single
node x.

Constraints of a similar kind on flow into can be reduced to arc
constraints by enlarging the network in an analogous fashion.

Notice that inequality constraints (11.2), (11.3), (11.4) are a special case
of (11.12) and similar constraints on flow into x:
(11.13) f(Bj(x),) < hj(x), j=1,...,n).

If we refer to each set (x, 4;(x)) and (Bj(x), z) as an elementary set of
arcs, and extend the notion of a disconnecting set of arcs to say that a
collection # of elementary sets is a disconnecting collection if each chain
from s to ¢ has an arc in common with some elementary set contained in %,
it can be shown that the maximal flow value from s to ¢ is equal to the

25

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

I. STATIC MAXIMAL FLOW

A,(x) > A, (x)

@} e

Figure 11.3

Figure 11.4

minimal blocking capacity (under the assumption (11.11) and a similar
assumption on Bj(z)).

12. Linear programming and duality principles

The problem of finding a maximal flow through a network, whether
stated in node-arc or in arc-chain form, is one of extremizing a linear

26

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

§12. LINEAR PROGRAMMING AND DUALITY PRINCIPLES

function subject to linear equations and linear inequalities. Such a problem
is called a linear programming problem. There are various known methods
of computing answers to linear programs. The method that is in general
use is G. B. Dantzig’s simplex algorithm, around which a sizeable literature
has already grown up. It is not our purpose here to discuss the theory of
linear inequalities or algorithms for solving general linear programs, since
this book is devoted, for the most part, to special kinds of linear programs
that arise in transportation, communication, or certain kinds of combina-
torial problems, and to a presentation of special algorithms for solving
these linear programs. We would be negligent, however, if some mention
were not made of linear programming duality principles in connection
with these problems.

Associated with every linear programming problem in variables
Wly.eooy Wy

anwy + ... + auwy + a1+ Wil + - .. + Qrpwy = by
apwr + ... + apwr + Gpawisl + ...+ Gpawn = by
12.1)
Ag+1,1W1 + ... + Gg110W1 + Ap41,041Wi+1 + o0+ Gp41,0Wa
< b1
amw1 + ... + Gy + Gpar1Wiel + .o+ CuaWn < by
(12.2) wy, . . ., wy unrestricted in sign; wy41, ..., ws = 0
(12.3) maximize c;wy + ... + CaWn
is a dual program obtained by assigning multipliers Ay, ..., Ay to the
individual constraints of (12.1) and forming the program
anAr + ...+ @Ak + Gg11, 10641 F oo+ Gmidm = €1
ayuds + ...+ ardp + g1, e+ oo F Amidn = €
(12.4)
ai, 1+11A1 + ..o+ Gp 141Ak + k1, 111 k41 F oo F Qs 1412
2 C1+1
a1nh1 + ...+ Gkadk + Gpr1, 0wkt + oo+ Cmndm > Cm
(12.5) A1, . .., Ag unrestricted in sign; Ag41,..., A = 0
(12.6) minimize b1A1 + ... + bpAn.

Here the a4, by, and ¢; are given real numbers.
The matrix of the constraints (12.4) is the transpose of that of (12.1).
Equalities of (12.4) correspond to unrestricted variables wy, . .., w;, and

27

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

I. STATIC MAXIMAL FLOW

inequalities to non-negative variables wj4y,..., wy. The multipliers or
dual variables Aj, ..., A;y that correspond to equations of (12.1) are
unrestricted in sign, whereas Ag41, ..., Am, corresponding to inequalities
of (12.1), are non-negative.

Observe that if the dual problem (12.4), (12.5), and (12.6) is written in
the form of the primal problem (12.1), (12.2), and (12.3), by multiplying
each of the constraints of (12.4) by —1 and maximizing — > b;);, then the
dual of (12.4), (12.5), (12.6) is (12.1), (12.2), (12.3). In other words, the dual
of the dual is the primal.

The constraints of the primal problem are said to be feasible if there is a
vector w = (wy, . . ., wy) satisfying them; w is then called a feastble vector,
and the primal problem is termed feasible. A feasible vector w that
maximizes the linear form 3 c;wj is called optimal. Analogous language is
used for the dual problem.

Thus a linear programming problem either has

(a) optimal (and hence feasible) vectors;
(b) feasible vectors, but no optimal vector;
(c¢) no feasible vectors.

The fundamental duality theorem of linear programming [9] relates the
way these situations can occur in a pair of dual programs, and asserts
equality between the maximum in the primal and the minimum in the
dual: if case (a) holds for the primal, then (a) holds for its dual and the
maximum value of > c;w; is equal to the minimum value of > b;A;; if (b)
holds for the primal, then (c) holds for the dual; if (¢) holds for the primal,
either (b) or (c) is valid for the dual.

That the maximum value of > c¢jw; is no greater than the minimum of
> by if both primal and dual have feasible vectors is easily seen. Letting
w and X be feasible in their respective programs, it follows that

(12.7) Z cjw; < Z Z /\iaﬂwj,
Jj i

since unrestricted variables w; correspond to equations >; May; = ¢; and
non-negative variables w; to inequalities >; Aas; > ¢;.
Thus equality holds in (12.7) if and only if

(128) z /\iau > 6= Wy = 0.

Similarly,
(12.9) > > Nagwy < bik,
i]

J

since the A; that are unrestricted in sign correspond to equations 3; aywy

= by, whereas non-negative A; correspond to inequalities >; azw; < b.

28

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

§12. LINEAR PROGRAMMING AND DUALITY PRINCIPLES
Thus, equality holds in (12.9) if and only if

(12.10) X > 0= > aywy = by
Jj
Consequently
(12.11) > ewy < D bk,

equality holding if and only if (12.8) and (12.10) are valid. The major
content of the duality theorem is the assertion that if case (a) holds for
the primal, it also holds for the dual, and that there are then feasible
solutions to primal and dual problems that satisfy the optimality criteria
(12.8) and (12.10).

Our purpose in giving this sketchy résumé of linear programming
duality theory is twofold. First, we shall note that the max-flow min-cut
theorem provides a proof of the duality theorem for the special case of
maximal flow problems. Second, although the algorithms to be presented
subsequently do not require appeal to the duality theorem, they were
motivated by duality considerations, and we want to feel free to invoke
such considerations where convenient.

If we take the constraints of the maximal flow problem in the node-arc
form and assign multipliers 7(x) to the equations (2.1), multipliers y(z, y) to
the capacity inequalities (2.2), then, recalling that the coefficient matrix of
the equations is (apart from the column corresponding to the variable »)
the node-arc incidence matrix of the network, it follows that the dual has
constraints

—7(s) + =(t) > 1,

(12.12) n(x) — 7(y) + y(z, y) = 0, all (z, y),
v(@,y) 20, all (z, y),

subject to which the form

(12.13) ; c(z, y)y(, y)

is to be minimized. In (12.12), the first constraint comes from the »-column
of the primal problem, the second from the (x, y)-column. The dual
variables m(x) are unrestricted in sign since they correspond to equations,
whereas the variables y(x,y) correspond to inequalities and are con-
sequently non-negative.

If (X, X) is a minimal cut separating s and ¢, it can be checked that an
optimal solution to the dual problem is provided by taking

0 forze X
12.1 = _
(12.14) (@) {1 for x € X,
1 for (z, y) € (X, X),
12.15 Jy) =
() v y) {O otherwise.
29

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

I. STATIC MAXIMAL FLOW

This follows since (12.14) and (12.15) define a feasible solution to the dual
that produces equality between the primal form v and dual form (12.13).
Or one can check the optimality properties (12.8) and (12.10).

In particular, the dual of the maximal flow problem always has an
integral solution. It can be shown, in fact, that all extreme points of the
convex polyhedral set defined by setting #(s) = 0 in (12.12), which cor-
responds to dropping the (redundant) source equation in the primal
problem, are of the form given in (12.14) and (12.15) for some X with
s € X. Using this fact, the max-flow min-cut theorem can be deduced from
the duality theorem [2].

13. Maximal flow value as a function of two arc capacities

For a given network [N ; o7] with specified sources S and sinks 7', the
value 7 of a maximal flow from S to 7' is solely a function of the individual
arc capacities. Indeed, if o/ = {41, 4s,..., Ay} and A; has capacity
¢(4;), we know that

(13.1) 7= min > c(4y),

the minimum being taken over all cuts € separating S and 7. The theorems
and proofs of this section provide insight into the behavior of 7 considered
as a function of two arc capacities, everything else being held fixed. Both
theorems and proofs are due to Shapley [16].

It will be convenient to allow infinite capacities for the two arcs in
question, and hence infinite . However, the capacities of other arcs are
assumed finite.

Let 9;(¢) denote the maximal flow value when the capacity ¢(4;) has
been replaced by the non-negative variable ¢. Similarly, 745(¢,) denotes
the maximal flow value when ¢(4;) and ¢(4;) have been replaced by non-
negative variables ¢ and 7. It is a consequence of (13.1) that

(13.2) 7i(§) = min [54(0) + £, By(00)].
In more detail, if ¢ is less than the critical capacity
(13.3) £* = vy(0) — i(0),

the arc A4; is a member of every minimal cut, whereas for ¢ > ¢*, the arc
Aj;is inno minimal cut. Here £* may be either zero or infinite. If the critical
capacity £* is strictly positive, and if ¢(4;) = £*, there is a minimal cut
containing 4; and a minimal cut not containing A;.

Two applications of (13.2) yield

(13.4) Byy(€, 1) = min [55(0, 0) + £ + 7, Ty(0,) + &,
v45(00, 0) + 7, v45(00, 0)].

30

(continued...)

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

Algorithm

for
for
for
for
for
for
for
for
for
for
for

circulation, 52-53

Hitchcock problem, 98-99, 108
maximal dynamic flow, 116, 149

maximal static flow, 17-19
maximal tree, 175

minimal cost flow, 116, 164-166

multi-terminal flow, 179-181
network synthesis, 188-189
project scheduling, 158
shortest chain, 131
zero-one matrix, 83

Arc, 2-4
capacity of, 4
flowless, 13
forward, 3
reverse, 3
saturated, 13
Arc numbers, 114

Bipartite graph, 49-50, 54

Capacity

of arc, 4

critical, 30

cut, 10

node, 23
Capacity function, 4
Caterer problem, 140-142
Chain, 3

in partially ordered set, 61
Chain decomposition, 8
Circulation, 50

minimal cost, 162-163
Circulation theorem, 51
Condensed network, 178
Conjugate sequence, 80, 86
Conservation equation, 4
Cut, 10-11

capacity of, 10

minimum, 11-14
Cut tree, 183
Cycle, 3

directed, 3

Demands, 36
Disconnecting set, 14-15
Dominant requirement tree, 188

Dual

of Hitchcock problem, 96-97
of linear program, 27
Duality theorem, 28
Dynamic flow, 145
maximal, 145

INDEX

temporally repeated, 147
value, 145

Edge (see Arc)
Equivalent networks, 177

Feasible solution to linear program, 28
Fixed schedules, 64-67
Flow
are, 5
chain, 6
dynamic, 145
maximal, 11-14
minimal cost, 113, 163
multi-terminal, 173-192
static, 4
value of, 4
Flow function, 175
Forest, 173

Graph (see Network)

Hall’s theorem, 68
Hitchcock problem, 95-111
dual of, 96-97

Incidence matrix
arc-chain, 6
node-are, 3
set-element, 79

Integrity theorem, 19

Konig-Egervdry theorem, 54

Labeling method, 17-19
Latin rectangle, 71
Linear program, 27

dual of, 27

feasible solution to, 28

optimal solution to, 28
Link (see Arc)

Marginal elements, 71-72
Matrix
permutation, 70, 111
of zeros and ones, 79-91
feasibility theorems, 81, 86
term rank of, 89
width of, 89
(see also Incidence matrix)
Max-flow min-cut theorem, 11
Menger theorem, 55
Minimal cost circulation, 163
Minimal cost flow problem, 113-114
equivalent Hitchcock problem, 129
Multi-terminal flow, 173-192

For general queries, contact info@press.princeton.edu

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

INDEX

Network, 2-4
for caterer problem, 141
condensed, 178
connected, 59-60
directed, 2
equivalent, 177
mixed, 2
for project scheduling, 152
realizable, 176-177
synthesis of, 187
undirected, 2
for warehousing problem, 138, 140
Node, 2-4
capacity of, 23
Node numbers, 114

Optimal assignment problem, 111-112

Partially ordered set, 61
chain in, 61
decomposition of, 61
Path, 8
cost of, 117
flow augmenting, 12
Point (see Node)
Project, 151
cost of, 153
minimal cost schedule for, 158

network for, 151-152
program for, 153

Representatives of sets, 67-75
distinct, 67-68
restricted, 70

Shortest chain problem, 130-133

Sink, 4

Source, 4

Subgraph problem, 75-79

Supplies, 36

Supply-demand theorems, 38, 40, 42, 48,
49

Transportation problem (see Hitchcock
problem)
Trans-shipment problem, 113
Tree, 173
cut, 183
dominant requirement, 188
spanning, 174
maximal, 174
Triangle inequality, 176

Unicursal graph, 59
Vertex (see Node)
Warehousing problem, 137-140

194

For general queries, contact info@press.princeton.edu

