
vii

c on t e n t s

	 1	 Mathematical Rationality� 1

	 2	 Searching for the Cyberphysical Utopia� 20

	 3	 This Is Not Nam. There Are Rules� 64

	 4	 Regulations, Regularities, and RCTs� 102

	 5	 When Past Performance Is Indicative  
of Future Results� 140

	 6	 Humans Against the Machine� 182

	 7	 Cyborg Decision Making� 208

Afterword  227

Notes  231

Index  253



1

1

Mathematical Rationality

it too often feels like every choice in our daily experience, no 
matter how momentous, gets reduced to a risk analysis of 
chances and costs. Nutrition science tells us that a Mediterra-
nean diet lowers the chance of heart disease, so we weigh the 
costs of heart attacks against what we like to eat. Worried par-
ents meticulously plan the lives of children to maximize their 
chances of getting into good colleges. Polling tells us how pan-
dering increases the chance a candidate wins an elected office, 
leading a candidate to decide how much to sell their conscience 
to maximize their chance of winning. Analysts now tell us that 
even sports can be distilled into raw numbers, with each play 
contributing to an accumulated probability of winning.

Is using risk management to guide every aspect of our lives 
putting us on a promising path toward happiness? I suppose it 
seems reasonable to say that there are some parts of life where 
risk analysis is important. Understanding the chances of finan-
cial assets gaining or losing value matters for retirement plan-
ning. You should estimate the risk of catastrophes when buying 
insurance. Statistical tests weighing genetics and risk factors 
inform prophylactic interventions in people at risk of developing 
serious diseases later in life. But going to restaurants? Raising 
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children? Deciding who we love? Is every decision in life actu-
ally reducible to betting on a game of chance? Certainly not! 
But then why has risk management permeated every aspect of 
our lives, from public policy to technological acceleration to 
health decisions? Where does this unshakable pressure to con-
stantly optimize come from?

Central to this idea of relentless optimization is the notion 
of rationality. There seems to be an overarching idea today that 
rationality should dictate decisions—that there are right and 
wrong decisions independent of the ultimate outcome. The 
right decision is the one that maximizes the probability of win-
ning. Winning apparently always has a cut-and-dried definition. 
A rational person tabulates statistics, determines the costs of 
outcomes, and then bets on the option with the biggest payout. 
A rational person is a gambler. A rational person is an insurance 
agent.

If this description of rationality doesn’t line up with your 
conception of rationality, you are not alone. Digging through 
scholarly works, the term is hard to pin down. Someone might 
get at rationality by arguing that it derives from “reason.” You 
might say a person who behaves in a reasonable way is acting 
rationally. Someone else might argue that rationality just 
amounts to having a consistent set of beliefs. The only consen-
sus we seem to have is that rationality is good and irrationality 
is probably bad. Indeed, we often end up defining rationality in 
terms of cultural norms around irrationality. We might think it’s 
irrational to be afraid of dogs. We deem it irrational to gamble 
at casinos, as the odds are stacked against you. We all know love is 
irrational.

The truth is that there are and should be many ways to define 
rationality. But the fact is, the word “rationality” has come to 
mean something very specific in our modern context—almost 
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equated with the risk-analytic mindset I’ve been describing. 
You might hear a case made like this: Of course, a rational person 
will weigh costs and benefits, estimate risks, and plan optimally. 
That’s what it means to be rational. An irrational person will let 
emotions and personal bias influence their decisions, decisions 
which can easily end up being the wrong ones. If you don’t want 
to be irrational, you’d better start doing your cost-benefit analy-
ses, bub. Given some evidence and a set of possible actions in 
response to that evidence, there is always a rational way to pro-
ceed (and all other ways to proceed are thus deemed irrational). 
This might not lead to a win, but perhaps rationality in and of 
itself is the win.

A prime advocate for this notion of rationality is Harvard 
psychologist Steven Pinker. Pinker is one of the favorite intel-
lectuals of the American elite, one of Time magazine’s 100 Most 
Influential People, and frequent speaker at TED, Davos, and 
other hangouts of the ultra-rich and powerful. In his 2021 book, 
aptly entitled Rationality,1 Pinker sets out to make a case for 
rationality and why we’d be better off if the hoi polloi was even 
more rational.

Pinker defines rationality as “the ability to use knowledge to 
attain goals.” He clarifies the word knowledge to mean “justified 
true belief.” Rather than fighting over what counts as truth,2 let 
me drop the word “true” so we don’t have to get into the philo-
sophical morass of truth and meaning. I will use the following 
working definition: “Rationality is the ability to use justified 
beliefs to attain goals.”

For Pinker and his powerful peers, rationality is defined with 
respect to goals. Rational agents must have goals. They also 
must be able to act. They decide to act based on whatever will 
most likely result in their desired goals. They decide on the 
most likely profitable action using their justified beliefs. Since 
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it is so centrally about quantification, algorithms, and logic, 
I am going to give this conception of rationality a special name: 
mathematical rationality. Mathematical rationality captures a 
colloquially accepted definition that undergirds all of the ratio-
nal decisions I described above. It is, in short, our modern defi-
nition of rationality, the idea that guides so many of our decisions 
today. Build an understanding of how diets affect your chances 
of a long life and pick the best one. Figure out which extracur-
riculars maximize students’ chances of getting into college 
and sign your kids up for those. Mathematical rationality wins 
the day.

Pinker’s narrow view of mathematical rationality focuses on 
means of decision making. We choose our actions and deploy 
our resources in the most “rational” way to achieve our desired 
ends. This view is popular among Silicon Valley executives, 
Wall Street traders, and a growing cadre of public intellectuals 
like Pinker and Nate Silver, one of the most celebrated election 
analysts of the twenty-first century. Silver is lauded for bringing 
cold, analytical data to the once vibey analysis of election horse 
races. Since selling his wildly popular website, FiveThirtyEight, 
he has pivoted to being a staunch defender of mathematical 
rationality as the way to understand uncertainty and succeed in 
life. Given how much Silver praises rationality, it should come 
as no surprise that he began his career as a professional gambler. 
In his book On the Edge, he writes (without evidence) that “rich 
and powerful people” are disproportionately the mathemati-
cally rational. The ones guided by logic, not emotion. He ex-
claims, “Those of us who understand the algorithms hold the 
trump cards.”3

Silver’s gaming analogy touches on the most recent and cul-
turally visible influx of risk management into everything else: 
the phenomenon of “analytics” in sports. You might be familiar 
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with the Brad Pitt vehicle Moneyball, which adapts Michael 
Lewis’s 2003 telling of the statistical management of the Oak-
land Athletics to the big screen. More recently, analytics has 
taken over American football, where complex formulas 
are computed to select the appropriate plays to maximize 
odds. In football, a sport culturally associated with peak anti-
intellectualism, many fans have bristled at this encroachment 
by the risk analytic mindset.

After a particularly consequential play backfired in a playoff 
game in January 2024, Greg Olsen, a former star player who had 
grown to be football’s smartest color commentator, went on 
ESPN’s Pat McAfee Show to champion analytics’ role in foot-
ball. Olsen declared:

The outcome doesn’t make the decision right or wrong. 
We’re going to go to Vegas here in a couple of weeks for the 
Super Bowl. Me and Pat are going to sit up at the blackjack 
table and I could be the dick that sits there and hits 18 until I 
get a 21. If I sit there all night, everyone on the thing is going 
to MF me all day. They’re not going to want to play with me 
because I’m stupid. I’m defying all logic. But one time I’m 
going to pull a three, and I’m going to throw a freaking party. 
It doesn’t mean I was right. It still means I was a dumbass.

The point is you could hit 16 all day. We’ve all been there. 
Just because you break 20 times doesn’t mean it’s the wrong 
decision. That’s what’s applying now to the game [of foot-
ball] and they’re trying to increase every percentage of win 
probability they can.4

There’s so much to unpack in this quote. Olsen argues that there 
are decisions that are logically correct in sports. The logic of 
increasing probability is how the game needs to be played, re-
gardless of outcome. This logic is the same as in the game of 
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blackjack, where there is an optimal strategy for winning. Foot-
ball is apparently no different from a casino game. Going against 
the optimal strategy is “defying all logic.” It is, in his mind, 
irrational.

But the idea that there’s a right way to play blackjack is actu-
ally quite new. Blackjack has history dating back to the 1600s in 
Europe. You might think that someone would have written 
down a good strategy for the game around then. Or perhaps 
in the 1700s. It turns out that the first attempt at coming up with 
an optimal strategy for blackjack was in 1956.5 Why did it take 
so long?

Silver, Pinker, and Olsen’s ideas about rationality—their in-
sistence on algorithms and their references to ideal strategy—
also trace back to the 1940s and 1950s, when academic scholars 
in mathematics, statistics, and economics formalized this nar-
row view of the rational. It was during this same time period 
that the systems we’d recognize as modern computers were first 
designed, built, and sold. This was no coincidence. As we will 
see in this book, it was precisely the design and development of 
computers that determined the modern definition of mathe-
matical rationality and its application to our everyday lives. 
In the eyes of its very first designers, the computer would be-
come the ideal rational agent programmed to make optimal 
decisions. This ideal agent is an imaginary being we’ve been 
attempting to build, with varying degrees of success, since the 
1940s. What is less clear is when we decided that we should 
strive to live our lives as if we were computers.

———

Computers have advanced to the point where the statistical 
analyses that enable so-called optimal decisions are easier to 
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run than ever. These analyses are applied all over the place, from 
logistics and planning of shipping goods to deciding which vid-
eos to offer you on streaming services. Internet platforms build 
their businesses on statistical analyses of their userbases, de-
ploying advertisements and recommendations they deem most 
likely to increase engagement. With computing advances, 
weather prediction yields reliable 10-day forecasts that help 
people plan their lives. Statistical tests of personal risk factors 
inform prophylactic interventions against the development of 
serious disease later in life. This track record of successes might 
suggest to someone that it is worth emulating a computer when 
navigating their life.

Mathematical rationality, often called “normative decision 
theory” or sometimes, by economists, “rational choice theory,” 
is the rationality of computers. It is by its very nature algorith-
mic, strategic, and procedural. Though I only recently started 
calling it mathematical rationality, I’ve been studying the meth-
odological pillars of the ideal rational agent for my entire career. 
These pillars are the fields of mathematical statistics, optimiza-
tion, control theory, and machine learning. What unites these 
fields is their mathematical language for computers to rationally 
compute optimal decisions. This language is the bedrock of 
mathematical rationality and formalizes the computational 
components of the ideal rational agent. These are huge fields, 
and we can’t cover them comprehensively in a single book, but 
in the following pages we will learn what each contributes to 
mathematical rationality:

1.	 Mathematical optimization. A rational agent aims to 
act so that it achieves the best outcome given its model 
of the world. To do this, it writes down a mathematical 
description of how actions translate into outcomes. The 
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agent can then devise a computer program that com-
putes the action that gives the best return under the 
assumptions of this model. This process of modeling 
and maximizing is called mathematical optimization.

2.	 Game theory. A particular case of mathematical 
optimization assumes that you are competing for 
resources against other rational actors. Methods for 
taking the potential behaviors of those other actors into 
account and strategizing against them are the founda-
tion of game theory.

3.	 Randomized experiments. To inform mathematical 
models, a rational agent has to determine the impacts of 
actions via experimentation. In human-facing scenarios 
where predicting the outcome of action can be challeng-
ing, a popular approach is the randomized experiment. In a 
randomized experiment, the agent will engage in a variety 
of scenarios and choose random actions. By tabulating the 
outcomes of the various actions, they can then estimate 
which actions yield the best returns on average.

4.	 Statistical prediction. Finally, a rational agent needs to 
assess the probabilities of future outcomes. An agent 
might look at past experiences and compute the correla-
tions between the previously observed actions and 
outcomes. If it uses these correlations to forecast future 
events, this is called statistical prediction, or, more 
commonly these days, machine learning.

All four of these pillars were formalized in the mid- to late 
1940s, the brief window between the endgame of World War II 
and the creation of the first modern computer. The core algo-
rithms developed in this period drive the automated decisions 
of our modern world, whether it be in managing supply chains, 
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scheduling flight times, or placing advertisements on your so-
cial media feeds. Even the ideas behind impressive con
temporary technologies like Artificially Intelligent chatbots 
were formally developed in the 1940s. This period in history 
produced the ideas that led directly to our current obsession 
with optimization, in which every life decision is posed as if it 
were a round at an imaginary casino, and every argument can 
be reduced to costs and benefits, means and ends. To under-
stand our obsession with rationality and what to do about it, we 
need to go back to the beginning. We need to trace mathemati-
cal rationality back to its roots.

In this book, we will explore the four pillars of mathematical 
rationality in depth, from their beginning in the late 1940s to 
the present. These pillars were pursued by a small, connected 
group of characters, though each pillar has an origin story and 
a life of its own. Together they embody the assumption made 
by the rationalists of today—Nate Silver, Steven Pinker, and 
others—that computers can make better decisions than 
humans. They impact on how we view, arrange, and govern our 
society, aimed at improving human decisions. But evidence 
from the past and present will show how mathematical rational-
ity has sweet spots. It shines when it is employed in very spe-
cific, often narrow ways. But when mathematical rationality is 
employed outside of that sweet spot, it bumps up against very 
real limits and can result in us making decisions that don’t serve 
us well. It is imperative that we figure out what those limits are, 
so that we can decide when to rely on computers to make deci-
sions and when the decision is perhaps best left to a human. To 
that end, as we trace the history of mathematical rationality, I’ll 
describe when these pillars succeed and when they come up 
short. I’ll describe how people actually make decisions and how 
automated decision making and human decision making are 



10  c h a p t e r  1

often in conflict. And I’ll ask how humans and machines can 
work in tandem toward making the best decisions in the future.

This book is my attempt to answer the questions I posed at 
the outset of this chapter. Is mathematical rationality the right 
way to make decisions? Should every life decision involve dis-
tilling big data sets into simplified statistical tables? Should 
every decision be about profit maximization? Should mathe-
matical rationality trump our values? Should mathematical 
rationality be an end in itself, justifying public policy, techno-
logical acceleration, and health decisions?

By now you will probably have guessed my answer to all of 
these questions: No. As the language of mathematical rational-
ity grew more popular in the 2010s, with the rise of internet 
monopolies and the ubiquity of mobile computing, I increas-
ingly realized this rational view of the world was surprisingly 
narrow and limited, and I wanted to understand where it came 
from. I wanted to explain the mathematics behind mathemati-
cal rationality. I wanted to understand how this narrow decision 
framework became a dominant cultural ideal. And I wanted to 
look to the past and future to consider possible alternative ways 
of approaching our lives, our governance, and our science. Writ-
ing this book prompted a foray into a critical understanding of 
the foundations of my field, aimed at highlighting both the 
sweet spots and the limits of mathematical rationality.

Cultural critic Neil Postman asserted that technology 
changes the meaning of our words. “It is a certainty that radical 
technologies create new definitions of old terms and that this 
process takes place without our being fully conscious of it.”6 
I want to tell you how the computer changed our meaning of 
the word rationality.

———
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Let me start by setting the stage for the creation of the mathe-
matically rational agent. Our modern notions of utility, chance, 
and investment all began brewing in the Enlightenment, but a 
solidification of these ideas would come between the two world 
wars. A key component of this coalescence is the formalization 
of modern probability. Such formal probability would be the 
foundation upon which the four pillars of mathematical ratio-
nality would be built.

Mathematical probability was first invented in the seven-
teenth century, but it would take three hundred years to be-
come acceptably rigorous according to the mathematicians. 
Initially, the mathematics of probability was conceived to ana-
lyze odds in games of chance, such as the seventeenth-century 
work of Blaise Pascal and Pierre de Fermat determining how to 
split the betting pot appropriately in dice games. In the nine-
teenth century, physicists and statisticians discovered probabil-
ity could be used for more than just gambling; it could help 
people to draw connections between the microscopic and the 
macroscopic.

For example, in the development of thermodynamics, physi-
cists modeled the microscopic world as a bunch of tiny particles 
bouncing around. The motions of these trillions of trillions of 
microscopic particles appeared random. However, from far 
away, the blur of these tiny random particles looked determinis-
tic. Physicists realized that their laboratory measurements were 
a blurry view of complex random activity. That is, orderly 
macroscopic measurements were averages of disordered micro-
scopic activity.

It was during this time that we realized the world is unpre-
dictable from certain vantage points yet highly predictable from 
others. For instance, I can’t tell you whether a particular coin 
flip will land heads or tails, but I can tell you that if I flip enough 
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times, I should see approximately the same number of heads 
and tails. I can’t tell you how the individual particles of gas 
move in a balloon, but I can tell you how big the balloon will be 
if I put in a certain amount of helium. I can’t precisely predict 
the static in a radio transmission, but I can tell you roughly how 
loud it will be at different times of day due to atmospheric in-
terference. This is the magic of probabilistic thinking: we trade 
in particulars for expectations. I can’t predict specific outcomes, 
but I can predict general behavior.

These ideas were brewing in the physics community in the 
nineteenth century, and statisticians contemporaneously ap-
plied them to understand variations in plant, animal, and 
human populations. Individuals were random and wildly var-
ied, but the averages of the population into statistical factoids 
were orderly and predictable. State bureaucrats could tabulate 
statistics to tell us stable facts about society, whether they be 
about crime, mortality, or demographics.7 Through statistics, 
chaos was aggregated into order.

Though these seminal ideas percolated for almost 300 years 
in various forms, it wasn’t until the 1930s that we packed all of 
these related threads into a universal mathematical language of 
uncertainty. Russian mathematician Andrey Kolmogorov was 
the first to make probability into what mathematicians called a 
“rigorous theory” in 1933. Kolmogorov’s axiomatization in-
spired a revolution in mathematics. For the first time, we could 
understand physical processes as random processes, ones whose 
measurements would always be unpredictable at the finest 
scales but whose behavior could be understood at a higher level 
of abstraction. If our interactions with the world were random 
yet predictable, maybe all uncertainty could be put on the same 
rigorous footing. With a rigorous calculus for the uncertain, 
statisticians concluded they could reason about all uncertainty 
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in the world. They could quantify uncertainty in measurements 
like censuses and polls. They could understand complex ran-
dom processes to remove noise in communication systems and 
understand properties of the subatomic. There was an emerging 
promise of control: If we could understand uncertainty, per-
haps we could use it for our purposes. Randomness itself could 
be useful. You could use random sampling to simplify quality 
control, looking only at a small, representative set of products 
on the assembly line. You could use random tests to see if one 
fertilizer was better than any other. You could use randomness 
to deceive opponents by choosing your next action at random. 
Statisticians began to develop means to inform decisions de-
spite the formidable uncertainty of existence.

As the 1930s drew to a close, it seemed we were finally at a 
time where we could achieve the promise of Enlightenment sci-
ence. We could count things, establish statistics, draw rigorous 
inferences, and understand our natural world through a lan-
guage of mathematics. And that mathematics could inform how 
to make the most critical decisions even in the face of uncer-
tainty. We could characterize all the properties of the unknown 
we’d need to make appropriate, informed decisions. In the 
1940s, this mathematical harnessing of uncertainty would be 
put to the test in one of humanity’s largest, deadliest conflicts.

———

World War II reshaped global society, discontinuously reconfig-
uring borders, ideologies, and technologies. The war also trans-
formed the relationship of natural sciences and government, 
drafting the efforts of pure science into applied military efforts. 
The United States established the National Defense Research 
Committee in 1941. The NDRC was the brainchild of Vannevar 
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Bush, an electrical engineer who was MIT’s Dean of Engineering 
in the 1930s. Bush determined hard science and engineering was 
necessary to advance defense logistics against the new sophisti-
cated technology being developed by Nazi Germany. Through 
Bush’s academic connections, World War II saw an unprece
dented involvement of civilian scientists, engineers, mathemati-
cians, and economists. Bush argued that we should gather the 
theoretical and technological advances of the first half of 
the twentieth century and make them actionable in reality to 
fight the greatest threat of the second half of the twentieth 
century. Military branches themselves established units for tabu-
lation, statistics, and planning. The fevered war machinations 
tapped technological and intellectual innovations from the prior 
decades, advancing them for directed military applications.

Mathematicians brought two major innovations to the war 
effort. The first was the hardware to run large-scale computa-
tions. In the early 1930s, Bush had built a nascent computer 
called a “differential analyzer.” This machine could add and sub-
tract and showed the promise of automating tedious calcula-
tions to solve complex applied-mathematics problems. One of 
Bush’s graduate students found the differential analyzer to be 
too temperamental because of its analog design. In his master’s 
thesis, he proposed an alternative means of building computers 
with digital logic gates. This master’s thesis would form the 
basis of all of our modern computer chip architectures. Its 
author, Claude Shannon, would become the most influential 
electrical engineer of all time, single-handedly creating half a 
dozen engineering fields.

Inspired by these early computing successes, Bush lobbied 
the government for massive funds for the development of digi-
tal devices to accelerate military-driven calculations. Intricate, 
complex computations were done by teams of people feeding 
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newly developed electronic calculators with punch cards, su-
pervised by top mathematicians. These calculation efforts 
helped predict the behavior of complex rocket ballistics and 
antiaircraft weaponry and were critical to the design of the 
atomic bomb. Though it wouldn’t be finished until after the war 
ended, the ENIAC, what many consider the first programmable 
computer, was commissioned during the war to further acceler-
ate such calculations.8

A parallel contribution of mathematics to the war effort was 
the application of probability and statistics for logistics and 
planning. There were innovations in how to communicate se-
curely and break codes. New techniques were developed to 
predict the behavior of enemy aircraft and determine what sorts 
of ships were present in noisy radar signals. Because of advances 
in therapies, militaries began recording the results of large-scale 
field trials in managing disease, infection, and wounds.

At the center of all this activity was a group of mathemati-
cians who would become famous in the aftermath of the 
war. The most famous of them, Norbert Wiener, John von 
Neumann, and Claude Shannon, will be central to the story 
of this book. Before World War II, Wiener and von Neumann 
were well known among mathematicians for their contribu-
tions to the foundations of probability. Wiener was one of the 
founders of the theory of stochastic processes, and von Neu-
mann did seminal work in quantum mechanics and what 
would become game theory. The war experience opened their 
eyes to what the abstract frameworks they built could do for 
concrete reality. Mathematicians saw firsthand how quantified 
predictions of  the unknown could improve our decision-
making capabilities.

Mathematicians left the war inspired by their ability to have 
practical impact. The world needed rebuilding, and they wanted 
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to be part of that rebuilding effort. They aimed to take the ideas 
that had shown promise in the war and apply them toward 
peacetime efforts. Toward defense. Toward public health. 
Toward governance.

The key mathematical insight of the war was linking that 
which could be calculated to that which could be automated. 
Mathematicians were tantalized by the possibility that if 
humans could make a decision, then that decision not only 
could also be made by machines, but could possibly be better 
made by machines. Uncertainty would still exist, of course, but 
quantification of uncertainty could be made methodical and 
rule-based. If decisions could be calculated from such quanti-
fied uncertainty, then they too could be automated. These 
decisions would be more “scientific.” More “rational.” The 
mathematicians of the day set out to build rational machines.

———

Inspired by the success of mathematical logistics in the war ef-
fort, this small group of talented mathematicians dedicated the 
decade after the war to fully automating mathematically ratio-
nal decision making. This would require not only new tech-
niques, but also new machines that did this automation. There 
was thus a rapid co-development of the abstraction of rational 
decision making and the design and construction of the archi-
tectures and circuits of the computer.

As we will see in this book, the codified mathematics of the 
1930s that had proven so valuable in the war inspired the codi-
fication of an ideal rational agent. To make decisions in the face 
of adversity and uncertainty, uncertainty needed to be quanti-
fied. The ideal rational agent would do just that by equating 
the unknown with the random. Just as nineteenth-century 
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physicists had shown, a vast collection of unpredictable events 
could look predictable on average. Once uncertainty was quan-
tified, a plan would need to be constructed to maximize the 
chances of a good outcome. The value of outcomes would be 
equated with a universal currency. A rational agent would thus 
assess the probability of various futures and choose its action 
to maximize its returns. It would be less ad hoc, temperamental, 
and tied to conventions than its flawed human designers. It 
would be mathematically rational.

Between 1945 and 1950, not only was this mathematical ide-
ology fully developed, but the modern computer architecture 
was designed and built to execute it. Computers were designed 
to build better weapons and make better decisions in the shift 
from the World War to the Cold War. The rise of the Cold War 
administrative state, with massive investment in research, aca-
demia, and medicine, provided the ample funds and resources 
needed to build these first computers. And the computers 
would be designed to execute the four pillars of mathematical 
rationality: mathematical optimization, game theoretic strat-
egy, randomized experimentation, and statistical prediction.

And though our contemporary computers are billions of 
times more dense and powerful than their 1950s counterparts, 
their internal logic, organization, architecture, and robotic ide-
ology have remained the same.

———

The centering of the computer and its theoretical potential ex-
plains how mathematical rationality shaped how we conceive 
of rationality today. Part of the power of mathematical rational-
ity is attributable to the unfathomable growth of computing. 
For a long time, computers got twice as fast every two years. 
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Gordon Moore, the co-founder of Intel, predicted this in 1965, 
and for decades the computing industry proved Moore correct. 
Such exponential growth meant that problems that seemed un-
solvable last year became solvable the next year. From 1965 to 
2015, fifty years after Moore’s prophecy, computing power dou-
bled 25 times, equal to a mind-boggling factor of over 30 mil-
lion. Computers got faster, and that gave us a guiding vision. We 
could see how far the information age could take us.

Growth in computer “intelligence” far outgrew growth in 
human intelligence. And since there was so much excitement 
about these improved business engines, it didn’t really make 
sense to worry too much about alternative ways to make deci-
sions. Adding more computing and data seemed to enhance 
decision making at multiple points. Computers helped govern-
ments grow and manage a blooming administrative state. Com-
puter backends help manage businesses. Computers created a 
globally connected financial system that has enabled unprece
dentedly interconnected trading and commerce. They undergird 
path dependencies in our complex and confusing healthcare 
system. There is nothing we do anymore that doesn’t touch a 
computer. The logic of spreadsheets, the immediacy of email, 
and the information of the internet all shape how we think 
about knowledge. We equated the booming power of our com-
puter systems with the power of mathematical rationality to 
solve problems.

But if rational decision making is a hammer, every decision 
looks like a nail. There are sweet spots for each pillar of math-
ematical rationality, but it’s easy to get trapped by one’s tools 
and fail to realize that the most difficult questions are the ones 
the tools can’t answer. Mathematical rationality is peculiar and 
robotic! All unforeseen occurrences are deemed conceptually 
equivalent to a lottery. All decision making is a proper mechanical 
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analysis of risk. The mathematically rational agent always iden-
tifies and chooses the least risky potential outcome. According 
to the inventors of computers, the truly rational agent is an 
actuary.

Today, the unprecedented scaling phase of the information 
age is ending. Access to the computing power needed to solve 
the most daunting contemporary calculations is concentrated 
among a few large tech companies. And even for these folks, 
exponential scaling must end too. We’ll run out of data centers 
and electricity sooner rather than later. So what do we do next? 
Maybe it’s time to step back and ask whether we’re happy with 
the shortcomings of our big bureaucratic system. To ask why 
we’re stuck with our idiosyncratic mathematically rational 
decision-making paradigm. To look to other ways of making 
decisions.

Steven Pinker and Nate Silver both claim we should strive 
for more mathematical rationality. I will present the case for 
why the future really needs less. We should use the tools of 
mathematical rationality only sometimes, in the sweet spot 
where they do make very good decisions—but the rest of the 
time, we need a human touch. Sure, humans aren’t mathemati-
cally rational, but some decisions can’t be reduced to numerical 
calculations. Sometimes our ingenious human qualitative irra-
tionality is precisely what a situation needs. In the pages that 
follow, I’m going to show you how the four pillars of mathemat-
ical rationality came to such power and ubiquitousness—but 
also how they can only get us so far.
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