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Plants produce and detect chemical signals—scents represented as purple molecules above—
that are exchanged among plants, and between plants and fungal and animal partners. 

Mycorrhizal fungi (drawn in red) facilitate communication among root systems (in green).

respond to changes in position by reinforcing support 
structures and redirecting growth if the plant is tilted.

Although plants make their food—sugars—through 
photosynthesis, they require a variety of other elements 
to make the wide range of molecules needed for life. 
In addition to hydrogen from water and carbon and 
oxygen from carbon dioxide, plants need nitrogen for 
proteins, phosphorus for energy storage molecules, and 
potassium to control water movement in and out of 

cells. Plants also need calcium, magnesium (for chlo-
rophyll), sulfur, boron, copper, iron, chloride, manga-
nese, molybdenum, and zinc. Roots hunt through soil 
for these mineral nutrients, detecting them with spe-
cialized proteins on their tips. When detector proteins 
sense needed elements, plant hormones signal a prolif-
eration of root hairs and turn on the absorption sys-
tem. This moves mineral nutrients into the root, where 
they ascend the stem to nourish plant cells.
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Plants sense temperature with other proteins embed-
ded in their cell membranes. These proteins change 
shape as temperature rises and falls, which stimulates 
a variety of responses in the plant cell. These proteins 
work together with light sensors to tell leaves when 
sunlight causes leaves to overheat and they must open 
their stomata to cool off. Temperature sensors in other 
parts of the plant help synchronize growth and other 
important activities with seasonal conditions.

Plants also sense touch. In animals, detecting pres-
sure relies on specific nerve cells. Lacking nerves, 
plants perceive touch using springy proteins embed-
ded in their cell membranes. When touched, these pro-
teins change shape and signal physical contact. This 
mechanism is most important for plants that respond 
quickly to touch, such as the Venus flytrap (Dionaea 
muscipula), which snaps shut on an unsuspecting in-
sect within seconds of contact. In this case, the plant 
responds to the fly’s touch by sending waves of electri-
cally charged calcium ions through the cell. This sig-
nals the plant to move water into cells on the outside 
of the trap, swelling them and folding the trap closed. 
In other cases, physical contact changes pressure in-
side the cell as a whole, triggering slower responses. 
In climbing plants, for example, a tendril feels the 
pressure of contact with a nearby surface. The touch 
causes the tendril to grow toward the pressure, eventu-
ally grasping a support.

Plants use other specialized proteins on their cell sur-
faces to detect specific chemicals. In animals, we call 
this smell. Like animals, plants sense and respond to 
compounds that travel through the air. For example, 
plants emit particular compounds when experiencing 
drought stress or insect attack. Nearby plants, or dif-
ferent parts of a large tree, detect these chemicals and 
respond by producing defensive compounds or ad-
justing water use. In grass, the familiar “new-mown 
lawn” smell is an alert signal to neighbors that leaves 
are under widespread assault. Roots also release chem-
ical signals that invite connections with neighboring 
plants, direct the behavior of soil fungi, and alert neigh-
bors of developing water stress. Plants release familiar 
chemicals—scents—that attract pollinators and seed 
dispersers. In many cases, the particular blend of com-
pounds released can be complex and specific, a way for 

the plant to communicate its identity to a particular 
pollination partner. In other cases, generalized scents 
advertise sweet fruit to a variety of dispersers.

LIVING TOGETHER IN 
COMMUNITIES
In the mid-twentieth century, the new field of ecology 
debated whether plants lived together in highly inter-
dependent communities or plant species co-occurred as 
neighbors of convenience. In 1916, Frederic Clements 
observed that regions were clearly defined by particular 
collections of species. Patterns emerged regionally and 
locally, with specific plant associations seen in spots 
with specific soil and climate conditions. In northeast-
ern North America where he worked, Clements noted 
that when plants recolonized abandoned farm fields, 
they did so with a predictable pattern of successive spe-
cies. First came grasses and herbs like asters (Symphyotri-
chum), ragweed (Ambrosia artemisiifolia), and goldenrod 
(Solidago). These were followed by sun-loving shrubs 
like blueberry and huckleberry (Vaccinium). Easily dis-
persed, hardy, and short-lived trees like pin cherry 
(Prunus pensylvanica) and aspen (Populus) germinated in 
the sunny meadows and quickly developed a canopy, 
which shaded the soil, reduced its temperature, and 
stimulated germination of longer-lived trees like sugar 
maple (Acer saccharum) and beech (Fagus). Deeper shade 
beneath this canopy fostered oaks (Quercus) and a va-
riety of ferns. Clements argued that these species de-
pended on each other to provide the conditions needed 
for germination and growth, so they must live as an 
interconnected community, vulnerable to the loss of 
any of its members. Henry Gleason offered a counter
argument in 1917. He proposed that individual plant 
species simply followed their preferred environmental 
conditions. If particular species tended to be found to-
gether, it was because they all sought similar climates, 
soil types, moisture, and light environments.

Over the next decades, several important observa-
tions shifted thinking toward Gleason’s view of plant 
communities. The species that recolonized an area after 
wildfire or clear-cutting differed depending on the type 
of disturbance. While grasses and herbs dominated 
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abandoned farm fields, bracken fern greened areas 
cleared by wildfire. Moreover, paper birch (Betula papy-
rifera), not yellow birch (B. alleghaniensis), was the first 
tree to invade areas blackened by fire. However, the 
arrival of forest trees also depended more on the prox-
imity of mature trees that could provide seed than on 
the particular species of the tree. These observations 
suggested that plant species responded to cues in their 
environment and the luck of dispersal, rather than fol-
lowing specific partners. 

In Wisconsin, John Curtis described the slow dance 
between prairie and forest. In 1959, he reported that 
the boundary was dynamic and varied with climate, fire 
history, and dispersal as species from the forest ven-
tured into the prairie and prairie species penetrated 
open spots in the forest. Fossil pollen preserved in 
the sediment of ponds throughout the eastern United 
States provided additional evidence. In 1958, Marga-
ret B. Davis published her first paper on pollen depos-
ited in ponds during the retreat of glaciers at the end 
of the most recent ice age. Davis’s work documented 
21,000 years of forests greening a landscape that had 
been scraped bare by ice. Over the next 20 years, Davis 
showed that tree species followed individual migration 
routes out of their glacial refuges. She realized that tree 
species living together today were those that happened 
to arrive at a spot where climate and soil conditions 
were right.

The final piece of evidence came from ecologists 
studying how North American forests responded to the 
chestnut blight of the early twentieth century. American 

chestnut (Castanea dentata) was one of the most abun-
dant trees throughout the Appalachians until the late 
nineteenth century thanks to forest husbandry by In-
digenous Americans. In Clements’s view of intercon-
nected plant associations, chestnut’s loss would have 
ripped the forest community apart. Chestnut was abun-
dant in the pollen record prior to the early twentieth 
century, then it suddenly disappeared as mature trees 
succumbed to a fungal disease introduced from Asia. 
By 1912, almost all mature chestnuts in North Amer-
ica were dead or dying. Instead of collapsing, however, 
other trees like maples and oaks filled the spaces left by 
the chestnuts. The forest communities changed but did 
not collapse. The evidence seemed clear that plants fol-
lowed preferred soil and climate conditions and estab-
lished wherever their seeds could find a space. Although 
canopy trees certainly changed the environment on  
the forest floor and influenced which species could live 
in their shade, the identity of canopy trees seemed to 
matter little.

Applying these ideas to the Mesozoic, paleobotanists 
recognize that plants have relatively simple needs that 
have remained the same over most of the history of 
plants on land: sunlight, water, mineral nutrients in 
soil, and space. The constancy of these needs means 
that many of the principles of plant biology derived 
from the study of modern plants apply easily to those 
that lived in the Mesozoic. And where details might 
differ, we have Mesozoic survivors—ferns, horsetails, 
conifers, Ginkgo, and cycads—with which to test the 
breadth of these biological ideas.

GROWTH

The differences between plants and animals begin with 
their cells. Both plant and animal cells have nuclei that 
contain most of the genetic instructions—in the form 
of DNA—needed to build and operate the organism. 
Plant and animal cells also share structures called ribo-
somes that translate genetic information into proteins 
that do the work of life, and mitochondria that use 
sugars for energy to power all the organism’s activities. 

A flexible cell membrane encloses all these cellular 
structures and selectively allows water and other mol-
ecules in and out of the cell. This is where the differ-
ences begin. Plants have chloroplasts, the factories 
where photosynthesis takes place. Chloroplasts con-
tain the pigments plants use to gather light, split water 
molecules, and package chemical energy. Chloroplasts 
also house the scaffolding where the photosynthetic 
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enzyme rubisco grabs carbon dioxide and begins its 
transformation into sugar. The most consequential dif-
ference between plant and animal cells is the stiff cell 
wall that surrounds the cell membrane in plants. Plant 
cell walls are composed mostly of cellulose, the long 
molecule that gives cotton its string-making powers. 
Some cell walls, particularly those in water-conduct-
ing cells, are further reinforced with a virtually inde-
structible compound called lignin, which gives wood 
its woodiness.

The cell wall gives plants many advantages. First, 
they are stiff and resilient. Plants do not need bones 
or shells to hold their bodies together and upright on 
land. Cell walls also protect plant cells from invasion 
by ever-present microbes and make them a little less 
palatable to predators. Of course, both microbes and 
plant predators have evolved strategies to deal with 
these defenses. For example, one group of fungi found 
the biochemical key to digest lignin. The protective 
cell wall also comes at a cost: after they lay down their 
walls, plant cells cannot move. In animal growth and 
development, cell movement is vital. Most animal cells 
are specialized for a particular function—for example, 
becoming muscle, blood, bone, or a reproductive cell—
soon after they arise and must move to the appropriate 
part of the animal body to function. This strategy will 
not work for plants. Instead, plants retain pockets of 
generalized cells throughout their body, allowing them 
to spring into developmental action and transform 
into specialized cell types whenever needed. In practi-
cal terms, when you prune your shrubs, the plant can 
activate generalized cells near the site of the cut and 
immediately build new water-conducting, sugar-trans-
porting, structural, or photosynthetic parts. Most an-
imals, in contrast, struggle to replace important cells 
when they are lost or damaged.

MODULAR GROWTH IN PLANTS

Plants build their amazing variety of forms from a sim-
ple building block, creatively modified and repeated 
over and over. To understand this design, consider a 
familiar houseplant like the jade plant (Crassula ovata). 
Look closely at a straight part of the stem. You will 

notice that leaves emerge, generally in pairs, at defined 
points along the stem, with successive pairs oriented at 
right angles to the pair above and below. Between the 
leaf pairs, the stem is straight and smooth—or perhaps 
wrinkly and textured in older stems. The point where 
the leaves emerge is called a node. The straight stem 
between is an internode. In an unbranched jade plant, 
the node-internode building blocks stack one on top of 
the other like children’s snap-together bricks to form a 
straight stem with pairs of leaves all along. Growth be-
gins with a cluster of generalized cells tucked between 
the topmost pair of leaves. These cells retain the abil-
ity to transform into any cell type that the plant needs. 
The generalized cells at the growing tip produce a plant 
hormone called auxin, which directs the proliferation 
of cells and helps the new cells become organs, such 
as leaves at the edges of the stem or water-conducting 
cells toward the center. When all the needed module 
cells are ready, a second family of hormones, gibberel-
lins, signal cells to elongate by filling with water and 
stretching, just before the stiff cellulose cell wall forms. 
Once the final shape of the cell is cast by the cell wall, 
the new cell is ready to begin its work. In a plant in-
stant, a new shoot extends from the growing tip, the 
straight internode elongates, and leaves unfurl. The 

Crassula ovata illustrates the node–internode design 
found in most land plants. Leaves and branches 
emerge from nodes. Between nodes—the internode—
the stem elongates.
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plant has added a new node–internode module, and 
the leaves at the growing tip have moved just a bit 
closer to the light. During the phase when gibberel-
lins direct cell elongation, the plant’s light-sensing sys-
tem samples the environment to determine whether 
the growing tip is in sun or shade. If phytochrome de-
tects shade, gibberellins pour into the cells, and the 
internode stretches as far as it can in search of better 
light conditions. If phytochrome detects the red wave-
lengths of full sunshine, gibberellins fade and the plant 
produces a short internode.

Take a pair of pruning scissors and cut through the 
jade plant’s internode just above any pair of leaves and 
you will see another key part of the plant growth strat-
egy. Nestled in the node, just above the place where 
the leaf attaches, is another cluster of generalized cells, 
a bud. When growth is focused at the tip of the stem, 
auxin produced by cells at the top of the plant keeps 
the buds below in a state of suspended animation. They 
remain able to develop, but they do not. However, re-
move the tip of the stem, and the auxin supply disap-
pears. Now, the generalized cells closest to the topmost 
remaining pair of leaves spring into action and begin 
to pump out their own auxin. Auxin stimulates de-
velopment of a new branch—long, straight internode 
and leafy node—that emerges from the spot just above 
the topmost remaining leaf. In addition to becoming 
branches, the generalized cells at each node can become 
reproductive structures like flowers or cones when the 
plant senses that the time is right.

Now return to the cutting you removed from the jade 
plant. Place it in water, and the generalized cells at the 
node just above the cut will recognize that something 
dramatic has happened and respond by transforming 
into roots. Once roots emerge, the new plant can be 
transferred to soil, where it will continue to grow up-
ward from the shoot tip and downward as roots from 
the bottommost node. In nature, wind or a passing ani-
mal might knock branches off the wild jade plant. Once 
on the ground, the node closest to the break will send 
out roots that sense gravity and dive downward in the 
hope of reestablishing a connection to the lifegiving 
soil. The shoot tip also senses gravity and turns to grow 
upward. This ability to respond to damage allows the 
plant to proliferate in spots where the parent thrives.

BUILDING THE VARIETY OF 
PLANT FORM WITH NODES 
AND INTERNODES

Although a jade plant provides a useful example of 
basic plant growth, many plants look quite different, 
with less obvious nodes and internodes. Even so, they 
use the same succession of modules, with a few mod-
ifications, to produce their varied architecture. Con-
sider a conifer like eastern white pine (Pinus strobus). 
When a seed germinates, the embryo’s root tip emerges 
first. Starch granules in the root cells sense gravity, 
and the tip dives for the cover of soil. Meanwhile, the 
shoot wriggles free from the seed coat and displays 
a tuft of needles. Phototropins immediately look for 
the blue light that will point the shoot skyward. Once 
upright, the cluster of generalized cells nestled within 
the first lock of needles produces growth-stimulating 
auxin, and new modules develop. If phytochrome de-
tects shade, the seedling’s best chance of survival will 
be to devote energy to producing as many new leaves 
as possible. Therefore, successive internodes will be 

The growing tip or meristem of the plant contains  
cells that can develop any plant tissue, giving the  
plant flexibility to replace lost or damaged parts.

Meristem

Node

Node

Internode

Leaf

Bud

Water-
conducting 
cells
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extremely short, with needles produced at each node. 
So that needles do not shade each other, they emerge 
in a spiral around the cylindrical shoot, creating a bot-
tle-brush array. Because the internodes are short, the 
seedling does not grow taller during this early phase. 
Over time, the forest canopy might open, allowing red-
enriched sunlight to strike the pine seedling. Phyto-
chrome senses the change and signals gibberellins to 
stretch the internodes so that the seedling can shoot 
up quickly. Pines, like most conifers, depend heavily 
on their topmost growing tip to regulate their shape, 
and as that growing tip moves farther away from the 
nodes below, the buds at these lower nodes feel the api-
cal tip’s auxin less and begin to stir. When the growing 
tip is just the right distance from the buds below, they 
produce new branches. For many conifers, branches 
arise at regular intervals along the straight, central 
stem as the tree grows taller. For pines growing in a 
forest where the only red light is from above, lateral 
branches may see shade, which triggers growth to stop 
and the branches to die and fall off. This creates the 
tall, straight, branchless trunks that characterize coni-
fers in dense forests.

Some ferns and grasses take a different approach to 
nodes and internodes. The green clumps of ferns or the 
grass blades between our toes are only the leaves of the 
plant. Dig down a bit and you will find the leaf clus-
ters, produced on very short internodes, attached to a 
specialized stem that grows horizontally just below the 
soil surface. For the underground stem, the dark of the 
soil environment stimulates the internodes to elongate 
as the growing tip explores for soil nutrients or a patch 
of light. Once the growing tip detects a suitable spot, 
gibberellin production slows, internodes shorten, buds 
spring into action, and a new tuft of leaves grows sky-
ward. For these plants, their growing tips and the gener-
alized cells that control plant growth are hidden safely 
below the surface of the soil, protected from animals 
who gobble up the leaves.

To build even more exotic plant bodies, evolution has 
modified the basic module even further. In the squat 
trunks of many modern cycads, internodes fail to elon-
gate, and whorls of leaves and the woody scales that 
support them pile on top of one another to form a spiky 
mound. Precious generalized cells are protected inside 
the armored trunk while only leaves face a world full 
of herbivores. Vines like kudzu (Pueraria montana) take 
the opposite approach. The fast-growing invasive from 
subtropical regions of South and East Asia can grow up 
to 30 cm (12 in) a day by maximizing cell elongation in 
its internodes. Vines combine this extraordinary elon-
gation ability with their light-sensing and support-grab-
bing powers to locate sunlight and climb toward it.

MANY WAYS TO BUILD A TREE

Imagine taking your childhood sweetheart to a fa-
vorite tree to enjoy a first kiss. You might—but really 
shouldn’t—commemorate that first love by carving 
your initials into the tree’s bark. Decades later when 
you return to reminisce, what will you see? The letters, 
now broad and distorted, remain at child’s height, even 
though the tree is now much taller than it was when 
you visited long ago. The increase in trunk diameter is 
only one of the ways plants become trees sturdy enough 
to withstand storm winds and hold up a canopy full  
of leaves.

This cross section shows how cycads build sturdy 
trunks. Their strength comes from a thick outer  
bark and woody leaf bases. Cycads produce little  
or no wood.



Growth

46

Tree size has evolved in all groups of land plants that 
have tracheids to conduct water. When similar traits are 
seen evolving repeatedly in different groups, it is a good 
bet that the trait offers a significant benefit for the lin-
eage that possesses it. For plants, light is a vital resource, 
and it only comes from above. Mesozoic plants found 
several solutions to the challenge of becoming tall.

The most common way to become a tree is to make 
wood. Wood is simply abandoned water-conducting 
cells. In conifers, ginkgos, some cycads, and many 
closely related extinct groups from the Mesozoic, the 
tree maintains a layer of generalized cells just under 
their bark. These cells, called the cambium, divide, with 
the cells toward the outside of the layer becoming the 
sugar-transporting phloem cells, and the cells on the in-
side becoming the water-conducting cells, or xylem. In 
seasonal climates, cambium cells begin dividing at the 
beginning of the growing season, creating a new layer 
of large, water-conducting cells that jump-start leaf 
expansion in the canopy high above. Cambium cells 
continue to divide throughout the growing season until 
they quiet as the tree becomes dormant. This pattern 
of activity and dormancy creates the familiar tree rings 

Palms, a group of flowering plants, build sturdy  
trunks with a combination of thick woody bark  
and sturdy fibers that run up and down the trunk 
providing strength and flexibility.

Tree ferns mantle their stems in fibrous roots that give 
the trunk strength and flexibility. Within the stem itself, 
bundles of water-conducting cells are reinforced to 
make the trunk stiff.

Many seed plants produce woody trunks with a  
thin layer of growing cells that proliferates just  
under the bark in this cross section. In seasonal 
climates, alternating periods of growth and 
dormancy produce rings.

Reinforced 
tracheid 
bundles
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that characterize wood formed in seasonal climates—in 
both warm–cold and wet–dry seasons. Trees that expe-
rience a year-round growing season continually make 
new conducting cells and do not produce rings. Making 
new wood and the resulting increase in trunk diameter 
helps the tree in two ways. First, growth replaces water-
conducting cells that no longer function because their 
water chain has been broken. Second, continually add-
ing wood means that the tree’s trunk grows stronger as 
its canopy enlarges and becomes heavier.

Most angiosperms build trees with a cambium, a 
skill they inherited from a common ancestor with the 
other seed plants. However, palms evolved a different 
approach. Instead of a cambium layer, palms cluster 
all their growing cells at the top of the plant where 
the leaves emerge. The palm stem contains bundles of 
water-conducting cells scattered throughout the trunk 
rather than ringed wood. The multitude of conducting 
bundles, combined with lignin-reinforced fibers, give 
the palm trunk the strength and flexibility to with-
stand tropical cyclones. Palm seedlings grow by first 
expanding laterally to achieve their adult diameter. 
This produces a low, squat trunk topped with a shock 
of leaves. This early phase requires a lot of energy and 
explains why tree-sized palms prefer sunny spots. In 
contrast, shade-loving palms generally remain small 

and slender. After widening, the generalized cells of the 
palm heart continue to divide and elongate but shift 
toward upward growth. Also, because palms cannot 
replenish their water-conducting cells with new growth 
from a cambium, they cannot recover when the water 
in their conducting cells freezes. Consequently, palms 
have reliably indicated warm climate for their 85-mil-
lion-year history.

Ferns also lack a cambium and those that become 
trees use a strategy like that of palms. Tree fern trunks 
have complex, netlike webs of thick-walled conduct-
ing cells, lignin-reinforced, rodlike fibers, and sturdy 
leaf bases that remain on the trunk to provide extra 
support. Many tree ferns also swaddle their stems in a 
mantle of special roots that add more support. Ferns 
have another trick to help keep their leaves in the can-
opy as their trunk grows taller: they extend their leaves 
on the plant equivalent of a selfie stick. As a tree fern’s 
growing cells begin to sense shade, phytochrome turns 
on the gibberellins in the leaf’s petiole to extend it from 
a modest 50 cm (about 1.5 ft) to more than 300 cm (over 
9 ft), simply by making individual cells longer. This al-
lows the leaves to reach the encroaching canopy even 
if the trunk cannot grow fast enough. Eventually, how-
ever, the tree fern may be overtopped by faster-growing 
neighbors and adjust to life in the shade.

EVOLVING IN RESPONSE TO  
THE ENVIRONMENT

HOW EVOLUTION HAPPENS

Genetic Variation and  
Natural Selection

Evolution means changes in a lineage that happen 
over many generations. In addition to time, evolution 
requires individuals to differ from one another genet-
ically. Like animals, plants generate genetic variation 
through mutations—changes in the DNA sequence—
that happen when cells copy their genes as they divide. 

Because animal cells specialize very early in develop-
ment, the only mutations that travel into the next gen-
eration are those that happen in egg cells and sperm. 
Mutations in any other part of the body perish with the 
animal. Plants have more possibilities. Because each 
of a plant’s growing tips retains generalized cells that 
can become eggs and sperm, mutations that happen in 
any of a plant’s many growing tips can be passed down 
to the next generation. For large, long-lived trees, the 
thousands of growing tips in a single canopy may each 
contain a different suite of mutations that can become 
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part of the tree’s evolutionary heritage. Next, sexual re-
production adds to genetic variability by shuffling the 
genes of the parents to produce new combinations in 
offspring. Plants and animals both do this, but plants 
have a few additional tricks for amplifying the varia-
tion generated by sex. Plants can combine and multi-
ply all of their genes at once—a catastrophic genetic 
“error” that would be fatal to most animals. This allows 
plants to combine more traits and generate new spe-
cies with novel features. The duplication of the plant’s 

genes that happens during these events can also boost 
useful traits. For example, a number of weeds have 
evolved resistance to common commercial herbicides 
by simply adding more copies of the gene targeted by 

An ancestor of modern maize (above left) produced 
separate pollen- and seed-producing flowers that 
looked similar. Over time, farmers chose those 
individuals that made larger ears with more grain.

right: Wild teosinte grows in branching clumps. This 
species contributed genes to domestic maize.

Plants perform two types of cell division. In mitosis (left), cells simply copy 
themselves by first duplicating their genes and then pulling one copy into 
each of the newly divided cells. In meiosis (right), cells exchange genes 
along the strings of DNA to create different genetic combinations. After a 
second division, these cells become eggs and sperm.

Mitosis Meiosis

Male 

Ancestor

Modern maize

Female 
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the chemicals. Generating tremendous genetic variety 
quickly allows plants to evolve rapidly.

The environment tests the traits produced by 
genetic variability through a process that Charles 
Darwin called “natural selection.” In developing this 
idea, Darwin riffed on a practice that farmers have 
used for millennia: they chose traits that they liked 
and encouraged individuals possessing those traits to 
reproduce. Over generations, breeders could sculpt 
plants and animals with the traits they preferred. The 
evolution of domestic maize (Zea mays), also known 
as corn, illustrates the process. A wild grass that is 
likely extinct today produced a few popcorn-like seeds 
that caught the attention of Indigenous Americans 
in what is today central Mexico. They began to save 
seeds and plant them in their gardens. However, the 
ancestral plant was not particularly productive. In 
a chance event about 5,000 years ago, pollen from a 
related wild species accidentally combined with early 
maize and brought with it new genes that produced a 
compact cob with many more kernels. An observant 
Indigenous farmer recognized the potential in the new 
combination and began to grow it, choosing the largest 
ears in successive generations. Over time, selective 
breeding of individuals with large and nutritious seeds 
produced the crop that became a staple throughout 

the Americas. Darwin proposed that the environment 
governed which organisms produced offspring, much 
like a farmer selected traits. Over long stretches of time, 
this process could produce all the variety observed in 
the biological world.

Evolution for Flexibility
In animals, new species commonly evolve as organ-
isms specialize to share key resources. Plants have sim-
ple needs—light, water, a handful of common minerals, 
carbon dioxide, and space to grow—that cannot be eas-
ily divided to generate new species. Instead, new plant 
species explore different strategies for acquiring a lim-
ited resource. Light, for example, generally comes from 
above, so any trait that allows plants to move skyward, 
whether through climbing or growth upward on sturdy 
branching stems, will be favored by natural selection. 
Similarly, plants are rooted in place throughout their 
lifetimes. Therefore, selection favors strategies for flex-
ibility in changing conditions, rather than increasing 
specialization. For example, most plants can adjust the 
configuration of their leaves to accommodate differ-
ing light conditions throughout their lifetime. For in-
stance, plants that live on the forest floor experience 
shade until a gap in the canopy opens above them. 

Leaves of modern Ginkgo biloba demonstrate that leaves developing in full sun (left) are smaller and, in 
microscopic section, thicker with elongated photosynthetic cells. Leaves grown in the shade, even on the  
same tree (right), are larger and thinner.

Sun Shade
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Time ranges for major groups discussed in the text. The dotted line indicates 
that the group was absent from the fossil record for a time but not yet extinct.
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Now intense sunlight floods the forest floor, damaging 
delicate chloroplasts in leaves tuned for shade. Most 
plants have the ability to shed these damaged leaves 
and grow new ones calibrated for their new light envi-
ronment. When the canopy closes again and the plant 
finds itself back in shade, it will shed its sun leaves and 
make a new set of shade leaves. Neither the sun- nor 
shade-type leaves have been specifically selected by this 
patchy environment. Instead, plants that had flexibil-
ity to change with the environment were more likely 
to survive longer and reproduce more. Evolution fa-
vored resilience in a constantly changing environment. 
The simplicity of a plant’s environmental needs also 
means that many pathways lead to survival. For exam-
ple, if rain is rare, some plants evolve strategies for stor-
ing water, others conserve it, and others develop seed 
dormancy in which they germinate, grow, and repro-
duce quickly in the few weeks following a rainstorm.  

All these strategies will allow their bearers to success-
fully weather drought and send offspring into the next 
generation—the definition of evolutionary success.

Although the rule in plant evolution is flexibility, 
angiosperms provide an exception. One key to the 
tremendous diversity of flowering plants is the com-
plex relationships with pollinators and seed dispersers. 
Flowers evolved colors, shapes, and scents to attract 
specific pollinators because a plant produces the most 
seeds when pollinators only visit other members of 
its species. In this case, the advantages of specificity 
are worth extra energy to the plant. A yucca (Yucca 
filamentosa) produces a scent attractive only to a single 
species of yucca moth (Tegeticula yuccasella) and times 
its flowering to the season when adult moths emerge 
and begin to look for mates. Yucca moths seek out the 
flower and deposit a few eggs within, picking up pol-
len as they do. They then seek out another flower of 
the same species to lay more eggs, spreading pollen as 
they go. When the moth larvae hatch, they eat a few 
of the developing seeds, a small price for the plant in 
exchange for having pollen faithfully delivered. Flow-
ering plants have also evolved to cater to the tastes 
of specific dispersers. Apples, for example, evolved 
first in a dispersal partnership with birds in what is 
today China. These early apples were bright red, a 
color birds easily recognized amid a sea of green foli-
age, with small, hard, bitter fruit that suited birds that 
swallowed the fruit whole. As the lineage migrated into 
central Asia, it left its bird partners behind and de-
veloped dispersal relationships with mammals. Mam-
mals have a notorious sweet tooth and were looking 
for more substantial meals. The new relationship fa-
vored trees that produced the large, sweet fruit that we 
enjoy today. In these cases, angiosperms adopted the 
animal pattern of dividing recourses—pollinators and 
dispersers—among many different species to multiply 
their own diversity and become the most varied lin-
eage of plants in Earth’s history.

Yucca filamentosa has evolved an exclusive pollination 
relationship with a single species of tiny moth, 
Tegeticula yuccasella.
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ENVIRONMENTAL FORCES 
SHAPING PLANTS

Water and the Climate that 
Delivers It

To plants, temperature is simply an index of water 
availability. In a cold season, for example, ice crystals 
form in conducting cells, disrupting the chain of water 
molecules on the way to the leaves. The leaves experi-
ence the loss of water, not the cold directly. Similarly, 
in a hot, dry season, leaves open their pores to allow 
water to escape, taking excess heat with it. This pulls 
hard on the column of water molecules along the stem 
and may break the chain. Once again, the leaves expe-
rience a water shortage. In both hot and cold climates, 
when the change is seasonal, long-lived plants evolved 
the ability to sense the oncoming change and drop their 
leaves before water runs short. By acting preemptively, 
the tree can harvest valuable nutrients like nitrogen, 
potassium, and magnesium from leaves before they are 
shed and store them in the roots until favorable grow-
ing conditions return.

Plants have evolved other features to thrive in a 
range of climates. In rainy regions, the leaves of flower-
ing plants have pointed tips that help shed accumulated 
water so that it does not clog pores and restrict airflow 
into and out of the leaf. In dry climates, small, chunky 
leaves with a thick, waterproof covering retain limited 
moisture. In the early 1900s, Irving Bailey and Edmund 
Sinnott observed that broadleaf trees in cool climates 
tended to produce leaves with serrated edges. Research-
ers do not understand how this feature aids the tree’s 
survival, but even if the function of all the plant’s fea-
tures cannot yet be explained, there is no question that 
plants are exquisitely adapted to the climate where they 
grow. Wladimir Köppen’s global climate classification 
scheme published in 1884 was fundamentally a map-
ping of vegetation types. Later, when meteorological 
measurements became available worldwide, the vege-
tation zones correlated almost perfectly with tempera-
ture, precipitation, and seasonality patterns.

Disturbance
Environmental disturbance was ubiquitous in the Me-
sozoic. Warmer climates contributed to frequent wild-
fire, even in a time when atmospheric oxygen levels 
were somewhat lower than those of today. Warm cli-
mates also intensified storms that shattered limbs and 
downed trees. Triassic monsoons in what is today the 
western United States generated floods that swept away 
hundreds of trees at a time. And during the Jurassic and 
Cretaceous, large dinosaurs crashed through the veg-
etation. Unable to run or hide, plants were burnt, up-
rooted, swept away, or crushed by a myriad of Mesozoic 
disasters. And in addition to the everyday disturbances 
of Mesozoic life, plants passed through three animal 
mass-extinction events that were each characterized by 
catastrophic disruption of the physical environment. 
Even if extinction events did not wipe out as many 
groups of plants as animals, the conditions responsible 
for widespread extinction certainly killed uncountable 
individual plants and disrupted their communities.

Disturbance acted as a powerful selective agent, kill-
ing many individual plants. Those that survived, and 
thus passed on their traits to subsequent generations, 
possessed a variety of features that helped them cope 
with disturbance. Plants adapted to fire shelter pockets 
of generalized cells safely below the soil surface. When 
aboveground stems burn, these buds activate and grow 
new shoots. Other plants protect seeds in sturdy cones 
that remain clenched until the wildfire’s heat melts res-
ins on the cones’ surface and allows them to open. For 
these plants, the fire also removes organic matter and 
competitors from the soil surface, making a perfect bed 
for the seeds that drop from the newly opened cones. 
Other species make seeds that can persist in the soil for 
long periods and germinate when their phytochrome 
senses detect that the canopy has been removed. Other 
trees like the coast redwood (Sequoia sempervirens) 
evolved thick, fire-resistant bark to insulate their deli-
cate living cells from the heat of a blaze. Sequoia also 
sheds most of its low branches as it reaches its full 
height so that wildfire cannot climb into the canopy 
and destroy vulnerable foliage.

Many of the innovations that make flowering 
plants so successful may have begun as adaptations to 
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disturbance. The high angiosperm photosynthetic rate 
may have its roots in quick responses to a changing 
light environment in their ancestral forest floor habi-
tat. Likewise, fast growth and reproduction may have 
allowed flowering plants, germinating on the banks of 
frequently flooded rivers, to complete their life cycles 
before they were swept away. This ability allowed an-
giosperms to occupy a piece of the landscape unavail-
able to slower-growing species. In a world with limited 
space to grow, this strategy helped angiosperms leave 
more offspring in the next generation. Fast growth also 
helped flowering plants recover from trampling and 
colonize ground churned by passing dinosaurs, condi-
tions that slower-growing seed plants could not exploit.

Predators, Pathogens, Partners, 
and Dispersers
For animals like us, plants are resources—food, shelter, 
and, perhaps, beauty. Plants, on the other hand, have 
evolved a myriad of ways to coax animals to work for 
them. Some plants surround their seeds in sweet and nu-
tritious fruit to encourage animals to consume and trans-
port their seeds, depositing them in a pile of ready-made 
fertilizer. Plants advertise such seeds and fruits with 
colors and scents tuned to the animal partner’s senses. 
Other plants evolved seeds with hooks to catch fur, skin, 
and feathers for a free ride to a new spot. Plants also 
use some of their surplus sugar to offer sweet rewards 
for animals who visit their reproductive structures and 
carry pollen from plant to plant. And to encourage fidel-
ity, natural selection tuned the colors and scents to the 
preferences of a specific set of animal partners. For ex-
ample, the flower of the hammer orchid (Drakaea) smells 
exactly like a female thynnine wasp. The male lands on 
the flower and becomes covered with pollen as he at-
tempts to mate. He then flies off in search of a new part-
ner, carrying pollen to the next orchid as he goes.

Plants cannot evade predators by running or hid-
ing. Instead, they protect themselves with physical and 
chemical defenses. The Mesozoic introduced many new 
plant predators to the evolutionary stage: large (her-
bivorous dinosaurs), small (voracious mammals), and 
minuscule (several new groups of insects). Some lineages 
like conifers and cycads evolved armor—investing their 

long-lived leaves with the sturdy molecule lignin and 
imbuing them with sticky and bitter resins. Although 
this challenged delicate mouths and sensitive tummies, 
many large dinosaurs, particularly the long-necked 
sauropods, seem to have specialized on tough foliage. 
They may have evolved a style of digestion similar to 
that of modern cows, sheep, goats, deer, and camels, 
which consume indigestible plant material and let the 
microbes in their gut do the biochemical work. Some 
paleontologists speculate that the largest herbivorous 
dinosaurs may have done the same.

Plants have also evolved a wide variety of biologically 
active molecules that they use to defend against predators. 
Most of these chemicals began in biochemical pathways 
evolved to deal with plant waste products. Since plants 
lack a liver, kidneys, and lymphatic system to remove 
waste products from their cells, they eliminate wastes 
at the cellular level by making unwanted or toxic mol-
ecules into something harmless to the plant. When left in 
leaves, some of these molecules are toxic (or just bad-tast-
ing) to the animals that sample them. Plants with the wid-
est range of such chemicals persisted in the predator-filled 
Mesozoic forests. Over time, evolution sculpted these de-
fensive chemicals to mimic biochemical pathways in the 
animals that consumed them. For example, caffeine, a 
compound made by a number of flowering plants, stunts 
the growth of insects that consume the leaves or fruits 
that contain it. Another molecule stashed under the bark 
of willows (Salix) offers antimicrobial protection for the 
tree, and for humans, who use it in traditional medicine 
and in Western medicine as a pain reliever and in over-
the-counter acne treatments. Plants produce chemicals 
that, when consumed by animals, stimulate appetite, con-
trol blood sugar, stop or start the heart, kill cancer cells, 
alter brain function, and much, much more.

Plants evolved molecules to signal neighboring plants 
and other partners. At the most basic level, plants pro-
duce chemicals to entice pollinators and seed dispers-
ers. Other sophisticated chemical signals attract soil 
fungi. Fungus and root each release specialized chemi-
cals that stimulate mutual growth and interconnection. 
The fungus releases defensive chemicals that ward off 
parasites and helps the plant gather water and miner-
als from the soil. The plant reciprocates with sugary 
food for the fungus. Some call these interconnections 
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the “wood wide web” because the underground net-
work of roots and fungal cells seem to transmit infor-
mation through the soil. Plants starved for light send 
chemical signals through the fungal network to larger 
neighbors that then coax fungi to share sugar, with the 
fungus taking a bit for its trouble. Although science 
is just beginning to explore these subsurface connec-
tions, early research leaves little doubt that in healthy 
soil, plants, fungi, and a variety of soil microbes form 

complex, dynamic partnerships in which all parties 
benefit. Plants also use their communication chemicals 
to signal one another. When plants are attacked by a 
herbivore, they emit chemical signals that waft through 
the air and trigger neighbors to produce defensive 
chemicals. Although plants do not act with altruistic 
intent, sensing and responding to an antipredator sig-
nal would enhance reproductive success and therefore 
persist in a predator-filled world.

MESOZOIC CLIMATE SHAPES PLANTS

EARTH’S ATMOSPHERE AND 
CLIMATE EQUILIBRIA

The Mesozoic climate fluctuated with the quantity of 
so-called greenhouse gases in the atmosphere. Green-
house gases take their name from their ability to act 
like the glass in the windows of a greenhouse. On a 
summer’s day, the sun’s visible 
rays shine through transpar-
ent windows and heat up sur-
faces within. Warm surfaces 
radiate energy in infrared wave-
lengths—heat—that raise the 
temperature of air inside the 
greenhouse. The same happens 
with Earth’s atmosphere. Vis-
ible light speeds through the 
atmosphere to warm Earth’s sur-
face. Warm surfaces radiate heat 
that raises the temperature of 
the air around them. Some heat 
escapes back to space, but some 
gases in the atmosphere—mainly 

water vapor, carbon dioxide, and methane—act like 
closed windows, preventing heat from escaping. This 
property of our atmosphere makes Earth habitable. 
Without the atmospheric greenhouse, Earth’s average 
surface temperature would be about –18°C (0°F), too 
cold for liquid water and most life. Earth’s vast oceans 
mean that water vapor will always be abundant in the 

Mesozoic temperature history with 
icehouse (dark blue), coolhouse 
(light blue), warmhouse (orange), 
and hothouse (red) equilibrium 
states marked. In 2025, the global 
average temperature was 15°C.
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atmosphere. Other greenhouse gases, like carbon di-
oxide and methane, have varied considerably, and 
these changes drive Earth between its four stable cli-
mate equilibria: hothouse, warmhouse, coolhouse, 
and icehouse.

Hothouse climates are the warmest and least sta-
ble of the climate equilibria. In the hothouse climate, 
Earth lacked polar ice, and global average temperature 
may have been more than 10°C (18°F) warmer than 
today. So-called hyperthermals also characterized the 
hothouse. During hyperthermals temperature rose 
rapidly—geologically speaking—to inhospitable lev-
els in response to small changes in greenhouse gases. 
These geologically sudden heat waves may have lasted 
tens of thousands of years and devastated some bi-
ological communities. Organisms were pushed past 
their heat tolerances, resulting in mass migration, pest 
and pathogen plagues, local die-off, or, in extreme 
cases, extinction. 

Warmhouse climate is the most stable climate equilib-
rium and prevailed for most of the Mesozoic. The warm-
house world also lacked persistent polar ice as global 
average temperatures hovered 5°C (9°F) or more above 
today’s values. During the warmhouse, forests grew at 
polar latitudes, and although the poles experienced a 
freezing season, snow melted with spring and climate 
remained temperate. Warmhouse climates were gener-
ally humid, with ample rainfall to support lush forests. 

Coolhouse climate featured the development of polar 
ice that persisted all year. Snow-white surfaces reflected 
the sun’s energy back to space and further cooled the 
poles. While tropical temperatures stayed steady, colder 
polar conditions created a large temperature difference 
between equator and poles that dried climate in the 
middle and high latitudes. 

The icehouse climate equilibrium was marked by 
thick, persistent ice sheets at the poles that periodi-
cally advanced into the middle latitudes. These so-
called “ice ages” characterized the last two million 
years or so of Earth’s history, with the advance and 
retreat of continental glaciers driven by minute vari-
ations in Earth’s orbit and amplified by changes in 
snow cover and greenhouse gases. Although the wax-
ing and waning of continental ice created wild swings 
in climate that triggered widespread migration of 

plants and animals on land, these fluctuations hap-
pened at regular intervals and over timescales that 
allowed ecosystems to respond. So, unlike climate in-
stability in hothouse hyperthermals, icehouses pro-
duced relatively few extinctions.

ESTIMATING CARBON DIOXIDE 
LEVELS IN THE MESOZOIC 
ATMOSPHERE

Over its long history, Earth has moved among these cli-
mate states in response to changes in greenhouse gases, 
primarily carbon dioxide. Despite the importance of car-
bon dioxide in the climate equation, geologists struggle 
to estimate how much of the gas was present in the at-
mosphere of the past. Scientists can directly sample the 
atmosphere of the last 800,000 years or so by measuring 
gases trapped in air bubbles in glacial ice. Beyond this, 
geologists rely on a variety of indirect methods that mea-
sure something correlated with atmospheric carbon diox-
ide. For example, the chemistry of some minerals in soil 

Gas exchange pores, stomata, on the underside of 
a Mesozoic Ginkgo leaf reveal the history of carbon 
dioxide in Earth’s atmosphere. When carbon dioxide 
levels are high, plants produce fewer stomata.

Stomata
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tracks atmospheric carbon dioxide. Geologists also esti-
mate the amount of carbon dioxide emitted from volca-
noes and locked up in coal and other sedimentary rocks 
to model changes in carbon dioxide through time. Pa-
leobotanists recognized another correlation between the 
number of stomata produced by some plants and atmo-
spheric carbon dioxide. Stomata, specialized leaf pores 
that control gases moving into and out of the leaf, allow 
carbon dioxide into the leaf for photosynthesis, so plants 
have evolved to adjust their number to prevailing condi-
tions. During times of high carbon dioxide, plants make 
leaves with fewer stomata to allow sufficient carbon di-
oxide in while minimizing the amount of water that es-
capes. When carbon dioxide is low, plants need more 
stomata to allow sufficient carbon dioxide in. However, 
none of these estimates are precise, and approximations 
of Mesozoic carbon dioxide vary widely. Nonetheless, a 
general picture of Mesozoic climate has emerged.

CARBON DIOXIDE LEVELS 
TRANSLATE TO CLIMATE
At the beginning of the Triassic, carbon dioxide may 
have been as low as 420 ppmv, a value on par with 
early-twenty-first-century levels. Geological indica-
tors suggest that during the Early Triassic, Earth was 
firmly gripped by a warmhouse climate and there is no 
evidence for polar ice. Carbon dioxide rose steadily 
through the Triassic and into the Early Jurassic, when 
levels likely reached 1,000 ppmv or higher. A drop in 
deep-ocean oxygen concentrations in the Early Jurassic 
Toarcian age suggests a geologically brief period, when 
carbon dioxide may have exceeded 2,000 ppmv.

Carbon dioxide levels fell through the Middle and 
Late Jurassic. Climate shifted from warmhouse to cool-
house, allowing polar and mountain ice to accumulate 
before the return to a stable coolhouse. Estimates sug-
gest that carbon dioxide levels remained near 1,000 
ppmv through much of the Cretaceous, with geologi-
cally brief intervals of much higher temperature about 
120 million years ago during the Aptian, 105 million 
years ago during the Albian, and 100 and 94 million 
years ago during the Cenomanian. These tempera-
ture spikes may have been driven by a rapid release 

of methane from seafloor sediment. By the end of the 
Cretaceous, carbon dioxide levels settled at about 
700 ppmv, comfortably in the warmhouse.

Most climate indicators agree that the Mesozoic was 
generally warmer than today, with much lower temper-
ature differences between equator and poles. Season-
ality in both temperature and rainfall was also much 
less than today, with most of the world, except for the  
interiors of the great continent of Pangaea and then 
Gondwana, receiving ample precipitation that sup-
ported lush forests that produced extensive mid-lat-
itude coal deposits, which are today used for fuels. 
Moreover, the moisture that these trees pulled from the 
soil and released through their stomata helped to main-
tain humid conditions. As forests do today, Mesozoic 
trees modified and moderated the global climate.

COMPLEX CONTROLS ON 
GREENHOUSE GASES
Over long stretches of geological time, three processes 
control atmospheric carbon dioxide: the amount of the 
gas added by volcanic activity, the amount removed by 
rock and soil weathering, and the amount stored in 
rock as fossil fuel and other forms of geological carbon. 
Most people think of charismatically explosive moun-
tains like Mount Vesuvius or Mount Saint Helens when 
they think about volcanoes. While eruptions from vol-
canoes like these can influence climate by adding cool-
ing particles to the upper atmosphere, they contribute 
little carbon dioxide. Most volcanic carbon dioxide 
comes from the mid-ocean ridges that bisect many 
ocean basins. These are zones where Earth’s crust pulls 
apart and new seafloor forms as lava spills out from 
great rifts. The activity of these ridges varies through 
time, and the Mesozoic was a particularly active time. 
Also, a series of especially large lava outpourings, so-
called large igneous provinces, punctuated the Meso-
zoic. These events erupted millions of cubic kilometers 
of lava and with it came an array of gases, including 
carbon dioxide. For example, the Siberian Traps at the 
dawn of the Mesozoic erupted 1–2 million cubic kilo-
meters (240,000–480,000 cubic miles) of lava. The Cen-
tral Atlantic event during the Early Jurassic contributed 
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2–3  million cubic kilometers (480,000–720,000 cubic 
miles) of lava. The Ontong Java Plateau spewed more 
than 8 million cubic kilometers (1.9 million cubic miles) 
of lava during the Aptian age of the Early Cretaceous. 
And the Deccan Traps closed the Mesozoic with an-
other million cubic kilometers (240,000 cubic miles) of 
lava. These episodes corresponded roughly with inter-
vals of high carbon dioxide and warming climate.

Weathering is the chemical breakdown of rock and soil 
on Earth’s surface. Most weathering occurs in slightly 
acidic water produced when carbon dioxide in the atmo-
sphere dissolves in raindrops. When the atmosphere con-
tains more carbon dioxide, drops naturally become a bit 
more acidic. When they fall on rocks, chemical reactions 
transform minerals in rock into the mineral nutrients 
plants need, such as calcium, potassium, and phospho-
rus. In the process, the carbon dioxide transforms from 
a gas in the atmosphere to minerals dissolved in water. 
In this way, weathering removes carbon dioxide gas 
from the atmosphere. These reactions occur faster when 
carbon dioxide is abundant, conditions are warm, and 
mountain-building has exposed fresh rock to the rain.

On shorter timescales, the photosynthetic work of 
plants also modulates atmospheric carbon dioxide. Pho-
tosynthesis takes carbon dioxide from the atmosphere 
and transforms it into organic molecules that become 
the plant’s body. In the process, plants release oxygen. In 
the normal cycle of photosynthesis and decomposition, 
which consumes oxygen and releases carbon dioxide, the 
system remains balanced. However, if organic matter pro-
duced by photosynthesis is buried in sedimentary rocks, 
the associated oxygen stays in the atmosphere. Like-
wise, if organic matter is removed from Earth’s crust and 
burned, that carbon dioxide returns to the atmosphere 
and a corresponding amount of oxygen is removed.

OXYGEN, TEMPERATURE,  
AND WILDFIRE
Plants require oxygen for respiration just as animals 
do. However, plants produce their own oxygen as they 
split water during the light reactions of photosynthesis. 
Therefore, plants are much less sensitive to the amount 
of oxygen in the atmosphere than are animals, with 

two exceptions. The first involves photosynthesis it-
self. The enzyme responsible for capturing carbon di-
oxide during photosynthesis can also capture oxygen. 
When oxygen binds with this enzyme, a junk molecule 
results. Plants recycle this molecule but that takes en-
ergy, making photosynthesis less efficient under high-
oxygen conditions. Since most estimates suggest that 
atmospheric oxygen during the Mesozoic was a bit to 
substantially lower than today’s 21%, plants benefitted 
from a boost in photosynthetic performance.

The amount of oxygen in the atmosphere also in-
fluenced the frequency and intensity of wildfire, an 
important disturbance affecting plant communities. 
Lightning provided ample ignition throughout all of 
Earth’s history. Relatively low atmospheric oxygen ren-
dered fire infrequent throughout the Triassic and most 
of the Jurassic. However, as oxygen levels and tempera-
tures crept up in the Late Jurassic and Cretaceous, wild-
fire became more common, coincidentally at the time 
flowering plants probably first appeared.

CLIMATE, WILDFIRE,  
AND THE FLOWERING  
PLANT REVOLUTION

Earth changed dramatically as flowering plants diver-
sified and began to invade existing communities dur-
ing the Early Cretaceous. The earliest members of the 
angiosperm lineage grew in the understory of wet tropi-
cal forests. Broad swaths of wet lowland tropical and 
subtropical forest growing during the Jurassic provided 
ample ground for these first flowering plants. In ad-
dition, brief bursts of hothouse heat in the Early and 
mid-Cretaceous may have helped angiosperms spread. 
Rapid warming put significant stress on the conifers 
that dominated the canopies of mid- and high-latitude 
forests during the Cretaceous. As they died back, fast-
growing, fast-spreading angiosperms took the oppor-
tunity to invade. Studies of fossil pollen from North 
America revealed the poleward march of flowers during 
the middle and Late Cretaceous. In one spot in Utah, 
studies of fossil pollen revealed a forest community that 
included conifers, ginkgos, ferns, and a few flowering 
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plants. However, sediments from a small pond yielded 
only angiosperm leaves. The pond sediments were de-
posited during one of the brief hot spells at the begin-
ning of the Cenomanian age and suggest that flowering 
plants sought out ephemeral habitats like this during 
their scramble to the poles.

Warm Cretaceous climate also contributed to an in-
crease in wildfire frequency, which nudged the evolu-
tion of remarkable disturbance tolerance in flowering 

plants. Wildfire also provided some of the oldest flower 
fossils yet discovered: minute flowers preserved in 
charcoal from Valanginian- and Barremian-age sedi-
ments of Portugal. The fossils captured the delicate 
structure of these ancient flowers in three-dimensional 
detail and revealed the surprising diversity already 
present by that time. Moreover, their preservation in 
charcoal showed that early flowering plants thrived in 
fire-prone environments.

A GUIDED WALK THROUGH THE  
MESOZOIC FORESTS

Time travel is the stuff of science fiction, but geology 
offers clues to past environments. Coupled with an un-
derstanding of living plants and ecosystems—and a lit-
tle imagination—the fossil record allows us to take a 
stroll through ancient landscapes.

TRIASSIC AND JURASSIC

Your geological time ship lands first in the midlati-
tude lowlands of Pangaea, about 252 million years ago. 
Craggy Appalachian peaks to the south are shrouded 
in cloud. You open the door to a silent world. The end-
Permian extinction event is over, but the insect world 
was so decimated that the only sound is the wind rus-
tling the leaves of the Pleuromeia lycophytes that extend 
in dense stands as far as you can see. Their stout, un-
branched stems grow straight from a beanbag-like base. 
These must be Pleuromeia sternbergii, as the tallest are 
about 2 m (6.5 ft) high. Their stems are covered in thin, 
straight leaves that give the impression of giant green 
bottle brushes. A single, cone-like structure about the 
size of your fist perches atop some of the tallest plants. 
The air is hot, heavy, and humid, and the narrow Pleu-
romeia leaves provide little shade. There are virtually 
no other types of plants here. A few fern clumps grow 
in a sheltered nook beside an enormous, rotting log. 
Some tall, dead trees stand amid the stubby Pleuromeia 

forest. One, which sports the flat, shelflike fungus, is 
surrounded by a ring of slender shoots. The fan-shaped 
fringed leaves reveal that it is a ginkgo of some sort. A 
closer look reveals that the leaves are attached directly 
to the stem rather than on a short stalk as in living 
Ginkgo biloba. This tree might be Sphenobaiera, one of 
the Late Permian ginkgos that survived the runaway 
warming at the end of the period. Gingkos, after all, 
retain buds at the base of their trunk, ready to sprout if 
the main trunk dies.

Motion catches your eye. Turning quickly, you see 
a pair of lizard-like creatures scatter from a hollow at 
the base of another of the dead trees. Behind them, 
Moschowhaitsia, front paws and snout covered in black 
mud, emerges from the labyrinth of decomposing logs. 
This four-footed carnivore has a stout body and a head 
longer than your hand. It must be a juvenile because 
you recall that the animal’s Permian-age ancestors grew 
much larger. You notice the Moschowhaitsia’s sparse 
coat of spiky fur and recall that it is warm-blooded. 
Its meal having escaped, the Moschowhaitsia locks eyes 
with you briefly, bears its menacing yellow fangs, and 
clambers over the downed trees in search of other prey. 
You latch the door of your time ship and set the date to 
167 million years ago to survey the world fully recov-
ered from the extinction.

Landing in the Middle Jurassic, you step out into 
a coastal forest just as the sun is about to slip below 
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Spiky tree-sized lycophytes called Pleuromeia were among the first large 
plants to recolonize marshy areas after the end-Permian environmental 

collapse. These small trees were descendants of the giants of the Paleophytic 
and persisted for only the first few million years of the Triassic period.
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By the Jurassic, cool, moist climates allowed conifers, ginkgos, cycads, and 
ferns to reign. These plants presented tough, resinous, and toxic forage for 

the large herbivores of the time.
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the western horizon over the young Atlantic Ocean.  
This part of Pangaea has been drifting apart for about 
70 million years. Your time ship has landed amid the 
tall, straight trunks of giant conifers. A deep-green car-
pet of moss coats their rough bark. You crane your neck 
and squint into the upper branches, hoping to iden-
tify the trees. Perhaps they are Araucarites, their leaves 
spoon-shaped and with spiked tips that warn they are 
tough and sharp. Right, you think. This is the time of 
long-necked sauropods that can browse the uppermost 
branches. You also notice the scaly, gray-green leaves of 
Brachyphyllum high in the canopy, but the conifers grow 
so closely together it is hard to tell which leaves belong 
to which trunk.

Stepping onto the soft carpet of decomposing leaves 
beneath your feet, you breathe the spicy-sweet smell of 
conifer pitch. The air is cooler than during the Early 
Triassic and buzzes with the twilight song of crickets. 
At your feet you notice a cluster of needlelike leaves at-
tached to a sturdy branch. They look a little like pine 
needles, but softer, brighter green, and more flexible. 
Picking up the branch, you notice a string of delicate, 
scallop-shaped structures about the size of a coin dan-
gling amid the fringe of leaves. This is not a pine but 
Czekanowskia, a relative of the ginkgos, and these are 
its seeds. A closer look at the tall trunks reveals subtle 
differences in their bark. There are so many kinds of 
trees here but they all have the tall, straight trunks. As 
the sun dips toward the horizon, the understory grows 
dark. You set off toward a patch of lingering light in 
the distance, threading carefully through the tufts of 
deep-green cycad leaves nestled in the spaces between 
the conifers. Running your fingers across the soft, fur-
like covering of the cycad seed cones, you notice they 
are swarming with beetles. Probably pollinating. Wait! 
Some of the cycad-like trunks display stout, flowerlike 
structures. A ring of sturdy, pale pink, leaflike scales 
surrounds a central sphere where the egg-bearing struc-
tures hide among a protective armor of woody barbs. 
This is a member of the Bennettitales, one of the many 
Jurassic seed plants that is experimenting with flower-
like reproductive structures tailored by natural selec-
tion to attract insect pollinators.

As you approach the edge of the forest, ferns be-
come more numerous. You wade into the waist-deep 

fern foliage at the forest’s edge and emerge at a slow-
flowing river, its sandy banks covered with a thick 
stand of horsetails. Crashing through the ferns to 
the river’s edge, you surprise a Stegosaurus, drink-
ing just a few meters upstream. It mistakes you for a 
carnivorous Proceratosaurus and raises its spiked tail 
in defense. It seems best to stay out of sight until the 
Stegosaurus lumbers away. As your heart slows, you 
notice a surprising diversity of ferns: Angiopteris, As-
pidistes, and Todites growing in lush, tangled clumps. 
Dicksonia tree ferns line the edge of the forest and tilt 
their large fronds toward the open sky like satellite 
dishes. A shrub emerging from the fern scrum is the 
one you were looking for—Caytonia. This enigmatic 
plant also evolved features similar to those of flower-
ing plants. Its compound leaves have a slender petiole 
from which four tongue-shaped leaflets extend like the 
fingers of a chubby hand. The veins of the leaves in-
tertwine in a complex network that can efficiently sup-
ply water across the photosynthetic surface. This one 
has seeds dangling like tinsel from the base of leaves 
on the lower branches. Each fertile strand has seven 
to ten pairs of globular balls on short stalks, with 
each ball formed from a flap of tissue wrapped tightly 
around four egg-bearing ovules. Pollen, or perhaps a 
pollinating fly, could slip into the tiny gap in the en-
rolled flap, but the nutritious ovules themselves are 
hidden from insect predators. This seems like a good 
evolutionary investment, because some of the older 
leaves are riddled with holes made by hungry herbivo-
rous arthropods. Toward the top of the shrub, similar 
strands sport pairs of tubular pollen organs that dust 
your fingers with bright yellow grains. With your mag-
nifying hand lens, you note that the pollen looks very 
conifer-like. 

As the last light fades, you return to your time ship 
and set course for the Early Cretaceous.

EARLY CRETACEOUS

Your time ship lands next on the eastern shores of 
North America, 125 million years ago. The ancient 
Appalachian Mountains still dominate the land-
scape. Great rivers capture the rain that falls on their 
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highlands and meander across coastal plains to the 
sea. Although puffy clouds drift overhead, they drop 
little of their rain on the coastal plain. You landed on 
a bluff above the river. Here, conifers bearing Hirme-
riella foliage grow in patchy stands. The growing tips 
of these conifers have small, scalelike leaves that press 
tightly against branching twigs. Tender bits at the tips 
form a spiky tuft at the end of each branch. Hirmeri-
ella makes a sparse canopy, and dappled light bathes 
the forest floor. There, squat cycads and the dried fo-
liage of ferns bake in the sun. You dig the toe of your 
boot into the soft, sandy soil and kick up a cloud of 
dust—it is the dry season. The trunk nearest you bears 
scars of a past fire. Damaged bark has begun to curl 
around the charred wood beneath in the tree’s slow ef-
fort to cover the wound. The fire must have been some 
time ago, because the ground is now covered with a 
thick layer of dry leaves. The day is hot but not par-
ticularly humid. Even so, sweat beads on your nose. As 
you wipe it away, you jump with a dozen sharp pinches 
around your ankle. Your boot has disturbed an ant col-
ony, and they are not pleased. You shoulder your pack, 
stamp your foot free of ants, and head down the hill 
toward the river below. Scrambling down a north-fac-
ing slope, you plunge into a cascade of ferns. A thicket 
of the drought-tolerant fern Dryopteris rims the gully. 
Descending farther into the cool shade, tree ferns bear-
ing Thyrsopteris and Cladophlebis foliage reach for the 
sky. Beneath them, Aspidium, Gleichenia, and Anemia 
ferns cascade down the slope. On the flat floodplain 
below, tall, straight Sequoia trunks tower above the cy-
press and yew that have colonized wetter hollows in the 
landscape. Still more ferns dot the forest floor, and flies 
buzz annoyingly around your head.

The fern thicket grows dense around the edge of a 
pond formed where a meandering branch of the river 
separated from the main channel. The water is still, rif-
fled only by fish breaking the surface to grab an insect. 
A turtle basks on a nearby log. Across the pond, the 
beady eyes of a submerged crocodile peer at you over a 
floating water lily. It is the first flowering plant you have 
seen so far. You pick your way slowly along the edge of 
the pond, aware that another croc might be waiting in 
ambush. You are about the size of one of the croc’s fa-
vorite prey, the midsized dinosaur Archaeornithomimus. 

You have heard that the carnivorous theropod dino-
saur Acrocanthosaurus also prowls these forests, but the 
dense cypress thickets are probably difficult for the 
10 m (33 ft) long predator. The much smaller and even 
more ferocious Deinonychus might be another matter, 
so you pause between steps to listen for movement in 
the vegetation.

Soaked in sweat, you finally emerge at the river’s 
main channel. Scanning the sandy bank, you find both 
shores lined with angiosperms. Herbs, vines, and small 
shrubs of a dozen species festoon the riverbank, bask-
ing like the crocodiles in the bright sun. Their leaves are 
broad and net-veined and come in a variety of shapes. 
The leaves seem flimsy compared to those of the ferns 
and conifers on the floodplain behind you, and insects 
have riddled them with holes. Some riverside plants 
display tiny flowers swarmed by clouds of pollinating 
thrips. Butterflies drift above the scramble of greenery 
looking for a nectar treat. Other plants display clus-
ters of fire-engine red fruits to potential dispersers. A 
rustle beneath the foliage makes you jump. Too small 
for Deinonychus, so you drop to your knees and search. 
Lifting a large leaf, you spy Argillomys, a shrew-sized 
mammal, sitting frozen in fear with a seedpod clenched 
in its tiny jaw. With a smile, you gently lower the leaf 
and hear the mammal scurry away. You have been so 
focused on discovery you did not notice that the morn-
ing’s puffy white clouds have turned gray and ominous. 
Wind rises and cold air from the approaching thunder-
storm flows over you. It feels wonderful on the hot af-
ternoon, but you do not want to be caught out. Storms 
in the hothouse world are violent. You feel the hairs on 
the back of your neck rise, and before you can think to 
take cover, a bolt of lightning strikes one of the conifers 
at the top of the bluff. Flammable resin explodes, and 
the dry debris quickly catches fire. A line of low flames 
and thick smoke spread westward, driven by the storm 
winds. Time to get going.

LATE CRETACEOUS

The next stop on your time ship is the eastern shore 
of North America’s western landmass, Laramidia. 
You check your chronometer before heading out—66 
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Warming and drying climate, coupled with frequent disturbances like 
wildfire, allowed flowering plants to spread out of the understory of tropical 

forests and begin to migrate toward the poles and into a wide range of 
habitats. During the early Cretaceous, angiosperms were mostly still 

confined to streamsides and other unstable habitats.
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million years ago. Glancing up, you notice that the 
midday sun is dusky red. You remember that the Dec-
can volcanoes on the other side of the globe have been 
erupting for more than 100,000 years now. Moreover, 
a line of explosive volcanoes dot the western edge of 
Laramidia. Who knows when one of those last spewed 
ash into the stratosphere?

To the east, at the edge of your vision, you see a rib-
bon of white sand and the glimmering blue of the Cre-
taceous Western Interior Seaway. The sea extends from 
the Gulf of Mexico to the Arctic, dividing North Amer-
ican into two landmasses. Turning to the west, you 
see the low ridges of the Rocky Mountains and below 
you to the north a wide, brown river winding slowly 
toward the sea. The river is full of sediment washing 
down from the rapidly eroding Rockies. A flock of pi-
geon-sized Ichthyornis rest on a sandbar. These fish-eat-
ing birds are usually found much closer to the sea, but 
they may have followed the spawning gar upstream. A 
few meters upstream from the resting birds, three large 
Edmontosaurus duck-billed dinosaurs tug at a patch 
of water lilies growing in a quiet bend of the river. A 
fourth, much larger Edmontosaurus stands guard on the 
levee above the resting birds.

The landscape is a patchwork of greens. Swatches 
of deep-green cypress and Glyptostrobus dot the low, 
marshy parts of the landscape. On drier parts of the riv-
er’s floodplain, a low woodland of emerald and apple 
green drapes over the rolling hills. Unlike the straight 
trunks of Jurassic and Early Cretaceous conifers, most 
of these trees are gnarled and irregular, with the globu-
lar crowns of angiosperms. Many of these trees have 
large leaves, suggesting that rainfall is plentiful. How-
ever, their leaves are relatively thin, a trait common 
among plants evolved for climates cool enough to 
encourage trees to shed their foliage periodically. Be-
yond winter, it makes good evolutionary sense for the 
trees to refresh their foliage periodically, because but-
terflies flutter everywhere above the woodland can-
opy, and their hungry larvae lurk below. The irregular 
carpet of trees is studded here and there with the tall, 
straight trunk of the dawn redwood (Metasequoia occi-
dentalis) and an occasional Ginkgo. These elders of the 

Mesozoic have now become rare. Amid the woodland 
are other gray-green patches of fern thicket where the 
trees have been temporarily knocked back by some 
disturbance. The patches of bare brown earth amid 
the ferns provide a clue. Perhaps these are wallows 
for herds of Triceratops that munch their way through  
the coastal woodlands. There are no Triceratops in sight 
today and that is good. The large predators that feast 
on these three-horned herbivores are probably follow-
ing the herds. It might be safe to descend into the forest.

Where the Jurassic forests were an orderly cathe-
dral of straight trunks, the Late Cretaceous forest is a 
tangle of irregular branches. Trees sporting compound 
leaves with slender, serrated Dryophyllum leaflets and 
heart-shaped Celastrus leaves are common. Spiky palms 
scrabble through the understory, and fruit drips from 
many branches. The forest floor is also different, here 
covered in a thick layer of decomposing leaves. Tree 
ferns stretch for the canopy, too, extending their long 
petioles to compete for light with the fast-growing an-
giosperm trees. A rare Nilssoniocladus cycad shelters in 
their shade. In a bit of irony that makes you chuckle, 
an inconspicuous tuft of green nestles at the roots  
of the cycad. It is one of the early grasses that will—
millions of years from now—diversify and dominate 
this place. In the latest Cretaceous, though, they are 
newcomers. Scrabbling through the undergrowth, you 
reach the edge of one of the fern thickets and push 
through the dense tangle of Vitis vines that line the 
clearing. As you scan the clearing, a smear of light in 
the southern sky catches your attention. It’s too low 
to be the moon and you remember: Today is the day 
the Cretaceous—and the Mesozoic—will end in a fiery 
burst of white-hot rock—impact day. You look around 
for one last moment. The Edmontosaurus, Triceratops, 
and Tyrannosaurus will all be gone soon. The trees will 
be stripped of their foliage by the force of the blast and 
many killed. But this vegetation is accustomed to dis-
turbance, even cataclysmic disturbance. And the Earth 
will green again soon. You, however, are too big to sur-
vive the catastrophe. No animals larger than 25 kg 
(55 lb) remained after the impact. You return to your 
time ship and leave the Mesozoic.
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By the late Cretaceous, flowering plants had evolved a wide range of sizes 
including woody trees and shrubs, and small herbs. They also formed the 
backbone of most plant communities. Conifers and ginkgos still thrived, 

but in isolated stands or specialized habitats. And a new group of ferns, the 
Polypodiales, diversified in the deep shade of the new flowering forests.
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IF FLOWERING PLANTS HAD NOT  
BECOME DOMINANT…

Looking at the history of life on Earth from the vantage 
point of the present day, the evolution of the organ-
isms and ecosystems we see around us seems inevitable. 
The reptiles and dinosaurs of the Mesozoic must have 
been inferior to the mammals that fill the same eco-
logical roles today. Despite their 165-million-year run 
as the most important large animals on land, “dino-
saur” remains the term for something that is not up 
to the rigors of the modern world. However, from a 
Mesozoic perspective, it would be hard to imagine that 
the tiny, ratlike creatures scuttling in the underbrush 
would someday evolve into lions, bats, wolves, ante-
lope, giraffes, apes, elephants, and whales—the tremen-
dous variety of modern mammals. The happenstance 
of the end-Cretaceous extinction removed dinosaurs 
and opened the evolutionary door to mammals. Cata-
strophic extinction events like those that started and 
ended the Mesozoic are unpredictable and reset the 
evolutionary stage, opening opportunities for new lin-
eages at unexpected moments. Or so it goes with ani-
mals. The Mesozoic plant story is different.

Many species of Paleozoic plants perished during the 
end-Permian extinction, but most major groups sur-
vived and diversified again in the Triassic. Another 
extinction event at the end of the Triassic wiped out 
many more plant species, but again, most major groups 
persisted to generate still more diversity in the Jurassic. 
Again, at the end of the Cretaceous, a major extinction 
event wiped out a host of plant species, but the funda-
mental nature of Late Cretaceous plant communities 
changed little as the Cenozoic began. Instead, the Me-
sozoic botanical transformation happened over tens 
of millions of years between the second and third ani-
mal extinctions. A new lineage born in the steamy un-
derstory of the Mesozoic tropical forests, the flowering 
plants, evolved a suite of features that together allowed 
them to outcompete Triassic and Jurassic dominants, 
particularly when it came to exploiting disturbed sites. 
Given that many Jurassic seed plants independently 

evolved features like those key to angiosperm success, 
it would be easy to imagine that some upstart plant 
would eventually put all the features together and begin 
the revolution. But that perspective comes from look-
ing backward. During the Mesozoic, there was no such 
guarantee. Without the lucky combination of pollina-
tor relationships, high photosynthetic rates, and rapid 
growth and reproduction, the remarkable diversity 
and ecological dominance of flowering plants would 
not have been possible. What might the world be like  
without them?

FLOWERING PLANTS AS 
RESOURCES FOR ANIMALS
Flowering plants pack their seeds with high-energy de-
liciousness (carbohydrates, fats, and protein) to sustain 
their embryos through long periods of seed dormancy 
and during the early days of growth in the understory 
where the photosynthetic capacity of the youngest 
leaves might not be enough to support rapid growth. 
Many angiosperms also wrap their seeds in sweet and 
nutritious fruit to attract and reward seed dispersers. 
In addition, the super-charged photosynthetic system 
of angiosperms renders their leaves higher in protein 
than the foliage of other plants. And many flower-
ing plants store their photosynthetic harvest in their 
roots as starch, which provides another animal food 
source. Flowering plants provide more calories and 
more nutrition bite for bite than the plant groups that 
preceded them.

For Triassic and Jurassic herbivores, the hunt for 
food was about processing ever larger quantities of 
low-quality forage. In dinosaurs, groups like the sau-
ropods evolved large size to become gigantic fermen-
tation tanks where microbes broke down indigestible 
cellulose. As flowering plants became more numerous 
in the mid-Cretaceous, many herbivorous dinosaurs 
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shifted toward forms that foraged closer to the ground, 
where most of the early flowering plants grew and fruit 
fell. Without flowering plants, the great herds of Cre-
taceous horned herbivores could probably not have 
found enough to eat. Energy-hungry mammals also 
took advantage of the plentiful resources offered by 
angiosperms. Mammals needed the abundant high-
energy food provided by flowering plants to fuel their 

own evolutionary diversification. While the extinction 
of dinosaurs may have been necessary to open ecologi-
cal opportunities for mammal evolution, the extinction 
alone was not sufficient. Without the abundant calories 
provided by angiosperms, we might not be here. With-
out flowering plants, the end-Cretaceous extinction 
might have ushered in the Age of Turtles and Croco-
diles, rather than the Age of Mammals.

MESOZOIC PLANT CONSERVATION

Most of the plants we eat and the plant-derived medi-
cines we use come from flowering plants. When asked 
which non-angiosperms humans regularly consume, 
most people in Western cultures struggle to name even 
a few. Anthropologists estimate that humans have do-
mesticated about 200 plant species for food, virtually all 
of them flowering plants, and 90% of our plant-based 
calories come from just 30 angiosperm species.

Indigenous and traditional cultures also see the bo-
tanical world as a pharmacy, with angiosperms mak-
ing up most of the healing diversity. Western medicine 
has co-opted some of these plants, learned their bio-
chemical secrets, and formulated commercial versions 
of these medicines. Among the most common exam-
ples of angiosperm-derived medicines are aspirin, from 
willow (Salix) bark, natural opioid medicines like mor-
phine and codeine, prepared from the poppy species 
Papaver somniferum, and the heart medication digi-
talis, extracted from foxglove (Digitalis purpurea). Qui-
nine, from the bark of the cinchona (Quina) tree, was 
used in the nineteenth and early twentieth centuries 
to treat and prevent malaria, and in the late twentieth 
century, artemisinin, produced from the sweet worm-
wood (Artemisia annua), became the standard of care 
for the disease. Vincristine and vinblastine, made from 
Madagascar periwinkle (Catharanthus roseus), revolu-
tionized chemotherapy for lymphoblastic leukemia, non- 
Hodgkin lymphoma, and testicular, ovarian, breast, 
bladder, and some lung cancers in the 1960s. Their in-
troduction increased the survival rate of several child-
hood cancers from 10% to nearly 95%. Despite the 

dominance of flowering plants in the human pantry 
and medicine cabinet, some Mesozoic survivors hold 
important economic and cultural significance and con-
tinue to thrive through partnerships with people.

TAXUS: A TREATMENT  
FOR CANCER
One conifer from an Early Cretaceous lineage provides 
a potent anticancer drug. The Pacific yew (Taxus brevi-
folia) produces paclitaxel (known by the trade name 
Taxol), used to treat and prevent recurrence of several 
types of breast, ovarian, esophageal, cervical, pancre-
atic, and lung cancer. Paclitaxel was first isolated in 
1962, and its anticancer properties were described in 
1971. The U.S. Food and Drug Administration ap-
proved the first commercial formula for clinical use in 
1993. Some considered it the most important chemo-
therapeutic drug introduced in the last 50 years. When 
Taxol first came to market, it could only be isolated 
from the bark of wild Pacific yew. Because harvesting 
bark destroys the growing cells beneath, paclitaxel pro-
duction killed the trees. Yew populations quickly came 
under significant pressure, and because they grow 
slowly, trees could not be harvested sustainably to meet 
the tremendous demand for the life-saving drug. A sin-
gle cancer patient, for example, required the bark of 
approximately eight 60-year-old yew trees for their ini-
tial therapy. Within a few years, many wild populations 
were threatened.
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Taxus brevifolia grows in the forest understory and 
along exposed coastal hillsides in the Pacific North-
west of North America, along the coast from north-
ern California to southernmost Alaska and following 
river valleys inland into southeast British Columbia 
and northern Idaho. Preferring moist soil, it tends to 
establish along streamsides or in areas with abundant 
precipitation, like the coastal rainforests of Oregon, 
Washington, and British Columbia. Since the US FDA 
approved paclitaxel, an estimated 30% of the wild pop-
ulations have been depleted. Moreover, several decades 
of climate change have produced hotter and drier sum-
mers across the tree’s home range and increased the 
frequency of wildfire. Taxus brevifolia’s thin bark and 
ground-hugging growth habit make it particularly vul-
nerable to fire, and its seeds seldom survive to germi-
nate after adult trees burn. Today, the tree is threatened 
across much of its range, prompting efforts to find other 
ways to produce the life-saving medicine.

Drug manufacturers have taken several approaches 
to providing a sustainable supply of paclitaxel. In 1994, 
researchers succeeded in synthesizing paclitaxel in the 
laboratory. However, the process was complicated, and 
yields remained low, rendering the process uneconom-
ical. The trees themselves remained the best source. 
Next, researchers explored the other 11 living Taxus 
species for new sources of paclitaxel. However, none 
could match the potency of Taxus brevifolia. Scientists 
also experimented with harvesting paclitaxel from yew 
leaves rather than bark and, in the process, discovered 
a fungus that had acquired the ability to make pacli-
taxel. However, the fungus proved difficult to culture 
in the lab and yielded only a little paclitaxel. In Eu-
rope, competing research teams developed partial syn-
thesis strategies, starting with a natural plant chemical 
derived from Taxus leaves and finishing the synthesis 
in the lab. Using natural compounds derived from Eu-
ropean yew (Taxus baccata), several methods emerged. 
And because the starting products are abundant in 
yew leaves, commercial-scale manufacture required less 
plant material than that needed to extract paclitaxel di-
rectly. Today, most paclitaxel is manufactured with the 
partial synthesis method, using yew leaves or the same 
natural chemicals derived from laboratory cell cultures. 
Both methods significantly reduce the pressure on wild 

populations of yew and allow trees to slowly recover. 
Human ingenuity is allowing a plant that has given so 
many the gift of life an opportunity to thrive too.

CYCADS: ANCIENT CULTURAL 
CONNECTION AND MODERN 
EXPLOITATION

Cycads were so abundant and diverse that the Triassic 
and Jurassic are called the “Age of Cycads.” However, 
slow growth and reproduction doomed them during the 
Flowering Plant Revolution. Today, about 300 species 
remain. Many of the species that maintain healthy pop-
ulations in the wild have found partnerships with hu-
mans. Genetic and ethnobotanical evidence suggest that 
humans have tended wild cycads as food and cultural 

The bark of Taxus brevifolia, the Pacific yew, contains a 
powerful cancer-fighting chemical.
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resources since humans first inhabited the Ryukyu Is-
lands of Japan more than 35,000 years ago. In the South 
Pacific nation of Vanuatu, people traditionally plant 
and tend cycads to mark important historic and ritual 
sites, and cycad leaves symbolize reconciliation and au-
thority. Indigenous cultures in Central Mexico use the 
seeds of several species of Zamia, Dioon, and Ceratoza-
mia in shamanic rituals, where participants consume 
preparations made from the toxic seeds to enter altered 
states of consciousness. Seeds and pollen of Encephalar-
tos are used in a similar way in the Limpopo region of 
South Africa, where illegal harvest for cultural and rec-
reational use puts some populations in peril.

For Macrozamia communis, known in the Dharug lan-
guage as burrawang, a partnership with the Aboriginal 
peoples of southeast Australia allows the plant to thrive 
in the face of development and environmental change. 
When prepared in a way that removes toxic cycasin, the 
seeds of Macrozamia communis provide a starchy flour 
that traditionally provided a seasonal food for Aborigi-
nal peoples and today provides an important cultural 
touchstone. Like many cycads, Macrozamia communis 
tends to synchronize production of male and female 
cones to encourage crossbreeding among individuals. 
Aboriginal peoples understand that they can stimulate 
this mass production of seeds using cultural burning, 
the practice of lighting low-intensity fires on the land-
scape to manage vegetation. By carefully timing burn-
ing, Aboriginal peoples produce an abundant crop of 
seeds and allow seedlings to germinate and grow large 
enough to withstand the next cycle of fire. Cultural 
burning also manages flammable debris on the ground 
to reduce the risk of intense wildfire that would kill the 
ancient plants. Tens of thousands of years of this man-
agement has allowed Macrozamia communis and all the 
other plants and animals in the region to thrive.

However, not all cycads have attentive human care-
takers and many are critically endangered or function-
ally extinct. For example, Encephalartos woodii can no 
longer be found in the wild. The species was discov-
ered by John Medley Wood in 1895 on a steep, south-
facing slope in oNgoye Forest in KwaZulu-Natal, South 
Africa. Wood described four large stems that probably 
represented growth from a single, much older, root sys-
tem. In 1899, botanists collected several shoots from 

these wild stems for Kew Gardens in the United King-
dom, and in 1903, more shoots were transplanted to 
the Durban Botanic Gardens, where Wood was cura-
tor. After several instances of poaching, the last surviv-
ing stem was transplanted to Pretoria in 1916; it died 
in 1964. Today, the species grows in botanical gardens 
around the world, but all these plants originated from 
the single wild individual—a male. No seed-producing 
plants have been found. While clones from the wild 
plant may live for centuries in captivity, the species will 

The cycad Encephalartos woodii is among the rarest of 
living plants. Only a single pollen-producing individual 
has ever been found in the wild, making the species 
functionally extinct.
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	 timeline for plants  50
Midlandia nishidae  118
Miki, Shigeru  26
mineral nutrients  40, 58, 74
Minmi paravertebra  8
mitosis  48
modular growth of plants  43–44, 
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Pleuromeia sternbergii  59, 79, 90, 97
Podocarpaceae  147–51
Podocarpoxylon jago  150
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angiosperms  180
pollination  14, 15, 37, 38
pollinators  14, 37, 160, 161, 162
	 angiosperm relationships  15, 38, 

52, 54, 67, 180
	 scents/sugars to attract  41, 54
Polypodiales  66, 114, 115–19
potassium  40
Potomac Formation  189
Potomac Group rocks  12–13, 81
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Raritan Formation  197
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Sequoiadendron giganteum  14
Seward, Albert  11, 174
sexual reproduction, plants  36, 

37–38, 47–48
shade, evolution for flexibility in  
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Stachyotaxus  25
starch  33, 44, 67
Stegosaurus  62
Steno, Nicolas  76
Stenopteris williamsonis  130–31
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Tomaxellia biforme  144–45
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