© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Contents

Intr	oduction to the Public Writings	xi
1	On the Principle of Relativity (1914)	1
2	Inaugural Lecture at the Prussian Academy of Sciences (1914)	4
3	Manifesto to the Europeans (1914) with G. F. Nicolai and F. W. Förster	7
4	Ernst Mach (1916)	10
5	My Opinion on the War (1916)	17
6	The Nightmare (1917)	20
7	Motives for Research (1918)	21
8	Dialogue about Objections to the Theory of Relativity (1921)	24
9	Time, Space, and Gravitation (1919)	34
10	Induction and Deduction in Physics (1919)	39
11	Immigration from the East (1919)	41
12	Uproar in the Lecture Hall/An Explanation (1920)	43
13	A Confession (1920)	44
14	Ether and the Theory of Relativity (1920)	46
15	To the General Association for Popular Technical Education (1920)	57
16	On New Sources of Energy (1920)	58
17	My Response: On the Anti-Relativity Company (1920)	60

18	On the Contribution of Intellectuals to International Reconciliation (1920)	63
19	The Common Element in Artistic and Scientific Experience (1921)	65
20	Geometry and Experience (1921)	65
21	How I Became a Zionist (1921)	78
22	The Development and Present Position of the Theory of Relativity (1921)	83
23	On a Jewish Palestine (1921)	86
24	The Impact of Science on the Development of Pacifism (1921)	89
25	The Plight of German Science: A Danger for the Nation (1921)	90
26	Preface to Bertrand Russell's <i>Political Ideals</i> (1922)	92
27	Review of Wolfgang Pauli, The Theory of Relativity (1922)	93
28	In Memoriam Walther Rathenau (1922)	94
29	On the Present Crisis of Theoretical Physics (1922)	96
30	Musings on My Impressions in Japan (1923)	102
31	My Impressions of Palestine (1923)	107
32	Antisemitism and Academic Youth (1923)	110
33	Review of Josef Winternitz's <i>Relativity Theory and Epistemology</i> (1923)	112
34	Sound Recording for the Prussian State Library (1924)	115
35	The Compton Experiment: Does Science Exist for Its Own Sake? (1924)	116
36	On the League of Nations (1924)	121

121

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.
Contents

vii

37	Review of Alfred C. Elsbach's Kant and Einstein (1924)	123
38	Non-Euclidean Geometry and Physics (1925)	130
39	Introductory Letter to <i>Letters from Russian Prisons</i> (1925)	135
40	Why Zionism/A Message (1925)	136
41	Pan-Europe (1925)	138
42	The Mission of the Hebrew University/ A Word for the Journey (1925)	141
43	On Ideals (1925)	143
44	Space-Time, Encyclopædia Britannica (1926)	146
45	New Experiments on the Effect of the Earth's Motion on Light Velocity with Respect to the Earth (1927)	157
46	Speech at Rally for the Keren Ha-Yesod in Berlin (1926)	160
47	Newton's Mechanics and Its Influence on the Formation of Theoretical Physics (1927)	161
48	Review of Émile Meyerson's <i>La Déduction Relativiste</i> (1928)	169
49	The New Field Theory (1929)	174
50	Einstein Believes in Spinoza's God (1929)	183
51	The Palestine Troubles (1929)	185
52	To a Young Scholar (1929)	192
53	What I Believe: Living Philosophies XIII (1930)	193
54	Religion and Science (1930)	197
55	Militant Pacifism/The Two Percent Speech (1930)	201
56	Some Remarks Concerning My American Impressions (1931)	203

57	The 1932 Disarmament Conference (1931)	206
58	To American Negroes (1932)	208
59	Why War? (1932)	210
60	Is There a Jewish Philosophy? (1932)	213
61	Statement on Hitler upon Leaving Pasadena (1933)	215
62	Letter of Resignation from Prussian Academy of Sciences (1933)	216
63	Militant Pacifism No More (1933)	217
64	On the Method of Theoretical Physics/The Herbert Spencer Lecture (1933)	218
65	Science and Civilization/The Albert Hall Speech (1933)	225
66	Foreword to "The Contribution of the Jews of Germany to German Civilization" (1933)	228
67	On Germany and Hitler (1935)	230
68	Some Thoughts Concerning Education (1936)	231
69	The Calling of the Jews (1936)	236
70	Why Do They Hate the Jews? (1938)	238
71	Our Debt to Zionism (1938)	245
72	Ten Fateful Years: Living Philosophies, Revised (1938)	247
73	Letter to Franklin D. Roosevelt (1939)	250
74	Freedom and Science (1940)	252
75	The Common Language of Science (1942)	255
76	Newton's 300th Birthday (1942)	258
77	Remarks on Bertrand Russell's Theory of Knowledge (1944)	262

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanica
means without prior written permission of the publisher.

_	 _	 $\hat{}$	•

;	ix

78	To the Heroes of the Battle of the Warsaw Ghetto (1944)	268
79	On the Atomic Bomb (1945)	269
80	On the American Council for Judaism (1945)	274
81	Commemorative Words for Franklin D. Roosevelt (1945)	275
82	The Way Out (1946)	277
83	Foreword to Spinoza: Portrait of a Spiritual Hero (1946)	281
84	A Message to My Adopted Country (1946)	283
85	The Military Mentality (1947)	285
86	In the Shadow of the Atomic Bomb (1947)	287
87	A Plea for International Understanding (1947)	289
88	Quantum Mechanics and Reality (1948)	291
89	A Reply to the Soviet Scientists (1948)	296
90	Religion and Science: Irreconcilable? (1948)	302
91	Why Socialism? (1949)	305
92	Autobiographical Notes (1949)	312
93	Statement to the Society for Social Responsibility in Science (1950)	353
94	Letter Declining the Presidency of Israel (1952)	354
95	Elementary Considerations on the Interpretation of the Foundations of Quantum Mechanics (1953)	355
96	Recollections–Souvenirs (1955)	361
Bib	liography	369
Ind	ex	375

1. On the Principle of Relativity (1914)

Vossische Zeitung (26 April 1914), Morgen-Ausgabe, no. 2, pp. [1–2] of 8. [Collected Papers Vol. 6, Doc. 1].

By April 1914, Einstein had published two non-technical expositions of special relativity, and one journal article in which he touched on general relativity as well. This document is the first exposition to appear in a daily newspaper.

he editorial staff of the *Vossische Zeitung* has asked me to relate something about my field of work to readers. I gladly honor this request. Although a deeper understanding of the theory of relativity is hardly possible without considerable effort, it may still be appealing for the non-scientist to hear something about the methods and results of this new branch of theoretical research.

Even a cursory analysis of the processes we call motion already teaches us that we can perceive only the relative motion of things with respect to one another. We sit in a railway carriage and see (on the adjacent track) another carriage pass by. If we ignore the vibration of our carriage, we have no immediate means by which to decide whether the two carriages are moving "in reality." We find only that the relative position of the carriages changes over time. Even if we look at the telegraph poles alongside the track, nothing essential changes in this situation. For when we usually refer to telegraph poles (and the earth's surface) as "at rest" and every object moving relative to them as "in motion," we merely use a customary and handy expression without deeper meaning. An observer in a "moving" railway carriage will not come into conflict with his perceptions if he states that the carriage is at rest and the ground and telegraph poles are in motion.

Physicists have found over time that this characteristic of motion, to appear purely relative, is not merely attributable to primitive perception, but rather that one is justified to call any single thing "at rest" among a multitude of things that are in relative (uniform) motion with respect to one another. Let's think again of a uniformly moving carriage on a straight track. Let the windows be closed airtight, with no

2 1. Principle of Relativity

light coming in; wheels and tracks are completely smooth. Inside the carriage is a physicist with all kinds of apparatuses imaginable. We do know all experiments done by this physicist would come out exactly the same if the carriage were not moving, or if it were moving at a different velocity, for that matter. This statement is essentially what physicists call the "principle of relativity." One can generally phrase this principle as: "The laws of nature perceived by an observer are *independent* of his state of motion."

This statement sounds harmless and self-evident. It would not have excited anybody were it not for the fact that the laws of the propagation of light, which have emerged from the recent development in electrodynamics, seem incompatible with this principle. The phenomena of the optics of moving bodies have led to the interpretation that light always propagates with the same velocity in empty space, irrespective of the state of motion of the light source. Yet, this result seems to contradict the aforementioned principle of relativity. After all, when a beam of light travels with a stated velocity relative to one observer, then a second observer who is himself traveling in the direction of the propagation of the light beam, so it seems, should find the light beam propagating at a lesser velocity than the first observer would. If this were indeed true, then the law of light propagation in a vacuum would not be the same for two observers in relative uniform motion to each other, in contradiction to the principle of relativity stated above.

This is where the theory of relativity comes in. This theory shows that the law of constancy of light propagation in a vacuum can be satisfied simultaneously for two observers in relative motion to each other, such that the same beam of light shows the same velocity to both.

At first glance, the possibility for such a paradoxical interpretation can be understood through a more detailed analysis of the physical meaning of spatial and temporal statements. Recognizing the relativity of the concept of simultaneity is of special importance to this question. Before the theory of relativity, it was believed that the statement "two events happening at two different places are simultaneous" had a clear meaning—clear without a special need to define the concept of simultaneity. A more detailed investigation that did not skirt the issue of defining simultaneity showed, however, that the simultaneity of two events is not absolute, but instead can only be defined relative to one observer of a given state of motion. It turns out that two events

simultaneous with respect to one observer are, in general, not simultaneous with respect to a second observer moving relative to the first one. This signifies a fundamental change in our concept of time. (This is the most important and most controversial theorem of the new theory of relativity. It is impossible to enter here into an in-depth discussion of the epistemological and scientific philosophical assumptions and consequences evolving from this basic principle).¹

By combining the principle of relativity with the results of the constancy of the speed of light in vacuum, one arrives at what is today called "relativity theory" in a purely deductive manner. This theory has already proven itself as an aid for the theoretical deduction of the laws of nature. Its significance lies in the fact it provides conditions every general law of nature must satisfy, for the theory teaches that events in nature are such that the laws do not depend on the state of motion of the observer to whom the events are related spatially and temporally.

Two of the major results of the theory of relativity should be mentioned here, as they are also of interest to the layman. First: the hypothesis of the existence of a space-filling medium for light propagation, the so-called light-ether, must be abandoned. According to this theory, light no longer appears as a state of motion of an unknown carrier, but rather as a physical structure with a physical existence of its own. Second: the theory establishes that the inertia of a body is not an absolutely unchanging constant, but instead grows with the energy content. The important conservation theorems of mass and energy melt into a single theorem; the energy of a body also determines its mass.

Is the theory of relativity sketched above basically complete, or is it only a first step in a continuing development? Physicists who value the theory of relativity still hold differing opinions on this question. Nevertheless, weighty arguments speak for the second alternative. We have stated above that the laws of nature are the same for a "uniformly moving" observer as they are for one "at rest." This means an observer cannot find criteria that would allow him to decide if he is at rest or in a state of uniform motion. "At rest" and "in uniform motion" are physically

¹Those who want to familiarize themselves with a more detailed substantiation and justification can find sufficient instruction—without difficult mathematical derivations—in E. Cohn's pamphlet, "Physikalisches über Raum und Zeit," [a] and in an essay by Jos. Petzoldt, "Die Relativitästheorie der Physik," [b] in the most recent issue of the Zeitschrift für positivistische Philosophie.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

4 2. Inaugural Lecture

equivalent. This raises the question whether the principle of relativity is limited to uniform motion. Could the laws of nature not be such that they are the same for two observers who are in nonuniform motion relative to each other? Recently, it has turned out such an extension of relativity theory can be carried out and leads to a general theory of gravitation that contains the Newtonian theory as a first approximation. According to this theory, light rays suffer a curvature in a gravitational field; though minute, it is just within the range of astronomical measurement. The future will teach us whether this generalized relativity theory, which is very satisfying from an epistemological aspect, conforms to reality.

Editorial Notes

[a] Cohn 1913.

[b] Petzolt 1914.

2. Inaugural Lecture at the Prussian Academy of Sciences (1914)

Königlich Preußische Akademie der Wissenschaften. Berlin: Sitzungsberichte (1914), pp. 739–742. [Collected Papers Vol. 6, Doc. 3].

This lecture was delivered on 2 July 1914 to the Prussian Academy of Sciences in Berlin. Einstein had been appointed a member of the Academy in November 1913 and had moved from Zurich to Berlin only a few weeks before the lecture. The text contains an early discussion of the deductive character of relativity, which he contrasts with other physical theories that seek to find foundational principles inductively.

Most honored colleagues!

Please accept, first, my heartfelt gratitude for the greatest favor you could have bestowed upon a person of my kind. By appointing me to your Academy, you have allowed me to devote myself wholly to

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Aarau canton school, Switzerland, 362-63	Jewish people in, 88
Abraham, Max, 97	speech at Keren Ha-Yesod rally, 160-61
absolute motion, 13	University, 43–44, 58
absolute space, 52, 85, 221	the Bible, 313
academic youth, and antisemitism, 111-12	black market, 42
action-at-a-distance, 46, 47, 52, 97, 167, 176,	Bohm, David, 360
324, 338	Bohr, Niels, 100, 101, 116, 119, 272, 331
Adler, Felix, 197	Bolsheviks, 41, 42
African Americans, 208-9, 283-84	Boltzmann, Ludwig, 165, 320, 328, 330, 331
Ahad Ha'am (A.Z.H. Ginsberg), 108	Boltzmann's entropy-probability-relation,
alpha-particles, 58-59	334
American Council of Judaism, 274-75	Born, Max, 61, 346, 355, 358-61
Americans. See African Americans; United	Brahe, Tycho, 162
States of America	Brownian motion, 331–32
analytical geometry, 317	Buddhism, 144
anarchy, economic and political, 298-99	Duddinsin, 144
Anti-Relativity Company, Berlin, 60–63	capitalism/capitalist society, 273, 297-98,
antisemitism, 41, 44–45, 60, 78–80, 111–12,	310–12
238-45, 247	
Arabs and Jews in Palestine, 185, 186-87,	Cassirer, Ernst, 124, 126, 128
188–90, 246	causality, 162, 163, 168, 282
Aristotelian theory of concepts, 124	centrifugal force, 37
art and science, 65	Christianity, 144
Asian ideal, 144	civilization
atomic bomb, 251-52, 269-74, 277-80, 289;	and science, 225–28
in the shadow of the, 287-89	and war in Europe, 7–9
atomic composition, 100-101	classical mechanics, 6, 14, 29, 37, 62, 84, 99,
atomic energy, 59, 252, 269, 272-74;	101, 320, 331
outlawing as a means of war, 289-91	clocks, 156, 334, 336, 337
atomic theory, 119, 320, 321, 333	and gravitational fields, 27–28, 30, 38, 84
atomistic structure of matter and energy,	and relativity, 25–26, 27–28, 30, 55, 61,
223–24	69, 84, 152, 154, 155
Austria, plight of science in, 90-91	See also space-time
autobiographical notes, 312-52	Cohen, Hermann, 127
axiomatic method, 66, 67-69, 77, 222	Compton experiment, 116–17, 119–20
axioms, 39-40, 66-67, 130-31, 220; of	concepts and propositions, 316-17
parallels, 132	conservation of mass-energy, 3, 37
	conservation of momentum and energy, 338
Bachem, Albert, 63	coordinate systems, 15, 24, 26-29, 30-33,
basic laws. See natural laws	35–36, 50, 151–52, 323–24, 341
Belgium, 218	accelerated, 115-16
beliefs	and general relativity, 27, 29, 33, 37,
Einstein's, 193-197, 247-50	84–85, 341, 342
Jewish, 213-16	inertial systems, 36, 37, 84, 152-53, 324,
Benedict, Ruth, Patterns of Culture, 305	334–35, 339, 341, 342–43, 365
Berlin	Coudenhove-Kalergi, Count Richard von,
Eastern European Jews and Russians in,	140
41–42, 79–80	Cox, Rev. Ignatius W., 197

De Broglie, Louis, 168, 223, 360; wave and	English Jews, 79
wavelength, 357, 358	epistemology, 10-11, 12, 321
Debye, Peter, 61	of Neo-Kantians, 123-29
deductive method, 39-40	and relativity theory (Winternitz),
denationalization of military power, and	112–14
security, 279–80	Epstein, Paul, 101
Descartes's theory of physical events, 171,	ether, 46–55, 158, 320
172, 179	and electromagnetic fields, 48-51,
Diaspora, 81, 82	53–54, 97, 327
differential geometry, 317	ether hypothesis, 47–48, 51–52
differential laws, 162-63, 168	and theory of relativity, 50, 51, 52–53, 54
Dirac, Paul, 223, 346	and light, 3, 6, 39, 47–48, 175, 320, 322
Disarmament Conference, Geneva, 1932,	Lorentzian ether, 49, 53
207-8	Mach's view of, 52
dual particle and wave nature of light,	and matter, 48–49, 53–54, 322
117–20, 177, 322	
	mechanical properties of, 48, 49
Earth's motion, effect on light velocity,	Euclidean geometry, 37, 53, 68–69, 75–77,
157–59	84, 97, 116, 127, 131–33, 148–51,
Eastern European Jews, 41–43, 80–81	182–83, 220–21, 257, 316, 334
economy	application to pre-relativistic mechanics, 151–52
capitalist society, 310–12	
planned, 311–12	continuum, 181, 182
and socialism, 305–6, 311–12	pseudo-Euclidean space, 366
Eddington, Arthur S., 61, 63, 169, 172	Euler, Leonhard, 320
education, 103-4, 227, 232-36, 311	Europeanism, 144
final secondary school exam, 20	Europe
higher/university, 142, 233	Americanization of, 144–45
mathematical, 192–93, 317, 363 school, 233–36, 362–63	changes during the 1930s, 247–50
technical, 57–58	European community, 139–40
electric charge, 51	European ideal, 143–45
electric masses, 322	Europeans
electrodynamics, 40, 323, 327, 330;	comparison to Americans, 204–6
Maxwell's theory, 6, 14, 36–37,	intellectual life, 138–39, 249
48–50, 83, 99–100, 152, 164, 167, 323	Manifesto to (1914), 7–9
electromagnetic equations, 97, 98	as pacifists, 139
electromagnetic fields, 6, 97–98, 118, 165,	Exner, Wilhelm, 57
166, 176, 177, 323, 334, 343, 350	experience and reality, 123–25
and the ether, 48–51, 53–54, 97	exports, United States, 301
and gravitational fields, 181-83	
electromagnetic forces, 323	family ties, Japan, 104
electromagnetic inertia, 97, 328	Faraday, Michael, 54, 83, 97, 118, 164, 178,
electromagnetic radiation, 50, 120	323, 328
electromagnetic theory, 97, 118, 165, 166,	Faraday-Maxwellian field theory, 98, 325–26
177, 321, 326	Fascist states, 249
electromagnetic waves, 176	Fermi, Enrico, 251
electromagnetism, 176, 321, 323, 326	field theory, 98, 166–68, 190, 223, 367–68.
elliptical geometry, 77	See also unified field theory
Elsbach, Alfred C., Kant and Einstein, review,	final secondary school exam, 20
124–29	finite universe, 71, 72–74, 85
energy	Fizeau, Hippolyte, 48
from uranium, 251	forces acting at a distance, 97, 164, 166, 167,
new sources of, 58–59	176, 325
potential, 325	Förster, Friedrich Wilhelm, 7–9, 49

four-dimensional continuum/space, 70, 84,	development, 86-87
115, 152–53, 157, 178, 179–81,	Hitler's hatred of, 231
223-24, 336-37, 340, 349-50, 365-66	German National People's Party, 41
France, 218	German Reich, 18, 121
free particles (quantum mechanics), 291-93	Germany, 58, 286, 296
Freud, Sigmund, 210	antisemitism, 41, 44-45, 78-80, 238-45
	contribution of German Jews to German
Galilei, Galileo, 6, 35, 36, 39, 163, 220, 220,	civilization, 228–29
259, 264, 326	criticism of relativity, 60-63
Gauss, Carl Friedrich, 85, 97, 367	Eastern European Jews in, 41–43, 80–81
Gehrcke, Ernst, 24, 60–63	economy, 42–43
General Association for Popular Technical	entry into League of Nations, 121–22,
Education, 57–58	139
general theory of relativity, 14, 30, 35, 37–38,	extermination of Jews, 268
84, 85, 98, 116, 222, 223, 341	final secondary school exam, 20
and coordinate systems, 27, 29, 33, 37,	Hitler's power, 215–16, 218, 230–31, 268,
84-85, 341, 342-43	297
and ether, 50, 52–53, 54	immigration from the East, 41–43
field-structure and group, 343–46,	losing the World War blamed on Jews,
349–50	239
geometry and physical space, 65–77	Nazi regime, 231, 243
mathematical constructions, 179–81	plight of science in, 90–91
motion of perihelion of Mercury, 61, 62	political and social intolerance, 216,
and Newtonian mechanics, 167	217
path to, 342–47	rearmament, 218
principle, 341	Russians in, 41
reducing physics to space-time	schooling, 234
geometry, 169–73	
and space-time, 154, 155, 179–83	social justice/social responsibility, 195
and theory of gravitation, 115–16, 167,	Weimar Republic, 230, 231
178–79, 343–44, 345, 349, 351–52	Ginzberg (Ginossar), Shlomo, 108
two fields as one, 181–83	God, 183–84, 197, 198–200, 213–16
	Goethe, Johann W. von, 9, 139, 145
geodesic line, equation of, 366	Goethebund, 17
geometry	gold, 300
analytical, 317	Goldstein, Rabbi Herbert S., 183–84
axiomatic, 67–68	gravitation, 323, 325
differential, 317	field-theory of, 343–44
elliptical, 77	and general relativity, 115–16, 167,
Euclidean. See Euclidean geometry	178–79, 343–45, 345, 349, 351–52
foundations of, 151	general theory of, 4, 7, 178–79, 367
four-dimensional, 152–53	and inertia, 179
integral, 317	laws of, 37, 115
non-Euclidean, 127, 128, 133–34	Newton's theory, 40, 47, 54, 72, 83, 97,
and physical space in the light of general	164, 167, 259–60, 343–44
relativity, 65–77	scalar theory, 339
and physics, 130–34	and special relativity, 339–40, 344,
practical, 68, 70	365
Riemann's, 70, 71, 133–34, 154–55	gravitational ether, 53, 54
and space, 127–28	gravitational fields, 4, 27, 29, 32, 34, 53–54,
space-time, and general relativity, 169–70	72, 84, 115, 153, 339, 343–44, 349,
spherical, 75, 76	365–66
Gerber, Paul, 62	and clocks, 27–28, 30, 38
German Jews, 78–79, 81	and electromagnetic fields, 181–83
contribution to German civilization,	and laws of motion, 345
228–29	light ray deflection, 4, 38, 62, 179

Great Britain	intellectuals, contribution to international
and atomic bomb, 270	reconciliation, 63-64
supports re-establishment of Jewish	interference experiment
home in Palestine, 186, 187, 189–92	(Michelson-Morley), 157–58
Grebe, Leonhard, 63	International Court of Justice, 277
Grossman, Marcel, 364–65, 367	international reconciliation, intellectuals'
II.b Fuite. 20	contribution to, 63–64
Haber, Fritz, 39	international security, 212, 249, 270–72, 273,
Hahn, Otto, 272	276. See also League of Nations;
Haller, Friedrich, 363	United Nations
Halpern, Lipmann, 110	international understanding, 289–91
Hasenclever, Walter, 65	Israel, Einstein declines presidency of,
heat radiation, theory, 98–99, 117–18, 328–30, 333	353–54
Hebrew University of Jerusalem, 88, 136,	Jacobi, Carl, 360
141-43, 189	Japan
Hegel, Georg W. F., 169, 171, 179, 263	bombing of Hiroshima, 288
Heisenberg, Werner, 224, 346, 357	_
Hellenism, 144	impressions of, 102–7
Helmholtz, Hermann von, 132, 317	Japanese
Herbert Spencer Lecture, University of	art and style connected to nature, 105
Oxford, 218	music, 105–6
	painting and woodcarving, 106–7
Hertz, Heinrich, 48, 49, 166, 172, 176, 317,	tradition not to express one's feelings,
320, 323, 325, 327	104
Herzl, Theodor, 160	Jewish immigrants in Germany, 41-43,
higher education, 142, 233	80-81
Hiroshima, bombing, 250, 288	Jewish Labor Office, 42
Hitler, Adolf, 215–16, 218, 230–31, 268, 297	Jewish Palestine, 81, 86-88, 108-10, 160-61,
human development, "predatory phase" of, 306	188, 276
Hume, David, 264–65, 266–67, 334	British support for, 186, 187, 189, 190
Hurwitz, Gregg, 317	co-operation with Arabs, 188–89,
Huygens-Young-Fresnel wave theory of	246
light, 175	
hydrodynamics, 320	reconstruction, 186, 187, 246–47
hydrogen atoms, 59	Jewish suffering, 187–88
	Jews
ideals, 143-45	adaptation to European nations, 87
individuals, relationship to society, 283, 286,	alleged crimes over the course of history,
307-9, 353-54	239-40
inductive method, 39, 40	antisemitism. See antisemitism
inertia	and Arabs in Palestine, 185, 186-87,
_	188-90, 246
electromagnetic, 97, 328 generalized law of, 167	calling of the, 236–37
•	characterization, 241–42, 243
and gravitation, 179, 339	extermination in death camps, 269
and interaction of masses, 324	in Germany, 78–80, 88
inertial systems, 36, 37, 61, 84, 115, 152, 153,	heroes of the Battle of the Warsaw
156, 324, 334–35, 339, 339, 341,	
342–43, 365	ghetto, 268
infinite universe, 71, 72–73	indebted to Roosevelt, 276
integral geometry, 317	intellectual aspiration and
integral laws, 162	accomplishment, 229, 242, 243
intellectual freedom	nationalism, 78, 136, 142, 160-61, 188,
aspiration and accomplishment, 227,	246
228–29, 242, 243, 253	philosophy and beliefs, 213-16
and science, 252-55, 272-73	where oppression is a stimulus, 243-45

See also German Jews; Zionism/Zionist	Michelson-Morley's interference
movement	experiment, 157–58
Judaism, 144, 214–15, 237, 242–43; owes a	principle of the constancy of the velocity
debt of gratitude to Zionism, 245–47.	of speed of, 2, 3, 6, 14, 36, 83, 336
See also American Council of	propagation and equivalence of inertial
Judaism	systems, 115, 156
V.l., Th., 1., 250	propagation in empty space, 175, 176
Kaluza, Theodor, 350	properties and elastic waves, 47
Kant, Immanuel, 113, 123–29, 139, 265, 317	quantum theory, 116–20, 334–35
Kant and Einstein (Elsbach), review, 123–29	Roentgen radiation (X-rays), 120
Kantianism, relationship to relativity theory, 123–29	and theory of electromagnetic fields, 176, 326
Kauffmann, Richard, 109	and unified field theory, 176
Kayser, Rudolf, Spinoza: Portrait of a	velocity, Earth's motion effect on, 157-59
Spiritual Hero, foreword to, 282-83	wave theory, 46, 48, 53, 118-19, 164, 175,
Kelvin, Lord (William Thomson), 165	320, 322, 362–63
Kennedy, Roy J., 158-59	light-ether, 3, 6, 48, 158, 175, 320
Kepler, Johannes, 162, 163, 200, 220, 260	light particles, 175
Keren Ha-Yesod in Berlin, speech at rally for,	light rays, 158; deflection in gravitational
160-61	field, 4, 38, 62, 179
kinematics, 36, 37	Lorentz, Hendrik A., 33, 46, 49, 61, 63, 115,
kinetic energy, 325, 327	166, 176, 327, 328
kinetic theory of gases, 35, 40, 164, 320,	Lorentz contraction, 68
328–29, 331–32	Lorentz transformations, 98, 336, 337, 339,
kinetic theory of heat, 164, 321	340, 341, 345, 365
Kirchhoff, Gustav, 317	Lorentzian ether, 49, 53
knowledge, theory of, 262-67	luminiferous ether. See light-ether
La Déduction Relativiste (Meyerson), review,	Mach, Ernst, 10-16, 23, 72, 333, 334, 339
169–73	ether, 52
Langevin, Paul, 61	History of Mechanics, 321
language of science, 255-58	on Newton's bucket experiment, 14,
Larmor, Joseph, 61	323–24
Laue, Max von, 61	on Newton's views of time, space, and
League of Nations, 121, 139-40, 249, 277	motion, 12–14, 85, 322–24
Germany's entry into, 121-22, 139	philosophical studies, 15
International Committee on Intellectual	science views, 11–12
Cooperation (ICIC), 121	macro-systems, in quantum mechanics, 357,
International Institute of Intellectual	359–61
Cooperation, 210	malaria, 109
Leibniz, Gottfried Wilhelm, 23, 163	Mandatory Power for Palestine, 190–92
Lenard, Philipp, 24, 31, 61, 62	Marić, Mileva, 363
Letters from Russian Prisons (Berkman),	Marxism, 286
introductory letter, 135	mass-density, negative, 72
Levi-Civita, Tullio, 61, 134, 367 light	mathematics and mathematical education, 192–93, 317–18, 363
Compton's scattering experiment,	matter
116–17, 119–20	and energy, atomistic structure, 224
corpuscular and emission theory, 100,	and ether, 48-49, 53-54, 322
117–18, 175	quantum properties, 223-24
duality of particle and wave, 117-20, 177,	and space, 54, 174-79, 327
322	Maxwell, James Clerk, 54, 97
emission theory of, 100, 117–18	Maxwell's electrodynamics, 6, 14, 36-37,
and ether, 39, 47-48, 320, 322	48-50, 83, 99-100, 152, 164, 167, 323

Maxwell's equations, 37, 49, 50, 97-98, 172,	nationalists, 60
178, 181, 223, 323, 328, 330, 334, 339,	Natorp, Paul, 127, 128
345	nature
Maxwell's theory of electromagnetic fields,	natural laws, 39-40, 101, 170, 220, 336,
97, 118, 164, 165–66, 177, 320, 325,	337, 341
327–29, 330, 333, 339, 346	"physical reality," 291–95, 346–47,
Maxwell's theory of electromagnetism and	357–58
theory of light, 176, 326	Nazi regime, 231, 243, 268
measuring rods, 55, 77, 152, 154, 155, 336,	neo-Kantian epistemology, 123, 125
337	Nernst, Walther, 39
mechanics	new field theory. See unified field theory
classical, 6, 14, 29, 37, 62, 84, 99, 101, 320	Newton, Isaac, 6, 35, 52, 100, 161–68, 174,
critique of as basis of physics, 322-26	200, 221–22, 258–61, 325, 346
inner simplicity, 324–25	absolute space, 52, 85, 221
laws of, 36, 96, 97	action at a distance, 46, 47, 97, 167, 176,
Mach's critique, 12–14, 85, 323–24	324, 338
pre-relativistic, 151–52	awareness of weaknesses in his theories,
and quantum theory, 101–2	165–66
See also Newtonian mechanics	bucket experiment, 14, 323–24
Meitner, Lise, 272	corpuscular theory and emission of light
Mercury	117–18
motion of perihelion of, 62	laws of motion, 6, 35, 36, 37, 85, 163,
and theory of gravitation, 72	164, 166, 167, 259–60, 320, 325, 346
metaphysics, 266, 267	logical objections against his theories,
Meyerson, Émile, <i>La Déduction Relativiste</i> ,	166–67
179; review, 169–73	Mach's critique of, 12–14, 85, 323–24
Michelson-Morley interference experiment,	on planetary motion, 162, 163–64
157–58	significance of achievements, 164–65
militant pacifism, 201–2; reversal of views	sound transmission, 320
on, 218	theory of gravitation, 40, 47, 54, 72, 83,
military mentality, and control of science	97, 164, 167, 178, 260–61, 343–44
projects, 285–87	Newtonian mechanics, 6, 35, 49, 83, 99, 320,
military power, denationalization of, 279–80	323, 338
Milky Way, stars and their masses, 72–73	influence on formation of theoretical
Miller, Dayton C., 157–59	physics, 161–68
Minkowski, Hermann, 51, 84, 317, 337, 366	and theory of fields, 167–68
motion	Nicolai, Georg F., 7–9
absolute motion, 13	Nietzsche, Friedrich, 136, 139
laws of (Galileo and Newton), 6, 35, 36,	nitrogen atoms, 58, 59
37, 85, 162–64, 166–67, 259–60, 320,	non-inertial systems, 153, 341
324–25, 346	nuclear chain reactions, 251
Mach's view of Newton's ideas, 13–14, 85,	nuclear research, military mentality in
323-24	control of, 285–87
non-uniform motion, 4, 7, 31	Nuremberg trials, 353
planetary motion, 162–63	rearemoety triais, 555
relative motion, 1–2, 13	O'Connell, Cardinal William Henry, 184
and special relativity, 31, 33, 36–38	Ostwald, Wilhelm, 333
uniform motion, 3–4, 7	Ostward, Williellii, 555
waves on the surface of water, 51	nacifiem
motives for research, 21–23	pacifism Europe, 139
mouves for research, 21–23	_ *
Nagasaki hombing 250	militant, 201–2, 218
Nagasaki, bombing, 250 naïve realism, 253	science's impact on development of, 89–90
nationalism, 78, 136, 142, 160–61, 188, 246,	Palestine, 42, 81, 82, 86–88, 108–10, 142, 27
290. See also Zionism	economic development, 109–10
270. Occ milo Ziomilini	continue de retopinent, 107-10

Great Britain support for	principles, development, 5, 6
re-establishment of Jewish home in,	propositions and concepts, 316-17
186, 187, 189-92	Prussian Academy of Sciences, 4, 43, 65;
impressions of, 107-10	resignation from, 216–17
Jewish workers and weight of debt, 108, 109	Prussian State Library, sound recordings, 115–16
Jews and Arabs in, 185, 186-87, 188-90,	pseudo-Euclidean space, 366
246	Pythagorean theorem, 316
malaria in, 109	1) thagoroun theorem, or o
Mandatory Power, 190–92	quantum mechanics
partition, 246	and Born's statistical interpretation of
reconstruction and development, 109,	wave function, 355, 358, 359–61
186–87, 188–89, 190, 191, 245–47	interpretation of foundations of, 355–61
See also Jewish Palestine	in macro-systems, 359–60, 361
pan-European movement, 138–40	and physical reality, 291–95, 346–47,
partial differential equations, 320	357–58, 358
passive resistance, 92	quantum hypothesis, 6
Pauli, Wolfgang, 360; The Theory of	special example, 357–58
Relativity, review, 93	quantum theory, 96, 98–101, 177, 223–24,
philosophy	329, 349
and beliefs, 193–197, 213–16, 247–50, 313–14	and Compton experiment, 116–17, 119–20
Jewish philosophy, 213–16	and light, 116–20, 333–34
and science, 123–29	and radiation, 98–100, 116, 339
and theory of knowledge, 262–67	statistical, 346–48
photoelectric effect, 100, 330	"quasi-periodic" mechanical systems, 101
"physical reality." See under Nature	quasi-periodic mechanical systems, 101
	Rabinowitsch, Wolf Zeev, 110
physics	
19th century, 320	racial prejudice, 208–9 radiation
critique of mechanics as basis of, 322–26	
and geometry, 130–34	alpha-particles, 58, 59
induction and deduction in, 39–40	average energy of a
and non-Euclidean geometry, 133–34	quasi-monochromatic oscillator, 329,
and philosophy, 124–29	333–34
reduced by general relativity to	emission and absorption, 322
space-time geometry, 169–73	energy, 331, 333
Piccard, Auguste, 158, 159	field theory, 100
Planck, Max, 6, 21–23, 39, 61, 99, 116, 328,	heat, 98–99, 118–19, 328–30, 333
329–31, 333	theory and quanta, 98–100, 116, 119–20,
Planck-Bohr-Rutherford quantum theory, 96	339 Rathanay Walthar in managing 04 05
Planck's constant, 101	Rathenau, Walther, <i>in memoriam</i> , 94–95 red shift of spectral lines, 7, 38, 62
	<u>*</u>
Planck's law of heat radiation, 6, 99, 118–19,	refraction, indices of, 322
330, 333	Reichenbach, Hans, 113
Planck's quanta, 333	relative motion, 1–2, 13
planetary motion, laws of, 162, 163–64	"relativism," 170–71, 304
planned economy, 311–12 Poincaré, Henri, 68, 69, 133	relativity
Poland, 42, 81, 88, 268, 283	general theory. See general theory of
	relativity
ponderable matter, 174–75	principle of relativity, 2, 3, 6–7, 116, 171
Prague University, 366	special theory. See special theory of
principle, theories of, 35	relativity
principle of contiguity, 293	theory. See theory of relativity
principle of equivalence, 116	Relativity Theory and Epistemology
principle of relativity, 2, 3, 6–7, 116, 171	(Winternitz), review, 112–14

religion, 144-45, 183-84, 196, 313-14	military mentality in control of, 285-87
and the Bible, 313	and philosophy, 123-29
and science, 197-201, 302-5	plight of in Germany and Austria, 90-91
See also God; Spinoza's God	and religion, 197-201, 302-5
research, motives for, 21-23	for science's sake, 117
Reves, Emery, The Anatomy of Peace, 273	scientific method, 257
Ricci, Giovanni, 367	security, 142, 190, 198, 206, 281, 286
Riemann, Bernhard, 85, 97, 367	and denationalization of military power,
Riemannian metric, 181, 182, 223, 343	279-80
Riemannian space, 178	international, 212, 249, 270-72, 273,
Riemann's geometry, 70, 71, 133–34, 154–55	276
rigid bodies, 67–68, 69–70, 71, 75, 84, 115,	supranational, 278-80, 287
148, 155. See also Euclidean geometry	sensory experiences, 124
rigid rods, 158, 335, 336	simultaneity, 2-3, 14, 115, 156, 335, 338
Roentgen rays (X-rays), 120	singularities, 346
Roosevelt, Franklin D., 299	social justice/social responsibility, 195, 205,
commemorative words for, 276	241
letter on atomic energy to, 251–52	social policy, 92
Royal Albert Hall speech, 225	socialism, 273, 297-98, 305-12
Russell, Bertrand, 286	directed toward a social-ethical end,
Political Ideals, preface to, 92-93	306–7
theory of knowledge, remarks on,	and economic science, 306, 311
263–67	society
Russia, 139, 196, 234, 239, 270, 296	capitalist, 273, 297-98, 310-12
political prisoners, 135	individual's relationship to, 283, 286,
socialism, 297–98	307–9
Russian Jews, 43, 78	Society for Social Responsibility in Science,
Russians	statement to, 353–54
in Berlin, 41	Sommerfeld, Arnold, 61, 101
criticism of Einstein's support for World	sound recordings, Prussian State Library,
Government, 296–302	115–16
Rutherford, Ernest, 58–59	sound transmission, 320
Rutherford-Bohr theory, 100–101, 120	Soviet Union, 270, 271. See also Russia
	Soviet scientists, criticism of Einstein,
Saint-Pierre, Charles-Irénée Castel de, 139	296–302
scalar theory of gravitation, 339	space, 147–55
scattering experiment (Compton), 116–17,	concept of, 147, 151–52151–52
119–20	and Euclidean geometry, 148–51
Schlick, Moritz, 67, 113	and geometry, 127–28
Schilpp, Paul Arthur, 312	and matter, 54, 174–79, 327
school education, 233–36, 362–63; final	in pre-scientific thought, 147–48
secondary school exam, 20	in reference to the Earth, 148
Schopenhauer, Arthur, 22	and time, 152
Schrödinger, Erwin, 168, 223, 346, 360	space-time, 50, 85, 115, 127, 152
Schrödinger equation, 358, 359, 360	effect of relativity, special and general,
Schwarzschild, Karl, 101	152–54
science	Elsbach's summary of Cohen's and
and art, 65	Natorp's views, 121–23
and civilization, 225–28	Encyclopædia Britannica, Einstein's
common language of, 255–58	article in, 146–57
impact on development of pacifism,	four-dimensional continuum, 70, 84,
89–90 induction and deduction in 30, 40	115, 152–53, 157, 178, 179–80, 181,
induction and deduction in, 39–40	223, 336–37, 349, 365–66
and intellectual freedom, 252–55, 272–73	and general relativity, 169–73, 179–83
as a mental construct, 113-14	and gravitation, 34–39

Newton's and Mach's views, 12–13	theory of fields, 166–68
structure, 179–83	theory of knowledge (Russell), remarks on,
Spanish Jews, 109	263-67
special theory of relativity, 25-26, 84, 153,	theory of relativity, 1-4, 12, 68, 69, 75, 151
177-78, 335, 336-409, 341, 345, 363	compared to systems of Hegel and
and the ether, 50, 51	Descartes, 171–72
formal foundation, 365-66	development and present position
and gravitation, 339-40, 344, 365	(1921), 83–85
and inertial systems, 36, 37, 61, 84, 336,	dialogue on objections to, 24-34
365	and ether, 46–55
metric of the theory, 85	and field theory, 166-68, 177-78
and motion, 31, 33, 36-37	historical sketch, 174-83
and Newton's mechanics, 167	relationship to Kantianism, 123-29
universal principle, 336	response to Anti-Relativity Company
specific heats of solids, 99	objections, 60–63
spectral lines, 70, 331; red shift of, 7, 38, 62	and space-time, 153–54
speed of light, 338; law of constancy of, 2, 3,	supporters, 61
6, 14, 36, 83, 336	See also general theory of relativity;
spherical geometry (space), 75, 76, 77	special theory of relativity
"spinors," 223	Theory of Relativity (Pauli), Einstein's review,
Spinoza, Baruch, 10, 183, 263, 282–83, 305	93–94
Spinoza: Portrait of a Spiritual Hero (Kayser),	thermodynamics, 35, 40, 98, 164, 320,
foreword to, 282–83	328–30. <i>See also</i> kinetic theory of
Spinoza's God, belief in, 183–85	gases
Stahel, E., 158, 159	"thinking" and "wondering," 315–16
statistical mechanics, 331	Thomson, J. J., 97
statistical quantum theory, 346–48	time, 335–36
Stefan-Boltzmann law, 331	_
	concept of, 155–56
supranational security, 278–80, 287	measurement of, 156
Swiss Patent Office, 192, 364	See also clocks; space-time
Switzerland, 318, 319, 361–68	Illraina 91
system of coordinates. See coordinate	Ukraine, 81
systems	undulatory theory of light. See wave
Szilard, Leo, 251	(undulatory) theory of light
T 144	unified field theory, 169, 174, 179, 181–83,
Taoism, 144	295
teacher-student relationship, 234–36	uniform motion, 3–4, 7
technical education, 57–58	unitary field theory. See unified field theory
theoretical method, development, 220–21	United Nations, 270, 271, 298, 299
theoretical physics, 319	United States of America, 196
development phase, 96–98	American ideal, 144–45
and experience, 220–22	antisemitism, 80
influence of Newtonian mechanics on	and atomic bomb, 251–52, 270, 287–89
formation of, 161–69	comparison of Americans to Europeans,
method of, 219–24	204-5
present crisis, 96–102	economic oligarchy, 299
and philosophy, 125	economic and political domination,
theories	298–300, 301
deduction in development of, 39-40	Einstein's message to, 283–85
and empirical facts, 321	exports financed through loans to
"inner perfection," 322	foreign countries, 301
"naturalness" or "logical simplicity" of	impressions of, 203–6
the premises, 321	influence on international affairs, 205-6
of principle, 35	influence on United Nations, 299
truth of, 40	Jewish people in, 88

United States of America (cont.) military mentality, 286-87 prohibition law, 205 Russian scientists criticism, 298-99 social responsibility, 205 superiority in things technical and organizational, 204-5 uranium and atomic research, 251-52 victorious against Germany, 276 See also African Americans universal constants, 338-39 universe, 71-74, 85, 167 University of Berlin, 58; Einstein's lectures at, 43 - 44university education, 142, 233 University of Leyden, 46 uranium, 251, 252, 273

Veblen, Thorstein, 262, 306

Warburg, Emil, 100
wars and war prevention, 226
1932 Disarmament Conference, Geneva,
207–8
danger of annihilation supersedes all
others, 301–2
outlawing of atomic energy as an
instrument of war, 289–91
"Why War?" 210–13
and World Government, 273, 296–302
wave functions, Born's statistical
interpretation (quantum mechanics),
355, 358–60
wave (undulatory) theory of light, 46, 48, 53,
118–19, 164, 175, 320, 322, 362–63

waves on the surface of water, 51 Weber, Heinrich Friedrich, 362, 363 Weimar Republic, 230, 231 Weizmann, Chaim, 354 western civilization, and war in Europe, 7-9 Weyl, Hermann, 54, 169, 172 Weyland, Paul, 60-61 Wien, Wilhelm, 116 Wien's law, 331 Wilhelm II, Kaiser, 286 Winternitz, Joseph, Relativity Theory and Epistemology, review, 112-14 "wondering" and "thinking," 315-16 World Government, 270-72, 273; reply to Soviet Scientists criticism of Einstein's support for, 296-302 World War I and Manifesto to the Europeans, 7-9 opinion on, 18-20 post-war impact on feeling of security, and reconciliation of nations, 63-64 World War II America victorious against Germany, 276 Battle of the Warsaw ghetto, 268 extermination of Jews in death camps, 268

Zionism/Zionist movement, 41, 78–80, 81, 87–88, 136–37, 187–88

American Council of Judaism opposition to, 274–75

Judaism's debt of gratitude to, 245–47

Zürich Polytechnic, 318; Einstein's experience at, 361–68