Contents

Intr	oduction to the Scientific Writings	ix
1	A Theory of the Foundations of Thermodynamics (1903)	1
2	On a Heuristic Point of View Concerning the Production and Transformation of Light (1905)	18
3	On the Motion of Small Particles Suspended in Liquids at Rest Required by the Molecular-Kinetic Theory of Heat (1905)	33
4	On the Electrodynamics of Moving Bodies (1905)	43
5	Does the Inertia of a Body Depend upon Its Energy Content? (1905)	72
6	On the Theory of Light Production and Light Absorption (1906)	75
7	Planck's Theory of Radiation and the Theory of Specific Heat (1907)	82
8	On the Relativity Principle and the Conclusions Drawn from It (1907)	93
9	On the Present Status of the Radiation Problem (1909)	147
10	On the Development of Our Views Concerning the Nature and Constitution of Radiation (1909)	165
11	On the Influence of Gravitation on the Propagation of Light (1911)	181
12	Thermodynamic Proof of the Law of Photochemical Equivalence (1912)	191
13	Experimental Proof of Ampère's Molecular Currents (1915) with W. de Haas	198
14	Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity (1915)	202

15	The Foundation of the General Theory of Relativity (1916)	212
16	Approximative Integration of the Field Equations of Gravitation (1916)	265
17	On the Quantum Theory of Radiation (1916)	275
18	Hamilton's Principle and the General Theory of Relativity (1916)	289
19	Cosmological Considerations in the General Theory of Relativity (1917)	296
20	On Gravitational Waves (1918)	307
21	On the Foundations of the General Theory of Relativity (1918)	323
22	The Law of Energy Conservation in the General Theory of Relativity (1918)	326
23	Does Field Theory Provide Possibilities for the Solution of the Quantum Problem? (1923)	339
24	Quantum Theory of the Monatomic Ideal Gas (1924)	346
25	Quantum Theory of the Monatomic Ideal Gas. Second Paper (1925)	354
26	Unified Field Theory of Gravitation and Electricity (1925)	369
27	Patent of Refrigerator (1927) with L. Szilard	376
28	Unified Field Theory Based on Riemannian Metric and Distant Parallelism (1930)	384
29	On the Cosmological Problem of the General Theory of Relativity (1931)	398
30	On the Relation between the Expansion and the Mean Density of the Universe (1932) with W. de Sitter	402
31	Elementary Derivation of the Equivalence of Mass and Energy (1935)	404

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.
Contents

vii

32	Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? (1935) with B. Podolsky and N. Rosen	412
33	The Particle Problem in the General Theory of Relativity (1935) with N. Rosen	420
34	Lens-like Action of a Star by the Deflection of Light in a Gravitational Field (1936)	431
35	On a Generalization of Kaluza's Theory of Electricity (1938) with P. Bergmann	433
36	The Gravitational Equations and the Problem of Motion [Excerpt] (1937) with L. Infeld and B. Hoffmann	455
37	On the Non-Existence of Regular Stationary Solutions of Relativistic Field Equations (1943) with W. Pauli	486
38	Relativistic Theory of the Non-symmetric Field (1955)	494
Bibliography 52		521
nde	ex	527

1. A Theory of the Foundations of Thermodynamics (1903)

Annalen der Physik 11 (1903): 170-187. [Collected Papers Vol. 2, Doc. 4].

Unaware of Josiah Willard Gibbs's writings at the time, Einstein here gives an alternative view on the foundations of statistical mechanics, supplementing Gibbs's better-known and more influential work and effectively introducing the concept of a canonical ensemble himself.

n a recently published paper, [a] I showed that the laws of thermal equilibrium and the concept of entropy can be derived with the help of the kinetic theory of heat. The question that then arises naturally is whether the kinetic theory is really necessary for the derivation of the above foundations of the theory of heat, or whether, perhaps, assumptions of a more general nature may suffice. In this article, it shall be demonstrated that the latter is the case, and it shall be shown by what kind of reasoning one can reach the goal.

§1. On a general mathematical representation of the processes in isolated physical systems

Let the state of some physical system that we consider be uniquely determined by very many (n) scalar quantities $p_1, p_2 \dots p_n$, which we call state variables. The change of the system in a time element dt is then determined by the changes $dp_1, dp_2 \dots dp_n$ that the state variables undergo during that time element.

Let the system be isolated, i.e., the system considered should not interact with other systems. It is then clear that the state of the system at a given instant of time uniquely determines the change of the system in the next time element dt, i.e., the quantities $dp_1, dp_2 \dots dp_n$. This statement is equivalent to a system of equations of the form

$$\frac{dp_i}{dt} = \varphi_i(p_1 \dots p_n) \qquad (i = 1 \dots i = n), \tag{1}$$

where the φ 's are unique functions of their arguments.

1. Foundations of Thermodynamics (1903)

2

In general, for such a system of linear differential equations, there does not exist an integral of the form

$$\psi(p_1 \dots p_n) = \text{const.},$$

which does not contain the time explicitly. However, for a system of equations that represents the changes of a physical system closed to the outside, we must assume that at least one such equation exists, namely the energy equation

$$E(p_1 \dots p_n) = \text{const.}$$

At the same time, we assume that no further integral of this kind that is independent of the above equation is present.

§2. On the stationary distribution of state of infinitely many isolated physical systems of almost equal energies

Experience shows that, after a certain time, an isolated system assumes a state in which no perceptible quantity of the system undergoes any further changes with time; we call this state the stationary state. Hence, it will obviously be necessary for the functions φ_i to fulfill a certain condition so that equations (1) may represent such a physical system.

If we now assume that a perceptible quantity is always represented by a time average of a certain function of the state variables $p_1 \dots p_n$ and that these state variables $p_1 \dots p_n$ keep on assuming the same systems of values with always the same unchanging frequency, then it necessarily follows from this condition, which we shall elevate to a postulate, that the averages of all functions of the quantities $p_1 \dots p_n$ must be constant; hence, in accordance with the above, all perceptible quantities must also be constant.

We will specify this postulate precisely. Starting at an arbitrary point of time and throughout time T, we consider a physical system that is represented by equations (1) and has the energy E. If we imagine having chosen some arbitrary region Γ of the state variables $p_1 \dots p_n$, then, at a given instant of time T, the values of the variables $p_1 \dots p_n$ will lie within the chosen region Γ or outside it; hence, during a fraction of the time T, which we shall call τ , they will lie in the chosen region Γ . Our condition then reads as follows: If $p_1 \dots p_n$ are state variables of a physical system, i.e., of a system that assumes a stationary state, then, for each region Γ , the quantity $\frac{\tau}{T}$ has a definite limiting value for $T = \infty$.

For any infinitesimally small region, this limiting value is infinitesimally small.

The following consideration can be based on this postulate. Let there be very many (N) independent physical systems, all of which are represented by the same system of equations (1). We select an arbitrary instant t and inquire after the distribution of the possible states among these N systems, assuming that the energy E of all systems lies between E^* and the infinitesimally close value $E^* + \delta E^*$. From the postulate introduced above, it follows immediately that the probability that the state variables of a system randomly selected from among N systems will lie within the region Γ at time t has the value

$$\lim_{T=\infty} \frac{\tau}{T} = \text{const.}$$

The number of systems whose state variables lie within the region Γ at time t is thus

$$N \cdot \lim_{T=\infty} \frac{\tau}{T}$$
,

i.e., a quantity independent of time. If g denotes a region of the coordinates $p_1 \dots p_n$ that is infinitesimally small in all variables, then the number of systems whose state variables fill up the arbitrarily chosen infinitesimally small region g at an arbitrary time will be

$$dN = \varepsilon(p_1 \dots p_n) \int_{\mathcal{G}} dp_1 \dots dp_n. \tag{2}$$

The function ε is obtained by expressing, in symbols, the condition that the distribution of states expressed by equation (2) is a stationary one. Specifically, the region g shall be chosen such that p_1 shall lie between the definite values p_1 and $p_1 + dp_1$, p_2 between p_2 and $p_2 + dp_2, \ldots p_n$ between p_n and $p_n + dp_n$; then we have, at the time t,

$$dN_t = \varepsilon(p_1 \dots p_n) \cdot dp_1 \cdot dp_2 \dots dp_n,$$

where the subscript of dN denotes the time. Taking into account equation (1), one obtains furthermore, at time t + dt and the same region of the state variables,

$$dN_{t+dt} = dN_t - \sum_{\nu=1}^{\nu=n} \frac{\partial (\varepsilon \varphi_{\nu})}{\partial p_{\nu}} \cdot dp_1 \dots dp_n \cdot dt.$$

1. Foundations of Thermodynamics (1903)

However, since $dN_t = dN_{t+dt}$, because the distribution is stationary, we have

$$\sum \frac{\partial (\varepsilon \varphi_{\nu})}{\partial p_{\nu}} = 0.$$

This yields

$$-\sum \frac{\partial \varphi_{\nu}}{\partial p_{\nu}} = \sum \frac{\partial (\log \varepsilon)}{\partial p_{\nu}} \cdot \varphi_{\nu} = \sum \frac{\partial (\log \varepsilon)}{\partial p_{\nu}} \cdot \frac{dp_{\nu}}{dt} = \frac{d(\log \varepsilon)}{dt},$$

where $\frac{d(\log \varepsilon)}{dt}$ denotes the change of the function $\log \varepsilon$ with respect to time for an individual system, taking into account the changes with time of the quantities p_{ν} . One obtains further

$$\varepsilon = e^{-\int dt \sum_{\nu=1}^{\nu=n} \frac{\partial \varphi_{\nu}}{\partial p_{\nu}}} + \psi(E) = e^{-m + \psi(E)}.$$

The unknown function ψ is the time-independent integration constant which may depend on the variables $p_1 \dots p_n$, but can contain them, according to the assumptions made in §1, only in the combination in which they appear in the energy E.

However, since $\psi(E) = \psi(E^*) = \text{const.}$ for all N systems considered, the expression for ε reduces, in our case, to

$$\varepsilon = \text{const. } e^{-\int dt \sum_{\nu=1}^{\nu=n} \frac{\partial \varphi_{\nu}}{\partial p_{\nu}}} = \text{const. } e^{-m}.$$

According to the above, we now have

$$dN = \text{const. } e^{-m} \int_{\mathcal{S}} dp_1 \dots dp_n.$$

For the sake of simplicity, we now introduce new state variables for the system considered; they shall be denoted by π_{ν} . We then have

$$dN = \text{const.} \frac{e^{-m}}{\frac{D(\pi_1 \dots \pi_n)}{D(p_1 \dots p_n)}} \int_g d\pi_1 \dots d\pi_n,$$

where the symbol D denotes the functional determinant.—We now want to choose the new coordinates such that

$$e^{-m} = \frac{D(\pi_1 \dots \pi_n)}{D(p_1 \dots p_n)}.$$

5

This equation can be satisfied in infinitely many ways, e.g., by setting

$$\pi_2 = p_2$$

$$\pi_3 = p_3$$

$$\dots \qquad \pi_1 = \int e^{-m} \cdot dp_1.$$

$$\pi_n = p_n$$

Using the new variables, we thus obtain

$$dN = \text{const.} \int d\pi_1 \dots d\pi_n.$$

Henceforth, we will always suppose that such variables have been introduced.

§3. On the distribution of states of a system in contact with a system of relatively infinitely large energy

We now assume that each of the N isolated systems is composed of two partial systems, Σ and σ , in interaction. Let the state of the partial system Σ be determined by the values of the variables $\Pi_1 \dots \Pi_{\lambda}$, and that of the system σ by the values of the variables $\pi_1 \dots \pi_l$. Further, let the energy E—which, for each system, shall lie between the values E^* and δE^* , i.e., shall equal E^* up to the infinitesimally small—be composed of two terms, of which the first, H, shall be determined only by the values of the state variables of Σ , and the second η only by the state variables of σ so that, except for the relatively infinitesimally small, one has

$$E = H + n$$
.

Two systems in interaction that satisfy this condition will be called two systems in contact. We also assume that η is infinitesimally small compared with H.

For the number dN_1 of the N-systems whose state variables $\Pi_1 \dots \Pi_{\lambda}$ and $\pi_1 \dots \pi_l$ lie between Π_1 and $\Pi_1 + d\Pi_1$, Π_2 and $\Pi_2 + d\Pi_2$, ... Π_{λ} and $\Pi_{\lambda} + d\Pi_{\lambda}$, and π_1 and $\pi_1 + d\pi_1$, π_2 and $\pi_2 + d\pi_2$, ... π_l and $\pi_l + d\pi_l$, we get the expression

$$dN_1 = C \cdot d\Pi_1 \dots d\Pi_{\lambda} \cdot d\pi_1 \dots d\pi_{\lambda}$$

where *C* can be a function of $E = H + \eta$.

However, since, according to the above assumption, the energy of each of the systems considered up to the infinitesimally small has the 6

value E^* , we can replace C by const. $e^{-2hE^*} = \text{const. } e^{-2h(H+\eta)}$ without causing any changes in the result, where h is a constant still to be defined precisely. Hence, the expression for dN_1 becomes

$$dN_1 = \text{const. } e^{-2h(H+\eta)} \cdot d\Pi_1 \dots d\Pi_{\lambda} \cdot d\pi_1 \dots d\pi_l.$$

The number of systems whose state variables π lie between the indicated limits while the values of the variables Π are not subjected to any restrictive condition may thus be represented in the form

$$dN_2 = \text{const. } e^{-2h\eta} \cdot d\pi_1 \dots d\pi_l \int e^{-2hH} d\Pi_1 \dots d\Pi_{\lambda}$$

where the integral is to be extended over all values of Π to which correspond values of the energy H lying between $E^* - \eta$ and $E^* + \delta E^* - \eta$. Had the integration been carried out, we would have found the distribution of the state of the systems σ . This is, in fact, possible.

We put

$$\int e^{-2hH} \cdot d\Pi_1 \dots d\Pi_{\lambda} = \chi(E),$$

where the integral on the left-hand side is to be extended over all values of the variables for which H lies between the definite values E and $E+\delta E^*$. The integral that appears in the expression dN_2 then assumes the form

$$\chi(E^*-\eta),$$

or, since η is infinitesimally small compared with E^* ,

$$\chi(E^*) - \chi'(E^*) \cdot \eta$$
.

Thus, if h can be chosen such that $\chi'(E^*) = 0$, the integral reduces to a quantity that is independent of the state of σ .

It is possible to put, up to the infinitesimally small,

$$\chi(E) = e^{-2hE} \int d\Pi_1 \dots d\Pi_{\lambda} = e^{-2hE} \cdot \omega(E),$$

where the integration limits are the same as above and where ω denotes a new function of E.

The condition for *h* now assumes the form

$$\chi'(E^*) = e^{-2hE^*} \cdot \{\omega'(E^*) - 2h\omega(E^*)\} = 0;$$

1. Foundations of Thermodynamics (1903)

7

consequently:

$$h = \frac{1}{2} \frac{\omega'(E^*)}{\omega(E^*)}.$$

If h is chosen in this way, the expression for dN_2 will assume the form

$$dN_2 = \text{const. } e^{-2h\eta} d\pi_1 \dots d\pi_l. \tag{3}$$

With suitable choice of the constant, this expression represents the probability that the state variables of a system in contact with another system of relatively infinitely large energy will lie within the indicated limits. The quantity h depends only on the state of the above system Σ of relatively infinitely large energy.

§4. On absolute temperature and thermal equilibrium

Thus, the state of the system σ depends only on the quantity h and the latter only on the state of the system Σ . We call the quantity $\frac{1}{4}h\kappa = T$ the absolute temperature of the system Σ , where κ denotes a universal constant.

If we call the system σ "thermometer," then we can immediately advance the following propositions:

- 1. The state of the thermometer depends only on the absolute temperature of the system Σ and not on the kind of contact of the systems Σ and σ .
- 2. If, in case of contact, two systems Σ_1 and Σ_2 impart the same state to a thermometer σ , then they have the same absolute temperature and will also impart the same state to another thermometer σ' in case of contact.

Further, suppose two systems Σ_1 and Σ_2 are in contact and Σ_1 is also in contact with a thermometer σ . The distribution of states of σ depends then only on the energy of the system $(\Sigma_1 + \Sigma_2)$, i.e., on the quantity $h_{1,2}$. If the interaction between Σ_1 and Σ_2 is imagined to decrease infinitely slowly, this does not change the expression for the energy $H_{1,2}$ of the system $(\Sigma_1 + \Sigma_2)$, which can be readily seen from our definition of contact and the expression for the quantity h that we formulated in the last section. Finally, if the interaction had ceased completely, the distribution of states of σ , which does not change during the separation of Σ_1 and Σ_2 , will now depend on Σ_1 , i.e., on the quantity h_1 ,

1. Foundations of Thermodynamics (1903)

where the index denotes association with the system Σ_1 alone. Hence, we have

$$h_1 = h_{12}$$
.

By an analogous line of argument, one could have obtained

$$h_2 = h_{12}$$
;

hence

8

$$h_1 = h_2$$
,

or, in words: If one separates two systems Σ_1 and Σ_2 in contact, which form an isolated system ($\Sigma_1 + \Sigma_2$) of absolute temperature T, then the now-isolated systems Σ_1 and Σ_2 will have the same temperature after separation. We imagine a given system in contact with an ideal gas. This gas shall be completely describable in terms of the kinetic theory of gases. As the system σ , we consider a single monoatomic gas molecule of mass μ , whose state shall be completely determined by its orthogonal coordinates x, y, z and the velocities ξ, η, ζ . In accordance with §3, we obtain, for the probability that the state variables of this molecule lie between the limits x and x + dx, . . . ζ and $\zeta + d\zeta$, the well-known Maxwellian expression

$$dW = \text{const. } e^{-h\mu(\xi^2 + \eta^2 + \zeta^2)} \cdot dx \dots d\zeta.$$

By integration, one obtains from this, for the mean kinetic energy of this molecule,

$$\frac{\mu}{2}(\xi^2 + \eta^2 + \zeta^2) = \frac{1}{4h}.$$

However, the kinetic theory of gases teaches that, at a constant volume of the gas, this quantity is proportional to the pressure exerted by the gas. The latter is, by definition, proportional to the quantity designated in physics as absolute temperature. Thus, the quantity we designated as absolute temperature is nothing else but the temperature of a system measured by the gas thermometer.

§5. On infinitely slow processes

Until now, we have only considered systems that are in a stationary state. Now, we are also going to investigate changes of stationary states, though only those that proceed so slowly that the distribution of states

9

existing at an arbitrary instant differs only infinitesimally from the stationary distribution; or, more precisely, that, up to the infinitesimally small, the probability that the state variables lie in a certain region G can be represented, at any moment, by the formula found above. We call such a change an infinitesimally slow process.

If the functions φ_{ν} (equation (1)) and the energy E of a system are specified, then, according to the above, its stationary state distribution is also specified. An infinitely slow process will thus be specified either by a changing E, by the functions φ_{ν} containing the time explicitly, or by both circumstances simultaneously, but in such a way that the corresponding differential quotients, with respect to time, are very small.

We assumed that the state variables of an isolated system change according to equations (1). However, conversely, if there exists a system of equations (1), according to which the state variables of a system are changing, this system does not always have to be an isolated one. For it can happen that a system under consideration is influenced by other systems in such a way that this influence depends only on such functions of the variable coordinates of the influencing systems, which do not change when the distribution of states of the influencing system is constant. In this case, the change of the coordinates p_{ν} of the system considered can also be represented by a system having the form of equations (1). However, the functions φ_{ν} will then depend not only on the physical nature of the system in question, but also on certain constants that are defined through the influencing systems and their distributions of states. This kind of influence on the system under consideration we call adiabatic. It is easy to see that as long as the distributions of state of the adiabatically influencing systems do not change, there exists an energy equation for the equations (1) in this case as well. If the states of the adiabatically influencing systems do change, then the functions φ_{ν} of the systems considered change explicitly with time, with equations (1) maintaining their validity at all times. Such a change of the distribution of states of the system under consideration we call an adiabatic one.

We now consider a second kind of changes of the state of a system Σ . Consider a system that can be influenced adiabatically. We assume that, at time t = 0, the system Σ enters into such an interaction with a system P of a different temperature that we called "in contact" above,

and we remove the system P after the time necessary for the equalization of the temperatures of Σ and P. The energy of Σ has then changed. The equations (1) of Σ are invalid during the process but valid before and after it, while the functions φ_{ν} are the same before and after the process. Such a process we call "isopycnic," and the energy supplied to Σ , "heat supplied."

It is evident that, up to the infinitesimally small, it is possible to construct each infinitely slow process from a succession of infinitesimally small adiabatic and isopycnic processes, so that in order to get a general overview, we have to study the latter ones only.

§6. On the concept of entropy

Let there be a physical system whose instantaneous state shall be completely determined by the values of the state variables $p_1 \cdots p_n$. Let this system undergo a small, infinitely slow process, in which the systems that influence this system adiabatically experience an infinitesimally small change of state; energy is being supplied to the system considered by systems in contact. We take account of the adiabatically influencing systems by stipulating that in addition to the $p_1 \cdots p_n$, the energy E of the system considered shall also depend on some parameters $\lambda_1, \lambda_2 \cdots$, whose values shall be determined by the distributions of states of the systems that influence adiabatically the system considered. In purely adiabatic processes, there holds, at any instant, a system of equations (1) whose functions φ_{ν} depend not only on the coordinates p_{ν} , but also on the slowly changing quantities λ ; for adiabatic processes, too, there will hold, at any instant, the energy equation, whose form is

$$\sum \frac{\partial E}{\partial p_{\nu}} \varphi_{\nu} = 0.$$

We now investigate the energy increase of the system during an arbitrary infinitesimally small, infinitely slow process.

For each element *dt* of the process, we have

$$dE = \sum \frac{\partial E}{\partial \lambda} d\lambda + \sum \frac{\partial E}{\partial p_{\nu}} dp_{\nu}.$$
 (4)

For an infinitesimally small isopycnic process, all $d\lambda$ vanish in each time element, and thus the first term of the right-hand side vanishes too.

However, since, according to the previous section, in an isopycnic process, dE is to be considered as heat supplied for such a process, the heat supplied dQ is represented by the expression

$$dQ = \sum \frac{\partial E}{\partial p_{\nu}} dp_{\nu}.$$

However, for an adiabatic process, during which equations (1) are always valid, we have, according to the energy equation,

$$\sum \frac{\partial E}{\partial p_{\nu}} dp_{\nu} = \sum \frac{\partial E}{\partial p_{\nu}} \varphi_{\nu} dt = 0.$$

On the other hand, according to the previous section, dQ = 0 for an adiabatic process, so that one can put

$$dQ = \sum \frac{\partial E}{\partial p_{\nu}} dp_{\nu}$$

for an adiabatic process as well. Hence, this equation must be considered as valid for any arbitrary process during each time element. Thus, equation (4) becomes

$$dE = \sum \frac{\partial E}{\partial \lambda} d\lambda + dQ. \tag{4'}$$

This expression represents the energy change of the system occurring during the whole infinitesimally small process at changed values of $d\lambda$ and dQ as well.

At the beginning and the end of the process, the distribution of states of the system considered is stationary, and when the system is in contact with a system of relatively infinitely large energy before and after the process, this assumption having formal significance only, this distribution is defined by the equation having the form

$$dW = \text{const. } e^{-2hE} \cdot dp_1 \dots dp_n$$
$$= e^{c-2hE} \cdot dp_1 \dots dp_n,$$

where dW denotes the probability that the values of the system's state variables lie within the limits indicated at any arbitrarily chosen moment. The constant c is defined by the equation

$$\int e^{c-2hE} \cdot dp_1 \dots dp_n = 1, \tag{5}$$

where the integration has to be extended over all values of the variables.

12

Specifically, if equation (5) holds before the process under consideration, then afterwards we have

$$\int e^{(c+dc)-2(h+dh)\left(E+\sum\frac{\partial E}{\partial \lambda}d\lambda\right)} \cdot dp_1 \dots dp_n = 1, \tag{5'}$$

and the two last equations yield

$$\int \left(dc - 2Edh - 2h\sum_{i} \frac{\partial E}{\partial \lambda} \cdot d\lambda\right) \cdot e^{c-2hE} \cdot dp_1 \dots dp_n = 0,$$

or, since the expression in parentheses can be taken as a constant during integration because the system's energy *E* never differs markedly from a fixed average value before and after the process, and taking into account equation (5),

$$dc - 2Edh - 2h \sum_{i} \frac{\partial E}{\partial \lambda} d\lambda = 0.$$
 (5")

However, according to equation (4'), we have

$$-2hdE + 2h\sum_{i} \frac{\partial E}{\partial \lambda} d\lambda + 2hdQ = 0,$$

and, by adding these two equations, one obtains

$$2h \cdot dQ = d(2hE - c),$$

or, since $\frac{1}{4h} = \kappa \cdot T$,

$$\frac{dQ}{T} = d\left(\frac{E}{T} - 2\kappa c\right) = dS.$$

This equation states that dQ/T is a total differential of a quantity that we will call the entropy S of the system. Taking into account equation (5), one obtains

$$S = 2\kappa (2hE - c) = \frac{E}{T} + 2\kappa \log \int e^{-2hE} dp_1 \dots dp_n,$$

where the integration has to be extended over all values of the variables.

§7. On the probability of distributions of states

In order to derive the second law in its most general form, we have to investigate the probability of distributions of states. We consider a very large number (N) of isolated systems, all of which can be represented

by the same system of equations (1) and whose energies coincide up to the infinitesimally small. The distribution of states of these N systems can then be represented by an equation of the form

$$dN = \varepsilon(p_1 \dots p_n, t) dp_1 \dots dp_n, \tag{2'}$$

where in general ε depends explicitly on the state variables $p_1 \dots p_n$ and also on time. Here, the function ε completely characterizes the distribution of states.

It follows from §2 that when the distribution of states is constant—which, according to our assumptions, is always the case at very large values of t—we must have ε = const., so that, for a stationary distribution of states, we will have

$$dN = \text{const. } dp_1 \dots dp_n.$$

From this, it follows immediately that the expression for the probability dW, for the values of the state variables of a system randomly chosen from among the N systems to lie in the infinitesimally small region g of the state variables located within the assumed energy limits, is given by

$$dW = \text{const.} \int_{\mathcal{G}} dp_1 \dots dp_n.$$

This proposition can also be formulated as follows: If the whole pertinent region of state variables that is determined by the assumed energy limits is divided into l partial regions $g_1, g_2 \dots g_l$ such that

$$\int_{g_1} = \int_{g_2} = \cdots = \int_{g_l},$$

and if one denotes by W_1 , W_2 , etc., the probabilities that the values of the state variables of the arbitrarily chosen system lie within $g_1, g_2 \dots$ at a certain instant, then

$$W_1 = W_2 = \dots = W_l = \frac{1}{l}.$$

The probability that, at a given moment, the system considered will belong to a specific region from among these $g_1 \dots g_l$ regions is thus just as great as the probability that it will belong to any other of these regions.

The probability that, at a randomly chosen time, ε_1 of N systems considered will belong to the region g_1 , ε_2 to region g_2 , and ... ε_l to

14

region g_l is hence

$$W = \left(\frac{1}{l}\right)^N \frac{N!}{\varepsilon_1! \varepsilon_2! \dots \varepsilon_n!},$$

or also, since $\varepsilon_1, \varepsilon_2 \dots \varepsilon_n$ are to be thought of as very large numbers:

$$\log W = \text{const.} - \sum_{\varepsilon=1}^{\varepsilon=l} \varepsilon \log \varepsilon.$$

If *l* is sufficiently large, one can put, without noticeable error,

$$\log W = \text{const.} - \int \varepsilon \log \varepsilon \, dp_1 \dots dp_n.$$

In this equation, W denotes the probability that a given distribution of states, which is expressed by the numbers $\varepsilon_1, \varepsilon_2 \dots \varepsilon_l$ or else, by a specific function ε of $p_1 \dots p_n$ according to equation (2'), prevails at a given time.

If, in this equation, ε were constant, i.e., independent of the p_{ν} 's within the energy limits considered, then the distribution of states considered would be stationary and, as can easily be proved, the expression for the probability W of the distribution of states would be a maximum. If ε depends on the values of the p_{ν} 's, then it can be shown that the expression for $\log W$ for the distribution of states considered does not have an extremum, i.e., that there exist distributions of states differing infinitesimally from the considered one for which W is larger.

If we follow the N systems considered for an arbitrary time interval, the distribution of states, and thus also W, will continually change with time, and we will have to assume that always more probable distributions of states will follow upon improbable ones, i.e., that W increases until the distribution of states has become constant and W a maximum.

It will be shown in the following sections that the second law of thermodynamics can be deduced from this proposition.

First of all, we have

$$-\int \varepsilon' \log \varepsilon' dp_1 \dots dp_n \ge -\int \varepsilon \log \varepsilon dp_1 \dots dp_n,$$

where the function ε determines the distribution of states of the N systems at a certain time t, the function ε' determines the distribution of states at a certain later time t', and the integration on both sides is to be

15

extended over all values of the variables. Further, if the quantities $\log \varepsilon$ and $\log \varepsilon'$ of the individual systems from among the N systems do not differ markedly from each other, then, since

$$\int \varepsilon dp_1 \dots dp_n = \int \varepsilon' dp_1 \dots dp_n = N,$$

the last equation becomes

$$-\log \varepsilon' \ge -\log \varepsilon. \tag{6}$$

§8. Application of the results obtained to a particular case

We consider a finite number of physical systems $\sigma_1, \sigma_2 \dots$ that together form an isolated system, which we shall call a total system. The systems $\sigma_1, \sigma_2 \dots$ shall not interact markedly with each other thermally, but they might affect each other adiabatically. The distribution of states of each of the systems $\sigma_1, \sigma_2 \dots$, which we shall call partial systems, shall be stationary up to the infinitesimally small. The absolute temperatures of the partial systems may be arbitrary and different from each other.

The distribution of states of the system σ_1 will not be markedly different from the distribution of states that would hold if σ_1 were in contact with a physical system of the same temperature. We can therefore represent its distribution of states by the equation

$$dw_1 = e^{c_{(1)}-2h_{(1)}E_{(1)}} \int_{\mathcal{G}} dp_1^{(1)} \dots dp_{(n)}^{(1)},$$

where the indices (1) indicate affiliation with the partial system σ_1 .

Analogous equations hold for the other partial systems. Since the instantaneous values of the state variables of the individual partial systems are independent of those of the other systems, we obtain, for the distribution of states of the total system, an equation of the form

$$dw = dw_1 \cdot dw_2 \cdot \cdot \cdot = e^{\sum c_{\nu} - 2h_{\nu}E_{\nu}} \int_{\mathcal{S}} dp_1 \dots dp_n, \tag{7}$$

where the summation is to be extended over all systems, and the integration over the arbitrary region g, which is infinitesimally small in all the variables of the total system.

We now assume that, after some time, the partial systems $\sigma_1, \sigma_2 \dots$ enter into some arbitrary interaction with each other, but that during that process, the total system always remains an isolated one. After the lapse of a certain time, there shall arise a state of the total system in which the partial systems $\sigma_1, \sigma_2 \dots$ do not affect each other thermally and, up to the infinitesimally small, exist in a stationary state.

Then, an equation completely analogous to that holding before the process will hold for the distribution of states of the total system:

$$dw' = dw'_1 \cdot dw'_2 \cdot \dots = e^{\sum c'_{\nu} - 2h'_{\nu}E'_{\nu}} \int_{\sigma} dp \dots dp_n.$$
 (7')

We now consider N such total systems. Up to the infinitesimally small, equation (7) shall hold for each of these systems at time t, and equation (7) at time t'. Then, the distribution of states of the N total systems considered at times t and t' will be given by the equations

$$dN_t = N \cdot e^{\sum (c_{\nu} - 2h_{\nu}E_{\nu})} \cdot dp_1 \dots dp_n$$

$$dN_{t'} = N \cdot e^{\sum (c'_{\nu} - 2h'_{\nu}E'_{\nu})} \cdot dp_1 \dots dp_n.$$

To these two distributions of states, we now apply the results of the previous section. Neither the

$$\varepsilon = N \cdot e^{\sum (c_{\nu} - 2h_{\nu}E_{\nu})},$$

nor the

$$\varepsilon' = N \cdot e^{\sum (c_{\nu}' - 2h_{\nu}' E_{\nu}')}$$

for the individual systems among the N systems are here markedly different so that we can apply equation (6), which yields

$$\sum (2h'E'-c') \geqq \sum (2hE-c),$$

or, noting that, according to \$6, the quantities $2h_1E_1 - c_1$, $2h_2E_2 - c_2$, ... are identical with the entropies S_1, S_2 ... of the partial systems up to a universal constant,

$$S_1' + S_2' + \dots \ge S_1 + S_2 + \dots,$$
 (8)

i.e., the sum of the entropies of the partial systems of an isolated system, after some arbitrary process, is equal to or larger than the sum of the entropies of the partial systems before the process.

§9. Derivation of the second law

Let there be an isolated total system whose partial systems shall be called W, M, and Σ_1 , Σ_2 ... Let the system W, which we shall call heat reservoir, have an energy that is infinitely large compared with the system M (engine). Similarly, the energy of the systems Σ_1 , Σ_2 ..., which interact adiabatically with each other, shall be infinitely large compared with that of M. We assume that all the partial systems M, W, Σ_1 , Σ_2 ... are in a stationary state.

Suppose that the engine M passes through a cyclic process, during which it changes the distributions of states of the systems $\Sigma_1, \Sigma_2 \ldots$ infinitely slowly through adiabatic influence, i.e., performs work and receives the amount of heat Q from the system W. The reciprocal adiabatic influence of the systems $\Sigma_1, \Sigma_2 \ldots$ at the end of the process will then differ from that before the process. We say that the engine M has converted the amount of heat Q into work.

We now calculate the increase in entropy of the individual partial systems during the process considered. According to the results of §6, the entropy increase of the heat reservoir W equals $-\frac{Q}{T}$ if T denotes the absolute temperature. The entropy of M is the same before and after the process because the system M has undergone a cyclic process. The systems $\Sigma_1, \Sigma_2 \ldots$ do not change their entropies during the process at all because these systems only experience an adiabatic influence that is infinitely slow. Hence, the entropy increase S'-S of the total system has the value

$$S' - S = \frac{Q}{T}.$$

Since, according to the results of the last section, this quantity S'-S is always $\geqq 0$, it follows that $Q \le 0$.

This equation expresses the impossibility of the existence of a perpetuum mobile of the second kind.

Bern, January 1903.

(Received on 26 January 1903.)

Editorial Note

[a] Einstein 1902.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

aberration, law of, 63, 95, 107	Boltzmann's theory of the second law, 82-83
Abraham, Max, 122	Bose, Satyendra Nath, 347, 355, 357
absolute temperature and thermal	Bose-Einstein condensate, 354
equilibrium (physical systems),	Bose-Einstein statistics, 346, 354
7–8	Bose's theory of radiation, 357
accelerated reference system	boundary conditions, general theory of
and gravitational field, 96, 137–38	relativity, 299-302, 331-32, 334
space and time in, 138–42	Boyle-Gay-Lussac law, 27
addition theorem for velocities, 56–58, 67, 103–5, 107, 170	Brownian particle motion, 33–43, 152, 157,
Ampère's molecular currents, experimental proof, 198–202	Bucherer, Alfred Heinrich, 122
angular momentum, and magnetic	annonical distribution of states 277, 79
moments, 198–202	canonical distribution of states, 277–78
antisymmetrical tensors, 225–26	Cartan, Élie, 384
approximative integration of field equations	cathode rays, 173
of gravitation, 265–74	generation by illumination of solid
	bodies, 30–32
atomistic theory of matter and electricity, 417–27	Kaufmann's experiments, 119–21
atoms, actual size, 42–43	primary and secondary, 174
	Christoffel, Elwin Bruno, 213, 233, 234,
"ausstrahlung" (spontaneous emission), 278	241–43
D V.l. 405	Christoffel symbols, 266, 390, 432, 466
Bargmann, Valentin, 485	Chwolson, Orest, 166
Bauer, Hans, 327, 328	clocks
Bergmann, Peter, 430	coordinate system and time, 96–98
Besso, Michele, 71	gravitational field effect on, 142
β-rays, Kaufmann's experiments, 119–21	inferences from the transformation
Bianchi identities, 345, 495, 496, 508, 514	equations concerning rigid
Birkhoff, George David, 408	bodies and clocks, 102–3
black-body radiation ("black radiation")	moving, and moving rigid bodies, 54–56
and Boltzmann's theory of the second	and relativity of lengths and times, 47–49
law, 82–83	and rods, behaviour in static
difficulty concerning theory of, 19–21,	gravitational field, 260–64
22, 75, 76	and simultaneity, 45–47
energy quanta, 28, 75	space and time in a uniformly
entropy of, 23–24	accelerated reference system,
law of, 24	138–42
and light quanta, 76–79	closed system
moving, 96	energy and momentum, 328
"non-Wien radiation," 29	gravitational mass, 336-39
Planck's theory. See Planck's radiation	closed universe, conservation theorems
theory	applicability, 330–34
Bohr, Niels, 281, 288, 341	Cohn, Emil, 95
Boltzmann, Ludwig, 152-53	collisions of particles, 408-9
Boltzmann's constant, 277	elastic eccentric, 405-7
Boltzmann's principle, 25, 277, 358-59, 361	inelastic, 407–8
Boltzmann's theory of gases, 175, 176, 298,	commutation rule of differentiation, 391
347, 349, 358–59	Compton effect, 340

conservation law	De Sitter, Willem, 265, 269, 296, 300, 301,
conservation of momentum and energy,	312, 399, 453
principles, 403-4	determinant of the fundamental (metric)
conservation of momentum, principle,	tensor, 229–30
117–18, 127, 133	diamond, 91-92
and divergence law, 515	diffusion coefficient, 38-42
in the general case, 250-51	diffusion theory
in general theory of relativity, 326-39	and disordered motion of particles
Hamiltonian form, 246-48	suspended in a liquid, 39–42
for matter, 251-52	of small suspended spheres, 37–39
contraction, of curvature tensor, 503	dilute solutions, entropy of, 25–27
contravariant	Dirac delta-function, 415, 476
four-vectors, 222-23, 224	disordered motion of particles suspended in
fundamental (metric) tensor, 229	a liquid and its relation to
tensors, 224	diffusion, 39–42
vector, "divergence," 239	distant parallelism, 384–98
coordinate system	differential relations, 387–92
and relativity of lengths and times, 47–49	field equations, 392–95
and simultaneity, 45–47	first approximation, 395–97
See also reference system; transformation	
of coordinates and time	mathematical description of the spatial
coordinates, measurement 218	structure, 385–87
corpuscular theory of light, 172	structure of the continuum, 385
cosmological considerations in the general	divergence
theory of relativity, 296–307	and conservation law of momentum and
additional term for the field equations of	energy, 515
gravitation. See cosmological	tensors and vectors, 239–41, 389
constant	Doppler effect (Doppler's principle), 62–63,
boundary conditions, 299-302	95, 103, 106–7, 188, 285,
calculation and result, 306–7	395–98
Newtonian theory, 297–99	dragging of light by moving bodies, 95, 97,
spatially finite universe with a uniform	108
distribution of matter, 302–4	Drude, Paul, 19, 87, 89, 365
cosmological constant, 296, 305–308,	Dulong-Petit's law, 87
325–326, 331, 334–335, 395, 399	
cosmological problem, general theory of	Eddington, Arthur, 369
relativity, 395–98	Ehrenfest, Paul, 357
covariant	EIH paper, 452–82
differential quotients of the fundamental	Einstein-de Sitter model, 399. See also
tensor, 389–90	cosmological considerations in
differentiation, 388–89	the general theory of relativity
four-vectors, 223–24	"einstrahlung" (induced absorption), 279-80
fundamental (metric) tensor, 228–29,	elastic collisions, 405–7
386–87	electric field, external, strength of, 116
general theory of, 222–43	electrical particles, fitting into framework of
requirement for equations expressing	general theory of relativity,
general laws of nature, 216,	424–26, 427
218–19	electricity, Kaluza's theory, generalization,
tensors, 224–25	430–52
vector, "curl," 239	electrodynamics in relativity theory, 108
Curie-Langevin law, 198	and Planck's radiation laws, 147–60
curvature tensor, 501–3. <i>See also</i> Riemann	transformation of Maxwell-Lorentz
curvature tensor	equations, 108–13, 148–49
cui vature terisui	<u>*</u>
De Bracelie I cuie 262	electrodynamics of moving bodies, 43–73
De Broglie, Louis, 362	Doppler's principle and of aberration,
De Haas, Wander, 198, 199	62-64

dynamics of the slowly accelerated	and mass equivalence, 72-75, 95-96,
electron, 68–71	122-26, 401-9
kinematics, 45-58	transformation of light rays, 64-66
Lorentz's theory, 93–95	energy and momentum
Maxwell's theory, 44	of a closed system, 328
transformation of the energy of light	of a moving system, 126-30
rays, 64–66	energy and momentum conservation in the
transformation of Maxwell-Hertz	general theory of relativity,
equations for empty space, 58–61	326–39
transformation of Maxwell-Hertz	energy of the spherical world,
equations when convection	334–36
currents are taken into account,	formulation of the theorem and
66–67	objections raised, 327–28
electromagnetic phenomena, gravitational	gravitational mass of a closed system,
field effect on, 143–47	336–39
electromagnetic radiation	integral theorem for a closed world,
nature and constitution, 165–81	330-34
and radiation pressure, massless hollow	in which respect energy and momentum
body, 133–34	are independent of choice of
See also radiation	coordinates, 328–30
	See also conservation law of momentum
electromagnetic theory, 18, 19, 20, 22, 72, 75, 76, 150, 166; process theory	and energy
(Maxwell), 18, 19, 20	energy quanta, 19, 28, 75, 176
electromotive forces arising due to motion in	and ionization of gases by ultraviolet
a magnetic field, 58–61	light, 32
	light as, 28–30, 32
electron rays (β -rays), Kaufmann's	Planck's determination, 22, 176
experiments, 119–21	Regener's determination, 176
electron theory, 19, 22, 75, 76; of metals,	Rutherford and Geiger's determination,
365-66	176
electron yield curves, 120–22	and Stokes's rule, 28-29
electrons, angular momentum and magnetic	See also light quanta
moments, 198–202. See also	entropy, 10–12, 17, 35
material point	dilute solutions, 25–27
elementary quanta. See energy quanta	molecular-theoretical investigation of
elementary quantum of electricity, 163–64,	the dependence on volume of
176	gases and dilute solutions,
elementary structures	25–27
energy of, 86, 88–89	monochromatic radiation at low
specific atomic heats, 87-91	radiation density, 24-25
energy	and probability of state, 175
components, gravitational field,	radiation, 23–24
310–14	and state probability, monatomic ideal
content and gravitational mass, 147,	gas, 347-48
185–86	statistical independence of gas
content and inertial mass, 72-75, 96,	molecules, 358-59
147, 183–84	and temperature dependence on state of
and electromagnetic phenomena, 18	motion, 96
exchange by radiation, hypothesis	and temperature of moving systems,
concerning, 278–80	134–36
gravitation, 183–86	Eötvös, Loránd, 216
of gravitational waves by mechanical	EPR paradox, 409–17
systems, 316–19	Epstein, Paul, 281
loss of material systems by emission of	equation of motion, and mutually
gravitational waves,	gravitating particles,
271–74	452-82

equation of state	of gravitation and matter, variational
saturated ideal gas, 364-66	principle, 290-91
unsaturated ideal gas, 366-68	relativistic, non-existence of regular
equations of motion	stationary solutions, 483-91
Hamilton's, 118-19	topological solution, 417-27
Lagrange's, 118	and variational principle, 508-10
of the mass point and principles of	field theory and solution of the quantum
mechanics, 116-19	problem, 339-46
of a material point	derivation of system of overdetermined
derivation, 68–71, 95, 113–16	equations, 343–46
in the gravitational field, 243-44	generalities, 340-43
mutually gravitating particles, 452–82	See also unified field theory of gravitation
Newton's, 93, 116	and electromagnetism
of a point mass in a gravitational field,	FitzGerald, George Francis, 94, 95, 169
207-9	five-dimensional space, 430-452; modified
volume and pressure of a moving system,	Kaluza's theory, 436–47
130-33	Fizeau, Hippolyte, 97, 108
equivalence hypothesis, 72–75, 93, 137–47	light interference experiment, 167–68
and gravitational light deflection, 181–89	Fraunhofer diffraction effect, 364
principle, 126, 324, 419	Freundlich, Erwin, 203, 206, 212, 262
Euclidean geometry 217; non-Euclidean,	frictionless adiabatic fluid, Euler's equations
218, 262	for, 253–54
Euclidean space, 334, 385, 483, 490	Friedman, Alexander, 396, 397-98
four-dimensional, 304, 333, 342	fundamental tensor. See metric tensor
three-dimensional, 497	
Euler's equations for a frictionless adiabatic	Galilean coordinate system, 329, 330, 331
fluid, 253–54	space, 329, 336, 337, 461
expanding universe, 395, 396–97; and mean	system of reference, 215, 217–18, 362
density, 399–401	Galilei, Galileo, 213, 215
extra-galactic nebulae, 395–96, 400	gases
entra gamene necame, esc so, 100	entropy, 25–27
Faraday, Michael, 497	ionization by ultraviolet light, 32
ferromagnetism, theory of, 198	kinetic theory, 8, 19, 20, 43
field equations	molecules, mutual statistical
compatibility and strength of systems of,	independence, 358–60
491–96	monatomic ideal, quantum theory,
contravariant, 222–24, 229, 239	346–68
distant parallelism, 395–95; first	partially dissociated, thermodynamic
approximation, 395–97	equilibrium with radiation,
of gravitation	192–97
in the absence of matter, 244–46	radiation and kinetic energy, 177–79
for any chosen field of co-ordinates,	saturated ideal, 355–57
305	viscosity at low temperatures, 363–64
approximative integration, 265–74	See also ideal gas
general form, 248–50	Gauss, Carl Friedrich, 213, 222, 450, 460,
and laws of conservation in the	497; theorem, 487
general case, 250–51	Gaussian coordinate system, 385–86
and laws of momentum and energy	Geiger, Hans, 176
(Hamiltonian form), 246–48	general theory of relativity
and laws of momentum and energy	boundary conditions, 299–302, 331–32
for matter, 251–52	cosmological considerations, 296–307
properties based on the theory of	cosmological problem, 395–98
invariants, 292–95	equation of motion of the point mass in a
and variational principle, 290–91,	gravitational field, 207–9
443–46	foundations, 212–64, 323–26
113 10	10u11uu110110, 212 01, 323 20

gravitational field theory, 221, 243-52	gravitational equations and problem of
and Hamilton's principle, 289–95	motion, 452–82
law of energy conservation in, 326-39	application of the general theory, 482;
and Mach's principle, 324, 325–26	approximation, 482
material phenomena, 252-57	general theory
particle problem, 417–27	alternative form of the equations
and perihelion motion of Mercury,	when singularities are absent,
202–12	467-69
relation of the four coordinates to	expansion properties of field
measurement in space and time,	quantities, 465-67
219–21	field equations and coordinate
response to Kretschmann's objection,	conditions, 455–59
323–25	fundamental integral properties of
and space and time, 216	the field, 459–61
•	method of approximation, 461-68
generally covariant equations, 222–43	splitting the equations when
cases of special importance, 237–41	singularities are absent, 469–72
contravariant and covariant four-vectors,	when singularities are present,
222–24	472–79
equation of the geodetic line, 232–34	zero coordinate condition,
formation of tensors by differentiation,	479–81
234–37	gravitational field
fundamental (metric) tensor,	and accelerated reference system, 96,
228–32	137–38, 143
multiplication of tensors, 226-28	effect on clocks, 142
tensors of the second and higher ranks,	
224–26	effect on electromagnetic phenomena,
geodesic equation, 232-34	143-47
geometry. See Euclidean geometry	energy components, 310–14
Gibbs, Josiah Willard, 1, 151; Gibbs's	equations of motion of a material point
paradox, 354, 363	in, 243–44
gravitation	Hamiltonian function, 246–48
of energy, 183–86	light ray deflection, 189–91, 203, 206,
expression for the field-components,	260-64
243–44	Newton's theory as a first approximation,
	257–60
field equations, 244–52, 265–74, 290–95,	and perihelion motion of Mercury,
305	203-7
and general theory of relativity, 221	physical nature, hypothesis, 182–83
influence on propagation of light, 181–91	pure, as a special case, 372–73
mutually gravitating particles, and	separate existence, 291–92
equations of motion, 452–82	solutions of approximate equations by
and principle of relativity, 137–47	means of retarded potentials,
gravitation and electromagnetism	308-10
Kaluza's five-dimensional theory, 430-52	and space-time variability, 221
unified field theory, 339, 369-76, 384-98,	static, behaviour of rods and clocks,
491-518	260-64
gravitational equations, 373, 417, 420,	theory, 243-52
425	time and velocity of light, 186–89
axially symmetric static solutions, 419	gravitational lensing, 428-30
for empty space, 494–96	gravitational mass
free from singularities, 436	of a closed system, 336–39
no solutions for stationary fields free of	dependence on its energy content, 147,
singularities, 483–91	185–86
spherically symmetric static solution	proportionality to inertial mass, 126
(Schwarzschild), 421–24	and relativity principle, 96
(Ochmulzochia), 121 21	and remarkly principle, 70

gravitational waves, 307-23	inner multiplication of tensors, 227–28
effect on mechanical systems, 320–21	integral theorem for a closed world, 330-34
energy of by mechanical systems, 316–19	integration of the approximative equations
energy loss of material systems by	of the gravitational field, 266–69
emission of, 271–74	invariant theory, and properties of the field
plane, 269–71, 314–16	equations of gravitation, 292–95
and quantum theory, 273, 319	ionization of gases by ultraviolet light, 32
response to objection by Levi-Civita,	isolated physical systems
321–23	absolute temperature and thermal
solutions of the approximation equations	equilibrium, 7–8
for the gravitational field by	and derivation of the second law, 13, 17
means of retarded potentials,	distribution of states in contact with two
308-10	systems in interaction, 5–7
Grommer, Jakob, 300, 346, 367, 376, 483	entropy concept, 10–12
Günther, Paul, 364	infinitely slow processes, changes in
	stationary states, 8–10
Hamiltonian function for the gravitational	mathematical representation of
field, 246–48	processes, 1–2
Hamiltonian integral, 441, 443, 445	partial systems, 15-17
Hamilton's equations of motion, 118–19	probability of distributions of states,
Hamilton's principle and general theory of	12–15
relativity, 289–95, 304, 372	stationary distribution of state, 2-5
properties of the field equations of	isopycnic process, 10
gravitation based on the theory	
of invariants, 292–95	Jacobi's theorem, 231
separate existence of the gravitational	Jeans, James Hopwood, 148, 150, 151, 153,
field, 291–92	161, 162, 164
variational principle and the field	, , , ,
equations of gravitation and	Kaluza, Theodor, theory of electricity of,
matter, 290–91	369, 430–52, 484, 486
Heckmann, Otto, 399	generalization, 436
Helmholtz, Hermann von, 453	general remarks about space
Hertz, Heinrich, 278	structure, 436–38
Hilbert, David, 252, 290	space structure, 438–41
Hoffmann, Banesh, 452	tensor analysis with respect to the
Hubble, Edwin, 395–98	special coordinate system, 441–43
Huygens principle, 189	variational principle and field
. 1 . 1	equations, 443–46
ideal gas	original theory, 431–35
fluctuation properties, 360–63	special coordinate system, 433–36
gas theory compared to mutual statistical	Kaufmann, Walter, experiment on β -rays,
independence of gas molecules,	Radifficially, water, experiment on p -rays, 119–21
357-60	
monatomic, quantum theory, 346–68	Kepler's laws, 209 Killing, Wilhelm, equation of, 432
saturated, 355–57, 364–66	
unsaturated, 366–68	kinematic foundations of relativity theory,
inelastic collisions, 407–8	95, 96–108
inertial mass of a body	addition theorem of velocities, 103–5
dependence upon its energy content,	application of transformation equations
72–75, 96, 147, 183–84	to some optics problems, 105–8
proportional to its gravitational mass,	general remarks concerning space and
126, 324	time, 98–99
inertial systems, 496–98	inferences from the transformation
Infeld, Leopold, 452 infinitesimal displacement field, 499–501	equations concerning rigid bodies and clocks, 102–3
minimesimai dispiacement neid, 499-501	DOGIES AND CIOCKS, 102-5

principle of constancy of the velocity of	Levi-Civita, Tullio, 213, 224, 387, 419, 498
light, 96-98	Einstein's answer to objection by (general
principle of relativity, 96–98	theory of relativity), 321-23
time definition, 96–98	tensor densities, 447-48, 512
transformation of coordinates and time,	light
99–102	corpuscular theory, 172
kinematics of moving bodies	deflection in a gravitational field, and
addition theorem for velocities, 58	lens-like action of a star, 428–30
definition of simultaneity, 45–47	as electromagnetic process, 166–67
physical meaning of the equations	as energy quanta, 28–30, 32
obtained as concerns moving	heuristic view of production and
rigid bodies and moving clocks,	transformation, 18–32
54–56	interference and refraction, 165–66,
principles, 47	167–68
on the relativity of lengths and times, 47–49	and matter, Lorentz's theory on interaction of, 168–69
transformations of coordinate and time	nature of and theory of relativity, 172-73
from the rest system to a system	Newton's emission theory, 166, 170
in uniform translational motion	principle of the constancy of the velocity,
relative to it, 49-54	of 47, 96–98, 171
kinetic energy, gases and radiation, 177-79	production of cathode rays by, 30–32
kinetic theory	structure of, 172
of gases, 8, 19, 20, 43	wave-particle duality, 147, 160–61, 165,
and light waves, 167	167–80
of specific heat, 161	wave theory, 18–19, 166, 173–74, 179
See also molecular-kinetic theory of heat	light absorption theory, 75–82
Klein, Oskar, 431	light production theory, 75–82
Kretschmann, Erich, 323–26	light propagation
Kronecker tensor, 448, 503	gravitation influence on, 181–91
Rioneckei tensoi, 446, 505	
1 267	and luminiferous ether, 166–70
Lagrange theorem, 367	light quanta
Lagrange's equations of motion, 118	absorption and emission (elementary
lambda (λ)-transformation, 503, 505–6,	processes), 160
508	and elementary quantum of electricity,
lambda (λ)-constant. See cosmological	163–64
constant	experimental investigation of
Langer, Rudolph Ernest, 409	consequences, 160-61
Langevin, Paul, 199	hypothesis, 176–77
Laplace's equation, 489	and Maxwell-Lorentz theory, 161–62
Laub, Jakob Johann, 95	and Planck's theory of radiation, 76-79,
Laue, Max, 95, 107, 249, 317	160, 162–63, 164
law of aberration, 63, 95, 107	light rays
law of conservation of momentum and	bending in gravitational field, 189-91,
energy. See conservation law of	203, 206, 260-64
momentum and energy	transformation of energy, 64-66
law of constancy of mass, 125	light waves
law of parallel displacement. See distant	Doppler's principle, 62–63, 95, 106–7
parallelism	kinetic theory, 167
law of photochemical equivalence,	Lorentz, Hendrik A., 95, 97, 148, 151, 199,
thermodynamic proof, 191–97	290, 322, 335, 365, 408
Le Verrier, Urbain, 203, 245, 264	electrodynamics of moving bodies, 93–94
Lenard, Philipp, 30–32	and principle of relativity, 170, 171
lens-like action of a star by the deflection of	theory on interaction of light and matter,
light in a gravitational field,	168–69
428–30	transformation law, 308, 402, 404, 409
120 00	1 4110101111411011 1411, 500, 102, 101, 107

low temperatures	theory of gravitation and
degeneration of specific heat at, 340	electromagnetism, 373–76
viscosity of gases, 363–64 luminiferous ether, 166–70	Maxwell's equations, 344, 345, 397, 401, 418 for empty space, 254–57, 374–75, 453,
	493–94
Mach, Ernst, 214, 497	in a vacuum, 397
Mach's principle, 296, 323, 324, 325-26	See also Maxwell-Hertz equations
magnetic moment, and angular momentum,	Maxwell's theory of electricity. See Maxwell's
198–202	electromagnetic theory
magnetomotive force, 61	Maxwell's velocity distribution, 277, 281,
Mandl, Rudi W., 428	353–54, 359, 365, 366
many-particle problem, 417-27	and curve of chromatic distribution of
mass action law, 192-94	thermal radiation, 275, 276
mass-energy equivalence, 72-75, 95-96,	See also Maxwell-Boltzmann distribution
122-26; elementary derivation,	law
401-9	Mayer, Walther, 420
mass-point, 405	mean displacement formula for suspended
material point	particles, 42–43
derivation of equations of motion,	mechanical systems
68–71, 113–16	energy of mechanical waves, 316–19
equations of motion in a gravitational	gravitational waves effect on, 320-21
field, 243–44	mechanics of the material point (electron),
Kaufmann's experimental test of motion,	95
119–22	derivation of the equations of motion,
mechanics, 95, 113-22	68–71, 113–16
motion of mass point and the principles	Kaufmann's investigation, 119–22
of mechanics, 116–19	motion of the mass point and principles
matter	of mechanics, 116–19
field equations of gravitation in the	mechanics of systems, 95–96, 113–22
absence of, 244–46	dynamics of systems and principle of
and gravitation, field equations, 290–91,	least action, 136–37
443-46	energy and mass equivalence, 72–75,
laws of momentum and energy for,	122–26
251–52	energy and momentum of a moving system, 126–30
and light, Lorentz's theory of interaction, 268–69	examples, 133–34
	volume and pressure of a moving system,
motion of, gravitational equations, 452–82	and equations of motion,
	130–33
Maxwell, James Clark, 275; light as electromagnetic process, 166	Mercury, perihelion motion, 202–7
Maxwell-Boltzmann distribution law, 77	metals, electron theory of, 365–66
Maxwell-Hertz equations, for empty space,	metric tensor, 228–32, 237–38
72	contravariant, 229
transformation, 58–61	covariant, 228–29, 386–87
transformation when convention	covariant differential quotients,
currents are taken into account,	389–90
66–67	determinant, 229–30
Maxwell-Lorentz theory, 95, 110, 148–49,	and formation of new tensors, 231–32
340–41, 402, 455	Michelson-Morley experiment, 94, 98, 169
equations, transformation of, 108–13	Mie, Gustav, 341
and light quanta, 161–62	Minkowski, Hermann, 212, 220, 255, 419,
Maxwell-Poynting expressions, 257	483; space, 490
Maxwell's electromagnetic theory, 18–20, 22,	mirrors, perfect, radiation pressure on,
44 72, 75–76, 150, 166, 369, 395,	64–66, 157–59
417, 497, 512; relation to unified	mixed multiplication of tensors, 227–28

mixed tensors, 225	moving bodies
"contraction," 226–27	contraction in direction of motion, 94
divergence of mixed tensor of the second	dragging of light, 95, 97, 108
rank, 240–41	electrodynamics, 43-73, 93-94
molecular currents, Ampère's, 198-202	entropy and temperature dependence on
molecular-kinetic theory of heat	state of motion, 96
and motion of small particles suspended	kinematics, 45–58
in liquids at rest, 33–43	moving systems
and osmotic pressure, 35–37	dynamics, and principle of least action,
and Planck's radiation theory, 83–92	136–37
See also kinetic theory	energy and momentum, 126–30
momentum	entropy and temperature, 134–36
fluctuations, and radiation pressure,	volume and pressure, 130–33
157–59	multiplication of tensors, 226
	"contraction" of a mixed tensor, 226–27
of the material point, 117–18	inner and mixed, 227–28
spatial distribution of momentum of radiation, 179–80	outer, 226
momentum and energy	mutually gravitating particles, and equations of motion, 452–82
conservation laws. See conservation laws	01 1110(1011, 432–82
of momentum and energy	
and energy of a moving system,	nature, general laws of, requirement of
126–30	general covariance for equations
monatomic ideal gas, quantum theory,	expressing, 216, 218–19
346–68	Nernst, Walther, 364; theorem of, 352,
cells, 347	359-60
classical theory as a limiting case,	Neumann-Kopp's rule, 87, 90
351–52	Newcomb, Simon, 211
deviation from the gas equation of	Newton, Isaac, 497
classical theory, 352–54	Newton-Poisson theory of gravitation, 395
state probability and entropy, 347–48	Newtonian mechanics, and special theory of
thermodynamic equilibrium, 349–51	relativity, 213, 214–16,
See also saturated ideal gas	257-60
monochromatic radiation	Newtonian theory, 203, 296, 297–99, 301; as
dependence of entropy on volume,	a first approximation,
interpretation using Boltzmann's	257–60
principle, 27–28	Newton's emission theory of light, 166, 170,
entropy at low radiation density, 24–25	175
Mosengeil, Friedrich, 96, 283	Newton's equations of motion, 93, 95, 116,
motion	207–9, 454
of material point (electron), 68–71, 95,	non-accelerated reference systems, 96, 137,
113–22; in gravitational field,	138, 143, 145
243–44	non-symmetrical field, relativistic theory,
of matter, gravitational equations,	491–517
452-82	Nordström, Gunner, 313, 327
of molecules in a field of radiation,	0 177 01 11 100
281–83	Oersted, Hans Christian, 198
calculation of Δ^2 , 206–7	Oort, Jan, 401
calculation of <i>R</i> , 283–85	optical properties of solids, 87–92
result, 287–89	optical problems of relativity, 95, 105–8. See
of a particle, 232–34	also aberration; Doppler's
of planets, 207–12	principle
of small particles suspended in liquids at	optics, radiation pressure exerted on perfect
rest, required by molecular-	mirrors, 64–66, 157–59
kinetic theory of heat,	oscillating magnetic fields, ferromagnetic
33–43	substances in, 198–202

osmotic pressure	Einstein's insights into implications of,
ascribed to suspended particles, 34-35	147-60
from the standpoint of the	Jeans's interpretation, 150-51, 153
molecular-kinetic theory of heat,	and laws of electrodynamics, 148-60
35–37	and Maxwell-Lorentz differential
overdetermined equations system, 343-46,	equations, 148
372	and quantum theory, 160, 176-77
	Ritz's views, 148, 149
Palatini, Attilio, 449, 485	Planck's radiation theory, 22, 151-53, 174-77
paradox. See rotating disc paradox; Gibbs,	and light quanta, 76–79, 160, 162–63,
Josiah Willard	164
partial systems, 5, 15–17	modification of foundations, 153-57
particle collisions, 405–9	and the theory of specific heat, 82-92
particle comsions, 405–7 particle problem, in general theory of	Planck's resonator, 278-79, 288; derivation of
relativity, 417–27	mean energy, 83-86
·	plane gravitational waves, 269–71, 314–16
particle-pair, 404, 405, 406, 407	planetary orbit, perihelion motion, 207–12,
particles	260-64
quantum-mechanical description of	Podolsky, Boris, 409
behavior, 411–12	point coincidence, 219
as singularities in the field, 419–27	Poisson's equation, 249, 296, 298–99, 305,
See also electrons; material point	398
Pauli, Wolfgang, 483	postulate of relativity
perfect mirrors, radiation pressure on,	extension to overcome defect in, 214–16
64–66, 157–59	observations on the special theory of
perihelion motion	relativity, 213–14
of Mercury, 202–7	relation of the four coordinates to
of planetary orbit, 207-12, 260-64	measurement in space and time,
photochemical equivalence, law of, 173,	219–21
191–97; thermodynamic	space-time continuum, 216–19
equilibrium between radiation	See also relativity principle
and a partially dissociated gas	Precht, Julius, 125
from the standpoint of the mass	pressure and volume of a moving system,
action law, 192-97	130–33
photoelectric diffusion, and Volta effect,	principle of general covariance, 218
79–82	principle of the conservation of mass, 183
photoelectric effect, 18-33	principle of the conservation of mass, 105
physical reality, quantum-mechanical	117–18, 127, 133. See also
description, 409–17	conservation law
physical systems, isolated, 1–17	principle of the constancy of the velocity of
Planck, Max, 20, 121, 125, 135, 348	light, 47, 96–98, 171, 189
black-body radiation theory. See Planck's	principle of least action, and dynamics of
radiation theory	systems, 136–37
determination of elementary quanta, 22	principle of relativity. See relativity principle
dynamics of moving systems and	probability of distributions of states, 12–15
principle of least action, 136–37	pure gravitational field, 372–73
Planck's constant, 411	pure gravitational field, 3/2-/3
Planck's function, 356	and the second s
Planck's probability, 357	quantum energy. See energy quanta
	quantum theory
Planck's radiation formula (law), 22, 76,	Ampère's molecular currents,
153–54, 159, 160, 161, 162, 174,	experimental proof, 198–202
191, 275, 276, 355, 360, 361	applied to solids, 82–92
and currently accepted theoretical	field theory and solution of the quantum
foundations, 151–53	problem, 339–46
derivation, 175–76, 280–81	fundamental hypothesis, 277–78

energy and momentum of a moving
system, 126-30
entropy and temperature of moving
systems, 134–36
inferences from the transformation
equations concerning rigid bodies and clocks, 102–3
transformation of coordinates and time,
99–102
transformation of Maxwell-Lorentz
equations, 111–12, 113
uniformly accelerated, 138-42
volume and pressure of a moving system,
130–33
refrigerator patent, 376–83
Regener, Erich, 176
Reissner, Hans, 418
relativistic field theory of non-symmetric
field, 491–517
curvature tensor, 501–3
divergence law and conservation law of
momentum and energy, 515
general remarks, 496-99, 516-17
identities, 510-12
infinitesimal displacement field Γ ,
499-500
λ -transformation, 503, 505-6, 508
pseudotensor, 505-8
requirement of "transposition
invariance," 504-5
strength of the system of equations,
513–15
variational principle and field equations,
508–10
relativity principle, 47, 59, 169-70, 324
and conclusions drawn from it, 93–147
electrodynamic part, 108–13
energy-mass equivalence, 72–75, 95–96,
122–26, 401–9
general remarks concerning space and time, 98–99
and gravitation, 137-47
gravitation influence on propagation of
light, 183–91
influence on acceleration and
gravitation, 96, 137-47
kinematic part, 95, 96-108
and Lorentz and FitzGerald's hypothesis,
94–95
and Lorentz's theory, 170, 171
mechanics of the material point
(electron), 95, 113–22
mechanics and thermodynamics of
systems, 95–96, 122–37
merger with Lorentz's theory, 95, 97

relativity principle (cont.)	Rosen, Nathan, 409, 417
and nature of light, 171–72	rotating disc paradox, 217
and principle of constancy of the velocity of light, 96–98	Rutherford, Ernest, 176
time definition, 96–98	saturated ideal gas, 355-57; equation of state,
transformation of coordinates and time,	364-66
99-102	scalar wave equation, 492–93
transformation equations, application to	Schrödinger's equation, 413
optics problems, 95, 105–8	Schwarzschild, Karl, 345, 418, 421–24
transformation equations concerning	second law of thermodynamics
rigid bodies and clocks,	derivation, 17
inferences, 102–3	and probability of distributions of states,
transformation of Maxwell-Lorentz	12–15
equations, 95, 108-13	
velocity addition theorem, 103–5, 107,	Serini, Rocco, 490
170	Silberstein, Ludwik, 419
See also general theory of relativity;	simultaneity, definition of, 45–47, 49
Mach's principle; postulate of	singularities from the field, 417–27, 436
relativity; special theory of	combined field-fitting electricity into the
relativity	framework, 424–26
relativistic field equations, non-existence of	and gravitational equations
regular stationary solutions,	singularities absent, 467–69
483–91	singularities present, 472–79
resonators (electrons), 19-20, 153, 175-76,	Schwarzschild solution, 421–24
278–79	special kind of singularity and its removal,
interaction with radiation in space,	419–21
20–21, 76–79	six-vector
Planck's. See Planck's resonator	antisymmetrical extension, 239
rest-energy, 403, 405, 407	divergence, 239-40
rest-mass, 405	solid body illumination, and cathode ray
rest system"	generation, 30–32
relativity of lengths and times, 48–49	solids
and simultaneity, 45–47	oscillations of elementary structures,
transformations of coordinate and time	88–91
from the rest system to a system	quantum hypothesis applied to, 82–92
in uniform translational motion	thermal and optical behavior, 87–92
relative to it, 49-54	Sommerfeld, Arnold, 281; quantization rule,
Ricci, Gregorio, 213, 224	362
Riemann, Bernhard, 213, 437, 497	space and time
Riemann-Christoffel tensor, 241-43	general remarks, 98–99
Riemann curvature tensor, 305, 342, 343,	and general theory of relativity, 216
370, 390, 449, 485, 490	Kaluza's theory, 430–52
Riemannian geometry, 342, 372, 388	requirement of the four coordinates to
Riemannian manifold, 384, 385, 390	measurement, 219-21
Riemannian metric and distant parallelism,	and special theory of relativity, 214,
unified field theory based on,	216–19
384-98	topological shortcuts, 417-27
rigid bodies, 45, 96	in uniformly accelerated reference
inferences from the transformation	system, 138–42
equations concerning rigid	space-time continuum, 216-19, 230-31
bodies and clocks, 102-3	spatial distribution of the momentum of
moving, and moving clocks, 54-56	radiation, 179–80
in nonaccelerated motion, 98-99	special theory of relativity, 401-2
Ritz, Walter, 148, 149	electrodynamics of moving bodies,
Robertson, Howard Percy, 482	43-72

equivalence of energy and inertial mass, 72–75, 324	Riemann curvature, 305, 342, 343, 370, 390, 449, 485, 490
and Newtonian mechanics, 213, 214-16,	Riemann-Christoffel, 241-43
257–60	of the second and higher ranks, 224-26
observations, 213-14	symmetrical, 225
review, 93–147	thermal behavior of solids, 87–92
and space and time, 214	thermodynamic equilibrium
and theory of gravitation, 137–47	and absolute temperature (physical
specific heat theory, 87–92; and Planck's	systems), 7–8
radiation theory, 82–92	•
spherical world, energy of, 334–36	between radiation and a partially
Stark, Johannes, 160	dissociated gas from the standpoint of the mass action
	law. 192–97
stars, lens-like action by deflection of light in a gravitational field, 428–30	
•	monatomic ideal gas, 349–51
stationary state, isolated physical systems, 2–5	thermodynamic theory, and motion of
	suspended particles in liquids,
statistical independence of gas molecules,	33–43
358–60	thermodynamics
statistical mechanics, foundations, 1–17. See	foundations of, 1–17
also Bose-Einstein statistics	second law, 14, 17
Sterling's theorem, 348	of systems, 96, 134–36
Stokes's law, 28–29, 31	time
summation convention, 223, 291	definition, 96–98
suspended particles in liquids	gravitational dilation 218
disordered motion in relation to	and simultaneity, 45–47
diffusion, 39–42	and space. See space and time
formula for mean displacement, 42–43	and velocity of light in the gravitational
motion of required by molecular-kinetic	field, 186–88
theory of heat, 33–43	transformation of coordinates and time,
osmotic pressure ascribed to, 34–35	99-102; from the rest system to a
and theory of diffusion, 37–39	system in uniform translational
See also Brownian particle motion	motion relative to it, 49-54
symmetrical tensors, 225	transformation equations
Szilard, Leo, 376-80	application to optics problems, 105-8
	concerning rigid bodies and clocks,
Taylor expansion, 493-94	inferences, 102–3
temperature	transformation of Maxell-Lorentz equations,
and entropy dependence on state of	95, 108–13
motion, 96	transformation of Maxwell-Hertz equations
and entropy of moving systems, 134-36	for empty space, 58–61
tensors, 222, 223, 390–91	when convection currents are taken into
antisymmetrical, 225-26	account, 66-67
contravariant, 224	transposition invariance, 504
covariant, 224–25	1
curvature, 501–3	ultraviolet light, ionization of gases, 32
densities, 420, 447–52, 512	unified field theory of gravitation and
divergence, 239–41	electromagnetism, 339, 369–76,
formation by differentiation, 234–37	483
fundamental, 228–32, 237–38	based on Riemannian metric and distant
identities, 392	parallelism, 384–98
Kronecker, 448, 503	fifth dimension, 430–52
mixed, 225, 240–41	general theory, 370–72
multiplication, 226–28	general theory, 570–72 generalization of Kaluza's theory of
products, differentiation, 390	
products, differentiation, 590	electricity, 430–52

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

540 Index

unified field theory of gravitation and viscosity of gases at low temperatures, electromagnetism (cont.) 363 - 64non-existence of regular stationary Volta effect, and photoelectric diffusion, solutions of relativistic field 79 - 82equations, 483-91 volume and pressure of a moving system, pure gravitational field as a special case, 130 - 33372-73 relation to Maxwell theory, 373-76 Warburg, Emil, 193 relativistic theory of the non-symmetric wave function in quantum mechanics and field, 491-517 physical reality, 410-17 uniform translational motion, 49-54 wave-particle duality of light, 147, 160-61, universe 165, 167-80 expanding, 395, 396-97 wave systems, interaction, 413-16 relation between expansion and mean wave theory of light, 18-19, 166, 173-74, density, 399-401 179 - 80spatial curvature, 399, 400, 401 Weber, Heinrich Friedrich, 91-92 unsaturated ideal gas, equation of state, Weiss, Pierre, 198 Weitzenböck, Roland, 384 Weyl, Hermann, 335, 344, 369, 419, 430 van der Waals, Johannes, 365 Wiedemann-Franz, deviations from, 82 variational principle Wien, Wilhelm and field equations, 508-10 displacement law, 175, 280 and field equations of gravitation and radiation formula, 28, 76, 162, 19 matter, 290-91, 443-46 radiation law, 23-24, 29, 160, 179, 191, vectors 197, 275, 276, 355, 357 contravariant, 223-24, 239 "wormhole," 417 covariant, 223-24, 239 divergent, 239-41, 389 X-rays/X-ray production, 173, 174 velocity addition theorem, 56-58, 67, 103-5, 107, 170 velocity of light zero-coordinate condition, equation of motion, 479-81 principle of constancy, 47 "zero-point theory," 199 and time in a gravitational field, 186-88