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1. A Theory of the Foundations of
Thermodynamics (1903)

Annalen der Physik 11 (1903): 170–187. [Collected Papers Vol. 2, Doc. 4].

Unaware of Josiah Willard Gibbs’s writings at the time, Einstein here
gives an alternative view on the foundations of statistical mechanics,
supplementing Gibbs’s better-known and more influential work and
effectively introducing the concept of a canonical ensemble himself.

In a recently published paper,[a] I showed that the laws of thermal
equilibrium and the concept of entropy can be derived with the help
of the kinetic theory of heat. The question that then arises naturally

is whether the kinetic theory is really necessary for the derivation of the
above foundations of the theory of heat, or whether, perhaps, assump-
tions of a more general nature may suffice. In this article, it shall be
demonstrated that the latter is the case, and it shall be shown by what
kind of reasoning one can reach the goal.

§1. On a general mathematical representation of the
processes in isolated physical systems

Let the state of some physical system that we consider be uniquely
determined by very many (n) scalar quantities p1, p2 . . . pn, which we
call state variables. The change of the system in a time element dt is
then determined by the changes dp1, dp2 . . . dpn that the state variables
undergo during that time element.

Let the system be isolated, i.e., the system considered should not
interact with other systems. It is then clear that the state of the system
at a given instant of time uniquely determines the change of the sys-
tem in the next time element dt, i.e., the quantities dp1, dp2 . . . dpn. This
statement is equivalent to a system of equations of the form

dpi
dt

= ϕi(p1 . . . pn) (i = 1 . . . i = n), (1)

where the ϕ’s are unique functions of their arguments.

1



2 1. Foundations of Thermodynamics (1903)

In general, for such a system of linear differential equations, there
does not exist an integral of the form

ψ(p1 . . . pn)= const.,

which does not contain the time explicitly. However, for a system of
equations that represents the changes of a physical system closed to the
outside, we must assume that at least one such equation exists, namely
the energy equation

E(p1 . . . pn)= const.

At the same time, we assume that no further integral of this kind that is
independent of the above equation is present.

§2. On the stationary distribution of state of infinitely many
isolated physical systems of almost equal energies

Experience shows that, after a certain time, an isolated system assumes
a state in which no perceptible quantity of the system undergoes any
further changes with time; we call this state the stationary state. Hence,
it will obviously be necessary for the functions ϕi to fulfill a certain
condition so that equations (1) may represent such a physical system.

If we now assume that a perceptible quantity is always represented
by a time average of a certain function of the state variables p1 . . . pn and
that these state variables p1 . . . pn keep on assuming the same systems of
values with always the same unchanging frequency, then it necessarily
follows from this condition, which we shall elevate to a postulate, that
the averages of all functions of the quantities p1 . . . pn must be constant;
hence, in accordance with the above, all perceptible quantities must also
be constant.

We will specify this postulate precisely. Starting at an arbitrary point
of time and throughout time T, we consider a physical system that is
represented by equations (1) and has the energy E. If we imagine having
chosen some arbitrary region � of the state variables p1 . . . pn, then, at
a given instant of time T, the values of the variables p1 . . . pn will lie
within the chosen region � or outside it; hence, during a fraction of
the time T, which we shall call τ , they will lie in the chosen region �.
Our condition then reads as follows: If pl . . . pn are state variables of a
physical system, i.e., of a system that assumes a stationary state, then, for
each region �, the quantity τ

T has a definite limiting value for T = ∞.
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For any infinitesimally small region, this limiting value is infinitesimally
small.

The following consideration can be based on this postulate. Let
there be very many (N) independent physical systems, all of which are
represented by the same system of equations (1). We select an arbi-
trary instant t and inquire after the distribution of the possible states
among these N systems, assuming that the energy E of all systems lies
between E∗ and the infinitesimally close value E∗ + δE∗. From the pos-
tulate introduced above, it follows immediately that the probability that
the state variables of a system randomly selected from among N systems
will lie within the region � at time t has the value

lim
T=∞

τ

T
= const.

The number of systems whose state variables lie within the region � at
time t is thus

N · lim
T=∞

τ

T
,

i.e., a quantity independent of time. If g denotes a region of the coor-
dinates p1 . . . pn that is infinitesimally small in all variables, then the
number of systems whose state variables fill up the arbitrarily chosen
infinitesimally small region g at an arbitrary time will be

dN = ε(p1 . . . pn)

∫
g

dp1 . . . dpn. (2)

The function ε is obtained by expressing, in symbols, the condition
that the distribution of states expressed by equation (2) is a station-
ary one. Specifically, the region g shall be chosen such that p1 shall lie
between the definite values p1 and p1 + dp1, p2 between p2 and p2+
dp2, . . . pn between pn and pn + dpn; then we have, at the time t,

dNt = ε(p1 . . . pn) · dp1 · dp2 . . . dpn,

where the subscript of dN denotes the time. Taking into account equa-
tion (1), one obtains furthermore, at time t + dt and the same region of
the state variables,

dNt+dt = dNt −
ν=n∑
ν=1

∂(εϕν)

∂pν
· dp1 . . . dpn · dt.
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However, since dNt = dNt+dt, because the distribution is stationary, we
have ∑ ∂(εϕν)

∂pν
= 0.

This yields

−
∑ ∂ϕν

∂pν
=

∑ ∂(log ε)
∂pν

· ϕν =
∑ ∂(log ε)

∂pν
· dpν

dt
= d(log ε)

dt
,

where d(log ε)
dt denotes the change of the function log ε with respect to

time for an individual system, taking into account the changes with time
of the quantities pν . One obtains further

ε= e
− ∫

dt
ν=n∑
ν=1

∂ϕν
∂pν +ψ(E)

= e−m+ψ(E).

The unknown functionψ is the time-independent integration constant
which may depend on the variables p1 . . . pn, but can contain them,
according to the assumptions made in §1, only in the combination in
which they appear in the energy E.

However, since ψ(E)=ψ(E∗)= const. for all N systems consid-
ered, the expression for ε reduces, in our case, to

ε= const. e
− ∫

dt
ν=n∑
ν=1

∂ϕν
∂pν = const. e−m.

According to the above, we now have

dN = const. e−m
∫

g
dp1 . . . dpn.

For the sake of simplicity, we now introduce new state variables for
the system considered; they shall be denoted by πν . We then have

dN = const.
e−m

D(π1...πn)
D(p1...pn)

∫
g

dπ1 . . . dπn,

where the symbol D denotes the functional determinant.—We now
want to choose the new coordinates such that

e−m = D(π1 . . . πn)

D(p1 . . . pn)
.
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This equation can be satisfied in infinitely many ways, e.g., by setting

π2 = p2
π3 = p3
. . . π1 = ∫

e−m · dp1.
πn = pn

Using the new variables, we thus obtain

dN = const.
∫

dπ1 . . . dπn.

Henceforth, we will always suppose that such variables have been
introduced.

§3. On the distribution of states of a system in contact with
a system of relatively infinitely large energy

We now assume that each of the N isolated systems is composed of two
partial systems, � and σ , in interaction. Let the state of the partial sys-
tem � be determined by the values of the variables 
1 . . . 
λ, and that
of the system σ by the values of the variables π1 . . . πl. Further, let the
energy E—which, for each system, shall lie between the values E∗ and
δE∗, i.e., shall equal E∗ up to the infinitesimally small—be composed of
two terms, of which the first, H, shall be determined only by the values
of the state variables of �, and the second η only by the state variables
of σ so that, except for the relatively infinitesimally small, one has

E = H + η.

Two systems in interaction that satisfy this condition will be called
two systems in contact. We also assume that η is infinitesimally small
compared with H.

For the number dN1 of the N-systems whose state variables

1 . . . 
λ and π1 . . . πl lie between 
1 and 
1 + d
1, 
2 and 
2 +
d
2, . . . 
λ and 
λ + d
λ, and π1 and π1 + dπ1, π2 and π2 + dπ2,
. . . πl and πl + dπl, we get the expression

dN1 = C · d
1 . . . d
λ · dπ1 . . . dπl,

where C can be a function of E = H + η.
However, since, according to the above assumption, the energy of

each of the systems considered up to the infinitesimally small has the
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value E∗, we can replace C by const. e−2hE∗ = const. e−2h(H+η) without
causing any changes in the result, where h is a constant still to be defined
precisely. Hence, the expression for dN1 becomes

dN1 = const. e−2h(H+η) · d
1 . . . d
λ · dπ1 . . . dπl.

The number of systems whose state variablesπ lie between the indi-
cated limits while the values of the variables 
 are not subjected to any
restrictive condition may thus be represented in the form

dN2 = const. e−2hη · dπ1 . . . dπl

∫
e−2hHd
1 . . . d
λ

where the integral is to be extended over all values of 
 to which cor-
respond values of the energy H lying between E∗ − η and E∗ + δE∗ − η.
Had the integration been carried out, we would have found the distri-
bution of the state of the systems σ . This is, in fact, possible.

We put ∫
e−2hH · d
1 . . . d
λ =χ(E),

where the integral on the left-hand side is to be extended over all values
of the variables for which H lies between the definite values E and E +
δE∗. The integral that appears in the expression dN2 then assumes the
form

χ(E∗ − η),

or, since η is infinitesimally small compared with E∗,

χ(E∗)−χ ′(E∗) · η.

Thus, if h can be chosen such that χ ′(E∗)= 0, the integral reduces
to a quantity that is independent of the state of σ .

It is possible to put, up to the infinitesimally small,

χ(E)= e−2hE
∫

d
1 . . . d
λ = e−2hE ·ω(E),

where the integration limits are the same as above and where ω denotes
a new function of E.

The condition for h now assumes the form

χ ′(E∗)= e−2hE∗ · {ω′(E∗)− 2hω(E∗)} = 0 ;
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consequently:

h = 1
2
ω′(E∗)
ω(E∗)

.

If h is chosen in this way, the expression for dN2 will assume the form

dN2 = const. e−2hηdπ1 . . . dπl. (3)

With suitable choice of the constant, this expression represents the
probability that the state variables of a system in contact with another
system of relatively infinitely large energy will lie within the indicated
limits. The quantity h depends only on the state of the above system �
of relatively infinitely large energy.

§4. On absolute temperature and thermal equilibrium

Thus, the state of the system σ depends only on the quantity h and the
latter only on the state of the system �. We call the quantity 1

4 hκ = T
the absolute temperature of the system �, where κ denotes a universal
constant.

If we call the system σ “thermometer,” then we can immediately
advance the following propositions:

1. The state of the thermometer depends only on the absolute temper-
ature of the system � and not on the kind of contact of the systems
� and σ .

2. If, in case of contact, two systems�1 and�2 impart the same state to
a thermometer σ , then they have the same absolute temperature and
will also impart the same state to another thermometer σ ′ in case of
contact.

Further, suppose two systems �1 and �2 are in contact and �1
is also in contact with a thermometer σ . The distribution of states of
σ depends then only on the energy of the system (�1 +�2), i.e., on
the quantity h1,2. If the interaction between �1 and �2 is imagined to
decrease infinitely slowly, this does not change the expression for the
energy H1,2 of the system (�1 +�2), which can be readily seen from
our definition of contact and the expression for the quantity h that we
formulated in the last section. Finally, if the interaction had ceased com-
pletely, the distribution of states of σ , which does not change during the
separation of�1 and�2, will now depend on�1, i.e., on the quantity h1,
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where the index denotes association with the system �1 alone. Hence,
we have

h1 = h12.

By an analogous line of argument, one could have obtained

h2 = h12 ;

hence
h1 = h2,

or, in words: If one separates two systems �1 and �2 in contact, which
form an isolated system (�1 +�2) of absolute temperature T, then the
now-isolated systems �1 and �2 will have the same temperature after
separation. We imagine a given system in contact with an ideal gas. This
gas shall be completely describable in terms of the kinetic theory of
gases. As the system σ , we consider a single monoatomic gas molecule
of mass μ, whose state shall be completely determined by its orthogo-
nal coordinates x, y, z and the velocities ξ , η, ζ . In accordance with §3,
we obtain, for the probability that the state variables of this molecule
lie between the limits x and x + dx, . . . ζ and ζ + dζ , the well-known
Maxwellian expression

dW = const. e−hμ(ξ2+η2+ζ 2) · dx . . . dζ .

By integration, one obtains from this, for the mean kinetic energy of
this molecule,

μ

2
(ξ 2 + η2 + ζ 2)= 1

4h
.

However, the kinetic theory of gases teaches that, at a constant vol-
ume of the gas, this quantity is proportional to the pressure exerted
by the gas. The latter is, by definition, proportional to the quantity
designated in physics as absolute temperature. Thus, the quantity we
designated as absolute temperature is nothing else but the temperature
of a system measured by the gas thermometer.

§5. On infinitely slow processes

Until now, we have only considered systems that are in a stationary
state. Now, we are also going to investigate changes of stationary states,
though only those that proceed so slowly that the distribution of states
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existing at an arbitrary instant differs only infinitesimally from the sta-
tionary distribution; or, more precisely, that, up to the infinitesimally
small, the probability that the state variables lie in a certain region G
can be represented, at any moment, by the formula found above. We
call such a change an infinitesimally slow process.

If the functions ϕν (equation (1)) and the energy E of a system
are specified, then, according to the above, its stationary state distri-
bution is also specified. An infinitely slow process will thus be specified
either by a changing E, by the functions ϕν containing the time explic-
itly, or by both circumstances simultaneously, but in such a way that
the corresponding differential quotients, with respect to time, are very
small.

We assumed that the state variables of an isolated system change
according to equations (1). However, conversely, if there exists a sys-
tem of equations (1), according to which the state variables of a system
are changing, this system does not always have to be an isolated one.
For it can happen that a system under consideration is influenced by
other systems in such a way that this influence depends only on such
functions of the variable coordinates of the influencing systems, which
do not change when the distribution of states of the influencing system
is constant. In this case, the change of the coordinates pν of the system
considered can also be represented by a system having the form of equa-
tions (1). However, the functions ϕν will then depend not only on the
physical nature of the system in question, but also on certain constants
that are defined through the influencing systems and their distributions
of states. This kind of influence on the system under consideration we
call adiabatic. It is easy to see that as long as the distributions of state
of the adiabatically influencing systems do not change, there exists an
energy equation for the equations (1) in this case as well. If the states of
the adiabatically influencing systems do change, then the functions ϕν
of the systems considered change explicitly with time, with equations
(1) maintaining their validity at all times. Such a change of the distri-
bution of states of the system under consideration we call an adiabatic
one.

We now consider a second kind of changes of the state of a system
�. Consider a system that can be influenced adiabatically. We assume
that, at time t = 0, the system � enters into such an interaction with
a system P of a different temperature that we called “in contact” above,
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and we remove the system P after the time necessary for the equalization
of the temperatures of� and P. The energy of� has then changed. The
equations (1) of � are invalid during the process but valid before and
after it, while the functions ϕν are the same before and after the process.
Such a process we call “isopycnic,” and the energy supplied to �, “heat
supplied.”

It is evident that, up to the infinitesimally small, it is possible to con-
struct each infinitely slow process from a succession of infinitesimally
small adiabatic and isopycnic processes, so that in order to get a general
overview, we have to study the latter ones only.

§6. On the concept of entropy

Let there be a physical system whose instantaneous state shall be com-
pletely determined by the values of the state variables p1 · · · pn. Let this
system undergo a small, infinitely slow process, in which the systems
that influence this system adiabatically experience an infinitesimally
small change of state; energy is being supplied to the system considered
by systems in contact. We take account of the adiabatically influencing
systems by stipulating that in addition to the p1 · · · pn, the energy E of
the system considered shall also depend on some parametersλ1, λ2 · · · ,
whose values shall be determined by the distributions of states of the
systems that influence adiabatically the system considered. In purely
adiabatic processes, there holds, at any instant, a system of equations
(1) whose functions ϕν depend not only on the coordinates pν , but also
on the slowly changing quantities λ; for adiabatic processes, too, there
will hold, at any instant, the energy equation, whose form is∑ ∂E

∂pν
ϕν = 0.

We now investigate the energy increase of the system during an arbi-
trary infinitesimally small, infinitely slow process.

For each element dt of the process, we have

dE =
∑ ∂E

∂λ
dλ+

∑ ∂E
∂pν

dpν . (4)

For an infinitesimally small isopycnic process, all dλ vanish in each time
element, and thus the first term of the right-hand side vanishes too.
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However, since, according to the previous section, in an isopycnic pro-
cess, dE is to be considered as heat supplied for such a process, the heat
supplied dQ is represented by the expression

dQ =
∑ ∂E

∂pν
dpν .

However, for an adiabatic process, during which equations (1) are
always valid, we have, according to the energy equation,∑ ∂E

∂pν
dpν =

∑ ∂E
∂pν

ϕνdt = 0.

On the other hand, according to the previous section, dQ = 0 for an
adiabatic process, so that one can put

dQ =
∑ ∂E

∂pν
dpν

for an adiabatic process as well. Hence, this equation must be consid-
ered as valid for any arbitrary process during each time element. Thus,
equation (4) becomes

dE =
∑ ∂E

∂λ
dλ+ dQ. (4’)

This expression represents the energy change of the system occurring
during the whole infinitesimally small process at changed values of dλ
and dQ as well.

At the beginning and the end of the process, the distribution of
states of the system considered is stationary, and when the system is
in contact with a system of relatively infinitely large energy before and
after the process, this assumption having formal significance only, this
distribution is defined by the equation having the form

dW = const. e−2hE · dp1 . . . dpn

= ec−2hE · dp1 . . . dpn,

where dW denotes the probability that the values of the system’s
state variables lie within the limits indicated at any arbitrarily chosen
moment. The constant c is defined by the equation∫

ec−2hE · dp1 . . . dpn = 1, (5)

where the integration has to be extended over all values of the variables.
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Specifically, if equation (5) holds before the process under consid-
eration, then afterwards we have∫

e(c+dc)−2(h+dh)
(

E+∑ ∂E
∂λdλ

)
· dp1 . . . dpn = 1, (5’)

and the two last equations yield∫ (
dc − 2Edh − 2h

∑ ∂E
∂λ

· dλ
)

· ec−2hE · dp1 . . . dpn = 0,

or, since the expression in parentheses can be taken as a constant during
integration because the system’s energy E never differs markedly from a
fixed average value before and after the process, and taking into account
equation (5),

dc − 2Edh − 2h
∑ ∂E

∂λ
dλ= 0. (5”)

However, according to equation (4’), we have

−2hdE + 2h
∑ ∂E

∂λ
dλ+ 2hdQ = 0,

and, by adding these two equations, one obtains

2h · dQ = d(2hE − c),

or, since 1
4h = κ · T,

dQ
T

= d
(

E
T

− 2κc
)

= dS.

This equation states that dQ/T is a total differential of a quantity that
we will call the entropy S of the system. Taking into account equation
(5), one obtains

S = 2κ(2hE − c)= E
T

+ 2κ log
∫

e−2hEdp1 . . . dpn,

where the integration has to be extended over all values of the variables.

§7. On the probability of distributions of states

In order to derive the second law in its most general form, we have to
investigate the probability of distributions of states. We consider a very
large number (N) of isolated systems, all of which can be represented
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by the same system of equations (1) and whose energies coincide up to
the infinitesimally small. The distribution of states of these N systems
can then be represented by an equation of the form

dN = ε(p1 . . . pn, t)dp1 . . . dpn, (2’)

where in general ε depends explicitly on the state variables p1 . . . pn
and also on time. Here, the function ε completely characterizes the
distribution of states.

It follows from §2 that when the distribution of states is constant—
which, according to our assumptions, is always the case at very large val-
ues of t—we must have ε= const., so that, for a stationary distribution
of states, we will have

dN = const. dp1 . . . dpn.

From this, it follows immediately that the expression for the prob-
ability dW, for the values of the state variables of a system randomly
chosen from among the N systems to lie in the infinitesimally small
region g of the state variables located within the assumed energy limits,
is given by

dW = const.
∫

g
dp1 . . . dpn.

This proposition can also be formulated as follows: If the whole perti-
nent region of state variables that is determined by the assumed energy
limits is divided into l partial regions g1, g2 . . . gl such that∫

g1

=
∫

g2

= · · · =
∫

gl

,

and if one denotes by W1, W2, etc., the probabilities that the values of
the state variables of the arbitrarily chosen system lie within g1, g2 . . . at
a certain instant, then

W1 = W2 = · · · = Wl = 1
l

.

The probability that, at a given moment, the system considered will
belong to a specific region from among these g1 . . . gl regions is thus
just as great as the probability that it will belong to any other of these
regions.

The probability that, at a randomly chosen time, ε1 of N systems
considered will belong to the region g1, ε2 to region g2, and . . . εl to
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region gl is hence

W =
(

1
l

)N N!
ε1!ε2! . . . εn! ,

or also, since ε1, ε2 . . . εn are to be thought of as very large numbers:

log W = const. −
ε=l∑
ε=1

ε log ε.

If l is sufficiently large, one can put, without noticeable error,

log W = const. −
∫
ε log ε dp1 . . . dpn.

In this equation, W denotes the probability that a given distribution
of states, which is expressed by the numbers ε1, ε2 . . . εl or else, by a
specific function ε of p1 . . . pn according to equation (2’), prevails at a
given time.

If, in this equation, ε were constant, i.e., independent of the pν ’s
within the energy limits considered, then the distribution of states con-
sidered would be stationary and, as can easily be proved, the expression
for the probability W of the distribution of states would be a maximum.
If ε depends on the values of the pν ’s, then it can be shown that the
expression for log W for the distribution of states considered does not
have an extremum, i.e., that there exist distributions of states differing
infinitesimally from the considered one for which W is larger.

If we follow the N systems considered for an arbitrary time interval,
the distribution of states, and thus also W, will continually change with
time, and we will have to assume that always more probable distribu-
tions of states will follow upon improbable ones, i.e., that W increases
until the distribution of states has become constant and W a maximum.

It will be shown in the following sections that the second law of
thermodynamics can be deduced from this proposition.

First of all, we have

−
∫
ε′ log ε′ dp1 . . . dpn �−

∫
ε log ε dp1 . . . dpn,

where the function ε determines the distribution of states of the N sys-
tems at a certain time t, the function ε′ determines the distribution of
states at a certain later time t′, and the integration on both sides is to be
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extended over all values of the variables. Further, if the quantities log ε
and log ε′ of the individual systems from among the N systems do not
differ markedly from each other, then, since∫

ε dp1 . . . dpn =
∫
ε′ dp1 . . . dpn = N,

the last equation becomes

− log ε′ �− log ε. (6)

§8. Application of the results obtained to a particular case

We consider a finite number of physical systems σ1, σ2 . . . that together
form an isolated system, which we shall call a total system. The sys-
tems σ1, σ2 . . . shall not interact markedly with each other thermally,
but they might affect each other adiabatically. The distribution of states
of each of the systems σ1, σ2 . . . , which we shall call partial systems,
shall be stationary up to the infinitesimally small. The absolute temper-
atures of the partial systems may be arbitrary and different from each
other.

The distribution of states of the system σ1 will not be markedly
different from the distribution of states that would hold if σ1 were
in contact with a physical system of the same temperature. We can
therefore represent its distribution of states by the equation

dw1 = ec(1)−2h(1)E(1)
∫

g
dp(1)1 . . . dp(1)(n),

where the indices (1) indicate affiliation with the partial system σ1.
Analogous equations hold for the other partial systems. Since the

instantaneous values of the state variables of the individual partial
systems are independent of those of the other systems, we obtain,
for the distribution of states of the total system, an equation of the
form

dw = dw1 · dw2 · · · = e
∑

cν−2hνEν
∫

g
dp1 . . . dpn, (7)

where the summation is to be extended over all systems, and the inte-
gration over the arbitrary region g, which is infinitesimally small in all
the variables of the total system.
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We now assume that, after some time, the partial systems σ1, σ2 . . .
enter into some arbitrary interaction with each other, but that during
that process, the total system always remains an isolated one. After the
lapse of a certain time, there shall arise a state of the total system in
which the partial systems σ1, σ2 . . . do not affect each other thermally
and, up to the infinitesimally small, exist in a stationary state.

Then, an equation completely analogous to that holding before the
process will hold for the distribution of states of the total system:

dw′ = dw′
1 · dw′

2 · · · = e
∑

c′ν−2h′
νE′

ν

∫
g

dp . . . dpn. (7’)

We now consider N such total systems. Up to the infinitesimally small,
equation (7) shall hold for each of these systems at time t, and equation
(7’) at time t′. Then, the distribution of states of the N total systems
considered at times t and t′ will be given by the equations

dNt = N · e
∑
(cν−2hνEν) · dp1 . . . dpn

dNt′ = N · e
∑
(c′ν−2h′

νE′
ν) · dp1 . . . dpn.

To these two distributions of states, we now apply the results of the
previous section. Neither the

ε= N · e
∑
(cν−2hνEν),

nor the
ε′ = N · e

∑
(c′ν−2h′

νE′
ν)

for the individual systems among the N systems are here markedly
different so that we can apply equation (6), which yields∑

(2h′E′ − c′)�
∑

(2hE − c),

or, noting that, according to §6, the quantities 2h1E1 − c1, 2h2E2 −
c2, . . . are identical with the entropies S1, S2 . . . of the partial systems
up to a universal constant,

S′
1 + S′

2 + · · · � S1 + S2 + · · · , (8)

i.e., the sum of the entropies of the partial systems of an isolated system,
after some arbitrary process, is equal to or larger than the sum of the
entropies of the partial systems before the process.
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§9. Derivation of the second law

Let there be an isolated total system whose partial systems shall be
called W, M, and �1,�2 . . . Let the system W, which we shall call heat
reservoir, have an energy that is infinitely large compared with the sys-
tem M (engine). Similarly, the energy of the systems �1,�2 . . . , which
interact adiabatically with each other, shall be infinitely large compared
with that of M. We assume that all the partial systems M, W,�1, �2 . . .
are in a stationary state.

Suppose that the engine M passes through a cyclic process, during
which it changes the distributions of states of the systems �1,�2 . . .
infinitely slowly through adiabatic influence, i.e., performs work and
receives the amount of heat Q from the system W. The reciprocal adi-
abatic influence of the systems �1,�2 . . . at the end of the process will
then differ from that before the process. We say that the engine M has
converted the amount of heat Q into work.

We now calculate the increase in entropy of the individual partial
systems during the process considered. According to the results of §6,
the entropy increase of the heat reservoir W equals −Q

T if T denotes the
absolute temperature. The entropy of M is the same before and after the
processbecausethesystemMhasundergoneacyclicprocess.Thesystems
�1,�2 . . .do not change their entropies during the process at all because
thesesystemsonlyexperienceanadiabaticinfluencethatisinfinitelyslow.
Hence, the entropy increase S′ − S of the total system has the value

S′ − S = Q
T

.

Since, according to the results of the last section, this quantity S′ − S is
always � 0, it follows that Q � 0.

This equation expresses the impossibility of the existence of a per-
petuum mobile of the second kind.

Bern, January 1903.

(Received on 26 January 1903.)

Editorial Note

[a] Einstein 1902.
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