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Chapter One

Introduction

The notion of height functions on projective varieties was created by Weil
[Wei51] as a measurement for the complexity of solutions to Diophantine equa-
tions. Despite its modern name, “height” is closely related to the method of
“infinite descent”, and thus has its roots in Euclid’s proof of the irrationality
of
√

2 more than two thousand years ago and Fermat’s proof that x4 + y4 = z4

has no solutions in positive integers more than three hundred years ago. It
was implicitly used in Weil’s proof of the Mordell–Weil theorem in [Wei29] in
1928, Siegel’s theorem on integral points on curves in 1929, and Northcott’s
further works on the Northcott property and arithmetic dynamical systems in
[Nor49, Nor50] in 1949–1950. Since its creation, the theory of heights has been
widely used in Diophantine geometry, such as in Roth’s theorem and Schmidt’s
subspace theorem and the formulation of the Birch and Swinnerton-Dyer con-
jecture. For more details, see our reviews in §A.1.

In the 1970s, to translate the proof of Mordell’s conjecture from function
fields to number fields, Arakelov [Ara74] proposed an intersection theory for
arithmetic surfaces. In this theory, the heights are interpreted as degrees of
hermitian line bundles on arithmetic curves. Faltings [Fal83] used this interpre-
tation to define a special height function in his proof of the Mordell conjecture
in 1983. After quick developments by Faltings [Fal84], Deligne [Del85], Szpiro
[Szp85], and Gillet–Soulé [GS90], the Arakelov theory was used again by Vo-
jta [Voj91] for a second proof of the Mordell conjecture and by Faltings [Fal91]
for an extension to the Mordell–Lang conjecture for the subvarieties of Abelian
varieties. For more details, see our reviews in §A.2 and §A.3.

In the late 1980s, Szpiro [Szp90] proposed a program to prove the Bogo-
molov conjecture for small points on curves using arithmetic positivity. The
Bogomolov conjecture was eventually reduced to a positivity statement after the
development of arithmetic ampleness for adelic line bundles by Zhang [Zha92,
Zha93, Zha95a, Zha95b], which was an extension of the classical Arakelov theory
to handle bad reductions of abelian varieties and algebraic dynamical systems.
Shortly after, the Bogomolov conjecture was eventually proved by Ullmo [Ull98]
and Zhang [Zha98] using a new ingredient, the equidistribution theorem initiated
by Szpiro–Ullmo–Zhang [SUZ97]. The arithmetic positivity and equidistribu-
tion theorem were further extended by the Yuan [Yua08] to big line bundles and
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were widely used to treat problems in arithmetic dynamical systems. For more
details, see our reviews in §A.4, §A.5, and §A.6.

The goal of this book is to extend the theory of Zhang [Zha95b] from pro-
jective varieties over number fields to quasi-projective varieties over finitely gen-
erated fields. More precisely, let F be a finitely generated field over Q (or a
constant field), and let X be a quasi-projective variety over F . We introduce
a notion of adelic line bundles on X, consider their intersection theory, study
their volumes for effective sections, and introduce heights associated to them.
Fundamental properties behind these terms are various notions of positivity of
adelic line bundles.

An immediate application of our framework is a theory of canonical heights
on polarized algebraic dynamical systems over quasi-projective varieties over
finitely generated fields. In particular, we introduce Néron–Tate heights of
abelian varieties over finitely generated fields and extend the arithmetic Hodge
index theorem of Faltings [Fal84] and Hriljac [Hri85] to this setting. Further-
more, we prove an equidistribution theorem of small points on quasi-projective
varieties over number fields, generalizing the equidistribution theorems of Szpiro–
Ullmo–Zhang [SUZ97], Chambert-Loir [CL06], and Yuan [Yua08].

The exposition of this book uses a combination of algebraic geometry, com-
plex algebraic geometry, Arakelov theory (cf. [Ara74, GS90]), and Berkovich
analytic spaces (cf. [Ber90, Ber09]). In the following, we sketch the main con-
structions and theorems of this book.

1.1 ADELIC LINE BUNDLES

To illustrate the concept quickly, we will take an approach different from that
of the major parts of this book, but it will give equivalent constructions.

We will use a uniform terminology, which will be explained in detail in §1.5,
to treat both algebraic varieties and arithmetic varieties. Namely, we fix a base
scheme Spec k, where k is either Z or a field. By a variety X over k, we mean
an integral scheme X which is finite, flat, and of finite type over Spec k. We
say that X is an arithmetic (resp. algebraic ) variety if k = Z (resp. k is a
field). We say that X is a projective variety over k if the structure morphism
X → Spec k is projective; we say that X is a quasi-projective variety over k if
X is an open subscheme of a projective variety over k. In particular, when X is
a quasi-projective variety over Z, we allow finitely many fibers of X → SpecZ
to be empty.

In the arithmetic situation, we could take a fancier notation k = F1, the field
of one element, and thus SpecZ becomes an affine arithmetic curve over F1. The
curve SpecZ can be further compactified over F1 by adding an archimedean
place. So projective varieties over Z can be further compactified by adding
complex varieties over archimedean places. This is the main motivation for
Arakelov to introduce hermitian line bundles on projective varieties; see our
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reviews in §A.2 and §A.3. Sometimes, we need to deal with projective varieties
over Z[1/N ] for some positive integer N , for example, when we treat abelian
varieties and algebraic dynamical systems. In this case, we need to add p-
adic metrics to the missing primes. This is the main motivation for Zhang to
introduce adelic line bundles for projective varieties; see our reviews in §A.5.

The goal of this section is to sketch our theory of adelic line bundles on a
quasi-projective variety X over k. Adelic line bundles are roughly defined as the
“limits” of “projective models” under our “boundary topology.” There are two
natural approaches to define these limits. The first approach is by an abstract
notion of completion by Cauchy sequences (combined with two processes of
direct limits), and this is the main approach of this book precisely realized in
Chapter 2. The second approach is to “put” all “projective models” into the
category P̂ic(Xan) of metrized line bundles on a large analytic space Xan. It

turns out that P̂ic(Xan) is big enough to contain all the limiting line bundles.
This is essentially treated in Chapter 3. Each approach has its advantages. We
will take the second approach in this introduction.

1.1.1 Berkovich spaces

Let k be either Z or a field. Let X/k be a quasi-projective variety. There is
a natural Berkovich analytic space Xan associated to X/k. In fact, if X has
an open affine cover {SpecAi}i, then Xan = ∪iM(Ai), where M(Ai) is the
set of multiplicative semi-norms | · | on Ai; if k is a field, we further require the
restriction of |·| to k trivial. A metrized line bundle on Xan is a pair L = (L, ‖·‖)
consisting of a line bundle L on X and a continuous metric ‖ · ‖ of L on Xan.

Denote by P̂ic(Xan) the category of metrized line bundles on X, in which a
morphism between two objects is defined to be an isometry. There is a forgetful
functor

P̂ic(Xan) −→ Pic(X).

Here, Pic(X) denotes the category of line bundles on X, in which a morphism
between two objects is an isomorphism of line bundles.

1.1.2 Model adelic line bundles

Let k be either Z or a field. Let X/k be a quasi-projective variety. Objects

of the category P̂ic(Xan) are too general for intersection theory. Instead, we

will define a full subcategory P̂ic(X/k) of adelic line bundles in P̂ic(Xan), and

a full subcategory P̂ic(X/k)int of integrable adelic line bundles in P̂ic(Xan) for
intersection theory. For this, we will start with model adelic line bundles and
take a limit process to extend them to more general notions.

As a convention, we will write tensor products of various line bundles addi-
tively, so, for example, mL means L⊗m for L ∈ Pic(X) and m ∈ Z.
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An object of P̂ic(Xan) with underlying line bundle L ∈ Pic(X) is called a
model adelic line bundle if it is induced by a projective model (X ,L) of (X, eL)
over k for some positive integer e, where X is a projective variety over k with
an open immersion X↪→X , and L is as follows:

(1) if k is a field, then L = L is a line bundle on X extending eL;
(2) if k = Z, then L = (L, ‖ · ‖) is a hermitian line bundle on X , which consists

of a line bundle L on X extending eL and a continuous hermitian metric
‖ · ‖ of L(C) on X (C). The metric is required to be invariant under the
complex conjugate.

Because of the integer e in the definition, (X , e−1L) is a projective model of

(X,L) in terms of the notion of Q-line bundles. Denote by P̂ic(X/k)mod the

full subcategory of P̂ic(Xan) consisting of model adelic line bundles on X.

1.1.3 Limit process

Let k be either Z or a field. Let X/k be a quasi-projective variety. Choose a
projective compactification X ⊂ X0 such that the boundary X0 \ X is exactly
equal to the support of an effective Cartier divisor E0 on X0. If k is a field, set
E0 = E0. If k = Z, set E0 = (E0, g0), where g0 > 0 is a Green function of E0(C)
on X0(C). Then E0 induces a Green function g̃0 of E0 on X an

0 , which restricts
to a continuous function g̃0 : Xan → R≥0.

Consider the space C(Xan) of real-valued continuous functions on Xan. It
is endowed with a boundary topology induced by the extended norm

‖f‖g̃0 := sup
x∈Xan, g̃0(x)>0

|f(x)|
g̃0(x)

.

We refer to [Bee15] for the basics of extended norms, which are allowed to take
values in [0,∞] but still required to satisfy the triangle inequality. The boundary
topology is independent of the choice of (X0, E0). Moreover, C(Xan) is complete
under the boundary topology.

We say that a sequence Li = (Li, ‖ · ‖i) in P̂ic(Xan) converges to an object

L = (L, ‖ · ‖) in P̂ic(Xan) if there are isomorphisms τi : L → Li such that
the sequence − log(τ∗i ‖ · ‖i/‖ · ‖) converges to 0 in C(Xan) under the boundary
topology.

1.1.4 Adelic line bundles

There is a notion of nefness of hermitian line bundles on projective arithmetic
varieties, and we refer to §A.4.1 for a quick definition.

An object of P̂ic(Xan) is called an adelic line bundle on U if it is isomorphic

to the limit of a sequence in P̂ic(X/k)mod. An adelic line bundle on X is called

strongly nef if it is isomorphic to the limit of a sequence in P̂ic(X/k)mod induced
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by projective models (Xi,Li) over k such that Li is nef on Xi. An adelic line
bundle L on X is called nef if there exists a strongly nef adelic line bundle M
on X such that aL+M is strongly nef for all positive integers a. An adelic line
bundle on X is called integrable if it is isometric to L1−L2 for two strongly nef
adelic line bundles L1 and L2 on X.

Denote by P̂ic(X/k) the full subcategory of P̂ic(Xan) consisting of adelic line

bundles on X. Denote by P̂ic(X/k)nef (resp. P̂ic(X/k)int) the full subcategory

of P̂ic(Xan) consisting of nef (resp. integrable) adelic line bundles on X. Their
objects are called adelic line bundles (resp. nef adelic line bundles, integrable
adelic line bundles) on X/k.

We can further extend the definition to quasi-projective varieties over finitely
generated fields. Namely, let F be a finitely generated field over k, i.e., a finitely
generated field over the fraction field of k. Let X be a quasi-projective variety
over F . Then we define

P̂ic(X/k) := lim−→
U→V

P̂ic(U/k),

P̂ic(X/k)nef := lim−→
U→V

P̂ic(U/k)nef ,

P̂ic(X/k)int := lim−→
U→V

P̂ic(U/k)int.

Here, the limit is over all flat morphisms U → V of quasi-projective varieties
over k whose generic fibers are isomorphic to X → SpecF . Denote by P̂ic(X/k)

(resp. P̂ic(X/k)nef , P̂ic(X/k)int, P̂ic(Xan)) the group of isomorphism classes of

objects of P̂ic(X/k) (resp. P̂ic(X/k)nef , P̂ic(X/k)int, P̂ic(Xan)). Note that the

previous definitions of the analytic terms Xan and P̂ic(Xan) are actually valid
in the current situation.

As we have seen, our theory of adelic line bundles is valid for both quasi-
projective varieties over k and quasi-projective varieties over finitely generated
fields over k. We will introduce a natural notion of essentially quasi-projective
varieties over k, which includes both of the above cases. For simplicity, we will
not use this notion in this chapter.

1.1.5 Functoriality

Let E/F be an extension of finitely generated fields over k, and f : X → Y be
an F -morphism of quasi-projective varieties X/E and Y/F . Then we have a
pull-back functor

f∗ : P̂ic(Y/k) −→ P̂ic(X/k).
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When k = Z, we can also have a base change of a quasi-projective scheme
X/k to the generic fiber XQ/Q. In this case, we denote the functor as

P̂ic(X/k) −→ P̂ic(XQ/Q), L 7−→ L̃.

We call L̃ the geometric part of L̂.
Both functors preserve the subcategories of the model (resp. nef, integrable)

adelic line bundles.

1.2 INTERSECTION THEORY AND HEIGHTS

Our intersection theory includes an absolute intersection pairing of Gillet–Soulé
and a relative intersection pairing that extends the Deligne pairing.

1.2.1 Intersection numbers and heights

Let k be either Z or a field. Let F be a finitely generated field over k. Let X
be a quasi-projective variety over F . Then our absolute intersection pairing is
a symmetric and multi-linear map

P̂ic(X/k) dint −→ R,

where d = dimX + dim k + tr degk F . Here dim k denotes the Krull dimension
of k, and tr degk F denotes the transcendence degree of F over the fraction field
of k. This is the limit version of the intersection theory in algebraic geometry
and the arithmetic intersection theory of Gillet–Soulé. See Proposition 4.1.1.

Now let K be a number field if k = Z; let K be a function field of one variable
over k if k is a field. Let X be a quasi-projective variety over K of dimension
n. Let L be an integrable adelic line bundle on X. Define a height function

hL : X(K) −→ R

by

hL(x) :=
d̂eg(L|x′)
deg(x′)

.

Here x′ denotes the closed point of X containing x, deg(x′) denotes the degree

of the residue field of x′ over K, L|x′ denotes the pull-back of L to P̂ic(x′/k)int,

and d̂eg : P̂ic(x′/k)int → R is by the intersection theory.
More generally, for any closed K-subvariety Z of X, define the height of Z

for L by

hL(Z) :=
(L|Z′)dimZ+1

(dimZ + 1)(L̃|Z′K )dimZ
.
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Here Z ′ denotes the image of Z → X (which is a closed subvariety of X over
K), and

L 7−→ L|Z′ 7−→ L̃|Z′K
denotes the image of L via the functorial maps

P̂ic(X/k)int −→ P̂ic(Z ′/k)int −→ P̂ic(Z ′K/K)int,

and the self-intersections are as in the above intersection theory. The height is
well-defined only if the denominator is nonzero.

1.2.2 Deligne pairing and relative heights

Let k be either Z or a field. Let f : X → Y be a projective and flat morphism
of relative dimension n between quasi-projective varieties over k. Assume that
Y is normal, which is required in our proof.

Theorem 1.2.1 (Theorem 4.1.3). The Deligne pairing on model adelic line
bundles induces a symmetric and multi-linear functor

P̂ic(X)n+1
int −→ P̂ic(Y )int.

When restricted to nef adelic line bundles, the functor induces a functor

P̂ic(X)n+1
nef −→ P̂ic(Y )nef .

Moreover, the functors are compatible with base changes of the form Y ′ → Y ,
where Y ′ is a quasi-projective normal variety over k such that X ′ = X ×Y Y ′ is
integral.

In the setting of the theorem, let F = k(Y ) be the function field of Y , and

XF → SpecF the generic fiber of X → Y . Let L be an object of P̂ic(X)int. By
this, we can define a vector-valued height function

hL : X(F ) −→ P̂ic(F/k)int,Q.

Here the group
P̂ic(F )int := lim−→

U

P̂ic(U/k)int,

where U runs through all open subschemes of Y .
More generally, for any closed F -subvariety Z of XF , define the vector-valued

height of Z for L as

hL(Z) :=
〈L|Z′〉dimZ+1

(dimZ + 1)(L|Z′F )dimZ
∈ P̂ic(F )int,Q.
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Here Z ′ denotes the image of Z → X, Z ′F is the generic fiber of Z ′ → Y , and

L 7−→ L|Z′ 7−→ L|Z′F

denotes the image of L via the functorial maps

P̂ic(X/k)int −→ P̂ic(Z ′/k)int −→ Pic(Z ′F /F ).

Note that the first self-intersection is the Deligne pairing, and the second self-
intersection is just the degree on the projective variety Z ′F in the classical sense.
The height is well-defined only if the denominator is nonzero.

When F is polarized in the sense of Moriwaki [Mor00], we can also define the
Moriwaki heights. If K is a number field or a finite field, and if X is projective
over F , we obtain a Northcott property of the Moriwaki heights from that of
[Mor00]. In general, we obtain the fundamental inequality for the Moriwaki
height following the strategy of [Mor00].

Hence, part of our height theory extends the previous works of Moriwaki
[Mor00, Mor01]. In fact, [Mor00, Mor01] developed a height theory for projec-
tive varieties over finitely generated fields F over Q, depending on the choice
of an arithmetic polarization of SpecF . His motivation was to apply Arakelov
geometry to varieties over arbitrary fields (of characteristic 0), and he succeeded
in formulating and proving the Bogomolov conjecture in that setting. His treat-
ment was more on the numerical theory of heights, but ours is more on the
geometric theory of adelic line bundles.

1.3 VOLUMES AND EQUIDISTRIBUTION

As in the projective case, we can define effective sections of adelic line bundles,
study their volumes, and prove equidistribution theorems on quasi-projective
varieties.

1.3.1 Volumes

Let X be a quasi-projective variety over k. Let L = (L, ‖ · ‖) be an adelic line
bundle on X. Define

Ĥ0(X,L) := {s ∈ H0(X,L) : ‖s(x)‖ ≤ 1, ∀x ∈ Xan}.

Elements of Ĥ0(X,L) are called effective sections of L on X. If k = Z, denote

ĥ0(X,L) := log #Ĥ0(X,L);

if k is a field, denote
ĥ0(X,L) := dimk Ĥ

0(X,L).
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We check that ĥ0(X,L) is always a finite real number. In this setting, we have
the following fundamental results.

Theorem 1.3.1 (Theorem 5.2.1, Theorem 5.2.2). Let X be a quasi-projective
variety over k. Let L,M be adelic line bundles on X. Denote d = dimX+dim k.
Then the following holds.

(1) The limit

v̂ol(X,L) = lim
m→∞

d!

md
ĥ0(X,mL)

exists.
(2) If L is the limit of a sequence of model adelic line bundles induced by a

sequence {(Xi,Li)}i≥1 of projective models of (X,L) over k, then

v̂ol(X,L) = lim
i→∞

v̂ol(Xi,Li).

(3) If L is nef, then

v̂ol(X,L) = L
d
.

(4) If L,M are nef, then

v̂ol(X,L−M) ≥ Ld − dLd−1
M.

Part (1) generalizes the classical result of Fujita (cf. [Laz04b, 11.4.7]) for
line bundles on projective varieties and the result of [Che08, Che10, Yua09] for
hermitian line bundles on projective arithmetic varieties. Part (2) allows us
to transfer many previous results in the projective case to the quasi-projective
case. Part (3) generalizes the classical Hilbert–Samuel formula in algebraic
geometry and the arithmetic Hilbert–Samuel formula proved by Gillet–Soulé
[GS92], Bismut–Vasserot [BV89], and Zhang [Zha95a]. Part (4) generalizes the
classical theorem of Siu [Siu93] and the arithmetic bigness theorem of Yuan
[Yua08].

In the setting of the theorem, we say that L is big if v̂ol(X,L) > 0. We
will see that, in this case, we will have nice lower bounds of the height function
associated to L.

1.3.2 Height inequality

Let K be a number field if k = Z; let K be a function field of one variable over
k if k is a field. Let X be a quasi-projective variety over K. For an adelic line
bundle L on X/k, we usually denote by L̃ the geometric part of L on X/K, i.e.,

the image of L under the functorial map P̂ic(X/k)→ P̂ic(X/K).
As a quick consequence of the above fundamental results on volumes, we

have the following height inequality.
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Theorem 1.3.2 (Theorem 5.3.7). Let π : X → S be a morphism of quasi-

projective varieties over K. Let L ∈ P̂ic(X) and M ∈ P̂ic(S) be adelic line

bundles. If L is nef on X/k and L̃ is big on X/K, then for any c > 0, there
exist ε > 0 and a non-empty open subvariety U of X such that

hL(x) ≥ ε hM (π(x))− c, ∀x ∈ U(K).

We refer to Theorem 5.3.7 for various versions of the height inequality and
to Theorem 5.3.8 for a partial converse to the height inequality.

In a series of works, Dimitrov–Gao–Habegger [GH19, DGH21] and Kühne
[Kuh21] proved a uniform Bogomolov conjecture over number fields, and com-
bined the work of Vojta [Voj91] on the Mordell conjecture to confirm Mazur’s
uniform Mordell conjecture. A key result of [DGH21] is a height inequality in
a setting of abelian schemes, which also plays a fundamental role in the further
work [Kuh21]. Our current height inequality can be viewed as a theoretical
version of that of [DGH21]. We will come back to this connection later, and we
refer to the context of Theorem 6.2.2 for more details on this connection and
for the application of our height inequality to dynamical systems.

In recent work, Yuan [Yua21] has used our theory of adelic line bundles to
prove the uniform Bogomolov conjecture over global fields. This gives a new
proof of the main results of [DGH21, Kuh21], and it works uniformly for both
number fields and function fields of any characteristic. The key ingredient of
[Yua21] is proving the bigness of the admissible canonical bundle of the universal
curve using the Deligne pairing and apply the bigness to obtain a certain height
inequality to control the number of points of small heights. We refer to §2.6.5
for a brief introduction to the admissible canonical bundle.

In recent work, Gao–Zhang [GZh24] proved a Northcott property for Gross–
Schoen cycles and Ceresa cycles parametrized by a non-empty open subset of
moduli spaces of curves of genus at least 3. One key ingredient in their proof is
applying our height inequality to convert the positivity properties of adelic line
bundles to a Northcott property.

1.3.3 Equidistribution

One of the most important theorems of this book is an equidistribution theorem
for small points of a quasi-projective variety over a number field or a function
field of one variable.

Theorem 1.3.3 (Theorem 5.4.3). Let k be either Z or a field. Let K be a
number field if k = Z; let K be the function field of one variable over k if k is
a field. Let X be a quasi-projective variety over K. Let L be a nef adelic line
bundle on X such that degL̃(X) > 0. Let {xm}m be a generic sequence in X(K)
such that {hL(xm)}m converges to hL(X). Then the Galois orbit of {xm}m is
equidistributed in Xan

Kv
for dµL,v for any place v of K.
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Here dµL,v is a canonical probability measure on Xan
Kv

, defined using the
recent theory of Chambert-Loir and Ducros in [CLD12] if v is non-archimedean.
This generalizes the Monge–Ampère measure and the Chambert-Loir measure
from the projective case to the quasi-projective case.

If k = Z and X is projective over K, the equidistribution theorem is proved
by Szpiro–Ullmo–Zhang [SUZ97], Chambert-Loir [CL06], and Yuan [Yua08].
Our current theorem still follows the variational principle of the pioneering work
[SUZ97], applying our adelic Hilbert–Samuel formula and adelic bigness theo-
rem.

We can further generalize our equidistribution theorem in two different ways,
which give us an equidistribution theorem (Theorem 5.4.6) and an equidistri-
bution conjecture (Conjecture 5.4.1). The equidistribution theorem considers a
projective and flat morphism of quasi-projective varieties over a number field
or a function field of one variable, and its proof follows a strategy of Mori-
waki [Mor00]. The equidistribution conjecture considers projective varieties
over finitely generated fields, and is stated as follows.

Conjecture 1.3.4 (Conjecture 5.4.1). Let k be either Z or a field. Let F be a
finitely generated field over k. Let v be a non-trivial valuation of F . Assume
that the restriction of v to k is trivial if k is a field. Let X be a projective
variety over F . Let L be a nef adelic line bundle on X such that L is big on X.
Let {xm}m be a generic and small sequence in X(F ). Then the Galois orbit of
{xm}m is equidistributed in Xan

Fv
for dµL,v.

We refer to the context of Conjecture 5.4.1 for the notion of “small sequence”
and the equilibrium measure dµL,v.

1.4 ALGEBRAIC DYNAMICS

Here we apply the theory of adelic line bundles to algebraic dynamics.

1.4.1 Algebraic dynamics

Let k be either Z or a field. Let S be a quasi-projective variety over k with
function field F . Let (X, f, L) be a polarized algebraic dynamical system over
S, i.e., X is a flat and projective integral scheme over S, f : X → X is an
endomorphism over S, and L is an f -ample Q-line bundle satisfying f∗L ' qL
for some rational number q > 1.

By Tate’s limiting argument, we can construct a canonical adelic Q-line
bundle Lf ∈ P̂ic(X)Q,nef extending L which is f -invariant in that f∗Lf ' qLf .

Here P̂ic(X)Q,nef denotes the sub-semigroup of P̂ic(X)Q consisting of positive

rational multiples of elements of P̂ic(X)nef .
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For any closed F -subvariety Z of XF , we have the canonical height

hf (Z) = hLf (Z) :=

〈
Lf |dimZ+1

Z′

〉
(dimZ + 1) degL(Z ′F )

∈ P̂ic(F )Q,nef .

In particular, we have a height function

hf : X(F ) −→ P̂ic(F )Q,nef .

Tate’s limiting argument also explains these heights.
The height function hf is f -invariant. As a consequence, hf (x) = 0 for a

preperiodic point x ∈ X(F ). In the minimal case that K is a number field or
a function field of one variable over a finite field k, hf satisfies the Northcott
property. In this case, hf (x) = 0 for a point x ∈ X(F ) implies that x is
preperiodic under f .

1.4.2 Equidistribution of small points

Our equidistribution conjecture naturally implies an equidistribution conjecture
of preperiodic points.

Conjecture 1.4.1 (Conjecture 6.1.5). Let k be either Z or a field. Let F be a
finitely generated field over k. Let (X, f, L) be a polarized algebraic dynamical
system over F . Let v be a non-trivial valuation of F . Assume that the restriction
of v to K is trivial if k is a field. Let {xm}m be a generic sequence of preperiodic
points in X(F ). Then the Galois orbit of {xm}m is equidistributed in Xan

Fv
for

the canonical measure dµL,f,v.

As an example of our equidistribution theorem (cf. Theorem 5.4.3), we
deduce the following equidistribution theorem of small points on non-degenerate
subvarieties in a family of polarized algebraic dynamical systems.

Theorem 1.4.2 (Theorem 6.2.3). Let S be a quasi-projective variety over a
number field K. Let (X, f, L) be a polarized algebraic dynamical system over S.
Let Y be a non-degenerate closed subvariety of X over K. Let {ym}m≥1 be a
generic sequence of Y (K) such that hLf (ym) → 0. Then for any place v of K,

the Galois orbit of {ym}m≥1 is equidistributed on the analytic space Y an
v for the

canonical measure dµLf |Y ,v.

In the theorem, a closed subvariety Y of X is called non-degenerate if
degL̃(Y ) > 0. This is equivalent to the property that L̃|Y is big. If X is an
abelian scheme and K is a number field, our definition of “non-degenerate”
agrees with that of [DGH21], which uses Betti maps in the complex analytic
setting.

The theorem generalizes the equidistribution theorem of DeMarco–Mavraki
[DMM20] for families of elliptic curves, and confirms the conjecture (REC) of
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Kühne [Kuh21] for abelian schemes. A weaker version of the theorem for abelian
schemes is proved by [Kuh21, Thm. 1] independently and applied to prove a uni-
form Bogomolov conjecture after the work of Dimitrov–Gao–Habegger [DGH21],
as mentioned above. The proof of [Kuh21] is a limit version of the original proof
in [SUZ97] and uses a result of Dimitrov–Gao–Habegger [DGH21] for uniformity
in the limit process. Inspired by our formulation, Gauthier [Gau21] has extended
the equidistribution theorem of [Kuh21] to more general settings, which has a
large overlap with our equidistribution theorem.

1.4.3 Heights of points of a non-degenerate subvariety

Let k be either Z or a field. Let K be a number field if k = Z or a function field
of one variable if k is a field. Let S be a quasi-projective variety over K. Let
(X, f, L) be a polarized algebraic dynamical system over S. Let Y be a closed
subvariety of X over K.

Suppose Y is a section of X → S. In that case, our vector-valued height
of adelic line bundles generalizes and reinterprets the Tate–Silverman special-
ization theorem of [Tat83, Sil92, Sil94a, Sil94b], and the work [DMM20] from
families of elliptic curves to families of algebraic dynamical systems. See Lemma
6.2.1 for more details.

As mentioned above, if X is an abelian scheme and Y is non-degenerate
in X, there is a height inequality of points of Y by [GH19, DGH21], which
plays a fundamental role in the treatment of the uniform Mordell conjecture in
[DGH21, Kuh21]. In terms of our theory, we have a simple interpretation of the
height inequality, which is also valid in families of algebraic dynamical systems.
As the non-degeneracy is interpreted as the bigness of L̃|Y , the height inequality
is also interpreted by the bigness of some adelic line bundle. Applying Theorem
1.3.2(2) to the morphism Y → S and the adelic line bundle Lf |Y on Y , we can
have a lower bound of the canonical height of points on Y by Weil heights on
S. See Theorem 6.2.2 for more details.

1.4.4 Equidistribution of PCF maps

Let S be a smooth and quasi-projective variety over a number field K. Let
X = P1

S be the projective line over S, and let f : X → X be a finite morphism
over S of degree d > 1. A point y ∈ S(K) is called post-critically finite (PCF) if
all the ramification points (i.e., critical points) of fy : Xy → Xy are preperiodic
under fy.

Denote byMd the moduli space over K of endomorphisms of P1 of degree d.
Inside Md, there is a closed subvariety corresponding to flexible Lattés maps.
By the moduli property, there is a morphism S →Md.

The main result here is the following equidistribution theorem of Galois
orbits of PCF points.
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Theorem 1.4.3 (Theorem 6.3.5). Assume that the morphism S → Md is
generically finite and its image is not contained in the flexible Lattès locus.
Let {ym}m be a generic sequence of PCF points of S(K). Then the Galois orbit
of {ym}m is equidistributed in San

Kv
for dµM,v for any place v of K.

If S is a family of polynomial maps on P1, the theorem was previously proved
by Favre–Gauthier [FG15]. Their strategy was to reduce the problem to the
equidistribution of Yuan [Yua08].

Now we explain our proof of the theorem, which will also introduce the key
term M in the statement. Denote by R the ramification divisor of the finite
morphism f : X → X, viewed as a (possibly non-reduced) closed subscheme in
X. Then R is finite and flat of degree 2d−2 over S, and the fiber Ry of R above
any point y ∈ S is the ramification divisor of fy : Xy → Xy.

Let L be a Q-line bundle on X, of degree 1 on fibers of X → S, such that
f∗L ' dL. Denote by L = Lf the f -invariant extension of L in P̂ic(X)Q,nef

such that f∗L ' dL. Denote

M := NR/S(L|R) ∈ P̂ic(S)Q,nef .

Here the norm map is the Deligne pairing of relative dimension 0.
Consider the height function

hM : S(K) −→ R≥0.

For any y ∈ S(K), the height hM (y) = 0 if and only if y is PCF in S. Then we
are in the situation to apply the previous equidistribution theorem (Theorem
5.4.3) to (S,M), except that we need to check the condition deg

M̃
(S) > 0.

This requires the bifurcation measure originally introduced by DeMarco
[DeM01, DeM03] and further studied by Bassanelli–Berteloot [BB07]. The de-
gree deg

M̃
(S) is exactly equal to the total volume of the bifurcation measure on

Sσ(C) for any embedding σ : K → C. Then deg
M̃

(S) > 0 is eventually equiva-
lent to the condition on S →Mg by the works of [BB07, GOV20]. This proves
the theorem and confirms that the equilibrium measure dµM,σ is a constant
multiple of the bifurcation measure for any embedding σ : K → C.

Recently, Ji–Xie [JX23] proved the dynamical Andre–Oort conjecture for
one-dimensional families, which relies on our theory of adelic line bundles and
especially our equidistribution theorem of PCF points.

In the end, we note that the theorem also holds for a family of morphisms
on Pn with a slightly weaker statement. In particular, the construction of the
adelic line bundle M works in the same way. We refer to Theorem 6.3.4 for
more details.
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1.4.5 Hodge index theorem on curves

In the end, we present our generalization of the arithmetic Hodge index theorem
of Faltings [Fal84] and Hriljac [Hri85] to finitely generated fields. We refer to
Theorem 6.5.1 for a detailed account.

Let k be either Z or a field. Let F be a finitely generated field over k, and
let π : X → SpecF be a smooth, projective, and geometrically connected curve
of genus g > 0. Denote by J = Pic0

X/F the Jacobian variety of X and by Θ the
symmetric theta divisor on J . By the dynamical system (J, [2],Θ), we have a
Néron–Tate height function

ĥ : Pic0(XF ) −→ P̂ic(F/k)Q,nef .

The height function is quadratic, as in the classical case.

Theorem 1.4.4 (Theorem 6.5.1). Let k be either Z or a field. Let F be a finitely
generated field over k, and let π : X → SpecF be a smooth, projective, and
geometrically connected curve. Let M be a line bundle on X with degM = 0.
Then there is an adelic line bundle M0 ∈ P̂ic(X/k)int,Q with underlying line
bundle M such that

π∗〈M0, V 〉 = 0, ∀V ∈ P̂ic(X/k)vert,Q.

Moreover, for such an adelic line bundle,

π∗〈M0,M0〉 = −2 ĥ(M).

In the theorem, P̂ic(X/k)vert,Q is the space of vertical adelic line bundles

defined as the kernel of the forgetful map P̂ic(X/k)int,Q → Pic(X)Q.

1.5 NOTATION AND TERMINOLOGY

We will introduce a uniform system of terminology and notations for both the
arithmetic and geometric cases. To achieve this, we need to abuse terminology
frequently.

Our base ring k is either Z or an arbitrary field. This is divided into two
cases:

(1) (arithmetic case) k = Z. In this case, the adelic line bundles will be limits
of hermitian line bundles on projective integral schemes over Z. This limit
process obtains the intersection theory.

(2) (geometric case) k is an arbitrary field of arbitrary characteristic. In this
case, the adelic line bundles will be the limit of usual line bundles on pro-
jective varieties over k. This limit process obtains the intersection theory.
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By a finitely generated field F over k, we mean a field F which is finitely
generated over the fraction field of k. For any integral scheme X over k, denote
by k(X) the function field of X.

By a projective variety over k, we mean an integral, flat, and projective
scheme over k. By a quasi-projective variety over k, we mean an open subscheme
of projective variety over k. For a quasi-projective variety U over k, a projective
model means a projective variety X over k endowed with an open immersion
U → X over k. In the arithmetic case (k = Z), we may also use the terms quasi-
projective arithmetic variety and projective arithmetic variety to emphasize the
situation.

In the arithmetic case, for a projective arithmetic variety X over Z, we have
the group D̂iv(X ) of arithmetic divisors on X , and the group P̂ic(X ) and the

category P̂ic(X ) of hermitian line bundles on X .
In the geometric case, for a projective variety X over a field k, an arithmetic

divisor means a Cartier divisor, a hermitian line bundle means a line bundle,
and we write D̂iv(X ), P̂ic(X ), P̂ic(X ) for Div(X ), Pic(X ), Pic(X ). We take
this convention in other similar situations.

This abuse of notation is only one-way. For example, by Div, Pic, or Pic in
the arithmetic case, we still mean the ones without the archimedean components.

Below are a few conventions that are not directly related to the base k but
are adopted throughout this book.

(1) Denote MQ = M ⊗ZQ for any abelian group M . Adopt similar conventions
for MR and MC.

(2) For any field K, we fix an algebraic closure K of K throughout this book.
(3) Except in §2.7 and §3.6, all schemes are assumed to be noetherian.
(4) By a variety over a field, we mean an integral scheme, separated and of

finite type over the field. We do not require it to be geometrically integral.
(5) By a curve over a field, we mean a variety over the field of dimension 1.
(6) All divisors in this book are Cartier divisors, unless otherwise instructed.
(7) By a line bundle on a scheme, we mean an invertible sheaf on the scheme.

We often write or mention tensor products of line bundles additively, so
aL − bM means L⊗a ⊗M⊗(−b).

(8) All the categories of (adelic, metrized) line bundles are groupoids, so the
morphisms are isomorphisms.

(9) A functor between two categories may also be called a map or a homomor-
phism sometimes.
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