CONTENTS

Acknowledgments		vi
	Introduction	1
1	Travelers through time	12
2	Namazu's tail and Matilda's fate	23
3	Moho's and Inge's binoculars	37
4	Giants that sometimes wake up	65
5	On the crests of waves	87
6	A sharp look inside	118
7	Dragon's jaw and crystal ball	136
8	Red	158
9	At the bottom of the ocean	188
10	New worlds and their explorers	224

vi CONTENTS

Glossary of Relevant Terms	255
Bibliography	265
Index	277

Introduction

"Potres." One of my earliest childhood memories is that of my mother uttering this word in disbelief. Quake. I recall the sudden awakening, my mother's comforting embrace, and the prolonged clinking of the shaking glasses and porcelain in the living room display cabinet on the second floor of our three-story building.

My childhood was peaceful, spent in the small provincial town of Vinkovci in Croatia, nestled in the southern part of the Pannonian Plain. Known as one of Europe's oldest continuously inhabited settlements, with a history stretching back 8,000 years, Vinkovci seemed an unlikely backdrop for anything more dramatic than snow flurries, let alone something as astonishing as an earthquake. At the time, my understanding of earthquakes came from fleeting images of devastation and tragedy occurring in distant corners of the globe, pictures which occasionally flickered across our bulky television screen. In those days, such events seemed worlds away, mere curiosities far removed from the quiet rhythms of my everyday life. But that evening, it was indeed a quake that disrupted the calm.

A deep, ominous rumble, followed by an intense vibration, snapped me out of my thoughts. My tiny, wooden house in

2 INTRODUCTION

Berkeley, California, perched precariously close to the Hayward Fault, shuddered so violently that I felt goosebumps and an uncomfortable thrill. I was experiencing another earthquake, feeling its waves ripple through me. A fascination with seismology, the science dedicated to understanding earthquakes and the waves they generate, had led me from my comparatively quiet birthplace in Europe to pursue a PhD and postdoctoral research on the west coast of the American continent, where the Earth's movements are more than just distant or rarified curiosities—they are a tangible and ever-present reality. After an initial sense of shock, I was filled with an inexplicable joy.

My ongoing research into earthquakes eventually led me yet another ocean away—to a small, top-floor flat in a Yokohama suburb, where I worked on a book I had started writing on the Earth's inner core. A small table squeezed between the bed and the wall had space for little more than my laptop, a notebook, and a pen. As evening descended, my thoughts drifted beyond the blooming cherry trees, across the harbor, and back over the vast expanse of the Pacific to where I had spent my doctoral days in the San Francisco Bay Area. Almost as though the Earth was responding to my thoughts, I felt a local quake stir, its tremors shaking the flat. It felt like some slumbering giant awakening briefly, pulling my thoughts back to the earth beneath my feet.

If not for my fascination with such stirring giants and the powerful waves they send through the planet's interior, I never would have traveled so far around the world—lastly, to the smallest of all continents, Australia. Here in Canberra, I work as a seismologist, studying quakes to better understand the inner workings of the Earth and other planets. In March 2020, my sister texted me from her home in Zagreb, the city of my student days, where a quake measuring 5.5 of Richter magnitude

INTRODUCTION 3

had struck. Like many residents of Zagreb and its surroundings, she was deeply affected by the quake, and the days that followed were filled with unease and anxiety—compounded by the fact that the city was in lockdown due to the coronavirus pandemic. From halfway around the world, I answered her—and then went on to engage in many online conversations about earthquakes with residents of Croatia, who were seeking to make sense of their experiences. When another, even more powerful earthquake struck late that same year near the town of Petrinja, not far from Zagreb, my writing began to evolve, and I decided to write a popular-level book. I felt a duty to clarify the phenomenon of earthquakes and explain the sensations caused by passing seismic waves in a deeper and more expansive way than short social media posts allow.

I originally published the book you are now reading in my native language of Croatia, but the global perspective I have gained through my travels eventually compelled me to translate the book into English in order to share a scientific understanding of earthquakes and the Earth's interior with more people. Inspired by my childhood memory of the quake that my mother and I experienced, as well as the experience of explaining earthquakes to Croatian people on social media after my sister texted me from Zagreb, I decided to use the two earthquakes that occurred in 2020 in Croatia as examples later in this book. While earthquakes are far more infrequent in the tiny European nation where I grew up than in places like Japan or California, the very nature of global seismology transcends the borders of any one country, and these two earthquakes provided an opportunity for me to explain both the personal sensation of an earthquake and some of its fundamental characteristics. I have made slight adaptations for readers who may not be familiar with Croatia and its surroundings.

4 INTRODUCTION

Overall, the book is designed as a standalone read that, I hope, will captivate anyone curious about the science of earth-quakes and the mysteries of the Earth's interior, as well as people who have experienced personal encounters with earth-quakes. The book is also suitable for high school students or university students in the early stages of studying seismology. Organized into ten chapters, the book explores the history of seismology and the nature of earthquakes but also shares more personal reflections and experiences from my life as an observational seismologist. My work has brought me to some fascinating (and challenging) places—and so our quest to reveal the secrets of the Earth takes us from Eurasia and North America to the remote corners of the Australian continent, down into the icy waters of the Southern Ocean, and even beyond, to the desolate landscapes of the Moon and Mars.

In chapter 1, I place Earth within the broader context of the Solar System and the universe, examining it as a planet whose surface activity directly results from its internal dynamics. Here, we step into the realm of planetary physical processes: the formation of planets, the stratification of their interiors, the crystallization of the inner core, the phenomenon of the geodynamo, the generation of the geomagnetic field, mantle convection, plate tectonics, and the earthquakes and volcanoes that arise as a consequence of our planet's inner workings. Earthquakes are not merely disruptive events; they are witnesses to the planet's evolution and internal dynamics, messengers from the depths of time reminding us of the ceaseless activity beneath our feet. They are, in a sense, travelers through time, carrying with them the story of our planet's ongoing journey.

Chapter 2 delves into the rich tapestry of Earth science history, uncovering fascinating details about our evolving understanding of earthquakes. It begins with an ancient tale, the

INTRODUCTION 5

Japanese legend of Namazu, the giant catfish believed to cause seismic disturbances. The narrative then moves to the late 19th century, when John Milne's invention of the first seismograph marked a significant milestone in earthquake study. The chapter climaxes with the San Francisco Earthquake and Fire of 1906, a devastating event that shifted our perception of earthquakes. It was this disaster that unveiled the true nature of earthquakes as originating from fault zones where rocks are poised to break under accumulated tension. Amid the devastation, an unusual footnote to history was written: a cow named Matilda, tragically caught in the quake, fell into a fissure along the San Andreas Fault. Her predicament made headlines, symbolizing the unexpected consequences of the event. Before this, it was widely believed that faults were the result of earthquakes rather than their cause. The San Francisco Earthquake and Fire not only redefined our understanding of earthquake mechanics but also revolutionized our view of Earth as a dynamic, active planet. This seismic event gave impetus to the rapid growth of a new geophysical discipline—seismology, a burgeoning discipline at the time—and laid the groundwork for the hypothesis and eventual theory of plate tectonics, forever altering our comprehension of the Earth's internal processes and its ever evolving nature.

Chapter 3 brings to light the monumental discoveries of the pioneers who reshaped our understanding of the Earth's interior: Andrija Mohorovičić and Inge Lehmann. While Milne laid the groundwork for modern seismology by building a seismometer, Mohorovičić and Lehmann further illuminated the Earth's hidden depths. Andrija Mohorovičić, a seismologist and meteorologist, made groundbreaking strides with his discovery of the Mohorovičić Discontinuity, or "Moho," which revealed the boundary between the Earth's crust and the underlying

6 INTRODUCTION

mantle. This revelation was a pivotal moment, offering new insights into the Earth's structure and laying the foundation for future research. A little later, Inge Lehmann advanced our knowledge even further by identifying the existence of the Earth's inner core, a discovery that transformed our understanding of the planet's internal workings. Her work built upon the discoveries of her predecessors, providing a clearer picture of the Earth's layered structure. These trailblazers did not look to the skies but instead turned their gaze downward, sliding along the verticals into the depths of our planet. Their discoveries have inspired countless Earth scientists, including myself and my colleagues, who stand on the shoulders of these giants. Their monumental contributions continue to influence and guide the field of seismology, shaping our understanding of the Earth's interior and the dynamic forces that drive its processes.

The central narratives of chapters 4 and 5 revolve around the seismic giants that stirred continental Croatia and surrounding countries in 2020—the earthquakes near the city of Zagreb and the neighboring town of Petrinja. Though seemingly unrelated, these two events occurred within the same calendar year and shook the entirety of central Europe. They serve as examples for exploring how seismologists analyze ground motion records—that is, by using seismograms to pinpoint the location and magnitude of earthquakes. The chapters delve into the scenario of these earthquakes, providing a comprehensive look at how seismologists use their tools to decode the quakes.

We journey from the earthquake's epicenter, on the crests and troughs of these waves, through the intricate workings of the Earth's layers, to the sensitive seismographs that measure ground movement. Eyewitness accounts shared on social media offer palpable illustrations of the sensations experienced in different locations and times, capturing the sound and senses of

INTRODUCTION 7

ground motion during and after the quakes. Through these accounts, we explore fundamental concepts such as the differences in earthquake magnitude, the frequency of aftershocks, the triangulation method, and the use of spectrograms and geodetic interferograms. We also discuss the nature of sound and infrasound during earthquakes and whether and how earthquakes may be temporally and spatially connected. These chapters lay the foundation for a deeper exploration of earthquake forecasting and possible prediction discussed in subsequent book sections.

From the warmth of southeast Europe, we journey to a cold, star-studded winter night over the Barents Sea, where the aurora borealis dances in shimmering waves across the upper reaches of the atmosphere. Beneath the frozen expanse of the Kola Peninsula, we find ourselves at the site of humanity's deepest borehole—a monumental feat in our quest to probe the Earth's interior. Yet, despite the impressive depth we have achieved compared with the deepest mines, it becomes clear that we have barely "scratched the surface" in our journey toward the Earth's center.

In chapter 6, we linger a bit longer with the theme of earthquakes but with a new focus. Here, modern techniques of seismogram analysis come to the forefront, revealing how we use these seismic waves to "image" the Earth's internal structure. Although earthquakes are not the primary subject of study here, they serve as the source of waves that traverse the Earth's surface and penetrate its depths. When direct exploration is constrained by the extreme temperatures and pressures of the Earth's crust and mantle, we rely on seismic waves to guide us. This chapter introduces seismic tomography, drawing parallels with medical tomography to explain how it maps the Earth's internal structure. I describe the insights we have gained about

8 INTRODUCTION

the Earth's interior, though the image remains somewhat blurry. However, our picture is becoming increasingly sharper thanks to recent and ongoing advancements, offering us a more defined glimpse into the mysteries beneath our feet.

Chapter 7 ventures into the heart of one of science's most tantalizing questions: can we predict earthquakes, and is there hope for accurate predictions in the future? The chapter opens with an account of the 1976 Tangshan earthquake—a disaster that left an indelible mark on the Chinese city and became one of the most devastating seismic events in recent history. This heart-wrenching story sets the stage for a broader exploration into the world of earthquake prediction. Our journey then takes us deeper into China's seismic history, where I examine other significant earthquakes and early prediction attempts. The tale of the Haicheng earthquake stands out, where a rare success in forecasting ignited excitement and methodical approaches to predicting quakes. Yet, the optimism that once surrounded earthquake prediction was met with harsh reality. As the devastating impacts of Tangshan taught us, predicting earthquakes proved far more complex than anticipated, leading us to reassess our methods.

With a renewed focus on scientific methods, the chapter shifts to Parkfield, California. Here, I reflect on how the pursuit of earthquake prediction has evolved, marking a return to understanding fault processes and seismic behavior. I conclude by examining modern research directions—a metaphorical "crystal ball" of contemporary science. Through this lens, I explore the innovative strides being made and the ongoing quest to unlock earthquake prediction. As we look to the future, the hope of accurately predicting earthquakes remains a compelling and elusive challenge, driving the relentless pursuit of scientific discovery.

INTRODUCTION 9

In chapter 8, we are immersed in the fiery expanse of the Australian Outback, in the rich redness of its ancient rocks, the mystique of Aboriginal heritage, and exotic wildlife. As we traverse Stuart Highway and other remote parts of the continent, we find ourselves in a natural laboratory unlike any other. Amid this rugged landscape, we delve into the intriguing world of nuclear testing and the global efforts to detect and prevent clandestine nuclear experiments. I will take you to Warramunga Seismic and Infrasound Facility, a critical observatory nestled in the heart of Australia's iconic Red Centre, with which I have an inseparable connection. This outpost stands as a sentinel, monitoring seismic activity and contributing to global efforts to ensure compliance with nuclear test bans. Through this chapter, I explore the importance of uniform spatial coverage by seismographs and why even the most remote and uninhabited places are vital for global seismology. As we navigate the harsh beauty of the Outback and its role in our understanding of seismic phenomena, we uncover the essential contributions of these isolated regions to the broader field of Earth science.

In chapter 9, we venture into the heart of a geophysical expedition to one of the world's most unwelcoming realms. The quest to deploy seismographs extends far beyond the red dust of the Outback, taking us to the floor of the Southern Ocean, to a spot positioned precariously between Tasmania and Antarctica. The chapter unfolds with accounts of a two-week quarantine in Hobart, followed by our voyage to the Macquarie Ridge Complex that separates the Pacific from the Australian tectonic plate. The ridge itself is an imposing underwater barrier that stands as the steepest of its kind on Earth's surface. Here, the fierce Antarctic Circumpolar Current, driven from the west and carrying the waves more than 10 meters high, collides with the ridge. This turbulent sea, where sailors have only the mythical

10 INTRODUCTION

sea nymphs to rely on, becomes the stage for our dramatic expedition. My research team faces some of the most extreme ocean currents, waves, and winds on the planet. Seasickness decimates the crew. Amid these harrowing conditions, the operation to place seismographs on the ocean floor becomes a test of endurance and resolve. The search for the MRO21 ocean bottom seismometer, which, after becoming uncontrollably adrift, adds an extra layer of challenge to the mission. The chapter paints a stark picture of the obstacles faced in the pursuit of science, set against the backdrop of one of the Earth's most unforgiving environments.

In chapter 10, we complete our journey, returning full circle to the origins of our story about planets and their formation. Driven by humanity's relentless desire to conquer new worlds, we set our sights on the Moon, guided by the heroic figures of astronauts Armstrong, Aldrin, and Collins from the Apollo mission. Their footsteps on lunar soil mark a pivotal moment in our exploration of space. From the Moon, we turn our gaze to Mars, the red planet that has long captured our imagination. Beneath its crimson dust, we seek evidence of ancient life and ponder the mysteries of its vanished magnetic field. Why did its magnetic field cease to exist? Is Mars's interior still geologically active?

We employ the most advanced techniques and commit our resources to uncovering these secrets. The InSight mission, equipped with a modern seismograph, embarks on a journey to Mars that far surpasses the capabilities of the Viking missions. Armed with the latest advancements in global seismology and our refined understanding of Earth's interior, my research group makes two significant contributions along with those of the Insight team and other researchers: First, the inferred Martian events that repeat in the same locations suggest that Mars's interior is still mobile. Second, by employing the waves that

INTRODUCTION 11

reverberate hours after they are generated by marsquakes and, with the help of mathematical tools, we confirm the existence of Mars's core. I should add here that I stopped writing in early 2022, and only a few edits were made for the material published after that date.

As we look to the future, we envision a time when the methods and knowledge we have perfected on our planet will be applied in missions to the far reaches of our Solar System. Our blue planet, the third marble from the Sun, will continue to be the foundation for our exploration—our home lab, as we carry the legacy of scientific discovery to new and distant worlds. I hope that *When Worlds Quake* will give you a glimpse of what that discovery might look like and, perhaps, inspire you to be a part of it.

INDEX

Aboriginal, 9, 158n2, 178, 195 Americans, 228; and Civil War, 175; Aconcagua, Argentina, 211 nuclear tests of, 183; observatories Adelaide, Australia, 159, 171 and universities of, 33; scientists of, Adria, tectonic microplate, 110 42n, 61, 224n, 248n1; and Adriatic, the cost of, 34, 37, 71, 97; Revolution, 176 Sea, 37, 79, 89, 111; microplate of, Amiel, Jon, 119n 88. See also Adria Anatolia, 38. See also Anatolian Afghanistan, 159n, 167 Fault; Turkey Africa, 21, 127, 129, 192; caves in, 151; Anatolian Fault, East, 91; North, 38; North Africa, 191; subduction system of, 91 under, 21; tectonic plate of 110 Anderson, Don, 61n1, 227 aftershocks, 23, 43, 71-72, 74-75, anisotropy, 133-134; of inner 79-80, 83, 85, 107, 149, 167; core, 228n distribution of, 167; film Aftershock, Antarctic Circumpolar Current, 9, 138-39, 139n2, 151; frequency of, 200, 203, 206, 214-15 7, 114; locations and times of, 76. Antarctica, 9, 163n1, 167n, 199, 204, See also main shock 232; tectonic plate of, 204 Albania, 70 Apennine peninsula, 38, 42–43 Aldrin, Buzz, 10, 161, 224, 226 Apollo missions, 10, 225-26 Aleutian Islands, 190 Arafura Sea, 172 Arcidiaco, Armando, 173 Alice Springs, Australia, 158, 185 - 87Argentina, 191 Alvarez, Louis, 183n Aristotle, 87 Alvarez, Walter, 183n Armstrong, Neil, 10, 161, 224, 226 America, vii; tectonic plate of, 21, 31, Asia, vii, 140-41, 191; language 36, 153; coast of, 19, 42, 74, 190; of, 239 continent of, 2, 19, 29, 31 asteroids, 16, 20; impact of, 183, 183n American Geophysical Union, 61n3, astronomers, 33, 225n; interest of, 161; knowledge of, 13 149n, 214n, 224n

278 INDEX

astronomy, 49, 65, 66n, 135, 160; data of, 235, 248n2; instruments of, 161n; observations of, 161 astrophysicists, 224n astrophysics, 28 asteroseismology, 252 Athens, Greece, 48-49 Atlantic Ocean, 29, 162 attenuation, 84, 95, 122-23, 128; coefficient of, 122 aurora australis, 211 aurora borealis, 7, 18, 58, 118, 162 Australia, vii, 2, 34, 82, 125, 164–177, 165n, 190, 192-95, 206, 209, 241, 251n2; comedy of, 195; continent of, 4, 159n, 165-66, 172, 178, 181, 189, 211; embassy of, 169; government of, 173, 179; pool of ocean-bottom seismometers, 199; research ship of, 193; savanna of, 181; scientific fleet of, 189 Australian Antarctic Division, 207n4 Australian National University, vii, 8, 61n2, 109, 159, 164n, 179, 179n, 185n Australian Research Council, 207 Australian tectonic plate, 9, 204, 206

baijiu, 145
Bakar, Croatia, 40–41
Balkan peninsula, 38, 42–43
Banerdt, Bruce, 234–35
Banja Luka, SR Bosnia and
Herzegovina (present-day Bosnia and Herzegovina), earthquake of 1969, 88–89
Barents Sea, 7, 118
basalt, 225n, 237
bathymetry, 201; map of, 214

Bayes' theorem, 131n2 beach balls (diagrams), 99-100, 99n, 106 Benford, Frank, 248n1; Benford's law, 248-49, 248n2 Benioff seismograph, 162 Berkeley, California, 2, 35, 81, 154, 228-29, 229n1; doctoral committee at, 183n; epicenter of, 154; geology professor, 33; graduate student at, 29; in heart, 229; offer from, 182; Planets course at, 109; professor, 33, n109; seismology at, 159; stadium at, 35; undergraduate students at, 228; university campus in, 228; See also Berkeley Seismological Lab; Hayward Fault; University of California at Berkeley Berkeley Seismological Lab, 160, 162 Birch, Francis, 61 Boering, Kristie A., 228 Bohai Sea, China, earthquake of 1969, 142 Bosnia and Herzegovina, 89; town of, 97 Brazil, 209; Amazon of, 172 Buller, New Zealand, earthquake of 1929 bura (wind), 37

California, 3, 8, 36, 65, 67, 91, 140, 152, 154, 163, 195, 210, 232, 234; coast of, 28, 31; inhabitants of, 72, 92; Northern California, 30; university system of, 29n3, 89 Caltech, 66–67, 207n1, 227 Cambrian, 22; explosion, 134n3 Canada, 20, 157; Northwestern Territory of, 182; Quebec, 172

INDEX 279

Canberra (Australia), 2, 82, 159, 184n, Comprehensive Test Ban Treaty 187, 216, 220 Organization (CTBTO), 179, 184n Cape Horn, 29 conduction, 17n1 Cape Mendocino, 34 Cook, James, 176 carbon recycling (carbon cycle), core-mantle boundary, 18, 55, 59-60, 20 - 21124-25, 127, 129-30, 141 Carpathians, 73n1 Cormier, Vernon, 90, 135n, 163n2 Carpenter, John, 29 Costa de Lima, Thuany, 209, 222 Cerberus Fossae, Mars, 241, 246–47, cratons, 141-42, 169. See also North China craton; Pilbara craton Cerro Azul volcano, Galápagos, 104 Crljenak Kaštelanski, 34n Charles University, Prague, 40, Croatia, 1, 63, 80; border with, 97; capital of, 25; continental, 6; 53, 53n2 Chicxulub crater, 183n earthquakes in, 3, 110; faults of, 115; language of, 3, 52, 56; northwestern Chikyū, 62 part of, 57; people of, 3, 92; Chile, 140, 159, 191, 232; coast of, 116 China, 136n, 141–145, 148–149, 151, Republic of, 80n; residents of, 3; towns in, 38; weather forecasting 181, 232; cities of, 8; Cultural Revolution in, 141; film of, 138; in, 42; wine variety in, 34n film director from, 139n2; Cronus, 87 forecasting methods of, 147; crust (of the Earth), 5, 7, 15, 18, 21, language of, 151; officials from, 149; 56-57, 62-64, 62n3, 62n4, 73, 82, people of, 146, 183; seismologists 90, 111, 117-19, 127, 132, 156, 230, from, 143; seismoscope from, 162; 237; continental, 119, 156; of terms of, 144. See also Bohai Sea, Enceladus, 253; of Mars, 238, 241, China, earthquake of 1969; 245-47; oceanic, 21, 48, 57, 133, Haicheng, China, earthquake of 204 1975; Heijan, China, earthquake of crust-mantle boundary, 5, 56–57, 59, 88. See Mohorovičić Discontinuity 1967; Tangshan, China, earthquake of 1976; Shaanxi (Huanxian), Cyanobacteria, 167 China, earthquake of 1556; Xingtai, Czech Republic, 41; language of, 52 China, earthquake of 1966 Chinese Academy of Sciences, 199, Daly River, Australia, 175 247n2 Darwin, Australia, 159, 171–73 Deimos, 237, 249 Coffin, Mike, 193, 207n1, 210, 222, 213 - 14Denali, Alaska, 213 Cold War, 119, 179, 181, 184 Denmark, 82n Collins, Michael, 10, 225 diamonds, 20 comets, 16, 20; comet 67P, 16 Dobričić, 34n

280 INDEX

Dreger, Doug, 154n, 229, 229n1 Durège, Heinrich, 53 Dziewoński, Adam, 61n1, 62n1, 134n1

Eakin, Caroline, 207n1, 211, 222 Earth, 2, 4-5; above, 83, 102, 105; atmosphere of, 236, 238, 240; bombardment of, 16; center of, 16, 37, 54, 59–60, 82, 108, 119, 123, 130, 132, 163, 163n2, 181, 209; core of, 42, 59, 62, 118, 119n; crust of, 5, 7, 19, 56–57, 62–64, 62n4, 82, 90, 111, 117–18, 121, 127,156; day of, 243n; deep interior of, 26, 128-29; density of, 54, 54n; dynamics of, 22; dynamo of, 17; earthquakes on, 239, 244; geological history, 73; gravitational field of, 226; history of, 21, 132; interior of, 3-5, 7-8, 10, 17, 22, 38–39, 45–47, 52, 54, 60, 62, 62n4, 71, 75n, 81, 92, 94, 101, 105, 119-20, 123, 126-27, 135, 139, 140-41, 155-57, 161, 169, 184, 192, 203, 205, 212, 231–33; layers of, 6, 39, 128, 168; life on, 14, 19-20, 22; lithosphere of, 14, 34, 90, 107, 111, 115, 164, 169; mass of, 229, 244; model of, 48, 54, 123, 128-29, 131, 248n2; movements of, 2; oldest rocks on, 167; poles of, 121; rotation of, 17, 133, 190, 200; structure of, 6, 48, 50, 68, 72–73, 80, 83-84,131, 150, 232; surface of, 7, 9, 18, 24, 44, 46, 48n2, 50–51, 54-55, 67n3, 68, 71, 74, 81-84, 91-92, 99, 101-102, 105, 108-109, 114, 120-21, 123-24, 130, 132-34, 155-56, 163, 168, 170, 172, 200, 227, 244; temperature in, 15, 123, 127, 132, 135, 170, 172; upper

mantle of, 163n2; volcanoes on, 249; volume of, 81, 95, 124, 126; Earth science, 4, 9, 206 earthquakes, viii, ix; coda of, 61; that are connected or linked (temporally or spatially), 90, 107, 110, 112, 114; depth of, 47, 248n2; energy of, 44, 68, 70, 76, 81, 182; epicenter of, 6, 18, 55, 73, 238; and explosions, 29n4, 163, 179-184; and faults, 36, 43, 71–72, 112; and forecasting, 7-8, 71, 114, 120, 143-44, 150-53, 155; focus (hypocenter) of, 36, 40, 47, 51-52, 76, 78-79, 94-95, 99n, 142, 150; frequency of, 75, 117; intensity of, 67n3, 98; location of, 48-53 112, 116, 121, 191, 238, 240; magnitude of, 6, 14n1, 30, 67-70, 75, 85, 91, 117, 121, 139, 143, 146, 152, 166, 244; mechanism of, 45, 105, 120, 153, 157, 208, 232; nature of, 4–5; origin time of, 77; physics of, 62, 80, 150; prediction of, 7-8, 24, 139, 143, 147, 149-152, 149n, 152, 154-56; sensation (perception) of, 3, 5, 73, 93, 98; and sound, 7, 84, 198n; source of, 50-51, 121, 123; and tsunamis, 164, 183, 206, 208, 214; understanding of, 1-5, 30, 103; and volcanoes (volcanic eruptions), 4, 39, 83, 102, 104, 157, 183, 231; waves generated (emitted) by, 25, 45, 53, 99, 115, 227. See also quakes; specific earthquakes by name and region; volcanic earthquakes Earth's Inner Core: Revealed by Observational Seismology (Tkalčić), 135n Earth's Core (Cormier et al.), 135n Edo, Japan, earthquake of 1855, 23-24

INDEX 281

Einstein, Albert, 53n2, 195 El Capitan, Yosemite, California, 109 electromagnetic waves, 53n3, 102-105 Elysium Mons, Mars, 246 Elysium Planitia, Mars, 242 Enceladus, 253, 253n2 Erigela, Rajesh, 222 Eros (asteroid), 16 Eurasia, 4; tectonic plate of, 21, 88, 90, 110-11, 141-42, 151 Europe, 30, 42, 55, 59, 61, 95; birthplace in, 2; central, 6, 52; central part of, 124; cities of, 46, 57; connection with, 171; countries of, 90, 194; explorers and adventurers of, 175; nation of, 3; the oldest continuously inhabited settlements of, 1, 58; part(s) of, 88, 124n, 176; people of, 195; physicists of, 42; place (location) in, 48, 58; southeast, 7, 101; southern, 86; southwestern part of, 21; seismographs in, 42; stations of, 60; trees of, 34, 178; western, 191 European Space Agency (ESA), 16, 16n3, 236

Facebook, viii, 8, 93, 221
Faculty of Natural Sciences and Mathematics, Zagreb, 57n2
Fairbanks, Alaska, 58, 162
Fann, Yun, 222
faults, 5, 19, 32–33, 38, 43, 71–73, 89, 93, 99, 106–107, 110–12, 141, 148–49, 155, 179, 226, 241; and aftershocks, 167; behavior of, 156; blind (hidden), 115, 137; in Croatia, 106, 115; direction of, 74; displacement on, 68, 114; and earthquakes, 36; formation of, 43;

geometry of, 71; healing of, 71, 107; known (existing), 33, 36, 72, 116; line of, 24, 70, 72, 96, 105; models of, 110; in New Zealand, 115; normal, 74, 91, 151; orientation of, 72; parallel, 35, 246; plane of, 72, 75-76, 241; reverse, 74, 94, 100-101; state of, 150; and stress, 154-56; structure of, 154; surface of, 19, 68, 72-73, 113; system of, 80, 89-91, 115, 241, 246; trace of, 71–72, 167; understanding of, 8; wings of, 99-100, 107, 153; zone of, 5, 33, 72. See also specific faults by name and region Feng, Xiaogang, 138 Ferrel cell, 200 Fiji, 164; earthquakes in, 42, 125, 191, 242. See also Tonga-Fiji-Kermadec subduction zone Flanagan, Megan, 163n2 Fleming, Alexander, 58 Fort Ross, California, 34 forward method, 129. See also inversion method Foulger, Gillian, 154n France, 48, 181; earthquakes in, 85; grape varieties of, 34; language of, 52; people of, 183

Gaia, 15, 189, 253n2
Global Navigation Satellite System
(GNSS), 102, 102n2
geodesy, 28, 49, 211n1; analyses of, 91;
anomalies of, 143; data of, 92, 235;
interferograms of, 7; instruments
of, 116; leveling of, 144; methods
of, 101, 114
geodynamo, 4, 17, 119, 134. See also
magnetic field

282 INDEX

GeoForschungsZentrum (GFZ), Gulf of Carpentaria, 172 27n1, 28 Gung, Yuancheng, 160n Gutenberg, Beno, 42n, 53n1, 60, geologists, 14, 33, 39n, 73 geology, 39, 85, 204; professor of, 67-68. See also Gutenberg-Richter 25, 33 law Geophysical Institute, Zagreb, 41 Gutenberg-Richter law, 75 geophysicists, 39, 46, 48n2, 57, 227, 231 Haicheng, China, 144-45, 147. geophysics, vii, ix, 36, 39, 46, 58, 121, See also Haicheng, China, 123, 135, 160, 164, 223, 228; data earthquake of 1975 set of, 248n2; discipline of, 5; Haicheng, China, earthquake of 1975, discovery in, viii, 40; doctoral 8, 143-149; forecast of, 150 research in, 59n; expedition of, 9, Hadean, 14-15, 18, 20 189; giants of, 62; jargon of, 107; Hades, 14 Hadley cell, 200 problem of, 59; schools of, 52; parameters of, 147; professors of, Hass, Robert, 229 53n1, students of, 35. See also Hawaii, 133, 237; archipelago of, 21; American Geophysical Union; big island of, 213 mathematical geophysics Hawke Bay, New Zealand, earthquake of 1931 geysers, 13 Gilbert, Grove K., 35 Hayabusa mission, 16 Gingko biloba, 228 Hayward Fault, 2, 35 Gobi Desert, 151 Hejian, China, earthquake of 1967, 142 Gondwana, 169 helioseismology, 252 Göttingen, Germany, 52 Heng, Zhang, 141-42 Göttingen University, 53n1 Hera, 12 Govorčin, Marin, 106 Heracles, 12 GPS, 156, 156n2 Herak, Marijan, 57n2, 106, 162 Himalayas, 66, 107, 109, 141, 169, 213; granite, 108-109, 168 area of, 190; massif of, 57 Great Britain, 181, 195; colony of, 176, 195; people of, 183, 195 Hitchcock, Alfred, 29 Great Sandy Desert, 166 hodochrons, 52-53, 60 Great Victoria Desert, 166 Holden, Edward S., 161n Greece, 38, 48, 70, 88, 146; and Homo erectus, 151-52, 252 Homo sapiens, 252 language, 15, 52, 87n, 122; mythology of, 14, 253n1, 253n2; Hooke, Robert, 40n2. See also Hooke's people of, 12, 15n Law Hooke's Law, 40n2 greenhouse, 21; effect, 21n; gases of, 248n2 Hornstein, Karl, 53

INDEX 283

hot spots;21, 133; and volcanism, 130–31 Hunga Tonga-Hunga Ha'apai (volcano), 83

Iceland, 130, 133; earthquakes in, 154n impacts (from space), 15; of asteroids, 183, 183n; of large bodies, 225n; of meteorites, 179, 238, 240; of meteoroids, 233, 239, 246 IN2020.V06 (voyage), 198-99, 202-203, 222-23 Incorporated Research Institutions for Seismology (IRIS), 162n1 India, 167, 181 Indian Ocean, 183, 206 Indian tectonic plate, 141 Indonesia, 141, 164; earthquakes in, 125, 232, 242; and seismogenic zone, 164 infrasound, 7, 9, 83, 85, 179n1, 180-81 inner core (of the Earth), 2, 4, 6, 17-18, 22, 59n, 60-62, 82, 82n, 119n, 120, 133-35, 162-64, 170, 190-92, 206, 228-29, 253 inner core boundary, 17, 59, 134-35, innermost inner core (of the Earth), 18, 62n1, 134, 134n3 InSAR, 101-102, 101n, 104, 106, 156 InSight mission (probe), 10, 211, 211n1, 228, 230, 230n, 233-35, 237-43, 251 Interferograms, 7, 103–107 Introduction to Seismology (Shearer), inversion method, 131n2; Bayesian inversion, 131. See also forward method Iran, 140; earthquakes in, 232

Ishii, Miaki, 62n1, 134n1

Italy, 89, 149, 232; earthquakes in, 85; grape varieties of, 34; language of, 52; seismologists of, 89
Itokawa (asteroid), 16

Jackson, Andy, 248n2 James Cook University, 192 Japan, 3, 21, 23–26, 30, 42, 53, 58, 72n2, 75, 140, 147, 190, 232; colleagues in, 39n; islands (archipelago) of, 25n2, 26, 190; language of, 39; legend of, 5; people of, 25, 92; seismographic networks of, 25n2, society of, 24; word of, 62n3 Japan Aerospace Exploration Agency (JAXA), 16n2 Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 25, 25n2 Japan-Kurile oceanic trench, 141 Japan Society for Promotion of Science (JSPS), 26 Jeanloz, Raymond, 109n1 Jet Propulsion Laboratory (JPL), 234, Jinzhou Fault, 147. See also Haicheng, China, earthquake of 1975 John Hopkins University, 35 Journey to the Center of the Earth (Verne), 37 jugo (wind), 97 Julian Alps, 160 Julian, Bruce, 154n Jupiter, 250; atmosphere of, 253; satellites of, 238

Karlu Karlu (Devil's Marbles), Australia, 186, 186n Kata Tjuta (The Olgas), Australia, 173

284 INDEX

Kennett, Brian L. N., ix, 61n1, 159, 165n, 186 Kermadec, earthquakes in,125; islands of, 242; and seismogenic zone, 165. *See also* Tonga-Fiji-Kermadec subduction zone Klementinum, Prague, 40n1, 41 Kobe, Japan, earthquake of 1995, 25 Kola Peninsula, 7, 118–19 Krakatoa (volcano), 183

Laboratory of Earth and Planetary Physics, China, 247n2 Lake Vrana, Croatia, 76, 79 L'Aquila, Italy, earthquake of 2009, 89, 89n, 149, 149n Lastovo, Croatia, 94 Latimore, Andrew, 216, 222 Lawrence Livermore National Laboratory (LLNL), 29, 29n4, 154 Lawson, Andrew, 33–34 Lehmann, Inge, 5-6, 59-62, 60n, 66, 82n; discovery of, 59, 61n3, 120; observations of, 60 Liaoning province, China, 145-49 Lick Astronomical Observatory, 161n LIDAR, 156, 156n1 Lippisch, Alexander M., 53 Litchfield, Frederick H., 175 Litchfield National Park, Australia, 175-76 lithosphere (of the Earth), 14, 19, 34, 90, 107, 110-11, 115-16, 164, 169; of continents, 167; of Mars, 230; of oceans, 129; and plates, 127, 144 Ljubljana, Austria-Hungary (presentday Slovenia), earthquake of 1895 loess, 151 London, Jack, 32

Long Valley Caldera, California, 229, 229n1
Love, Augustus, 95. See also Love waves
Love waves, 95–96, 99–101. See also surface waves
Luanxian, China, 137
Lunar Passive Seismic Experiment, 225
Lycodon, 145

Ma, Xiaolong, 209, 222

Mach, Ernst, 40, 53 Macdonnell Ranges, Australia Macquarie Island, 188-89, 202, 204-205, 207-208, 215, 221 Macquarie Ridge (Macquarie Ridge Complex), 9, 203-204, 206, 211, 213 Madrid, Spain, 48–49 magnetic (geomagnetic) field, 4, 10, 14, 17, 17n3, 19-22, 27, 118, 134, 139, 144, 153, 174, 248n2; of Mars, 135, 250. See also geodynamo magnitude, of earthquakes, 13, 14n1, 23, 25, 30, 38, 48, 66-71, 67n1, 73n2, 75, 85, 87, 89, 91, 114, 116-17, 142-43, 147, 149, 152, 154, 166, 183, 206, 244; absolute, 65-68; and astronomy, 65-68; difference in, 7, 68-69, 92; local, 146; and location, 6, 48, 139, 152; maximum, 75; order of, 66-67, 96, 183-84, 233, 240, 248; Richter, 2, 67. See also moment magnitude; earthquakes main shock, 31, 75–77, 80, 83–85, 89,

106, 112, 149, 153. See also

aftershocks

INDEX 285

mantle (of the Earth), 6-7, 15-21, 48, Mediterranean, 21, 38, 42, 52, 88, 90, 55-57, 59, 62n3, 62n4, 64, 82, 88, 110–11, 140, 190, 192; earthquakes 90-91, 125-33, 163, 165, 192, 226, of, 44-45, 51, 82 237, 245-48; composition of, 226, Mediterranean Seismological Centre, 131-32; of Mars, 249-50; rocks of, 38 91, 204; water in, 245 Mediterranean-Trans-Asian seismic mantle convection, 4, 17, 19, 127, 139, belt. 88, 140 159, 248, 250 Medvednica (mountain), 70, 73, 82, 111; fault system of, 91, 115 Marine National Facility (MNF), 196n, 198, 207, 222 Mégnin, Charles, 160n Marla, Australia, 166 Melbourne, Australia, 187, 194 Mars, 4, 10; atmosphere of, 238; core Meng Xiang, 62 of, 11, 235, 250; crust of, 237-38; Menlo Park, California, 154 day on, 243n; dynamics of, 234; Mercalli-Cancani-Sieberg (MCS) scale, 67 ground motions on, 231; human colonies on, 250; interior of, 10, meteorites, 179, 236 233, 235, 242, 247, 250; life on, Meteorological Observatory 236; magnetic field on, 135, 250; (Service), Zagreb, 56, 162 meteorology, 28, 40-42, 71, 200n1 mission on, 230; quakes on, 78, 233, 237; rocks of, 240; rotation meteors, 231 axis of, 235, 235n; seismographs Mexico, 183n; state of Puebla, 162 on, 233; structure of, 246; surface Milky Way, 12-13, 66 of, 165, 236-40, 245-46; year on, Miller, George, 172n 243n Milne, John, 5, 25, 27, 42 marsquakes (Martian quakes), 11, Mina, Nevada, 163 242-45, 247, 249, 251; catalog of, Miranda, 109 247; high-frequency, 245; Mohorovičić, Andrija, 5, 37, 39, 40n, low-frequency, 246-47; repetitive 41-48, 41n, 50-59, 57n2, 62-63, (recurring), 153n, 249; volcanic, 62n2, 88, 162; discovery of, 57, 59, 120; memorial rooms of, 27n; 250. See also quakes mathematical geophysics, vii, 131, 157, monument to, 63; observations of, 164n 60; procedure of, 59n mathematicians, 53,126n, 135 Mohorovičić Discontinuity (Moho), 5, 39n, 57n2, 64, 89. See coremathematics, 40, 57, 160; equation of, 55; form of, 54; jargon of, 126n; mantle boundary model of, 131; solutions of, 72; Mojave Desert, 178 symbols of, 52; terms of, 128; tools Mokrović, Josip, 57n2 of, 11 moment magnitude, 68, 71, 100, 106, 116, 121, 148, 151, 168, 190, 204, Matilda the cow, 5, 27, 30–31 McDonough, William, 130n1 206, 239, 247. See also magnitude

286 INDEX

Mongolia, 151
Moon, 4, 10, 15, 15n; creation of, 15; far side of, 251n2; goddess of, 15n; Moho on, 57; surface of, 16, 224, 225n; tidal forces on, 226
moonquakes (lunar quakes), 225–26, 238, 244–45. See also quakes
Morići, Croatia, 76–84
Mousavi, Sima, 127n
MRO21, 10, 215–20
Mt. Augustus, Australia, 168–70
Mt. Everest, China-Nepal border, 213
Mt. Hamilton, California, 161n
Muir, Jack, 127n
Mustać Brčić, Marija, 77

Namazu, 5, 23-24

Naples, Italy, 49 National Aeronautics and Space Administration (NASA), 16, 224n, 230n, 234, 236, 236n, 253n2 National Computational Infrastructure (NCI), 125, 192 National Research Institute for Earth Science and Disaster Resilience (NEID), 26 nautical miles, 189, 204 Nautical School, Bakar, 40 Neanderthal, 70n Nereids, 189 New South Wales, 175-77 New Zealand, 42, 60, 83, 92n, 115, 140, 165; earthquakes of, 59, 66, 82, 114-15; faults in, 115; people of, 92; wines of, 195, 195n2. See also Buller, New Zealand, earthquake of 1929; Hawke Bay, New Zealand, earthquake of 1931 Nixon, Richard, 225–26

Noble, Jack, 179
North America, vii, 4, 177, 192;
continent of, 29; tectonic plate of, 31, 153
North China craton, 141
North Korea, 183
Northern Territory, 166, 168, 172, 174–76, 180
Norwegian State Fund, 80n
nuclear tests, 9, 119n, 163, 163n2, 180, 182–84; bans of, 9; discrimination of, 30; hidden, 9, 181, 231

Oldham, Richard D., 42n
Olympus Mons, Mars, 237
On the Origin of Species (Darwin), 37
Omori, Fusakichi, 75n2. See also
Omori's law
Omori's law, 75–76
Orange County, Australia, 176, 178
Oregon State University, 91
Orlić, Mirko, 41n, 57n
Osijek, Croatia, 40
Outback (Australian), 9, 20, 157–58, 166, 193. See also Australia
outer core (of the Earth), 17–19, 59, 82, 134, 250

P-waves (compressional waves).

See seismic waves
Pacific Ocean, 29, 34, 192, 204, 206
Pakula, Alan J., 139n1
Pale Blue Dot (Sagan), 117
paleoseismology, 157
Pannonian Plan, 1; direction of, 37;
edge of, 58
Pannonian Sea, 73, 73n
Papua New Guinea, 164
Paratethys Sea, 73n1

INDEX 287

Paris, France, 48–49 Parkfield, California, 8, 142, 153-54; and earthquakes, 142; Experiment, 14, 154-55 Pasyanos, Michael, 160n de Pater, Imke, 228 Percival, Tony, 196 Perseverance mission, 236-37, 251 Perth, Australia, 168 Petermann Ranges, 166, 168-69; earthquake of 2016, 168 Petrinja, Croatia, 3, 6, 87, 89–90, 105-106; residents of, 89 Petrinja, Croatia, earthquake of 2020, 89-92, 96, 98-101, 104, 106-107, 114; depth of, 96; epicenter of, 98; focal mechanism of, 100; interferogram of, 104, 106 Phạm, Thanh-Son, 61n2, 209, 222 Philippines, 21; tectonic plate of, 21; and seismogenic zone, 164 Phobos, 237, 249 physicists, 42, 53, 58, 61, 121-22, 135, 183n, 248n1 physics, 39-40, 66, 107, 155, 160, 182, 229, 244; of Earth, 59n, 107; of earthquakes, 62, 80, 150; students of, 109; of waves, 53, 120 Pickle, Robert, 216, 222 Pilbara craton, 167–169 planetesimals, 14-18, 132 PKP waves, 18, 60, 125. See also seismic waves plate tectonics, 4, 14, 19-22, 75n1, 139-40, 167, 208, 237; emergence (birth) of, 22, 134; lack of, 230, 237; theory of, 5, 36, 48n2, 133

Plavac Mali, 34n Podgorica, SR Montenegro (presentday Montenegro), earthquake of 1979,88 Pokuplje area, 88–90, 105, 111; system of faults, 89 Pokupsko (The Kupa Valley), Austria-Hungary (present-day Croatia), earthquake of 1909, 45-59, 106 Pokupsko Fault, 105; system of, 115. See also Pokupsko, Croatia, earthquake of 1909 Point Reyes, California, 27, 29-31, 29n2, 30n1, 34-35 Ponce, Puerto Rico, earthquake of 2020, 25 Poseidon, 87 Potsdam, Germany, 27n, 28, 52-53 Prague, Czech Republic, 40-41, 53 pressure, 107; of atmosphere, 54, 85, 107-108, 127, 181, 239n; in Earth's interior, 75, 108, 110-111, 113, 144, 170, 179, 238; in Martian interior, 238-39, 249; in Venusian atmosphere, 227, 227n Primorsky Krai, Russia, 147 Puntijarka, Croatia, 76-79, 84

quakes, 1–3, 5, 97, 116; aftermath of, 73; in the Cerberus Fossae, 249; consequences of, 148; depth of, 51; on Earth, 237; epicenter of, 74–75; focus of, 72; focal point of, 73; local time of,124; main quakes, 80; mechanism of, 245; on Mars, 227, 230, 237, 239; predicting, 8; tectonic, 244, 247; type of, 245. *See also* earthquakes

288 INDEX

radar, 102, 209 radiation (pattern) diagrams, 98-100 Rawlinson, Nick, 165, 196, 207n1, 212 Rayleigh, Lord (John William Strutt), 95. See also Rayleigh waves Rayleigh waves, 95-96, 99-101. See also surface waves Reading, Anya, 167n Reid, Harry F., 35 Research School of Earth Sciences (RSES), 164n, 179 Reuber-Paschwicz, Ernst von, 53n1 Reynolds River, Australia, 175n Rhea, 87 Rhie, Junkee, 160n Richards, Mark, 31 Richter, Charles, 65-68; See also Richter magnitude; Gutenberg-Richter law Richter magnitude, 2, 67 Ridgecrest, California: earthquake of 2019, 89; earthquake of 2020, 89 Rijeka, Croatia, 39, 94 Ring of Fire, 141, 192 Romanowicz, Barbara, 228, 228n Rome: emperor of, 58; foundations of, 58 RV Investigator, 188-89, 193, 196, 198-99, 207, 218-19, 223 Ryugu (asteroid), 16 S-waves (shear waves). See seismic waves

S-waves (shear waves). See seismic waves Sagan, Carl, 224, 224n, 237 Sahara, 178 Sambridge, Malcolm, 131n2, 248n2 San Andreas Fault, 5, 19, 31, 33–36, 43, 73–74, 91, 152–53

San Francisco (San Francisco Bay Area), California, 2, 30, 32–34, 152, 161, 228; agony of, 32; and earthquakes, 33; population of, 33; See also San Francisco, California, earthquake of 1906 San Francisco, California, earthquake of 1906 (the Great San Francisco Earthquake and Fire), 5, n28, 30, 32, 42-44, 112, 116, 150, 162 San Juan Bautista, California, 34 Santiago de Chile, Chile, 159 Saturn, 253; satellites of, 253n2 Sea of Tranquility, The Moon, 161 SEIS, 230, 238-42, 244-45. See also InSight seismic waves, 2–3, 6–7, 18, 24–25, 30, 36, 40, 40n2, 44, 48-50, 53-56, 89, 110–11, 115, 119–24, 127n, 133-135, 157, 179, 190, 204, 209, 212; crests and troughs of, 6; and inner core, 59-62, 161-63, 190-92; and meteorites, 238; on Mars, 239-41, 244-49; and nuclear explosions, 163, 181-82; physics of, 53; propagation of, 44-62, 92-101, 123, 128, 150, 153, 155, 161-163, 208, 227, 231; scattering of, 245; speed (velocity) of, 54, 60, 124; and sound, 82-85; in stars, 252, 252n; types of waves, 18, 44, 48-62, 58, 92-101, volumetric coverage of, 124-25, 231. See also surface waves seismology, vii, 2, 5-6, 27, 30n1, 56-57, 61n3, 71, 133; and astronomy, 65; blue-planet (environmental), 212, 212n; and Earth structure, 39, 133, 235;

INDEX 289

engineering seismology, 62; Seoul, Korea, 147 fascination with, 2; forensic, 184; sequoia, 33 global seismology, 3, 9-10, 122, Shaanxi (Huanxian), China, 135; history of, 4–6, 27, 39–44, 53, earthquake of 1556, 141, 148, 151 59-60, 67, 87n1, 150, 152, 162; Shackleton, Ernest, 163n1 holy grail of observational, 61; Shearer, Peter, 61n3 introduction to, 3n61; and Shinkai, 213 meteorology, 42, 71; and nuclear Siberia, Russia, 20, 25, 157 nonproliferation, 179-81, 184; Šibenik, Croatia, 76-77 observational seismology, viii, 61, Sierra Nevada, 33n 135n, 163n2; passive seismology, Silicon Valley, 154 121; PhD in, 159; pioneer of, 2n75; Simons, Frederik, 232 Simpson Desert, 166 problems in, 56; as a profession, 71; as a scientific discipline, 5, 4n29, Skoko, Dragutin, 57n2 40, 43; and studying, 4, 39, 2n57. Skopje, SR Macedonia (present day See also asteroseismology; North Macedonia), earthquake of helioseismology; paleoseismology 1963, 88 Seismological Service, Croatia, 77, 80 Slavonia, plain of, 71 Seismological Service, Liaoning, sol, 243, 243n, 245-46 146-47 Solar System, 4, 11, 13-15, 20, 57, 109, Seismological Society of Japan, 25, 117, 229, 233–34, 236–37, 248n2, 251 - 53seismographs, 5, 10, 14n1, 18, 25-27, sonar, 189, 201, 209, 216 40, 42, 45, 67-68, 67n2, 81, 120, South American plate, 21 160-61, 161n, 163, 163n2, 191, 252; South Australia, 166, 168, 172, 175-76 of Benioff type, 162; networks of, South Sandwich Islands, 163 160, 190; on Mars, 211, 227, 233, Southern Ocean, 4, 9, 188-89, 194, 197, 204, 212, 231n3, 232-33 238, 242–43, 245; on the Moon, 161, 225-26; on ocean bottom, 191, Soviets, 119, 183, 227; bomb of, 182; Soviet Union (USSR), 58, 181 203, 214–15, 217–20, 232; of Wiechert, 28. See also MRO21; Spain; grape varieties of, 34; language SEIS, seismometers of, 29; maritime explorers of, 29 seismometers, 5, 14n2, 44, 47-48, spectrograms, 7, 76-84, 103, 105, 50-51, 53, 62, 78, 81-82, 121, 153, 243 - 45Spinifex, 168, 173 184, 198, 210, 215; on ocean bottom, 10, 199, 202-203; on the Split, Croatia, 94, 98, 100 Moon, 251. See also MRO21; SEIS; Stanford, California, 229 seismographs Stipčević, Josip, 57n1 Stony Desert, 177 Selene, 15

290 INDEX

Stock, Joann, 207n1, 210 Ston, Croatia, earthquake of 1996, 88, 100 strainmeters, 153 Strzelecki Desert, 176 Stuart Highway, 9, 158, 170-72, 174, 178, 186-87 Sturt Desert, 176 Timor Sea, 172 subduction, 21, 133, 141, 167, 205-206; forces of, 141; initiation of, 208; plates of, 127; zones of, 121, 165, 190, 232. See also specific subduction zones by name Sumatra, Indonesia, (Boxing Day) earthquake of 2004, 183 Sun, 11-13, 66, 158, 165, 175, 235n, 243n; day of (Sol), 243n; interior of, 252; luminosity of, 66 Sun, Weijia, 247n2, surface waves, 74, 78, 84n, 90-100, 137; on Mars, 239-40, 244. See also Love waves; Rayleigh waves Surprise Creek Faults, Australia, 175 Sverdrup, Herald U., 200n2 Sydney, Australia, 175-76, 194 Tribidrag, 34n Syria, 140 T. rex and the Crater of Doom Triton, 253 (Alvarez), 183n Tanaka, Satoru, 26 Tangshan, China, 8, 136–38, 148–49;

1. rex ana the Crater of Doom
(Alvarez), 183n
Tanaka, Satoru, 26
Tangshan, China, 8, 136–38, 148–49;
earthquake of 1976, 8, 136–138,
148–152
Tasman, Abel, 194
Tasman Sea, 194
Tasmania, 9, 189, 193–96, 199, 204,
220; University of, 167n, 193,
207n1

Temblor, Inc., 114n Tennant Creek, Australia, 158n2, 173, 178-79, 185-86 Tharsis, Mars, 230, 246 Theia, 15, 132, 226 Tianjin, China, 137 Ti Tree, Australia, 174, 187 Toh, Akiko, 160n Tomales, bay of, 29 tomograms, 122, 124, 126-27, 165 tomography (seismic), 7, 120-35, 127n, 157, 165, 194-95, 231n2, 232; image of, 128, 165, 194; in medicine, 7, 46, 71, 120–23; problem of, 124 Tonga, 42; earthquakes in, 125, 191, 242; and seismogenic zone, 165. See also Tonga-Fiji-Kermadec subduction zone Tonga-Fiji-Kermadec subduction zone, 164-65, 190 topography, 84, 101 triangulation, 7, 49–52, 76, 203, 211, 216-17, 238, 240 Trichosurus vulpecula, 223 Trinitrotoluene (TNT), 182–83 Tropic of Capricorn, 158, 185 Tsar bomb (Tsar Bomba), 182–83 Tsukuba City, Japan, 26 tsunami, 183, 206; and earthquakes, 164; generation of, 208; and landslides, 214; potential of, 214. See also Sumatra, Indonesia, earthquake of 2004 Turkey, 88, 140; earthquakes in, 232; faults in, 38, 91

291 INDEX

Uhrhammer, Bob, 162 Viking missions, 10, 227, 230, 239; Uluru (Ayers Rock), Australia, 169-71 ultra-low velocity zones (ULVZ), 130-33, 130n2 United States Geological Survey (USGS), 35, 35n, 43, 88, 106, 154, 154n United States of America, 33, 138n, 181, 191, 225, 228 University of Alaska, Fairbanks, 162 231 University of California, Berkeley (Berkeley), vii, 29n3, 109n, 161n. See also Berkeley University of Cambridge, 165n, 193, 207n1 University of Connecticut, 90 University of Copenhagen, 59 Wang, Sheng, 209n, 222 University of Tasmania, 167n, 193, 207n1 University of Tokyo, 27 University of Zagreb, vii, 228 Uranus, 253; satellite of, 109. See also, Miranda Vallebona, Alessandro, 120 Vanuatu, 125 Venera missions, 226–27 Venus, 21, 21n, 226–27, 229

Verne, Jules, 37-38 Vernić, Silvija, 41 Vernona Rupes, Miranda, 109. See also Miranda Veternica cave, Croatia, 70n Vienna, Austria: and Mohorovičić, 47–48; and United Nations, 181, 184, 184n Vietnam, 209

seismographs of, 238, 242-43; probes of, 227, 251 Vinkovci, Croatia, 1, 58, 94 volcanic activity, 13, 21, 39, 104, 133, 183, 229; on Mars, 233, 246, 249 - 50volcanic earthquakes, 179, 229, 229n. See also earthquakes volcanoes, 24, 83, 102, 104, 133, 157, 237; extinct, 249; underwater, Volosko, 37, 58, 94 Voronoi, Georgy, 126n3. See also Voronoi cells Voronoi cells, 126 Voyager mission, 109, 117

Warramunga Seismic and Infrasound Facility (Warramunga Array), 9, 158, 173, 179n, 180-82, 184-86, 184n, 185n, 211 Waramungu (people), 158n2 Waszek, Lauren, 192 Weddell Sea, 163n1 Wegener, Alfred, 48n2 Wen, Hua, 147 Western Australia, 166-68 Wiechert, Emil, 48n2, 53n1 Wiechert seismograph, 27n, 28

X-rays, 120–22, 127 Xingtai, China, earthquake of 1966, 142

Yellowknife, Canada, 182 Yokohama, Japan, 2, 25 Yucatán Peninsula, Mexico, 183n

292 INDEX

Croatia), (the Great) earthquake of 1880, 2n73, 87–88

Zagreb, Croatia: antipode of, 92; the city of, 2–3, 6; capital of Croatia, 25; and Faculty of Natural

Sciences and Mathematics, 2n57; and faults, 70, 89, 115; Meteorological Observatory, 56; north of, 98; old town of (Grič), 63; and Petrinja, 4, 6, 87–93, 96–98, 100–101, 106–107; and Pokupsko, 45–46, 56, 89; residents (citizens) of, 3, 71, 85; and seismographs, 77,

Zagreb, Austria-Hungary (present-day

80, 82; Seismological Station in, 162; schools in, 40; University of, 228. See also Zagreb, Croatia, earthquake of 1880; Zagreb, Croatia, earthquake of 2020; Petrinja, Croatia, earthquake of 2020; Pokupsko, Croatia, earthquake of 1909

Zagreb, Croatia, earthquake of 2020, 3, 6, 25, 70–74, 76–77, 84, 87–93, 96–98, 100–101; people of, 85

Zhang, Yimou, 139n2

Zinfandel, 34, 34n, 178

zircons, 20