# Contents

| Fore    | eword to the Princeton Science Library edition by Rob Dunn                                                                                                                                                                                                                   | ix  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Preface |                                                                                                                                                                                                                                                                              | XV  |
| 1.      | Constraints and opportunities  Putting up with the everyday world; physical fitness and the designs of evolution; falling for organisms of varying size; nature's technology and ours; an obtuse look at right angles                                                        | 3   |
| 2.      | A variety of variables  The quantities we'll need, with their dimensions and units; the moving experience and how to force matters; conservation laws applied to our capillaries and collisions                                                                              | 14  |
| 3.      | Size and shape  How a bacterium exceeds a whale; why an ant might bite but can't hit; big is bony and voluminous, small is brainy and edgy; why starfish might be five-armed and why mollusks are just cones                                                                 | 38  |
| 4.      | Dimensions, gradients, and summations Good words for guesswork; comparisons of corpulence; a speed limit for a swimming duck also tells when to run and not walk; steepness of stimuli, speed changes, and skin temperature; adding up indiscrete items from forces to flows | 60  |
| 5.      | Gases and liquids  Matters of state and stress; fish and mosquitoes—the dangers of swimming with air inside and why snorkels must be short; how a tree pulls on a rope of water; when walking on water works but makes waves                                                 | 82  |
| 6.      | Viscosity and flow Current events near surfaces; troubles for moths that smell; how aquatic worms can raise dirt; doing marine biology in wind tunnels; the gooey world of tiny creatures and why cook with corn syrup; pipes, pressure, and an odd use of blood cells       | 105 |
| 7.      | Pressure and flow  Pressing flow-induced pressures to practical purposes—ventilated burrows, reinflated squid, and a beetle's unbeatable bubble; streamlined creatures and ones that just go with the flow; making lift and then living with it                              | 130 |
| 8.      | Diffusion versus convection  A small world in which random movements are a real trip, but where staying put may do just as well; why cells are small and standard, but organisms are vast and varied; plumbing the common features of the pipes within organisms             | 158 |

vii

## CONTENTS

| 9.   | A matter of materials                                                                                                                                                                                                                              | 177 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | Making much of a few proteins and sugars; six data each from pulling on teeth, timber, and tendons; keeping the bounce in a tendon and out of an orb web; making short work of cracks in bones or wood; still more on the deforming arts           |     |
| 10.  | Arranging structures                                                                                                                                                                                                                               | 201 |
|      | How not to bend except at joints, and why life is so often hollow; warding off stresses with braces and trusses; why some creatures are stiffened with grit; living balloons from soft stem to stern shark                                         |     |
| 11.  | Insinuations about curves                                                                                                                                                                                                                          | 225 |
|      | Why strings must sag, pipes cannot be square, and neither blood vessels nor alveoli can be made of rubber; how tiny worms withstand high pressures and tinier cells higher still; and how the instability of little bubbles keeps air out of trees |     |
| 12.  | Systems of support                                                                                                                                                                                                                                 | 242 |
|      | Nature as mechanical designer—what tells her how good is good enough; fine tuning of animals and plants for mountain top or bay bottom; all life's schemes to keep from being bent out of shape or otherwise to skirt collapse                     |     |
| 13.  | The mechanics of motility                                                                                                                                                                                                                          | 254 |
|      | More moves than merely muscle—biological engines behind leaves, antennae, and chromosomes; life's leverage and transmissions—bones with tendons, and tongues and tentacles; spider hydraulics; why living wheels don't usually work                |     |
| 14.  | Staying put and getting away                                                                                                                                                                                                                       | 277 |
|      | Why trees, fish, and small sea turtles aren't easily upset; lots of ways to stay stuck; size and acceleration from antelope to hydra; the ballistics of microguns—start like a bullet, stay low, and still get nowhere fast                        |     |
| 15.  | Energy and afterthoughts                                                                                                                                                                                                                           | 298 |
|      | Being hot versus containing heat—leaf and camel; saving energy cannot be helped; moving around—what sets the fare and why big travelers get better deals; naming the notions we've been talking about                                              |     |
| App  | pendix 1. Notes on numbers                                                                                                                                                                                                                         | 316 |
| App  | Appendix 2. Problems and demonstrations                                                                                                                                                                                                            |     |
| List | List of symbols                                                                                                                                                                                                                                    |     |
| Ref  | References and index of citations                                                                                                                                                                                                                  |     |
| Sub  | Subject index                                                                                                                                                                                                                                      |     |
|      |                                                                                                                                                                                                                                                    |     |

## CHAPTER 1

# Constraints and opportunities

"Throw physic to the dogs: I'll none of it." Shakespeare, *Macbeth* 

BIOLOGY conveys two curiously contrasting messages. In a strictly genetic sense all organisms are unarguably of one family. Our numerous common features, especially at the molecular level, indicate at least a close cousinhood, a common descent from one or a few very similar ancestors. On the other hand, what a gloriously diverse family we are, so rich and varied in size and form! The extreme heterogeneity of life impresses us all—trained biologists or amateur naturalists—with the innovative potency of the evolutionary process. The squirrel cannot be mistaken for the tree it climbs, and neither much resembles its personal menage of microorganisms. The apposition of this overwhelming diversity with the clear case for universal kinship tempts us to assume that nature can truly make anything—that, given sufficient time, all is possible though evolutionary innovation.

Some factors, though, are beyond adjustment by natural selection. Some organisms fly, others do not, but all experience the same acceleration due to gravity at the surface of the earth. Some, but not many, can walk on water, but all face the same value of that liquid's surface tension if they attempt the trick. No amount of practice will enable you to stand in any posture other than one in which your "center of gravity," an abstract consequence of your form, is above your feet. If an object, whether sea horse or saw horse, is enlarged but not changed in shape, the larger version will have less surface area relative to its volume than before. In short, there is an underlying world with which life must contend. Put perhaps more pretentiously, the rules of the physical sciences and the basic properties of practical materials impose powerful constraints on the range of designs available for living systems. The case for the pervasive operation of such constraints has been pointedly put forth in a recent essay by Alexander (1986).1

Were these restrictions the physical world's sole impact on life, we

<sup>&</sup>lt;sup>1</sup> Allusions to a person and a year refer to entries in the bibliography at the end of the book. This practice, used in most scientific journals, not only gives some idea of the antiquity of the source, but emphasizes the fact that we who do science and write about it are real people.

#### CHAPTER 1

might be content to work out a set of limits—quantitative fences that mark the extent of the permissible perambulations of natural design. There is, however, a more positive side, at least from our point of view as observers, investigators, and rummagers for rules. The physics and mathematics relevant to the world of organisms are rich in phenomena and interrelationships that are far from self-evident, and the materials on earth are themselves complex and diverse. Tiny cells with thin walls can withstand far greater pressures than would produce a blowout in any vertebrate artery, yet the materials of cellular and arterial walls have similar properties. The slime a snail crawls on may be alternately solid enough to push against and sufficiently liquid for a localized slide. An ant can lift many times its own weight with muscles not substantially different from our own. (But no Prometheus could exist among ants—as Went, 1968, remarked, the minimum sustainable flame in our atmosphere is large enough to prevent an ant from coming close enough to add fuel.) By capitalizing on such possibilities the evolutionary process appears to our unending fascination as a designer of the greatest subtlety and ingenuity.

This book is about such phenomena—the ways in which the world of organisms bumps up against a nonbiological reality. Its theme is that much of the design of organisms reflects the inescapable properties of the physical world in which life has evolved, with consequences deriving from both constraints and opportunities. In one sense it is a long essay defending that single argument against a vague opponent—the traditional disdain for or disregard of physics by biologists. In fact, the theme will function mainly as a compass in a walk through a miscellany of ideas, rules, and phenomena of both physical and biological origin. We'll consider, though, not the entire range of relevant items of physics, but a limited set of mostly mechanical and largely macroscopic matters. I mean to work through various bits of physics relevant to the design and operation of organisms and to illustrate their pervasive influence wherever I have appropriate examples.

The macroscopic bias should be emphasized. This book in places deals with some rather bizarre phenomena but never gets far from a kind of everyday reality. Explanations, where possible, deliberately ignore the existence of atoms and molecules, waves and rays, and similar bits of deus ex machina. Not that these aren't as real as our grosser selves (or so implies some very strong evidence); rather, in explanations for the general reader, they have an unavoidable air of ecclesiastical revealed truth. More importantly, to incorporate particle physics in a more rigorous view of the immediate world would take far more space and complexity than a single book. After all, can you think of any part of your perceptual

## CONSTRAINTS AND OPPORTUNITIES

reality that demands the odd assumption that matter is ultimately particulate—that if you could slice cheese sufficiently thin it would no longer be cheese? Maybe Democritus, commonly credited with the "invention" of atoms, just made a lucky guess as an accident of his inability to imagine anything infinitesimally small! Only when we consider the phenomenon of diffusion (Chapter 8) do we need to recognize atoms and a real world in which matter cannot be subdivided ad infinitum.

## ABOUT SIZE

The largeness of people was implicit in our blithe disposal of molecules. The general topic of size receives undivided attention in Chapter 3, but, in fact, the widespread role of size is one of several secondary themes throughout the book.

The ease with which we can avoid worrying about atoms reflects the vast gap in scale between them and us, between the size of atoms or small molecules and even small organisms. Cells (or unicellular creatures) may be small, but inhabitants of the atomic realm are *much* smaller. There are, roughly, as many molecules in a cell as there are cells in the cat observing me write. (The point is crucial in Schrödinger's 1944 classic essay, "What is Life." One of his arguments is that well-ordered structures can be built of individually ill-behaved atoms only if enough atoms are used so that their actions are statistically dependable.)

But from smallest to largest, we organisms ourselves occupy an extensive size range—from the tiniest bacterium about 0.3 micrometers long (about a hundred-thousandth of an inch) to a whale about 30 meters long (100 feet). (Some trees are 100 meters high but are no more massive than the whale.) The range is about 100,000,000-fold; eight orders of magnitude we call it, counting the zeroes, or factors of ten. An excellent introduction to the truly cosmic subject of size is *Powers of Ten* by Morrison and Morrison (1982).

Among organisms, humans are near an extreme—we're relatively big creatures a meter or two long. Only a little over an order of magnitude separates us from the largest living things, but six to seven orders lie between us and the smallest. On a scale of orders of magnitude, a "typical" organism would be between a millimeter and a centimeter in length—roughly an eighth of an inch. The point about size isn't trivial—the appearance of the physical environment to an organism and the phenomena of immediate relevance to its life depend most strongly on how big the organism is. You may not need to imagine the world of an atom, but you'll find challenge enough in trying to get some intuitive sense of the physical world of small creatures. Incidentally, for all of our fixation

#### CHAPTER 1

on microscopes, biologists have not usually had much of that intuitive sense to which we'll aspire here.

The relationship between size and reality can be best put with a half-serious example. Consider all animals that live in air, that is, neither in water nor in some solid material. These creatures are much denser than the medium around them and therefore can fall if released from a height. But size enters into any examination of this business of falling. We can divide organisms according to the consequences of a fall into four categories that depend mainly on size.

In the first category, made up of creatures above roughly 100 kilograms (220 pounds) in mass, injury is possible if the animal falls a distance as short as its own height—tripping is a potential danger to cows, horses, and the like. The fall of an elephant is a matter of the utmost gravity. (We, especially as we get older, run a similar risk even at a lower mass; the upright posture of a human gives us an unusually great height relative to our mass.)

In the second category, comprising animals with masses between about 100 kilograms and 100 grams (4 ounces), falling may be injurious, but the fall must involve a distance greater than the height of the animal. Dogs should avoid cliffs, and cats must climb down trees with deliberation, but squirrels, near the lower limit, can take riskier-looking leaps of faith. Hedgehogs (about 500 to 1000 grams in mass) are also just above the lower limit but, according to Vincent and Owers (1986), cope with falls using a special device—spines that can act as shock absorbers.

In the third category, from 100 grams down to perhaps 100 milligrams (give or take an order of magnitude), no height is great enough to cause substantial injury from a fall—the hazard, if any, is the predator at ground level. Falls may all too often befall nestling birds, but do we ever notice one injured by impact? A few years ago, at the instigation of my skeptical colleague, Knut Schmidt-Nielsen, I dropped two adult mice from the roof of a five-story building onto pavement. Not only were they uninjured (briefly stunned, though), but they adopted a spread-eagle, parachutelike posture and fell stably. It certainly looked as if the neural circuitry of these small rodents was arranged to deal with the circumstance. (The extent to which this posture reduces falling speed might bear looking into.)

The fourth category includes the smallest airborne organisms, for whom falling itself takes on a peculiar meaning. Upon release, the creature (by which I mean either plant or animal—the word "organism" is awkwardly deficient in commonplace synonyms) goes downward only in an uncertain, statistical sense. Air is never still, and if falling speed is comparable or less than the speeds of upward and downward movement

## CONSTRAINTS AND OPPORTUNITIES

of air, then the direction of a fall is no longer dependably earthward. In fact, air is host to quite a diversity of seeds, pollen, spores, and tiny animals, to the great discomfort of those of us with allergies.

On the surface of the earth, gravity (gravitational acceleration, strictly) is everywhere the same. Yet its practical effects are widely divergent, depending mainly upon the size of the organism in question. As Haldane (1928) put what took me far more words, "you can drop a mouse down a thousand-yard mine shaft and, on arriving at the bottom, it gets a slight shock and walks away. A rat is killed, a man is broken, a horse splashes."

## PHYSICAL VERSUS BIOLOGICAL SCIENCE

"Interdisciplinary" is a contemporary buzzword. By the usual divisions among fields, the present topic is, if it matters, thoroughly interdisciplinary. The mix does generate a few practical peculiarities, mainly a jumbled lot of antecedents with some resulting oddness in presentation.

Ordinarily we probably make too much of the distinction between biological and physical science, between living and nonliving devices. It certainly isn't a practice sanctified by antiquity. Galileo, whom we regard as a physical scientist, figured out that jumping animals, from fleas on up, should reach about the same maximum height irrespective of their body sizes (Haldane, 1928). (More will be said about jumping in Chapter 14.) A key element in developing the idea of conservation of energy was established by a German physician, Mayer, in 1841 from observations on the oxidation of blood, and the basic law for laminar flow of fluids in pipes was determined about the same time by a French physician, Poiseuille.

Physics and biology, with separate histories for the past few centuries, have developed their necessarily specialized terminologies in different and virtually opposite ways. Biology goes in for horrendous words of classical derivation, from *Strongylocentrotus droehbachiensis* (a sea urchin whose roe is accounted a delicacy by some) to anterior zygopophysis (a minor protuberance on a vertebra). Each word has been defined more precisely than your workaday household noun in order to reduce misunderstanding and terminological controversy. That the jargon tends to exclude the uninitiated and those without youthfully spongelike memories is not (for better or worse) given much consideration.

By contrast, physics (and engineering) eschews Greco-Latin obfuscation and pretension; in doing so, it creates an equally serious difficulty. The most ordinary, garden-variety words are given precise definitions that unavoidably differ from their commonplace meanings. It takes work to pull something upward but not to hold it suspended. Stress and strain

#### CHAPTER 1

are entirely distinct, the former commonly causing the latter. Mass is not the same as weight, even if they are functionally equivalent on terra firma. Both physical and biological practices will plague the reader, but the former tends to be more subtly subversive—a bit of biological jargon is jarring when you don't know its meaning, but an ordinary word with a special definition for scientific use easily passes unnoticed.

The next chapter will be largely given to the task of establishing a necessary physical base, with a fair dose of the associated terminology. Biological terminology will enter piecemeal—for present purposes physics does a better job of providing a logical framework.

One term from physics needs special attention at the start: *energy*, which gets the most cavalier treatment by press and politicians. We ought to be able simply to define it with care and proceed from there. While it *does* have a precise meaning in the physical sciences, the trouble is that the meaning doesn't lend itself to expression in mere words. Basic dictionaries and textbooks are little help—they define energy as the capacity for doing work, unblushingly evading the issue! Feynman (et al. 1963), comes right out with the unusually candid admission (no company man was he, whether teaching physics or serving on the commission probing the shuttle explosion), "It is important to realize that in physics today, we have no knowledge of what energy *is*. We do not have a picture that energy comes in little blobs of a definite amount."

In practice the idea of energy explains so much—the law of conservation of energy is sometimes considered the greatest generalization of physics. Ultimately that's the advantage of energy. For us it is more of a difficulty—it's just too easy to hide behind a word with no ready definition and thereby to avoid some crucial explanations. So the word and the concept will be only a parenthetical presence until the final chapter.

## EVOLUTION AND NATURAL DESIGN

The words "evolution" and "design" have already surfaced; I find it hard to avoid either in any general discussion. Used together, they represent a subtle contradiction, one that ought to be resolved before we go further. If the process of evolution is incapable of anticipation, that is, if it is blindly purposeless, the term "design" is seriously misleading—in common usage, design implies anticipation and purpose. The problem is not just terminological. Why do organisms appear to be well designed if they are not designed at all? Perhaps it's best to begin by reviewing the logical scheme for which "evolution by natural selection" is the quick encapsulation.

First, some observations. Every organism of which we have any knowl-

## CONSTRAINTS AND OPPORTUNITIES

edge is capable of producing more than one offspring; thus, populations of organisms are always capable of increasing. It takes, though, some minimum quantity of resources for an organism to survive and reproduce, and, in the long run, the resources available to any population are limited. Next, three consequences. One is that a population in a particular area ought to increase to some maximum. A second is that once the maximum is reached, more individuals will be produced than can find adequate resources. The third is that some individuals will not survive to reproduce. Pause here to consider further observations. Individuals in any population vary in ways that affect their success in reproduction, and at least some of this individual variation is passed on to their offspring. Now a final consequence. Features that confer increased relative success in reproduction will appear more often or in exaggerated form in the individuals of the next generation. We say, in short, that these features will have been "naturally selected," that is, by selection only from preexisting, even if latent, variations.

The model, at this level, is one of the least controversial items of modern science—every aspect has been observed and tested, and competing models for the generation of biological diversity (even if logically without flaw) uniformly fail to correspond to reality. Indeed, given geological time and the variation generated by an imperfect hereditary mechanism, it is difficult to see how evolution could be avoided. Remaining argument devolves about details—whether the process is usually steady or episodic, the roles of specific genetic mechanisms (such as sexual recombination), and so forth. The model has no place for anticipatory design, and there is no need (indeed, no evidence) that an environmental challenge can determine the character of the variation upon which natural selection can act.

Selection, quite clearly, operates most directly on individual organisms. The main test, defining its "fitness," is an organism's success in engendering progeny. (Some adjustment has to be made for indirect contributions that aid the reproduction of one's kinfolk, but this is of little present concern.) The selective process knows nothing about species; no clear evidence indicates that any organism ever does anything "for the good of the species." Nor does the process care directly about parts of an organism. Legions of cells die on schedule in the development of an individual; in no way can we speak of such cells as more or less "fit" than any others. Trees commonly shed leaves; the shed leaves were not therefore less fit—the term fitness is inapplicable here since it refers only to the reproductive potential of potentially reproductive individuals, that is, the whole trees.

This book is mainly about organisms, so we will be concerned with a

#### CHAPTER 1

level of biological organization upon which the invisible hand of the selective process should incur fairly immediate consequences. It is the immediacy of operation of that unseen hand that makes organisms appear well designed—as a colleague of mine put it, "The good designs literally eat the bad designs." But it must be emphasized that we mean "design" in a somewhat unusual sense, implying only a functionally competent arrangement of parts resulting from natural selection. In its more common sense, implying anticipation, "design" is a misnomer—it connotes the teleological heresy of goal or purpose. Still, verbal simplicity is obtained by talking teleologically—teeth are for biting and ears for hearing. And the attribution of purpose isn't a bad guide to investigation—biting isn't just an amusing activity incidental to the possession of teeth. If an organism is arranged in a way that seems functionally inappropriate, the most likely explanation (by the test of experience) is that one's view of its functioning is faulty. As the late Frits Went said, "Teleology is a great mistress, but no one you'd like to be seen with in public."

We functional, organismic biologists are sometimes accused of assuming a kind of perfection in the living world—"adaptationism" has become the pejorative term—largely because we find the presumption of a decent fit between organism and habitat a useful working hypothesis. But the designs of nature are certainly imperfect. At the very least, perfection would require an infinite number of generations in an unchanging world, and a fixed world entails not only a stable physical environment but the preposterous notion that no competing species undergoes evolutionary change. Furthermore, we're dealing with an incremental process of trial and error. In such a scheme, major innovation is not a simple matter—features that will ultimately prove useful are most unlikely to persist through stages in which they are deleterious or neutral. So-called hopeful monsters are not in good odor. Many good designs are simply not available on the evolutionary landscape because they involve unbridgeable functional discontinuities. Instead, obviously jury-rigged arrangements occur because they entail milder transitions. In addition, the constraints on what evolution can come up with must be greater in more multifunctional structures. Finally, a fundamentally poorer, but established and thus well-tuned, design may win in competition with one that is basically better but still flawed.

I make these points with some sense of urgency since this book is incorrigibly adaptationist in its outlook and teleological in its verbiage. The limitations of this viewpoint will not insistently be repeated, so the requisite grain of salt should be in the mind of reader as well as author. Incidentally, the ad hoc character of many features of organisms are recounted with grace and wit in some of the essays of Stephen Iav Gould.

## CONSTRAINTS AND OPPORTUNITIES

not just as an argument against extreme adaptationism but as evidence for the blindly mechanical and thus somewhat blundering process of evolution. His collection entitled *The Panda's Thumb* (1980) is particularly appropriate here.

## SIMPLIFYING REALITY—MODELS

This book is, in the final analysis, about organisms rather than physical science—the latter merely provides tools to disentangle some aspects of the organization of life. But, beyond using physics to organize the sequence of things, we'll take an approach more common (historically, at least) in the physical sciences. Biologists love their organisms, collectively, singly, sliced, macerated, or homogenized. Abstractions and models are vaguely suspect or reprehensible. As D'Arcy Thompson (1942) put it, biologists are "deeply reluctant to compare the living with the dead, or to explain by geometry or by mechanics the things which have their part in the mystery of life." But we will repeatedly use the "dead" to explain the "living." Explanation requires simplification, and nothing is so un-simple as an organism. And the most immediate sort of simplification is the use of nonliving models, whether physical or (even) mathematical.

Science is, in fact, utterly addicted to models for simplification and generalization. Even a tiny aspect of the world is just too complex to yield to simultaneous and systematic analysis of all of its diverse characteristics. Consider, for a moment, your left thumb—how many facets of this minor appendage might be measured, recorded, and subjected to statistical treatment? Simplification and abstraction have marked all progress in science; one begins very simply and then adds elements of complication as necessary and possible. We'll do just that, introducing some topic and asking very simple questions about it, then repeatedly returning to the same topic with questions that require more sophisticated analyses. Acceleration, for instance, will be discussed with reference to simple jumps, to jumps with air resistance and the trajectories of projectiles, and to the mechanics of the supply and storage of the work of propulsion.

## CONTRASTING TWO TECHNOLOGIES

Much of the popularity of science fiction, I think, comes from its common focus on technologies alternative to the one developed on earth through human activity in the late twentieth century. A similar attraction must underly popular support for the search for extraterrestrial intelligence—the possibility of comparing what we've made here with alternative scenarios holds a strong intellectual appeal. But extraterrestrial life,

#### CHAPTER 1

much less intelligence, is elusive and its discovery is only a very remote prospect (the recent recognition of its remoteness was described by Horowitz, 1986). And the stuff of science fiction is both pretty anthropocentric and ultimately fictional.

Such a comparison between our technology and an alternative can nonetheless be made and turns out to be an unavoidable, if perhaps adventitious, aspect of the present book. The alternative technology available for our examination is the one generated here on earth through the operation of natural selection, which has resulted (in the most corporeal sense) in ourselves. The comparison is particularly interesting in that, first, the generating mechanisms are as different as can be—natural selection, strictly, implies no anticipation or calculation, unlike human design. Second, both sorts of technology use the substances available on the surface of the same planet. The contrast between them is another secondary theme, best introduced through a set of comparisons between "natural" (but not entirely unhuman) and "human" (not completely unnatural) technologies.

- (1) Surfaces of and within organisms are curved, most commonly cylindrical, but sometimes with spherical or elliptical elements. (The major theme of Wainwright 1988 is the ubiquity of such shapes.) Flat surfaces are less common. By contrast, people make load-bearing flat surfaces in profusion—floors, roofs, walls, even the surfaces of beams. Cylindrical elements—pipes, cans, bicycle frames—are certainly not scarce but don't dominate.
- (2) Our technology is rife with right angles—never mind pyramids, it's the 90° angle to which we seem addicted. It appears in almost every door, window, floor tile, box, book pages, many letters of our alphabet, the pockets of my shirt, and on and on. Yet right angles are surprisingly rare among organisms. Tree trunks are generally at right angles to the ground or horizon, but other examples are not easy to find.
- (3) We use a few pliant materials—plastic hinges, elastic bands, rubber pads, and so forth; but relative to the abundance of our stiff stuff, soft and stretchy substances are unusual. We manage to live with the awkward tendency of stiff materials to fracture. We even fabricate them in curious geometries to take advantage of their limited deformability—coiled springs of steel spring to mind. Nature is typically pliant—skin, muscle, viscera, even fresh wood (dry timber is several times stiffer). Stiff material does occur—teeth, clam shells, big bones—but less commonly.
- (4) Our preferred structural materials are most often made of single components above the molecular level, and the values of their properties are the same (isotropic) whatever the direction of measurement—we mostly use metals and ceramics. Nature's materials are composites, com-

## CONSTRAINTS AND OPPORTUNITIES

binations of two or more components, almost always arranged so that the materials' mechanical behavior depends on the direction in which they're loaded. We do make such anisotropic composites—we combine oriented glass fibers and glue to make fiberglass—but their use is limited. (And "composite material" seems always to be preceded in the popular press by "advanced"!)

- (5) Substantial pieces of metal, either pure or alloyed, never occur in nature, even though metallic atoms are crucial to the biochemistry of all organisms, and tiny chunks are basic in magnetic sense organs. Ours is an overwhelmingly metallic technology, and we capitalize on the impressive mechanical advantages and diversity of properties available in metals.
- (6) Both gases and liquids resist being squeezed and thus can be used as structural materials; air and water are the cheapest and most available of substances. Occasionally we use air as a compression-resisting material—in blimps, inflatable buildings, door closers, and so forth—but I can't think of a clear case where nature employs air in such a manner. Conversely, nature makes elaborate and extensive use of water as such a compression-resisting material in sea anemones, penises, squid tentacles, worms, sharks, and elsewhere; but we use it in only a few devices such as fire hoses that collapse when not being used.
- (7) Life may tolerate a reasonable range of ambient temperatures, but organisms are basically isothermal machines rather than heat engines and do their business without depending on large internal differences in temperature. Heat conduction, therefore, is not a major issue in organisms—handy, since we aren't built of the wonderfully conductive metals. But our functional parts (cells and so forth) are often very small, and a formally analogous process, "molecular diffusion" (Chapter 8), is always crucial. Human technology makes impressively elaborate use of heat conduction but less of diffusion.

One can continue such a list, although the items get more obscure and complex. You'll notice that I haven't given more than a hint of an explanation of the differences between the two technologies for any of these examples. The notion of evolution can provide some basis for the distinctions. Beyond that, explanations and rationalizations will come later, at least for those items about which something reasonable can be said.

# Subject index

abductin, occurrence, use, 180; resilience, 190 acceleration, definition, 19-20; detection, 58; dimensions, 19-20; and force, 21, 30; gravitational, 20; size and, 290; speed and, 28, 70, 289; table, 291; unit, 19 accuracy, 14-15, 320-21 actin, 260-61 adaptationism, 10-11, 274 adhesion, 283–88; liquid-solid, 97–98 aggression, 42–43 air: density, 108; diffusion in, 164, 165; heat capacity, 300; viscosity, 108. See also atmosphere, gases airfoils, 150-53; gliding, 155-56; lift, 150-51; lift-to-drag ratio, 152-53 albumin; diffusion coefficient, 164 algae: drag and flexibility, 146; floats, 218; gliding movement, 263; habitat, 246, 247; Halosaccion, 146; holdfast, 286–87; shape, 171; size range, 39; tensile systems, 248 allometry, 40–41, 45–54; exponents, 47– 48; graphical display, 46-47; within cells, 42 aluminum: crack propagation, 146; density, 27 alveoli: Laplace's law, 235; number, 41; oxygen movement, 74; size, 167-68; stress-strain relation, 235; surface area, 41; wetting agent in, 235 ammonia, solubility, 90 anemometer, Pitot tube, 135 aneurisms, 185 angle of attack, 151-52 angle of repose, 199 annelids, hydroskeleton, 220 ant: use of fire, 4; weight lifting, 4 antelope, acceleration, 291 antennae, insect: air passage, 111–12; erecting hairs, 255 Antheraea (silkmoth), 178 antler, density, 27

ant lion, larval pit, 199 aorta: continuity, 36; cross-sectional area, 174; diameter, 173; non-turbulent flow, 127; toughness, 191 apodemes: energy storage, 292; lobster, 179; pinnate muscles, 269; safety factor, 245; Young's modulus, 184 area, 19 area, second moment. See second moment of area Argyronetes, diving and web, 92 arterial wall: collagen of, 178, 232; deposits, 108; elastin of, 232; fibers in, 232; pliancy, 181; strength, 185; stress-strain relation, 80, 232 arteries, internal pressure, 4 arthropods. See crustacea, insects, spiders, etc. Ascaris (roundworm), internal pressure, 223 - 24ascidians: cellulose in, 179; Pitot tube use, 135; spicules in, 218 atmospheric pressure, 24, 85 atoms. See molecules and atoms attachments, 283-84 autotomy, 244 axonal transport, 171 backbone, as truss, 210-11 bacteria: feeding, 165; flagella, 74, 276;

internal pressure, 235; propulsion, 121; size, 5, 38, 41, 170; square, 57 balance, beam, 22, 34 ballistae: collagen in, 179; performance, 193–94 bamboo: growth, 255; stability, 280 barnacles: adhesion, 283, 285; spicules, 218 baseball, trajectory, 296 beams: biological, 206; box, 209; flexural stiffness, 203–206; neutral plane, 202–204; second moment of area, 203–205; shapes, 207–209; trusses as, 209 bear, overwintering, 52

### INDEX

beetle. See click beetle, Potamodytes, whirlbrick: breaking, 185-86; strength, 185; igig beetle toughness, 191 brittleness, 191 bending: beams, 202-206; columns, bronchi, 36, 173 211-13; hydroskeletons, 220; sea ane-Brownian motion, 159, 165 mone, 212; test, 206. See also buckling bubbles and droplets: absence in xylem, bends (caisson disease), 89 95; coalescence, 239; in flow, 141; Bernoulli's principle, 131–35; confused freezing, 239; Henry's law, 89; hydrowith entrainment, 113; and drag, 141; phobic surfaces, 237-38; Laplace's law, and lift, 149-51 236; soap, 236; various organisms, 91– birds: eggshells, 182, 196; feathers, 181; nestling falls, 6. See also flight buckling, Euler, 211–12; guard cells, blackflies, feeding fans, 113–14, 275 258; and length, 216 blimps, 138, 218, 253 buckling, local, 212–13, 220 blood: oxygen movement, 74; red blood bugs, walking on water, 99-100 cells, 19; scaling, 53 bull kelp (*Nereocystis*): extensibility, 195; blood vessels: bracing walls, 233; diamestrain energy storage, 195; tensile syster variation, 172-73; Laplace's law, tem, 248-49 231–32. See also arteries, capillaries buoyancy, 87–89; center of, 281–82; divbluefish, 139 ing, 86; Jesus number, 70; scaling, 44; Bombyx (silkmoth), 178 stability, 281-82; various organisms, bonding, 284 88-89 Bond number, 70 burrows, burrowing: mole, 266; prairie bone: anisotropy, 193; collagen in, 178; dog, 117, 131, 133–34; worm-lizard, composition, 181; compressive 269; worms, 273 strength, 186; density, 27, 88; extensiburrs, as "Velcro," 284, 315 bility, 186; fracture, 193, 243; loading, butterfly, monarch: gliding, 156 193; stiffness, 12, 193; strain energy byssus threads, 249, 286–87 storage, 188; tensile strength, 185; toughness, 191; viscoelasticity, 199 cactus, strutted support, 250 bones: fracture, 243; hollowness, 205caddisfly larva, Pitot tube, 135-36 252; as levers, 33, 265-69; load variacalcium carbonate: in shells, spicules, cubility, 243; safety factors, 245; scaling ticle, 181-82 of forces, 44, 50-51; trabeculae, 213calcium phosphate: in bone, teeth, 181-14, 216 book lungs and gills: flatness, 252; flow calculus: differential, 72; integral, 78-79 through, 128 calorie, 26 boundary layers, 108–111; and filtration, camel, thermoregulation, 301-302 112; no-slip condition, 130; and Reyncantilevers, 206-209. See also beams, olds number, 116, 130; and spore trajectories, 297; thickness, 109-111 capillaries: and continuity, 36; diameter, bows: crack stopping, 196; use of horn, 158, 167-68, 173; diffusion in, 167; 181 internal pressure, 231; oxygen move-Boyle's law, 85 ment, 74; surface area, 42; total crossbraced frameworks. See frameworks section, 36, 174; velocity profile, 129 breathing: fish, 140; frequency, 49-53; capillarity, 98-99, 288 per lifetime, 54; lungs, 24-25; mamcapillary adhesion, 285, 288 mals, 24-25, 234; plastron, 101; uncapillary water (soil), 240 derwater, 91-92; water conservation, capillary waves, 101-102 carbohydrates, energy content, 305 128 - 29

carbon dioxide: outgassing, 238; solubilsquid mantle, 224; strain energy stority, 90 age, 188, 194; strength, 185; Young's carrot cells, internal pressure, 235 modulus, 184 catch-net: caddisfly larvae, 136 collarbones (clavicles): cats, 76; as jibs, catenary curve, 227 227 - 28cats: collarbones, 76; falling, 6; skeletal collenchyma, 222 mass, 50-51; whisker, 207 columns, 211-13; buckling, 211-13, 216; celerity, 102-103 crushing, 211; in plastron, 240 cells: diffusion in, 165, 171; internal compliant material, in composites, 196 pressure, 4, 235, 257-59; internal surcomposite materials, 180-82, 195-98 faces, 42; model for transport, 169compressive strength, data, 186 70; number in human, 168; parencompressive stress (push), 83-84; and chyma, 222; programmed death, 9; adhesion, 284-85 shape, leaf and petiole, 208–209; size concentraton gradients, 73-74, 162-63 constancy, 54, 158, 168-71 concrete and cement: strength, 185; cellulose, 178-79, 181-82 toughness, 191 cell walls: pores, 240; pressures, 241 conservation of energy: and Bernoulli's center of gravity, 3, 34-35; standing, principle, 131; 1st law of thermody-278; submerged, 281-82; trees, 193, namics, 302-305 278 - 80conservation of mass, 35-36 centroid, 204 conservation of momentum, 36-37; elascephalopods, as cones, 56-57. See also octic collisions, 159, 304; squid jetting, topus, nautilus, squid 224 ceramics. See rigid materials contact angle, 98 chaos, 312-13 continuity, principle of, 35-36; circulachiggers, subdermal mayhem, 43 tory systems, 36, 173–74; creeks, 36; chitin: occurrence and use, 178–79; nozzles, 37; pipes, 80; and streamlines, Young's modulus, 184, 240 118; venturi tubes, 132-33 chitons, spicules, 218 contraction, muscle, 260-62 cilia: microtubules, 259; pumping by, convention. See fluid flow 175; quiet action, 122; stroke, 121 conversion factors, 326 circulation (aero.), 148-50 corals: as branched strut systems, 249; circulation (physiol.): augmenting diffudrag, 243, 244; safety factor, 243; skelsion, 172; minimal, 173; pipe sizes, eton, 182, 196 172–73; role, 172; scaling, 53 corpulence. See ponderal index clam: ciliary pump, 175; as cone, 56-57 countercurrent exchanger, 91 clavicles. See collarbones cows: bone, 191; eating grass, 198; food cleavage of eggs, 58 consumption, 38; region of repulsion, click beetle: acceleration, 291; energy 290; surface area, 50; tendons, 179 storage, 292 crack propagation, 195-98, 244; bone, cockroach, antennae, 207 193; critical length, 197; glass, 196; coconut palm, 248 leaves, 198 coelenterates: drag, hydroids, 146; necrows, gait transition, 69 matocysts, 43; spicules, 218. See also crustacea: chitin, 179; feeding, 122-23 corals, sea anemones, etc. cohesion, 92-94, 283 curved surfaces, 12, 225-41; and aggression, 43 collagen, 78-81; arterial wall, 232; ballistae, 179, 193-94; byssus threads, 249; cuticle, arthropod: composition, 181; energy storage, 292; toughness, 191 extensibility, 186; resilience, 190; source of glue, 284; sponges, 217; cuticle, roundworm, 223

### INDEX

cuttlefish: buoyancy, 88-89; safety factor, 245 cyclosis, 171, 172, 260, 262 cylinders: bending, 202; drag at low Reynolds numbers, 121; flexural stiffness, 203-206; flow around, 142; hollow beams, 209; hydrostatic skeletons, 219-21; Laplace's law, 230-33; muscular hydrostats, 270-73; neutral axis, 204; occurrence, 12; protruding, in flow, 112-13; second moment of area, 205; supportive systems, 252; as wings, cytoplasmic streaming. See cyclosis deformation: acceptance of, 214, 217; and drag, 146-48; of hydrostatic skeleton, 220; result of stress, 82-83; solids and fluids, 106-107 Dendraster (sand dollar), larval arm truss, 210 density, 19; air, 108; bone, 88; constancy in organisms, 44-45, 66; fat, 88; fresh water, 88, 108; manometric liquid, 24; organisms, 88; seawater, 88, 108; table, 27 dentine, 192-93; composition, 97; compressive strength, 186; tensile strength, 185; toughness, 191; Young's modulus, 184 design: assuming "good," 192; evolution and, 8; habitat and, 246-47 detergent: alveolar, 235; surface tension and, 97; wettability and, 97 diaphragm, in breathing, 24-25 diffusion, 5, 13, 159-66; in cells, 165; concentration gradients, 74; and convection, 166; demonstrating slowness, 166; Fick's law, 74, 162-63; information transfer mode, 169; insect tracheal system, 174; nearby walls, 167; osmosis and, 255-56; random walk, 160-61; "rate," 162; size limitations, 169-70, 171-72 diffusion coefficient, 162-63; table, 164; wall effect, 167 dimensional analysis, 60-63 dimensionless quantities, 63-67; cost of transport, 310; distance advantage,

264-67; drag coefficient, 69, 143-45;

efficiency, 64; extensibility, 186; flatness index, 64; force advantage, 264-67; Froude number, 66–69; Jesus number, 70; lift coefficient, 152-53; mechanical advantage, 63-64; pendulum constant, 63; pi, 18; pressure coefficient, 137-39; strain, 18, 63 dimensions: basic, 17; in equations, 60-62; of physical quantities, 16–19; units and, 17, 18 Dineutes. See whirligig beetle disc, drag coefficient, 145 disorder, 312-13 distance advantage, 264-67 diving: beetle, 91; lung volume, 86; pressures, 86; spider, 91 dodecahedrons, 55 dogs: falling, 6; metabolic scope, 53 domes: Laplace's law, 235-36; supportive systems, 253. See also geodesic domes drag: acceleration and, 30; adjacent walls, 122; in boundary layer, 111; cylinder, 121; flags, 147; flexible organisms, 146-48; in gliding, 154-56; induced, 154; leaves, 146-48, 279; low Reynolds number, 121-24; maximization, 143, 155; minimization, 142-43; momentum and, 37, 153; pressure drag, 142; propulsion and, 121; scaling, 43-44; separation and, 142; skin friction, 142; sphere, 124; trajectories and, 293-97; tree, 278-80 drag coefficient, 69, 144; disc, 145; Halosaccion, 146; Reynolds number and, 143-45; streamlined objects, 145 dragonflies (Odonata), flight, 268 ducks: hull shape, 283; hull speed, 68 dynamic pressure: Pitot tube, 135, 136; in pressure coefficient, 137 dynamic viscosity. See viscosity

echinoderms: adjustable tensile elements, 251; pentamerousness, 55–56; spicules, 218; tube feet, 273, 286–87. See also sand dollars, starfish, etc. efficiency, 64, 307–308 eggshells: as composites, 197; as rigid materials, 182; as supportive systems, 253

INDEX

elastic efficiency. See resilience skull, jaw, 215; stability, 282; swimelasticity. See Young's modulus of elasticbladder, 88-89; thrust of tail, 156 fitness, 9, 244 elastin: arterial walls, 232; extensibility, flagella: bacteria, 121-22, 263; power, 186; occurrence, 180; resilience, 190; 262; sponges, 175; wheel-and-axle, Young's modulus, 184 274-76. See also cilia elephants: falling, 6; LSD dose, 38; skelflatness index, 64 etal mass, 50–51; trunk, 271–72 flat plate, flow over, 109-111 embolism, xylem, 238 flat surfaces, 12, 251-52 enamel, tooth, 27, 192–93; composition, flatworms, 220 197; compressive strength, 186; denflea jump: acceleration, 291; power, 292; sity, 27; tensile strength, 185; toughtrajectory, 296 ness, 191; Young's modulus, 184 Flettner: rotor, 148-49, 151; ship, 149 energy: concept, 8; conservation, 7, 8; flexibility, and drag, 146-48 content, table, 305; forms, 304; as flexural stiffness, 201-206 work, 26 flight, animal, 28, 152-53, 154-57, 267; engines, 254-76 body mechanics, 266-68; cost of transentropy, 306 port, 310–12; resilin, role, 180; safety evolution: and "design," 8, 10, 198, 242, factors, 245 254; mechanism, 8–11; symmorphosis, flight, human, 315 168; wheels, 274-76 flow. See fluid flow exoskeleton: pinnate muscles, 269; supfluid. See fluid flow, gas, liquid portive system, 252 fluid flow: augmenting diffusion, 171extensibility: kelp, 195; from stress-strain 72; Bernoulli's principle, 131-35; over graph, 79, 183; values, 186 curved surfaces, 141-42; over flat extraterrestrial life, 11, 315 plate, 109-111; laminar and turbulent, eyes: location on fish, 140; scaling, 53 113-14; low Reynolds number, 119-25; measuring, 132-33, 134-35, 145; fabrics, 179, 181 between parallel plates, 128-29; in falling: air movement and, 6; drag and, pipes, 7, 80, 114, 125-29, 172-74; 30, 44–45; speed vs. mass, 6, 44–45; principle of continuity, 35-36; separaspores, 122; terminal velocity, 30, 44tion, 142; skimming flow, 113. See also 45, 124 drag, lift, thrust fat: density, 27, 88; energy content, 305; food: consumption, 52; energy content, heat capacity, 301; insulation, 73; 305; muscle as, 52, 254 variation among animals, 73 foraminifera (protozoa), crushing, 243 feathers, 181 force, 19-22; bending beam, 203, 204; femur: density, 27; trabeculae, 213 Bernoulli's principle and, 141; circumfern, spore shooting, 263 ferential and radial, 228-30; concenfiber angle, 220-24 tration, composites, 196-97; concenfiberglass: as composite, 13, 196; crack tration, peeling, 286; gravitational, 21, propagation, 196; toughness, 191 67, 70; inertial, 67, 115; Newton's fibers: arterial wall, 232; hydrostatic skellaws, 27-28; sag of wire, 226-27; van etons, 219-21; leaf cell walls, 241 der Waals, 284; as vector, 30-31; vis-Fick's law, 74, 134, 162-63 cous, 115; and work, 25. See also buoyfilled polymer, 218 ancy, drag, lift, stress, surface tension, fish: acceleration, 291; body muscles, tension, thrust 269; buoyancy, 86, 88-89; design for force advantage, 264-66 flow, 140; lift off bottom, 157; pres-

Fourier's law, 74-164

sure along, 139-40; size range, 39;

### INDEX

fracture. See bones, crack propagation, etc.
frameworks: articulated struts, 250–51; braced, 213–16; trusses, 209–211
free stream speed, 75, 110
freezing: bubbles and, 239; water column and, 95
frog: adhesion, 285, 288; interdigital webbing, 36; toe pads, 288
Froude number, 66–69, 103
fruit-fly: as glider, 155; wing mass, 252; wing performance, 153

gait: Froude number and, 68-69; on moon, 22 galago, acceleration, 291 gases, 84-92; Boyle's law, 85; compressibility, 88, 105; Henry's law, 88; incompressibility in flow, 36; mean free path, 159; partial pressure, 86; pressure and density, 85; pressure and volume, 85; in pressurized structures, 13, 218; resisting stresses, 84; solubilities, 88; as structural materials, 13, 218; supersaturation, 90. See also air, oxygen, etc. gasoline, density, 27 gecko, adhesion, 284 geodesic domes, 214, 215 gills: flow between, 128; pressure and, glass: bubbles formation on, 237–38; crack propagation, 196-97 gliding, algal, 263 gliding in air, 148, 154-56 glue, 284, 287 glycine, diffusion coefficient, 164 gradients. See concentration gradients, rates and gradients, temperature gradients, velocity gradients graphs, 324-25; areas and summations, 77-78; geometric axes, 46-47; show-

graphs, 324–25; areas and summations, 77–78; geometric axes, 46–47; showing rates and gradients, 71–72; slopes, 47

grass: resistance to tearing, 198; surface area, 41

grasshoppers. See locusts gravitational forces: in Froude number, 67; in Jesus number, 70 gravitational stability, 35, 58, 277 gravity: acceleration of, 3, 7, 20; force of, 21–22; pendulum and, 61–62; on structures, 206, 208; trajectories and, 293–97 gravity, center of. *See* center of gravity gravity waves, 101–102 gray stripe illusion, 76

guard cells, motility, 258

Hagen-Poiseuille equation, 126–27, 130, 167, 172 hair, 181, 185 Halobates (bug), water walking, 100 Halosaccion (alga), drag, 146 heart: and continuity, 36; fish, 140 heartbeat: frequency, 49, 53; per lifetime, 54 heat, 299-302; as energy, 299, 307; from organisms, 307-308; and second law of thermodynamics, 307, 308 heat capacity, specific, 300-301 heat conduction, 13; analogy with diffusion, 164; through fat, 73 hedgehogs, shock absorbing spines, 6, 76 helices of fibers, 219-21 helicopter, 154 helium, solubility, 90 Henry's law, 89; and bubbles, 236-39 hollowness: advantages, 205; box beams, 209; columns, 212-13 holly, leaf drag, 146-48 Hookean materials, 184, 203 hoop stress. See stress hopping, work storage, 80, 194, 292 horn: in bows, 181; strain energy storage, 188 horse: cost of transport, 311; ischial trabeculae, 214; metabolic scope, 53; results of fall, 7

humans: acceleration, 291–92; bends, 90; breaking bones, 243; collarbone, 227–28; cost of transport, 311; density, 66; exhalation temperatures, 129; falling, 6, 7; fetal metabolism, 54; gait transition, 68–69; kneecap, 267–68; large size, 5; metabolic scope, 53; ponderal index, 65–66; safety factors, 245; skeletal mass, 50; tongue, 270; under water, 86–87; walking on moon, 22; walking on water, 100

hull speeds, 67–68, 103

INDEX

human technology, 11-13, 86-87, 149, 152, 155, 181, 197, 205, 218, 248-53, 264–65, 273, 275, 283–85, 315 hummingbirds: torpor, 52-53; wings, hyaline membrane disease, 235 Hydra (coelenterate), nematocyst acceleration, 290-92 hydration, for motility, 254-55 hydraulic linkages, 272-74 hydrophilic surfaces: adhesion, 285; bubbles, 237; clean glass, 238; fabric "breathing," 239; in xylem, 237-38 hydrophobic surfaces: bubbles, 237-38; insect hairs, 240; plastics, 238; water repellent fabrics, 239 hydroskeletons, 219-24; constancy of loading, 243; as supportive systems, 253. See also muscular hydrostats hysteresis. See resilience

I-beam, 208

icosahedrons, 55

imbibition, 255

induced drag, 154 induced power, 154 inebriation, 160-61, 163, 64 inertial forces: in Froude number, 67; in Reynolds number, 115 information, 168-69 insects: antennae, 111-12; caddisfly larvae, 135–36; chitin, 179; cuticle, 191; dragonflies, 268; flight, 28, 80, 268; flight muscle, 266-68; fruit-fly, 153, 155, 252; hollow skeleton, 205–206; leg exoskeleton, 250; plastron respiration, 101, 240; resilin, 80, 180; scaling of sounds, 44; silk, 178, 195; silkmoths, 111-12, 178, 195; size range, 39; suspension feeding, 113; tracheae, 158, 166, 174; walking on water, 99-100; wettability, 99-101; wingbeat, 266-68; wing flatness, 252; wing struc-

interface, air-water, 95–104, 105, 236–41 internal cohesion: of liquids, 92–94; in trees, 94–95

internally pressurized systems. See hydroskeletons, muscular hydrostats

intervertebral discs: adhesion, 285; viscoelasticity, 199
intestine, surface area, 42
intrinsic speed of muscle, 262
inulin, diffusion coefficient, 164
inviscid fluid, 130; and Bernoulli's principle, 131
iron, density, 27
isometry, 40–41; shell growth, mollusks, 56

jellyfish: buoyancy, 88; jelly (mesoglea), 181; nematocysts, 43
Jesus number, 70, 102
jetting, squid, 139, 224, 273
jib: collarbone as, 227–28; kneecap as, 267–68
joints: of frameworks, 215; of sea anemone, 212
joule, 19, 25, 62
jumping: cat, 76; click beetle, 291; flea, 291; galago, 291; locust, 269, 291; maximum height, 7, 289; spider, 274,

kangaroos: gait transition, 69; work storage in tendons, 80, 194, 292
Kelvin degree, 300, 308, 320, 326
keratin, 181; extensibility, 186; strain energy storage, 188; strength, 185
kidneys, hydraulic filter, 273
kinematic viscosity, 108
kneecap, as jib, 268–69

291

lamb, nuchal ligament, 180
laminar flow: in pipes, 125–29; turbulent and, 113–14
Laplace's law, 229–41
leaves: as cantilevers, 208–209; cell wall pores, 241; drag and flexibility, 146–48; evaporative pump, 175–76; flatness, 252; petiole, 206, 208–209; stomata, 258–59; surface area, 41; tearing, 198; thermoregulation, 302
length, 17, 19; characteristic, 46, 115; nominal measure, 45
levers, 32–33, 263–73; forearm, 33; hydraulic systems, 273; mechanical advantage, 64; muscular hydrostats, 270–

73

### INDEX

lifespan, 54 manometer, 24, 131 lift, 148-57; airfoils, 50-52; gliding, mass, 17, 19; body, 45; brain, 49, 53; 154-56; lift-to-drag ratio, 152-53, conservation of, 35-36; and falling 155-57; origin, 148-50 speed, 6, 45; heart, 49, 53; kidney, 49, lift coefficient, 152-53 53; liver, 49, 53; muscle, 49, 51-52; skeleton, 49-50; tree, 280; and weight, lignin, 181 limpet, as cone, 56–57 8,21-22line of action, 29 mate recognition: toads, 46; whirligig liquids, 92-104; diffusion rates in, 164beetles, 104 65; incompressibility, 159; internal materials: anisotropic, 13, 178; arrangecohesion, 92–94, 96; mean free path, ment, 201-224; composite, 12, 178, 159; pressure of columns, 86; resisting 180-82, 195-98; consistency, 244; cost stresses, 84; as structural materials, 13, of failure, 244; human and natural, 219-24; tensile strength, 92-94 12-13; isotropic, 12, 178; pliant, 12, lizards: acceleration, 291; amphisbaenid, 178, 180-81; requirements for beams, 269; foot setae, 249; pinnate muscle, 205-206; rigid, 178, 181-82; stiff, 12; 269; toe pads, 284; tongues, 272 tensile, 178-79 lobster (Homarus), chitin in apodemes, matter, states of, 82 179 mean free path, 159, 167 measurement, 14-18, 319-20 locomotion, cost, 309-312. See also flight, gait, motility, etc. mechanical advantage, 63-64, 264 locust: acceleration, 291; composition, mechanisms, 214-18 187; energy storage, 292; intersegmediastinum, 234 mental membrane, 186; leg muscles, mercury: density, 27; non-wetting of 270; trajectory, 296; wing as airfoil, glass, 99 152 - 53mesoglea: occurrence, 181; toughness, lodging, 213 191; Young's modulus, 184 Luna. See silkmoths metabolic rate: human fetus, 54; as lungs: alveolar area, 41; mammalian power, 26; scaling, 49, 52–53 breathing, 24-25; models, 234; relametabolic scope ("met"), 53 tive sizes, 173; simultaneous inflation, metals: in beams, 206; non-use in na-234; tracheolar area, 36; volume (vital ture, 13; thermal conductivity, 13 capacity), 49, 53; volume in diving, 86. metric system. See SI See also alveoli, breathing, bronchi Metridium. See sea anemone mice: falling, 6, 7; food consumption, 38; intrinsic muscle speed, 262; surmackerel: continuous swimming, 140; face area, 50 lack of swimbladder, 89 microfilaments, 260 Macronema (caddisfly), larval Pitot tube, micropumps, 175–76 135 - 36microtubules: hollow beams, 252; and macropumps, 175–76 motility, 259-60 mammals: backbone, 210-11; bone, 181; microvilli, 42 brain mass, 49, 53; breathing, 49–53; edible fraction, 52; flatness, 65; heartmigration, 311 beat rates, 49, 53; heart mass, 49, 53; Mimosa, motility, 255 heat capacity, 301; kidney mass, 49, models: for cell, 169-70; lungs, 234; us-53; liver mass, 49, 53; lung volume, ing Reynolds number, 117; ships, 66-49, 53; metabolic rate, 49, 52-53; mus-67, 117; uses of, 11 cle mass, 49, 51; nasal passages, 128molecular weight, 164, 256 molecules and atoms: bonding, 284; dis-29; penis, 220; scaling factors, 49–54; size range, 39; skeletal mass, 49-51 orderly behavior, 5; everyday irrele-

INDEX

vance, 4-5; random movement, 158-61 mollusks: abductin in, 180; conical shapes, 56-57; spicules, 218. See also moment of force, 31–33, 263–64, 279, 282, 284 momentum, 19, 22; conservation of, 36-37; drag and, 37, 153; lift and, 153; recoil and, 37; scaling in falls, 44; and separation of flow, 142 moon: mass and weight on, 22; motion of, 29; walking on, 22 mosquitoes: antennal hairs, 255; flight sounds, 44; larval snorkel, 87, 100 moths. See silkmoths motility, 254-76; engines, 254-63; hydration, 254-55; osmosis, 255-59; proteins, 259-62; and structure, 216. See also muscle motion: circulatory, 29; coherent and incoherent, 306; Newton's laws of, 27-28; rotational, 29, 31-33; steady, 21; translational, 28-29, 275; unsteady, 21, 28. See also motility mucus: adhesion, 284, 286, 288; as pliant material, 181; in respiratory passages, 175; snail tracks, 4; viscoelasmuscle: "catch" of clam, 25-26; collagen in, 178; contraction, 260-61; energy content, 305; force vs. work, 25; incompressibility, 271; intrinsic speed,

of, 262, 292; resilience, 189; work of, 309–312 muscles: antagonistic, 265; flight, 266–68; hydrostats, 270–73; in levers, 33, 265–72; number of, 216–17; pinnate, 269; scaling of force, work, mass, 44,

260-61; maximum stress, 292; power

muscular hydrostats, 219, 253, 270–73 muskrats, hull speed, 68 mussels, 249, 286–87 muzzle velocity, 290, 296–97 myosin, 260–61

nasal passages, flow, 128 Nasturtium, 222 natural selection, 9–10, 12 nautilus: buoyancy, 88; as cone, 56–57; safety factor, 245 neck, as beam, 206 negative pressure, 94-95 negative work, 309 nematocyst: acceleration, 290-92; aggression, 43 nematodes. See roundworms nemertean worms, hydroskeletons, 222-23 Nereocystis. See bull kelp nerves: axonal transport, 171; motility and, 22, 254; synaptic delay, 165 neural spines, 211 neutral axis. See neutral plane neutral plane, 202-204, 207 newton, 19, 21, 23, 62, 326 Newton's laws of motion, 27–28, 93, 154, 283, 293 nitrogen: bends, 89; solubility, 89 no-slip condition: Flettner rotor and, 148; Stokes' law and, 124; velocity gradients, 74, 108; viscosity, 130 nozzle: continuity and, 35; momentum and, 37 nuchal ligament, 180, 185. See also elastin nudibranchs, buoyancy, 88 nylon, strength, 185

oak tree, stability, 278–80
octopus, suckers, 286–87
olfaction, silkmoth, 111–12
orthotetrakaidecahedron, 222–23
osmosis, motility and, 255–59
ossicles, starfish, 217
oxygen: diffusion coefficients, 164; mean
free path, 159; solubility, 89; swimbladder impermeability, 91; underwater bubble, 141

packing: orthotetrakaidecahedra, 222–23; rectangular solids, 58
parabolic flow profile: consequences, 126–29; not in capillaries, 129, 167; to get total flow, 80–81
parachute, 143
parallel plates, flow between, 128–29
parenchyma, 222
partial pressure, 86; and solubility, 88
pascal, 19, 23, 326

#### INDEX

peel failure, 286–87 pendulum, 61-63 penis: erection hydraulics, 273; hydroskeleton, 220; use of liquid, 13 pentagons, as shell elements, 55 pentaradial symmetry, 56 perception: edges, 77; and stimulus gradient, 76-77 petiole: as cantilever beam, 206, 208-209; as hydroskeleton, 220 Pilobolus (fungus): ballistics, 290–91; pressure, 259, 293; trajectory, 296-97 pine: drag and flexibility, 146; habitat, 247; stability, 280; tap root, 280 pinnate muscles, 269–70 pipes: average and maximum flow speeds, 127; branching manifolds, 173-74; Hagen-Poiseuille equation, 126–27; parabolic velocity profile, 80– 81, 126; pressure and tension, 231; scaling, 231; sizes in circulatory systems, 172-73; sizes in tracheal systems, 174 Pitot tube, 134-36 plaice (flounder), lift off bottom, 157 plants. See algae, vascular plants, etc. plastron respiration, 101, 240 pliant materials, 180-81, 218 pneumothorax, 234-35 Poiseuille equation. See Hagen-Poiseuille equation polar plot, 151–52 polysaccharides: as structural materials, 179; water affinity, 255. See also celluponderal index, 65–66 pores, and surface tension, 239-41 Portuguese man-of-war, 218 Potamodytes (beetle): pressure in bubble, 141; underwater breathing, 91 power, 19, 26, 342; amplification, 292-93; induced, 154; for lift, 153-54; maximum, 53; metabolic rate (see also), 52-53; muscle, 262, 292; wheeled transport and, 275 prairie dogs, burrows, 117, 131, 133-34 pressure, 19, 23, 342; in Ascaris, 223–24; atmospheric, 24; blood, 23; in blood vessels, 232; bubbles, 236; cylinders, 231; and density, gases, 85; dynamic,

135; and flow, 130-57; gauge, 24-25; guard cells, 258-59; hydration, 255; location and, 136–37; measuring, 24; negative, 94-95; partial, 86; plant cells, 235; in shark, 224; in spider legs, 274; and volume, gases, 85 pressure coefficient, 137, 138, 342 pressure drag, 142-43 pressure drop: capillaries, 167; pipe flow, 125 projectiles: momentum, 42-43; trajectories, 293–97 propeller, 154; as airfoil, 156-57 propulsion: algae, 263; bacteria, 121; ciliary, 122; low Reynolds number, 119-22; on mucus, 199; thrust, 154, 156-57; on water surface, 99-100, 103-104 proteins: energy content, 305; engines, 259-62; enzymes, 179; hydration, 255; structural materials, 178-81 protein synthesis, 168–70 protozoa: foraminifera, 243; movement, 122, 123 pumps and pumping: ciliated surfaces, 128; gases and liquids, 93-94; macropumps and micropumps, 174-75; minimal scheme, 173; water up tree, 175 - 76Pythagorean theorem, 31, 226, 325

quantification, 14–15, 319–20 quantities, dimensionless. See dimensionless quantities quantities, physical. See specific quantities Quetelet index. See ponderal index

rabbit: mesenteries, 36; skin, 191 radius of curvature, 228, 241 ram ventilation, 140 random walk, 160–61, 164 rat, falling, 7 rates and gradients, 70–77; in motion, 28; as slopes, 72 reaction wood, 246 red blood cells; in capillaries, 129; and velocity profile, 129 redundant structures, 214–16 resilience, 188, 189–90, 195 resilin, 180, 189; flea, 292; work storage, 80

INDEX

respiration. See breathing restitution coefficient. See resilience Reynolds number, 113-17; boundary layer thickness, 110; character of flow, 116, 120, 130, 142; cilia and flagella, 175; drag coefficient and, 143-46; laminar and turbulent flow, 114; liftto-drag ratio and, 153; trajectories and, 294; type of drag and, 142–43; very low Re, 119-25 rib cage, in breathing, 24-25 right angles, 12, 57-59 rigid materials, 181-82 rigid surfaces, 251-53 rods. See cylinders Rohrer body-build index. See ponderal index root hairs, surface area, 41 rotational motion, 29, 31-33 rotifers, 275 roundworms (nematodes): burrowing in flesh, 43, 224; high pressures, 231; hydroskeleton, 220, 223-24 rubber: strain energy storage, 188; viscoelasticity, 198-99. See also abductin, elastin, resilin running: cost of transport, 311; Froude number, 68-69; and slope, 310, 312

safety factors, 242-47 sagging, 225-28 samaras, Flettner rotors, 150 sand dollar: larval arm spicules, 210, 247; pentamerousness, 55 sarcomere, 261-62, 271 sauna bath, 75 scalar quantities, 29 scale, spring, 22 scales of measurement, 319-20 scaling. See size and scaling scaling factors, 49-54 scallops, abductin in, 180 Scholander bomb, 95 sea anemones: bending, 212; habitat and, 246; hydroskeleton, 220; mesoglea, 181, 191; use of water, 13; viscoelasticity, 199 sea condom. See Halosaccion sea pens (coelenterates), 247 sea squirts. See ascidians

sea turtle. See turtle, sea, y'see seawater: density, 27, 108; surface tension, 97; viscosity, 108 second moment of area, 202-205; habitat and, 247 seeds and fruits: ash, 150; cellulose fluff, 179; dandelion, 28; hydration, 254-55; imbibition, 255; maple, 149; shooting, 263; tulip poplar, 150 semicircular canals, 58 separation of flow: airfoil, 151; bluff body, 142 sexual peccadilloes: Argyronetes, 92; mosquitoes, 255; penises, 220, 273; silkmoths, 111-12; toads, 46; whirligig beetles, 104 shape: beams, 201-211; bones, 205; columns, 211-13; and flexural stiffness, 202-205; hydrostats, 219-21; pentamerousness, 55–56; right angles, 57–58; and second moment of area, 202-205; shells, 56-57; streamlining, 145 sharks: hydroskeleton, 220, 224: internal pressure, 224; lack of swimbladder, 89; use of water, 13 shear rate, 107, 302 shear stress, 83-84; adhesion and, 284-85; fluids vs. solids, 106-107 shells, supportive systems, 253. See also eggshells shells, clam: stiffness, 12 shells, mollusk: composition, 182; compressive strength, 186; density, 27; extensibility, 186; toughness, 191; Young's modulus, 184 ships: Froude number, 67-68; hull shape, 281–82 shock absorbers: and heat, 303; hedgehog spines, 6, 76; nuchal ligament, shock waves, 103 shrew, skeletal mass, 50 SI (Système Internationale), 15–16, 326

silica, sponge spicules, 182

silk, spider, 177-78, breaking strength,

strain energy storage, 188, 195;

16; density, 27; extensibility, 186, 195;

strength, 185; Young's modulus, 184

silkmoths: antennae, 111-12; silk, 195

silk, insect, 177-78, 195

### INDEX

siphon, squid, 224 spicules: as rigid materials, 182; sand size and scaling, 5, 42-54; acceleration, dollars, 210; sponges, 182; as struts, 290; airfoils, 152; allometry, 45–54; 216–18, 251; as trusses, 210 ascending slopes, 312; bacteria, 5, 38, spiders: acceleration, 291; book lungs, 41; bubbles, 237; buoyancy, 44; cells, 128; chitin in, 179; hydraulic exten-168-71; cells vs. molecules, 5; cost of sors, 274; internal pressures, 274. See transport, 311; diffusion, 165; drag, also silk, spider 43–44; Euler bucking, 212; falling spines, as shock absorbers, 6, 76 speed (terminal velocity), 6–7, 45; sponges: dispersed strut system, 251; hanging on wall, 284; heat loss, 172; pumping, 175; spicules, 182, 216-18 height, 43; intrinsic muscle speed, spontaneity: and gradients, 73; and sec-262; momentum, 44; organisms, 5; ond law of thermodynamics, 307, 312pitch of sound, 44; use of projectiles, 42-43; size indices, 45; speed, 289; spores: drag, 124; falling speed, 122; surface tension, 44; trajectories, 294shooting, 262, 290-91 97; whale, 5, 38, 41 squid: arms, 272; hydroskeleton, 220skeleton: insect, 250-51; mammalian, 24; jetting, 273; pressures in flow, 117; 49-50; vertebrate, 250, 252 refilling, 139-41; tentacles, 13, 271skimming flow, 113 72, 291 skin: collagen in, 178; pliancy, 181; squirrels, falling, 6 toughness, 191 stability, gravitational, 35, 278-83 skin friction, 142-43 starfish: adhesion, 286; adjustable stiffskull: as dome, 253; snake, 215, 270; suness, 251; ossicles, 196; pentameroustures, 283 ness, 55-56; tube feet, 220, 273, 287 slope on graph, 47, 71–72 statically determined structures, 214–16, slugs: mucus, 181; propulsion, 199 snail: as cone, 56-57; embryoes in aspic, static orifice, 131-32, 134-35, 136 164; slime trail, 4 steel: extensibility, 186; strain energy snake: skull, jaw, 215, 270 storage, 188; strength, 185; toughness, snorkel: depth limit, 87; wetting it, 100 191; Young's modulus, 184 soaring, 156 Stefan adhesion, 285 soil: capillary water, 240; tensile stems, herbaceous: hydroskeletons, 220strength, 278 22 solids: chemical composition, 177–78; Stenus (beetle), detergent propulsion, 100 stiffness: absence in fluids, 106; in naclassifications, 177–82; properties, 182; resisting stresses, 84, 106-107 ture, 12; vs. strength, 213, 216, 278-Sordaria (fungus), spore trajectory, 297 80. See also flexural stiffness, Young's sound, speed of, 105, 117 modulus of elasticity stimulus intensity gradients, 76-77 spasmoneme, 123 Stokes' law, 123-24, 130 specific heat capacity. See heat capacity speed, 17, 19-20, 342; vs. distance, 70; stomata, motility, 258-59 stony materials. See rigid materials intrinsic, 262; and jump height, 289; scaling in falls, 44-45; and size, 289; strain: dimensionlessness, 18, 63; and surface swimming, 68, 100 stress, 7, 182-83; in tensometry, 182-83; in work of extension, 79 speed advantage. See distance advantage spheres: close packing, 222; drag, 124, strain energy storage. See work of exten-137; drag coefficients, 144; flow sion around, 141-42; Laplace's law, 230, streamlined body: drag, 145; pressure 233-36; pressure distribution, 137-38; distribution, 137-38 trajectories, 294-96 streamlines, 117-19

streamlining, 119, 143, 145 strength, 185; compressive, 186; muscle vs. tendon, 261; vs. stiffness, 213, 216, 278-80; from stress-strain graph, 79, 183 stress, 19, 23, 342; compressive, 83; force concentration, 196; hoop and longitudinal, 233; muscle, 260-61, 292; shear, 83; and state of matter, 84; vs. strain, 7; tensile, 82-83; torsional, 83; true, 184ff; walls, 232-33; in work of extension, 79 structures, 201-224; internally pressurized, 218-24; mechanisms, 214-16; redundant, 214-16; statically determined, 214-16. See also beams, columns, frameworks, trusses strutted systems, 249-51 Styela (ascidian), Pitot tube, 135 submarine, 86-87 succulence, 302 sucrose, diffusion coefficient, 164 suction: adhesion, 286-87; feeding, 270. See also negative pressure summations, 77-81 sunflowers, 220-22 supersaturation, 237-38 supportive systems, 242-53 surface area: alveoli, 41; capillaries, 42; cube, 39; cylinder, 40; in drag coefficient, 69; grass, 41; heat loss, 38, 52; intestine, 42; and length, 46; planform, 151-52; scaling, 49-50; sphere, 40; tree, 41; work to make, 97 surface tension, 3, 97, 236-41, 342; adhesion, 285; internal cohesion, 95-98; leaf pores, 241; scaling, 44; spore shooting, 263; surfaces waves, 101-102; walking on water, 70 surface-to-volume ratio, 3, 39-42, 172; flatness index, 64-65; nasal passages, 128; pipe flow, 128; predation, 43; shape and, 54 surface waves. See waves surfactant. See detergent suspension feeding, 112, 113-14 swimbladder, 88-89; buoyancy, 281; countercurrent exchanger, 91; filling, 90 - 91

swimming: cost of transport, 310–12; surface, 68, 82–83 symbols: list of, 342; of physical quantities, 19 symmorphosis, 168 synaptic delay, 165 synovial fluid, 181 Système Internationale. See SI

technology. See human technology teeth: design, 192-93; materials, 182, 197; mechanical advantage, 266; pulp, 192; stiffness, 12. See also dentine, temperature, 300-301, 342; and heat, 299; molecular motion, 158; tolerance by organisms, 13 temperature gradients, 73 tendons: collagen in, 194; extensibility, 186, 193-94; safety factor, 245-46; scaling of force, 44; storing work, 80, 179; strain energy storage, 188, 194; strength, 185; stress-strain graph, 80; Young's modulus, 184 tensegrity, 216 tensile materials, 178-79, 251 tensile strength. See strength tensile stress, 82-84; adhesion, 284-86; liquid column, 92-94; safety factor, 245; tensometry, 182-83; in trees, 94tensile systems, 248-49 tension, 229-30, 342; in catenary, 227; around circle, 228; gas in liquid, 90; in hydroskeletons, 218; peeling and, 286;

225–27
tensometer, 182–83
tentacles, squid: acceleration, 291; muscular hydrostat, 271–72; use of water, 13
terminal velocity, Stokes' law, 124. See

and pressure, 229-30; and sag in wire,

also drag, falling, gravity thermal conductivity, 13; and diffusion coefficient, 164 thermodynamics, first law of, 302–305, 308. See also conservation of energy thermodynamics, second law of, 306–308 thermoregulation, 301–302

#### INDEX

thrust, 154, 156-57 tympanic bulla, density, 27 timber: beam, 208; density, 27; strength, 185; vs. wood, 193; Young's modulus, umbilical cord, 181 184. See also wood units, 15–19, 326 time, 17, 19, 342 toad, size and sound, 44 valves: pumps, 174-75; roundworms, tobacco mosaic virus, diffusion coefficient, 164 van der Waals force, 284 tongues, muscular hydrostats, 271-72 vascular plants: burrs, 284; cell prestorpor, 52–53 sures, 235, 257-59; cellulose in, 179; torsional stress (twist), 83; in fiberclimbing, 259; negative pressures, 94wound cylinder, 220 95, 231, 240; size range, 39; surface toughness, 190-91; and composites, 195 area, 41. See also trees towels, 99 vectors, 29-33 trabeculae, 213-14, 216 velocity, 19-20, 31, 342. See also speed, tracheae, insect: aggregate cross-secterminal velocity tional area, 174; diameter of smallest, velocity gradients, 74-76; boundary lay-158; diffusion in, 166 ers, 108-111; and drag, 111; on imtracheoles of lungs, 36 pact, 75-76; no-slip condition, 74, trajectories, 293-97 108; and Reynolds number, 116 translational motion. See motion ventilaton: of burrow, 134; ram (fish), transpiration of leaves, 94, 240 transport, cost of, 310-12 Venturi tube, 131–32 trees: angle of trunks, 12, 58; branch Venus's flytrap, 255 strut systems, 249; drag, 243, 244; vertebral column: adhesion, 285; as drag and flexibility, 146-48; embobeam, 206 lisms, 238; habitat and, 247; loading villi, 42 branches, 208; pumping water, 175vines, as tensile systems, 248 76; reaction wood, 246; safety factor, virus. See tobacco mosaic virus 243; shedding leaves, 9; stability, 278viscoelasticity, 189, 198-99; of pliant ma-80; surface area, 41; tensile stress in terials, 181; and Young's modulus, 199 xylem, 84, 94–95; transpiration, 94 viscosity, 105-129, 342; air, 108; and triangles: in strutted systems, 250; in heat, 303; measuring, 125; and Reyntrusses, 210 olds number, 114–16; seawater, 108; true stress, 184ff and separation, 142; Stefan adhesion, trunk, elephant: muscular hydrostat, 285; water, 108 viscous entrainment: vs. Bernoulli's printrusses, 209-211 ciple, 113; prairie dog burrow, 134 tube. See cylinder viscous forces, in Reynolds number, 115 tube feet: adhesion, 286-87; hydraulics, vital capacity, 53 volume, 17, 19-20, 342; hydroskeletons, tuna, thrust of tail, 156 221; and mass, 44; of solids, 39-40 tunicate. See ascidian vortices: behind blackflies, 113; circulaturbulent flow: absence at low Reynolds tory motion, 29; behind cylinders, number, 119; vs. laminar, 113-14; 112; low Reynolds numbers, 119 noise, 127 vulture, wing truss, 210 turgor, 257 turtle: shell as dome, 253 turtle, sea: hull shape, 283; lift of forewalking: Froude number, 68-69; on legs, 156 water, 70, 99-101

INDEX

water: capillarity, 98–99; density, 108; diffusion coefficients in, 164; heat capacity, 301; incompressibility, 96, 218-24; structural material, 13; surface tension, 95-98; surface waves, 101-104; tensile strength, 92-94; walking on, 70, 99-101 water strider, 100 watt, 19, 26, 326 wavelength, 101-102, 342 waves, 101-104; bow, 67; capillary, 101-102; gravity, 101-102; stern, 67; whirligig beetles, 103-104 weight: as force, 21; and mass, 8, 21-22; on moon, 22; tree, 278-80 wettability, 97-99 whales: density of tympanic bulla, 27; size, 5, 38, 41; skeletal mass, 49, 51 Wharton's jelly, 181 wheels, 274-76 whirligig beetles: echolocation, 104; surface waves, 103-104 wind: on leaves, 146-48; on tree, 243-44, 278-79. See also drag, fluid flow, etc. windlass, 32-33 wind-throw, 278-80 wings. See airfoils, flight, lift wood: anisotropy, 182, 193; composition, 181–82; compressive strength, 186, 193; density, 27; energy content, 305; reaction, 246; strain energy storage,

188; strength, 185; vs. timber, 193; toughness, 191 wool. See keratin work, 7, 19, 25-26, 342; and efficiency, 64; and heat in gas, 303-304; to get lift, 153; in locomotion, 275, 309-312; of muscle, 51; negative, 309; in surface tension, 96-97 work of extension (strain energy storage): collagen, 193-94; in jumping, 292-93; kelp, 195; and safety factor, 246; spider silk, 195; from stress-strain graph, 79-80, 183, 187-88; units, 187 work of fracture. See toughness worms: crawling, 273; use of water, 13. See also annelids, flatworms, nemerteans, roundworms

xylem: hydrophilic surface, 237; negative pressure in, 94–95, 231; tensile stress, 84, 94–95; and water transport, 94

Young's modulus of elasticity, 183–84; bone, 193, 212; chitin of plastron, 240; in flexural stiffness, 202; guard cells, 258; and habitat, 247; and length, 217; teeth, 193; wood, 193

Zoothamnium (protozoan), spasmoneme, 123