CONTENTS

ACKNOWLEDGMENTS	ix
PREFACE TO THE PRINCETON SCIENCE LIBRARY EDITION	xi
PREFACE	XV
CHAPTER 1. What Is It about Planet Earth?	1
CHAPTER 2. Life before Oxygen	13
CHAPTER 3. Evolution of Oxygenic Photosynthesis	26
CHAPTER 4. Cyanobacteria: The Great Liberators	41
CHAPTER 5. What Controls Atmospheric Oxygen Concentrations?	56
CHAPTER 6. The Early History of Atmospheric Oxygen: Biological Evidence	72
CHAPTER 7. The Early History of Atmospheric Oxygen: Geological Evidence	85
CHAPTER 8. The Great Oxidation	98

CHAPTER 9. Earth's Middle Ages: What Came after the GOE	110
CHAPTER 10. Neoproterozoic Oxygen and the Rise of Animals	123
CHAPTER 11. Phanerozoic Oxygen	138
CHAPTER 12. Epilogue	153
NOTES REFERENCES	159 175
INDEX	191

CHAPTER 1 What Is It about Planet Earth?

I'm sitting on the train, as I often do, traveling between Odense and Copenhagen. We've just pulled from the stop at Ringsted. I look out the window. The scene is typical Danish countryside of mixed farmland and forest. I pass cows grazing lazily in the field, and beyond them, a farmer is cutting hay. High above, a hawk searches for mice in the uncut grass. I love this landscape. It reminds me of the Ohio countryside where I grew up. Not spectacular, but somehow comforting and reassuring; an honest landscape not prone to bragging or trickery. I squint, and the landscape merges into a mass of green, the cows become ghosts in the distance. I open my eyes again, and we pass a small patch of dense forest (or at least what passes for forest in Denmark). My mind wanders and I reflect on what I see. Denmark is a small country and the land, including the forests, is heavily managed, so the diversity of life isn't terribly high. You could to go the rain forests of Costa Rica or Brazil and be far more impressed with the tropical birds, frogs, insects, and the abundant greenery. Still, even in Denmark, the landscape is brilliant green and teeming with life. Indeed, no matter how you look at it, Earth is defined by abundant and diverse life. The question that preoccupies me now is why?

One might suggest that all the life we see is simply a consequence of a long history of biological evolution on Earth. In his wonderful book Life on a Young Planet, my colleague and good friend Andy Knoll from

2 • Chapter 1

Harvard University documents the changing face of life during the first four billion years of Earth history. He shows how a variety of biological innovations, like the invention of oxygen-producing photosynthesis, for example, fundamentally shaped the history of life. After oxygen-producing organisms first evolved, other organisms that use oxygen followed, and they then prospered, multiplied, and evolved into yet other oxygen-utilizing life forms. Eventually this led to animals, the most biologically complex of all organisms on Earth. With no oxygen, there would be no animals. So, clearly, innovations during biological evolution have shaped, evened defined, the biosphere. But does evolution alone explain the bounty of life on our planet?

To consider this question, we quickly compare Earth and Mars. Scientists still hold out for the possibility of life on Mars: after all, Mars is the same age as Earth and there is some evidence for at least occasional surface and subsurface water on the planet. Even as I write, NASA's rover *Curiosity* is probing the Martian surface for signs of water, and for clues as to how water interacts with the planet's surface environment. As we will discuss more fully below, and as the tenet goes, where there is water, there may be life. Yet, if there is life on Mars, it doesn't jump up and down like the Whos in Whoville, crying: "We are here, we are here, we are here!" In contrast, if intergalactic explorers probed Earth as we presently probe Mars, it would be impossible to miss Earth's abundant life. The question is, quite simply, why is there so much life on Earth?

To answer this we will for the moment abandon considerations of evolution and start with a more fundamental question: What are the basic ingredients needed for life, at least for life as we know it? As I digest my lunch of lasagna leftovers, I proclaim that food must be important. Yes indeed, but not all organisms can eat lasagna, and I'm reminded of a whole class of creatures who don't eat any kind of organic matter at all, but rather make their cells from simple inorganic substances. Plants fit this bill, growing from carbon dioxide and water and using the energy of the Sun to combine these compounds into cell biomass and oxygen.

Many other types of organisms also fit the bill, and most of them do not use the Sun for energy. Rather, they gain their energy from promoting the reaction between inorganic substances in so-called oxidationreduction reactions, where electrons are transferred during the reaction.

What Is It about Planet Earth? • 3

To probe this idea further, let's think of salt. Put salt in water and it dissolves in a reaction that yields energy, but organisms cannot grow from the energy of this reaction; no electrons are transferred; and the chloride and sodium atoms have the same charge in the salt crystal as they do in the solution. Now think of cows. Cows house enormous populations of microbes in their digestive system, and many of them form methane. Many of these microbes, so-called methanogens, grow quite happily by combining hydrogen gas and carbon dioxide to form methane gas. No light is used, electrons are transferred, the methanogens are happy, and so, presumably, are the cows. Therefore, a basic necessity for life is energy, which is supplied either from light, or from a myriad of different oxidation-reduction reactions. We will look at these issues in more detail in the next chapter, but for now, it's sufficient to highlight that energy is critical for life.

Energy is critical, but we need other things too. Cells are made up of carbon, oxygen, hydrogen, nitrogen, phosphorus, and sulfur as the major ingredients, with a whole suite of trace metals and other elements as well. All of these compounds are critical in the construction of basic cellular components like the cell membrane, genetic material (DNA and RNA), and all of the proteins and other molecules used in running the cell's machinery.

Another basic ingredient of life, at least for life as we know it, is a stable aqueous (meaning water) environment. Life likes it wet! Many organisms, of course, have evolved to live outside of the watery sphere of our planet, but they still all need water to live. So do we, but we just pack it inside our bodies. So, whether we're talking about desert cacti, spiders, snakes, trees, or the smallest bacteria, they all need water. Indeed, this is one reason, as mentioned above, why the search for life in our solar system and beyond is tantamount to searching for liquid water. "Wait," you might say, "I've heard about small bacteria and algae living in sea ice and even in glacial ice in some cases." Very true, but if the organism is alive and growing,2 it has access to liquid water. In the case of sea ice, this could be brine channels formed as salt is excluded from the growing ice; or for glaciers, high pressure induces ice melting near the bottom, providing an aqueous environment for organisms. "Well then," you might add, "I've heard that the temperature record for a living organism is about 120°C (248°F), well above the boiling point

4 • Chapter 1

of water at Earth's surface." True again, but these organisms are only found at high pressures, like deep in the ocean where the boiling point of water exceeds the upper temperature limit for life.

What is the big deal about water anyway? For one, water has special properties. Because of its physical structure, a water molecule is bipolar, which means that it is slightly charged with a positive charge on one side and a negative charge on the opposite side. This condition allows it to dissolve all kinds of so-called ionic chemical substances (also charged), many of which constitute the building blocks of life. These include nutrients like nitrate, ammonium, and phosphate, which form into critical components of DNA, RNA, and cell membranes, as well as a host of other substances including sulfate and a variety of trace metals, which help to build the biochemical machinery of the cell. Not only does water dissolve the substances, but these substances are also transported by diffusion and advection; and this movement provides a means by which they can be supplied to the cells. Water also provides the medium by which waste products can be exported from the cell.

The bipolar nature of water also allows for the formation of cell membranes. These separate the external environment from the inside of the cell where the business of life is conducted. Cell membranes are made up of special (phospholipid) molecules with one end containing water-loving chemical groups (hydrophilic) and the other end containing water-repelling chemical groups (hydrophobic). In forming a membrane, the water-loving side reaches out toward the water phase, while the water-repelling side reaches in and lies foot to foot with another row of water repelling bits whose water-loving sides reach out in the opposite direction. This lipid bilayer joins in a circle forming the cell membrane, separating the inside of the cell from the outside environment. All in all, from its ability to dissolved and transport the chemical constituents of life, to its ability to host membrane structures, water is a unique chemical substance.

Or maybe we're thinking too small, too Earthcentrically. Water is the fluid of life because its properties are perfect for the type of life that we know. Perhaps a different type of life could have evolved in different solvents with different properties. It's hard to rule this possibility out. Alternative potential solvents are sometimes named. These include am-

What Is It about Planet Earth? • 5

monia, methane, sulfuric acid, or hydrogen fluoride (HF); at the right temperature and pressure, they share some (but not all) of the properties of water. Aside from numerous science fiction books and movies, there is also an active scientific literature on this fascinating topic. Discussions of life in these alternative solutions are, however, highly speculative; one might even say imaginative. Therefore, I'll take the easy road, and as far as we know for certain, water is the perfect and only solvent for life.

To summarize, we have highlighted three basic ingredients for life. These are energy, the chemical components that make up cells, and water. We will see that the availability of each of these is linked by special properties of planet Earth.

Let's start with water. It's no secret that Earth is a watery planet. From NASA's spell-binding images of our "blue planet" from space, to the "Rime of the Ancient Mariner" by Samuel Taylor Coleridge, we are reminded of the boundless expanse of the global oceans. We will not concern ourselves at length with why Earth has so much water—likely a combination of early degassing from its interior as well as delivery from comets—but rather with why the water we have is, well, wet. The answer of course is that most of the planet is of the right temperature, lying between the boiling and freezing points of water. But why? Here, at least in part, we are lucky. We can think of it like this. Earth sits at a certain distance from the Sun as dictated by its orbit. The Sun has a certain brightness as dictated by its size and chemical composition.

The amount of the Sun's warmth intercepted by Earth depends on a combination of these two factors. However, as all planets of our solar system are warmed by the same Sun, let's consider distance from the Sun as the key variable. It's easy to imagine that if Earth was closer to the Sun it would receive more warmth, and less warmth if further away. As it turns out, Earth resides at a distance from the Sun where the warmth is sufficient to allow liquid water to persist. If closer to the Sun like Venus, the temperature becomes too hot, and liquid water is boiled away into the atmosphere in a so-called runaway greenhouse. Some of this water may even be completely lost through chemical processes in the stratosphere. If further from the Sun, like Mars, the surface would become too cold and therefore frozen. The zone defining the optimal

6 • Chapter 1

distance from the Sun (or any other star in fact) where liquid water can persist is known as the "habitable zone," which is sometimes referred to as the "Goldilocks Zone."³

But distance from the sun is only part of the story. Earth has an atmosphere with greenhouse gases that contribute to surface warming. Without any greenhouse warming, and with surface albedo as it is,⁴ Earth would be frozen with a temperature of -15°C (5°F) or so. Therefore, discovering the habitable zone of a planet is more involved than described above. This requires some rather complex heat-budget calculations, which were first attempted decades ago; however, the most widely referred to models were presented in 1993 by Jim Kasting of Penn State University, along with his coworkers Daniel Whitmire and Ray Reynolds. Jim has been a leader in applying his detailed knowledge of atmospheric chemical dynamics to understanding the evolution of both Earth's atmosphere and atmospheres beyond our own. To attack the habitable zone issue Jim tried, through his model, to keep liquid water on the planet by changing atmospheric CO₂ (carbon dioxide) levels, as these control greenhouse warming. One can easily imagine that different atmospheric CO₂ levels would be needed to maintain a habitable zone in response to differences in solar luminosity, which is basically the intensity of a star; and differences in solar luminosity are expected as one travels either away from or toward the star, or in our case, the Sun.

With Jim's model, the outer reaches of the habitable zone are encountered when atmospheric CO_2 concentrations become so high that CO_2 clouds form. These clouds block solar radiation from reaching the planet surface and thereby increase planetary albedo. The end result is a frozen planet. There were other considerations in Jim's modeling that I won't get into here, but in the end, Jim and colleagues concluded that Mars probably lies just outside of the habitable zone. Likewise, Venus also lies outside of the habitable zone. In this case, solar luminosity is simply too high. Even with miniscule levels of atmospheric CO_2 supplying minimal greenhouse warming, the planet surface becomes so hot that water boils into the atmosphere. This situation generates a runaway greenhouse and very high surface temperatures because water is also a good greenhouse gas (and the most important on the modern Earth!).⁵ By some of Jim's calculations, the inner edge of the habitable zone may

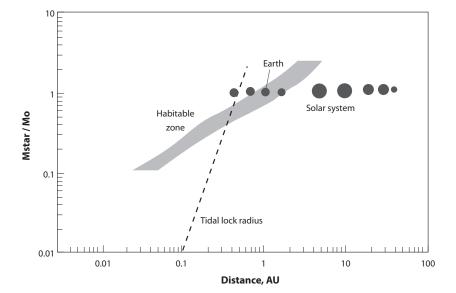


Figure 1.1. Habitability zone as determined by Jim Kasting and colleagues including the placement of the eight planets (plus Pluto) of our Solar System. One AU is one Earth distance from the Sun. The vertical axis shows the ratio between the mass of a star and the mass of the Sun. At distances less than the tidal lock radius from a star, planets become locked in rotations around their axis with small integer values relative to the time scale of the planet's orbit around the star (Mercury rotates 3 times on its axis for every 2 orbits around the Sun). In some cases a planet can orbit with a 1/1 rotation to orbit ratio, with the same side of the planet always facing the star. Planets within the habitable zone of small stars are within the tidal lock radius. From Kasting (2010).

lie as close as 95% of the distance from the Sun to Earth. This is about 4.5 million miles closer to the Sun than we are. The results of Jim's calculation are presented in figure 1.1, and by all accounts we are lucky; Earth sits snugly within the habitable zone of the Sun.

If this is true, why do we keep entertaining the possibility for life on Mars? Consistent with Jim's habitable zone arguments, there's no evidence for continuously standing surface water on Mars, at least not now. But during decades of satellite and surface exploration, including the recent, highly successful rovers, *Spirit* and *Opportunity* of the Mars Exploration Rover Mission (MER), and the THEMIS (high resolution thermal imaging system) imager onboard the Mars Odyssey orbiter, water has flowed and still does occasionally flow on Mars. This is evidenced by all sorts of channels, ditches, pools, and sedimentary rocks,

8 • Chapter 1

whose formation is best explained by the action of water. Indeed, the *Curiosity* rover recently landed on the Mars surface and is, as I write, exploring the surroundings of its landing site, which appear to be an ancient river bed! All of this is in addition to spectroscopic observations of water just at and below the soil surface. So, Mars demonstrates that liquid water may be found, at least occasionally, somewhat outside of the habitable zone. By contrast with Earth, however, any life on Mars, if it exists at all, is not obvious and is seemingly restricted in its abundance and occurrence. Therefore, Mars does not and cannot support the magnitude of life that we find on our planet.

Buried in the discussion of Jim Kasting's habitable zone calculations is the idea that over long time scales, Earth actually regulates its own temperature. This idea was first raised by the cosmologist Carl Sagan. Sagan contributed greatly to our understanding of the composition of planetary atmospheres, and he helped frame the discussion about the search for life in the universe. He was an enormous inspiration to those interested in science through his PBS (Public Broadcasting System) program COSMOS, which was originally broadcast in 1980. However, of more importance here, he and his colleague George Mullen asked why Earth didn't freeze early in its history when the Sun was much less luminous than today.6 Geological evidence points to the more or less continuous presence of liquid water for as far as back as 4.2 billion years ago. Yet, with the present abundance of greenhouse gases in Earth's atmosphere, the planet should have been frozen under the reduced luminosity of the early Sun. This is famously known as "The Faint Young Sun Paradox." Sagan and Mullen argued that this paradox could be solved with a high concentration of greenhouse gases like ammonia and methane; these gases are unstable in our present oxygenated atmosphere but could have been present in the oxygen-poor atmosphere of early Earth. It was soon pointed out, however, that ammonia would be photochemically unstable, even in an oxygen-free atmosphere. This generated a serious problem for the model. However, in a true intellectual quantum leap, Jim Walker, Paul Hays, and Jim Kasting recognized that CO₂ may well have been the greenhouse gas mitigating against an early frozen Earth. Okay, CO2, big deal. But there is much more to this proposal, because Walker, Hays and Kasting also demonstrated a mechanism that actually regulates surface temperature.

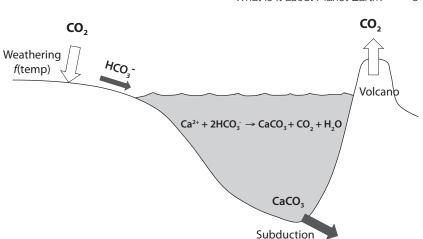


Figure 1.2. The carbon cycle as it acts to regulate Earth's surface temperature. Redrawn from Kasting (2010).

The logic goes like this. Carbon dioxide is constantly introduced from the interior of Earth into the atmosphere. The CO₂ comes from volcanoes and from hydrothermal vents at the bottom of the ocean. However, if we look carefully, we see that these CO₂ sources, at least most of them, originate as a result of Earth's continuous churning in a process known as plate tectonics. In practice, the loss of heat from Earth's interior (estimated at some 5000°C in the middle) causes the mantle (the layer just below Earth's crust) to move and mix in a process known as convection. This convection creates regions of volcanic outpourings, mostly into the oceans, that divide Earth's crust into a series of mobile plates riding on the mantle below. As new ocean floor is formed by this process, old ocean floor is also injected back into the mantle in a process known as subduction (see fig. 1.2). This is a violent process generating most of the major earthquakes, and it is a prime builder of mountain ranges. So, CO2 is liberated to the atmosphere, but it doesn't accumulate forever. Indeed, it is actively removed by a process known as chemical weathering, where the CO₂ reacts with rocks at Earth's surface.⁷ A particularly interesting aspect of weathering is that it is temperature sensitive; it goes faster at higher temperatures.

With this in mind, we can start to imagine how planetary-scale temperature regulation might work. If atmospheric temperature gets too

10 • Chapter 1

high for some reason, the weathering rate will increase, and CO_2 will be more actively removed from the atmosphere. The increased removal of CO_2 will in turn cause the CO_2 concentration in the atmosphere to drop, reduce the greenhouse warming, and as a result, the temperature will drop. Therefore, a balance point is reached between CO_2 concentration, temperature, and the removal rate of CO_2 by weathering. Suppose for some reason Earth becomes completely frozen. This may have happened a few times during the course of Earth's history. If so, we need not worry, at least when considering long geologic time scales. Tectonic processes ensure that CO_2 will continuously be added to the atmosphere. Without liquid water, there will be no CO_2 removal by weathering, so the CO_2 concentration will build up until temperatures rise to the point where ice melts, and weathering commences again.

During weathering, CO_2 is converted to a soluble ion known as bicarbonate (HCO_3^-), which precipitates as minerals like calcite and dolomite (think of clam shells and coral reefs) in the oceans. These minerals are decomposed back to CO_2 during the subduction processes, thus completing the cycle. To summarize then, Earth, through the cycling of rocks (also known as the rock cycle), has an active control mechanism for temperature, which is enabled by the churnings of the mantle and the associated process of plate tectonics. Therefore, plate tectonics is also critical in allowing Earth to enjoy a continuous record of water through most of its long history.

This is a beautiful story, but is it true? I think that it must be, at least in its broad detail. Some geological evidence, however, points to early-Earth concentrations of atmospheric CO₂ that were too low to warm an Earth illuminated by a less powerful Sun.⁸ Jim Kasting has again stepped into the discussion by suggesting that methane may have been, harking back to Sagan and Mullen, a major greenhouse gas early in Earth history. This would help explain the low CO₂ concentrations.⁹ This may also be true, but the methane cycle does not obviously lend itself to robust temperature control like CO₂. Very recently, Minik Rosing and colleagues (we meet Minik again in chapter 7) argued that maybe we've been thinking about the problem incorrectly. They suggest, in fact, that maybe the albedo of early Earth was much lower than today, ¹⁰ so perhaps we didn't need as much greenhouse gas to warm the planet. Jim Kasting isn't terribly happy with this idea, but lower con-

What Is It about Planet Earth? •

centrations of atmospheric CO_2 can satisfy both the geological evidence for ancient CO_2 levels and produce enough of a greenhouse effect to warm the planet in the presence of a faint young Sun. Therefore, the CO_2 control mechanism as originally described by Walker and Kasting can still work to regulate Earth's temperature through time, even if ancient CO_2 levels were lower than we once thought.

Now back to the original question. It's one thing to have water, but it's another thing to support an abundant biosphere. As mentioned in the beginning of this chapter, life is nearly everywhere on Earth's surface. But how does our planet support it? Let's try some calculations. Photosynthetic life on Earth, working at present rates of photosynthesis, would deplete all of the CO₂ in the atmosphere in nine years.¹¹ Likewise, photosynthetic life in the oceans would deplete all of the available phosphorus, a key nutrient in making aquatic plants and algae, in just 86 years. 12 If this is true, how can we support so much life over long time scales? Part of the answer is that most of the CO2 and nutrients tied up in plants and algae are liberated back to the environment as these organisms die and are consumed and decomposed by all manner of creatures from giant pandas to bacteria. Okay, but still some plant material and phosphorus aren't liberated back to the environment, and instead these things get buried in sediments and formed into rock. If we redo our calculations based on these rates of loss, we find that CO₂ would be depleted in 13,000 years, ¹³ and phosphorus in 29,000 years. These are still pretty short time scales compared to the billions of years that life has existed on the planet and the hundreds of millions of years that plants and animals have populated the land surface. How do we explain this?

The answer is actually quite simple. We appeal to the same tectonic processes we used to explain the role of CO_2 in solving the faint young Sun paradox. Luckily, when materials are sequestered into marine sediments on Earth, they are not permanently trapped there. The tectonic movements of the planet ensure that they are not. Through the processes of subduction, mountain building, and sea-level change (sea level is influenced by both tectonics and climate) most of these materials will be exposed again to the weathering environment. During weathering, organic matter is turned back to CO_2 , phosphorus is liberated again to solution, and a whole host of other ingredients for life become available

12 • Chapter 1

once more to support the growth of organisms. The key here is that the magnitude of life we enjoy on Earth is possible because of the active recycling of life's constituents by tectonic processes. This was first recognized over two hundred years ago by James Hutton, whom we also met in the Preface. He wrote the following in his treatise *Theory of the Earth* (1788):

The end of nature in placing an internal fire or power of heat, and a force of irresistible expansion, in the body of this Earth, is to consolidate the sediment collected at the bottom of the sea, and to form thereof a mass of permanent land above the level of the ocean for the maintainment of plants and animals.

Finally, what about energy? I will say much more about energy in the next chapter, particularly about the types of energy needed for life, many of which you normally wouldn't think about. On modern Earth though, most (probably over 99%) of the energy to the biosphere ultimately comes from the Sun, driving the photosynthesis of plants, algae, and microbes (known as cyanobacteria; we will hear much more about them in later chapters) that produce organic material and oxygen. These products of photosynthesis are biologically recombined in Earth's great food chains. For example, copepods in the ocean eat algae, small fish eat the copepods, larger fish eat the small fish, and even larger fish eat these. These fish die and are decomposed by a variety of bacteria, which in turn are consumed by other organisms. The chain goes on and on but it is fueled, ultimately, by the organic matter and oxygen produced by photosynthesis. As described above, however, the organisms producing the oxygen, and driving the biosphere, obtain their building blocks from material recycled through plate tectonics. Thus, while the Sun supplies the energy, the rates at which tectonics recycles basic biological components sets the tempo.

All in all, we must agree that Earth is a pretty terrific place for life. It sits comfortably within the habitable zone of the Sun. In addition, its active tectonics both control the temperature of the surface environment, providing a continuous supply of liquid water, and recycle the basic components required to fuel abundant life. As we will see in the next chapter, the same tectonics may have also provided optimal conditions for the earliest biosphere.

INDEX

Note: Page numbers in italic type indicate illustrations.

acetate, 161n7 acritarchs, 137 adenosine triphosphate (ATP), 31, air, early theories of, 26–27 akinetes, 166n12 albedo, 6, 10, 159n4, 160n10 algae, 11, 12, 54-55, 133, 136-37 Allen, John, 37, 38 Alm, Eric, 24, 33 Alvin (submersible), 13-15 ammonia, 4–5, 8 ammonium, 4, 53 anaerobic methane oxidation, 18 Anbar, Ariel, 94, 95, 120 ancient pre-oxygen biosphere, 16–25; diversity of, 25; evolution of oxygenic photosynthesis in, 40; geological evidence of, 22–24; iron-based ecosystems, 19-22; overview of, 22; sulfide-based ecosystems, 16-19, 24-25, plate 5 animals: Ediacaran Fauna as, 127-28; emergence of larger, 128, 130, 135, 156-57; environmental change influenced by, 135-36, 149, 173n9; evolution of, 125-37; oxygen levels and, 128-37, 146-47, 150-52, 156-57, 172n16 Anomalocaris, 151 anoxygenic photosynthesis: geological evidence of, 24; as precursor to oxygenic, 32, 34-37, 35, 36, plate 6; in sulfide-based ecosystems, 17-18, 18 anoxygenic phototrophic bacteria, 16–21, 154, plate 4 antenna complex, 29-31 apatite, 113 Apex Chert, Australia, 79–81, 80, 82 Archean Eon, xiv, 86-97 Arnold, Gail, 120, 170n14

atmospheric oxygen: animals and, 128-37, 146–47, 150–52, *151*, 156–57, 172n16; biological evidence of, xii, 76-84; chemical evidence of, 85–97; concentrations of, xi, 56-71, 100, 115, 122, 144–52, 145, 155–56; cycling of, 59–61; geological evidence of, xii, 85-97; great oxidation event (GOE), 100-109; history of, 72–97, 140–42, 148–52, 156; oceanic oxygen levels changing apart from, 136; in Precambrian period, 115, 169n5; present atmospheric levels of, 155–57; regulation of levels of, 61–71, 62, 165n14; removal pathways for, 63 - 67

ATP. See adenosine triphosphate autotrophic organisms, 15-16, 25, 161n5 Avalon Peninsula, Newfoundland, 123-31, *124*, 127-28

Baas Becking, Laurens, 18 bacteria: anoxygenic phototrophic, 16-21, plate 4; fermenting, 15–18, 24; green sulfur, 35, 162n10; in hydrothermal springs, 17; iron-reducing, 21; purple, 35, 39, 162n11; sulfate-reducing, 16–18, 23, 58, 74, 116–17, 169n6; sulfideoxidizing, 14-15, plate 1. See also cyanobacteria; prokaryotes bacteriochlorophyll, 33-34 Baja Peninsula, Mexico, 43-44, 46 banded iron formations (BIFs), 20, 89–90, 100, 115–16, 116, 118–22, 170n9, *plate 3* Bauer, Carl, 33-34 Beggiatoa, 14, plate 1 Bekker, Andrey, 114, 120 Bergman, Noam, 148 Bergman, Torbern, 26 Bernard of Chartres, 72

192 • Index

Berner, Bob, 42, 65, 66, 69, 85, 138-44, 146-49, 172n12, 173n10 bicarbonate, 10 BIFs. See banded iron formations (BIFs) Billings, Elkanah, 125 biological evolution: contingencies in, 154; higher-order perfection not always the result of, 40; innovations in, 2 biomarkers, 82-84 Bjerrum, Christian, 19, 21, 172n15 Black Sea, 58, 67-69 black shale, 58, 119, 120, 125, 129, 170n12 Blankenship, Bob, 34–38 Bolton, Ed, 65-66 Bornholm sand, 16-17, plate 2 Boudreau, Bernie, 139 Brasier, Martin, 80-81, 166n14 Brochs, Jochen, 84 Broecker, Wally, 138, 139 Budyko, Mikhail, 168n3 Buick, Roger, 22-23, 88 Butterfield, Nick, 135, 137, 147

calcite, 10 Calvert, George (Lord Baltimore), 123-24 Calvin-Bassham-Benson cycle, 38–39 Cameron, Eion, 116–17 Canfield Ocean model, 117-22 carbon: inorganic, 104-6, 105, 160n13; in oceans, 136; in sedimentary rock, concentrations of, 142-44. See also organic matter carbon burial, 58-60, 61, 64-69, 65, 104, 108, 113–14, 118–19, 132, 142–44, *144*, 169n9 carbon cycle, 132, 137, 169n9 carbon dioxide (CO₉): from ancient volcanoes, 19; atmospheric concentrations of, 139-40; autotrophic organisms' cell material obtained from, 161n5; cell formation from, 78; as component of air, 27; deep-sea, 16; geological evidence of, 10-11; heterotrophic organisms' cell material obtained from, 161n7; in hydrothermal systems, 15; organic matter and, 112-13, 162n1; in photosynthesis, 32, 38-39; role of, in Earth's regulation of its temperature, 8–11, 9; role of, in maintaining habitable zone, 6; sources of, 9; supply of, 11

carbon fixation, 32, 39-40 Carboniferous Period, 145, 146, 158 carbon isotopes, 77–78, 79, 81, 104–6, 105, 113, 132, *133*, 134 carbon monoxide (CO), 63-64 carboxylase activity, 39-40 Carew, Paula, 125 Cariaco Basin, 58 Cartier, Jacques, 123 Catling, Dave, 109 cell membranes, 3, 4, 83 cells, components of, 3-5 cellulose, 145 charcoal, 174n13 Charniodiscus, 126, 127 chemical components necessary for life, chemical weathering. See weathering Chile, 53 Chisholm, Penny, 50–52 chlorophyll: evolution of, 33–34; functions of, 32–33; P680, 30–31, 33; P700, 31 chromium isotopes, 118, 170n10 Cloud, Preston, 98–101, 109, 115, 117 coal, 142, 145-46 Coleridge, Samuel Taylor, 5 contamination, of rock samples, 82–84 convection, 9, 106-7 COPSE model, 148-50, 148 COSMOS (television series), 8 cows, 3 Crowe, Sean, 20-21 Curiosity (rover), 2, 8 cyanobacteria, 12, 41-55; on ancient Earth, 44; in Bornholm sand, 17; environments conducive to, 48-49; eukaryotes' relationship with, 54-55; evolution of, 22, 41-42, 51-52, 103-4, 154; in fossils, 79–84; and GOE, 103–4; heterocysts of, 53-54; history of, 78-84, 95–97, 155; importance of, 41–42, 50, 52-53, 55; Microcoleus chthonoplastes, 44; nitrogen fixation by, 53-54; in oceans, 49–53; prevalence of, 48–49; Prochlorococcus, 50-52, 52; size of, 79; Synechococcus, 49-50; Trichodesmium, 49, 54 cyanobacterial mats, plate 7; composition of, 44, 45; distribution of light in, 44, 163n6; ecology of, 44, 46; environment for, 44; measurement of, 46, 47; oxygen

Index • 193

distribution in, 46, 48, 162n15; oxygen production rates in, 46–48, 48, 163n7

Dahl, Tais, 129, 150-52 dating of fossils, xiii-xiv David, Lawrence, 24, 33 decomposition: of organic matter, 10, 11, 12, 15, 18, 24, 58, 164n11; oxygen and, 58, 164n11; of zooplankton feces, 135 - 37Denmark, 1 Derry, Lou, 132, 134, 172n12, 172n13 Des Marais, Dave, 43-44 Devonian Period, 151, 157 Dickensonia, 134–35 dikes, silica-rich, 23 DNA: of chlorophyll, 33–34; components of, 3, 4; evolutionary history recorded in, 24, 33–34, plate 5 dolomite, 10 dragonflies, 146-47 Drebbel, Cornelis, 161n2 drilling, for rock, 82-83

Earth: age of, xiii; atmosphere of, 6; chemical components on, 5-12; conditions for life on, 1–2, 5–12, 153; energy on, 12; Mars compared to, 2; prior to GOE, 111-22; regulation of its own temperature by, 8-12, 9; special properties of, 5–12; systemic approach to, 139–40; temperature at middle of, 107; temperature of, 5-8; water on, 5-12earthquakes, 9 East Pacific Rise, 14 Ebelmen, Jacques Joseph, 59-60, 74 Ediacaran Fauna, 125, 126, 127–29, 134-35, 171n3 electrons, 2-3, 30-32 energy: necessary for life, 3, 12; organisms' minimal requirements for, 159n1; sources of, 2-3, 12 epithelial cells, 127, 171n2 eukaryotes, 54-55, 83, 167n16 eurypterids, 150-51 euxinic basins, 67 Everglades, Florida, 146 evolution. See biological evolution

Faint Young Sun Paradox, 8-11 Falkowski, Paul, 70

Farquhar, James, 91–94, 101–2, 167n5 feedbacks: negative, 62-63; for oxygen production, 67-71, 141, 143, 149; for oxygen sinks, 63-67; positive, 63 fermenting bacteria, 15-18, 24 ferric iron, 90 ferrous iron (Fe²⁺), 19–22, 68, 90, 118, 120-22, 170n9, 171n15 Fe speciation, 128 fire, 26-27, 71, 165n14, 174n13 fish, 150-52, 151, 157 flow cytometry, 50 food chains, 12 fool's gold, 58 forest fires, 71, 149, 165n14, 174n13 fossils: of Apex Chert, 79-81, 80, 82; cyanobacteria in, 79-84; earliest evidence of, 171n3; Ediacaran Fauna, 125, 126, 127–29, 134–35, 171n3. See also dating of fossils; geologic record fractionation, 91-94, 102, 169n6 Fralick, Phil, 119–20 framboids, 58, 59 Frei, Robert, 170n10

Gaia hypothesis, 149, 173n9 Garrels, Bob, 60, 64, 74, 138-41, 149, 164n7 Gaskiers glaciation, 127-29, 132, 171n4, plate 9 Gehling, Jim, 125, 128 gene duplications, 37, 162n12 genetic material. See DNA; RNA geobiology, 18 GEOCARBSULF model, 148-50, 148 geologic record: ancient pre-oxygen ecosystems in, 22-24; anoxygenic photosynthesis in, 24; CO₉ in, 10–11; compromised by tectonic processes, 22, 75; extent and condition of, 75–76; ferrous iron in, 20; limitations of, 76, 110–11, 113–14, 114; status of, xii; time scale with major events, xiv. See also fossils; sedimentary rocks gigantism, 146-47, 150-52, 157-58 glaciations, 156, 171n4. See also Gaskiers glaciation GOE. See great oxidation event Goldilocks Zone, 6, 159n3 gold mines, South Africa, 86-88

Gould, Steven J., 154

194 • Index

Granick, Sam, 33
Granick hypothesis, 33
granular iron formations (GIFs), 116
graphite, 76–78, 76, 77, 79
great oxidation event (GOE), 100–109, 155–56
Green, Bill, 139
greenhouse gases, 6, 8–11
green-nonsulfur bacteria, 46
green sulfur bacteria (GSBs), 35, 162n10
gross primary production, 162n1
Guaymas Basin, 14–15
Gulf of California, 14
Gunflint Iron Formation, 119–20, 121
gypsum, 14, 93, 167n7

H₉. See hydrogen habitable zone, 6-8, 7 Hammarlund, Emma, 129, 150-52 Harlé and Harlé (paleontologists), 146 Harrison, Jon, 146-47 Hartman, Hyman, 38 Hayes, John, 135, 169n9 Hays, Paul, 8 heterocysts, 53-54, 166n12 heterotrophic organisms, 15-16, 161n5 Hieshima, Glenn, 135 Hoffman, Paul, 129 Hohmann-Marriott, Martin, 34 Holland, Dick, 60, 74, 85-87, 93, 94, 96, 100-101, 106, 108-9, 112-15, 117, 160n8, 167n1, 168n2, 169n9, 170n9 hopanes, 166n15 Huronian Supergroup, 100, 101, 102 Hutton, James, xiii, 12 hydrogen (H₂): from ancient volcanoes, 19, 106; converted to water, 19; deep-sea, 16; degassing rate of, 106-7; flux of, 108; in hydrothermal systems, 15; and oxygen removal, 63-64; as oxygen sink, 60-61 hydrogen fluoride, 5 hydrogen peroxide (H_9O_9) , 38 hydrogen sulfide (H₂S), 16–17; from ancient volcanoes, 19, 93; and oxygen removal, 63–64; as oxygen sink, 60–61 hydrothermal systems, 14–19 hydrothermal vents, 9, 15, 16, 19

Iceland, 17 Ingall, Ellery, 69, 165n13 Ingenhousz, Jan, 28 inorganic carbon, 104–6, 105, 160n13 insects, 146–47 iron: chemistry of, 89–90; loss of, from soils through weathering, 168n2; in oceans, 89–90, 115–22, 128–29, 168n2, 170n9, 170n13, 171n15; pyrite formed from, 58, 117. See also banded iron formations; ferrous iron (Fe²⁺); red beds iron-based ecosystems, 19–22, 21 iron oxide, 19 iron-reducing bacteria, 21 isotope ratios, 78 Isua, Greenland, 76–79, 77, 79, 81

Johnson, Philip, 138 Jones, CarriAyne, 20–21 Jørgensen, Bo Barker, 13, 163n6

Karhu, Juha, 106 Karijini National Park, Australia, 89, plate 3 Kasting, Jim, 6–8, 10–11, 19, 94, 109 Kennedy, Martin, 172n13 kerogen, 81 Kirschvink, Joe, 103–4, 168n3, 171n4 Knoll, Andy, 1–2, 117, 120, 127, 129, 132, 134, 135 Kump, Lee, 109, 141, 149, 165n14, 170n11 Kuo, Phillip, 160n8

Lake Matano, Sulawesi, Indonesia, 20-21 Lane, Nick, 165n14 Lasaga, Tony, 140 Late Silurian Period, 157 Lavoisier, Antoine, 27–28 Lenton, Tim, 148 Lerman, Abe, 140 life, 15–16; basic ingredients of, 2–5; chemical components necessary for, 3–12; Earth as environment for, 1–2, 5–12, 153; energy necessary for, 3, 12; on Mars, 2, 7-8; non-water solvents amenable to, 4-5; in pre-oxygen environments, 16-25; in superheated waters, 4, 15; water necessary for, 2, 3-12, 42, 159n2 light, photosynthetic collection of, 29-30 lignin, 145 limestone, 172n12, 172n13

Index • 195

Logan, Graham, 135–37 Lomagundi isotope excursion, 105–6, 105, 113–15, 118–19, 155 Love, Gordon, 171n3 Lovelock, James, 149, 173n9 Lyons, Tim, 120, 129

Mackenzie, Fred, 141 Maloof, Adam, 171n3 manganese (Mn) cluster, 31, 37–38 manganese catalase, 38 manganese ions, 38 mantle, 9, 106-7, 109, 167n8 Margulis, Lynn, 55 Mars: Earth compared to, 2; life on, 2, 7-8; outside of habitable zone, 6; water on, 2, 5, 7-8Mars Exploration Rover Mission (MER), 7Martin, William, 38 mass-dependent sulfur isotope signal, 91-92, 102 mass-independent sulfur isotope signal, 92–95, *92*, 102, *102* mass spectrometers, 78 Megalograptidae, 151 Mehler reaction, 163n10 Merezhkovsky, Konstantin Sergeevich, 55 methane: in ancient ecosystems, 23; as greenhouse gas, 8, 10; in hydrothermal systems, 15-16; in mud, 74; oxidation of, 18, 133, 172n14, 172n15; oxygen and, 160n9; production of, 3, 18, 19, 23–24; as solvent for living organisms, 5 methanogenesis, 23–25 methanogens, 3, 15-16, 19, 23-24, 74, 161n7 microbes: geological evidence of ancient, 22–23; in non-oxygen environments, 16 microbial mats. See cyanobacterial mats microelectrodes, 46, 47 Mn cluster. See manganese (Mn) cluster

molybdenum (Mo): in anoxic environments, 95, 129–31; oceanic removal pathways for, 129, 170n14; in oceans, 95, 110–11, 120, 129–31, 150; oxidation of, 95, 104; rock concentrations of, 96,

110–11, *130* molybdenum isotopes, 120, 129–31, *130*, 170n14

molybdenum sulfide, 95

mountain range formation, 9, 11 Mount Everest, 56 Mullen, George, 8, 10

NADP+, 162n7. See P700 NADP(H), 31-32NADPH, 162n7 Narbonne, Guy, 125, 128-29 National Aeronautics and Space Administration (NASA), 2, 5 negative feedback, 62-63 Neoproterozoic Era, 118, 129–32, 133, 136, 150, 156-57 net primary production, 162n1 nitrate, 4, 53 nitrogen, 27, 113 nitrogen (N_9) gas, 53, 69–70, 164n12 nitrogenase, 53-54 nitrogen fixation, 53-54, 70 North Island, New Zealand, 17 North Pole, Australia, 22–24, 161n14 Nursall, J. Ralph, 128, 134

ocean: anoxic conditions in, 14–16, 67–70, 90-91, 117-22, 128-29, 164n10; Canfield model of, 117-22; CO₂ in, 9-10; cyanobacteria in, 49-53; depths of, 13–16, 131, 171n6; after great oxidation event, 115-22; half-light zone in, 19-21; hydrothermal systems in, 14-19; hydrothermal vents in, 9, 15, 16, 19; iron-rich (ferruginous) conditions in, 115–22, 128-29, 168n2, 170n9, 170n13, 171n15; minimum oxygen concentration zone in, 131, 172n10; organisms in superheated water in, 4, 15; oxygenation of, 115, 122, 129, 131, 134–37, 150, 156–57, 171n8; primary production in, 69–70, 113, 164n12; role of, in atmospheric oxygen regulation, 67-70; sunlit zone in, 42

Ontario Ministry of Northern Development and Mines, 120
Opportunity (rover), 7
Ordovician Period, 145, 151
organic matter: available amount of, 66; cyanobacteria as source for, 42; decomposition of, 10, 11, 12, 15, 18, 24, 58, 164n11; oxidation of, 112–13; as oxygen source, 58, 65–66; produced by

Ockham's Razor, xii, 159n1

196 • Index

organic matter (continued) photosynthesis, 12, 32, 38-40; production of, 162n1 oxidants, 31 oxidation-reduction reactions, 2-3, 159n1 oxygen: discovery of, 27-28, 161n2; and fire, 26–27, 71; in hydrothermal systems, 15; produced by photosynthesis, 12; sources of, 58-60, 66-67. See also atmospheric oxygen oxygenase activity, 39-40, 162n13 oxygen-evolving complex (OEC), 31, 37 - 38oxygenic photosynthesis: amount of oxygen produced in, 57; anoxygenic as precursor to, 32, 34–37, 35, 36, plate 6; discovery of, 28; equation for, 163n8; evolution of, 32-40, 154-55; light collection in, 29-30, 29; process of, 29-32; products of, 12, 57; water used in, 30-31, 41-42 oxygen-minimum zones (OMZs), 53 oxygen sinks, 63-67 oxygen whiffs, 95, 97, 104, 106, 112, 155 ozone, 94 P680 (chlorophyll molecule), 30–31, 33, P700 (chlorophyll molecule), 31 PAL. See present atmospheric levels paleogeography, 145-46 paleosols, 160n8, 168n2 Pangea, 146 Papineau, Dominic, 102 Pavlov, Alex, 94 peat bogs, 146 Permian Period, 145, 146, 158 Perry, Ed, 60, 74 Petsch, Steven, 65, 112 Phanerozoic Eon, xiv, 142-52, 156-57 pheophytin, 30-31 phlogiston, 26-28, 161n4 phosphate, 4 phospholipid molecules, 4 phosphorus, 11, 69, 113, 164n12, 165n13 photic zone, 42 photorespiration, 173n10 photosynthesis. See anoxygenic photosynthesis; oxygenic photosynthesis photosynthetic organisms: capacity of, 11;

decomposition of, in oceans, 136-37;

light harvesting in, 29; non-oxygen producing, 16-18 photosystem I (PSI), 53; evolution of, 34–37, *35*, *36*, *plate 6*; in photosynthetic process, 29, 31 photosystem II (PSII), 53; evolution of, 34-37, 35, 36, plate 6; and oxygenevolving complex, 37-38; in photosynthetic process, 29–30 phytoplankton, 137 planetesimals, 107, 168n7 plants: cyanobacteria's relation to, 54-55; evolution of, 145, 157-58; growth of, and oxygenic photosynthesis, 57; and oxygen concentrations, 150; respiration of, 57, 164n3 plate tectonics. See tectonic processes porphyrin molecules, 33 positive feedback, 63 Poulton, Simon, 118-20, 125, 127-29 Precambrian, 115, 169n5 pre-oxygen biosphere. See ancient pre-oxygen biosphere present atmospheric levels (PAL), 155-57 Priestley, Joseph, 27-28, 161n4 primary production, 42, 57-58, 69-70, 113, 162n1, 164n12 prokaryotes, 53, 163n9 proteins, 3, 35-36 Proterozoic Eon, xiv, 150 purple bacteria, 35, 39, 162n11 pyrite: available amount of, 66; cycling of, 111, 112; formation of, from iron, 58, 117; oxidation of, 112-13; in river deposits, 88, 100, 111; in sedimentary rock, concentrations of, 142-44 pyrite burial, 58–60, 59, 61, 64–69, 65, 104, 108, 142-44, 164n6 radioactivity, 107 radio-isotope dating, xiv

Raiswell, Rob, 118, 138, 169n7
Raman spectroscopy, 81
rangeomorphs, 126, 127
rapid recycling, of rock cycle, 66–67, 141, 144
Rasmussen, Birger, 88
Raymond, Jason, 34–38
reaction centers, 29, 30, 34–37, 35, 36, plate 6
red beds, 100, 146

Index • 197

Revsbech, Niels Peter, 46, 163n7 Reynolds, Ray, 6 rhenium (Re), 95, 104 Riftia tubeworms, 14 river deposits, 86-88, 100, 111 RNA, 3, 4 rock: issues in collection and handling of, 82-83; in Phanerozoic Eon, 142, 143. See also geologic record; sedimentary rocks rock cycle, 10, 60, 113-14 Rodinia, 132, 134 Ronov, Aleksandr Borisovich, 142, 173n4 Rosing, Jens, 76 Rosing, Minik, 10, 19, 21, 76–78, 160n10 Rothman, Dan, 133 Rove Formation, 119–20, 121 Rubisco, 32, 39–40, 78, 162n9, 162n13, 162n14, 173n10 Rubisco-like proteins, 162n13 runaway greenhouse, 5 runaway icehouse, 168n3 Runnegar, Bruce, 134 Rye, Rob, 160n8

Sadekar, Sumedha, 35-36 Sagan, Carl, 8, 10 salt, 3, 43-44 Santa Fe, New Mexico, 56 Sarmiento, Jorge, 115 Scheele, Carl Wilhelm, 26–28 Schidlowski, Manfred, 166n8, 168n5 Schopf, Bill, 79–81 sea-level change, 11 sea scorpions, 150–51 sedimentary rocks, 76-78, 77, 114, 142, 143. See also geologic record sediment deposition, 67, 132, 142, 173n6, 173n7 sediment recycling, 67 Seilacher, Dolf, 127 shale, 59, 60, 111-12, 119, 164n5. See also black shale Shen, Yanan, 23, 129 Shuram-Wonoka carbon isotope anomaly, 132–35, *133* siderite, 88 Silurian Period, 145, 151, 157 Snowball Earth, 168n3, 171n4 solvents, amenable to life, 4-5

Spirit (rover), 7

Sprigg, Reg, 125 Steno, Nicolaus, xiii steranes, 83, 103-4 sterols, 83-84 stromatolites, 44, plate 8 strontium, 172n12 subduction, 9, 9, 10, 11, 164n9 sulfate: in ancient ecosystems, 23; atmospheric source of, 93; in oceans, 16-18, 116-17 sulfate-reducing bacteria, 16-18, 23, 58, 74, 116–17, 169n6 sulfate reduction, 16-18, 23, 24, 58, 116-17, 122, 169n6 sulfide: in ancient ecosystems, 23; in Black Sea, 67; in mud, 74; in oceans, 14, 16–19, 116–17, 120–22; pyrite formed from, 58–59 sulfide-based ecosystems, 16-19, 24-25, plate 5 sulfide-oxidizing bacteria, 14–15, plate 1 sulfur cycle, 116-17, 143 sulfur dioxide (SO₂): from ancient volcanoes, 19, 93; fractionation of, 93–94; and oxygen removal, 63–64; as oxygen sink, 60-61 sulfuric acid, 5 sulfur isotopes, 23, 91–94, 92, 102, 102, 116-17, *117* sulphuretum, 16–19 Summons, Roger, 83-84, 135 Sun: Earth's distance from, as reason for water, 5–8, 7; as energy source, 12; luminosity of, 6, 8, 159n6, 174n11 superposition, law of, xiii

Takahashi, Tara, 138
tectonic processes: CO₂ liberated by,
9-10; description of, 9; and Earth's
temperature regulation, 9-11; geologic
record compromised by, 22, 75; life on
Earth dependent on, 9-12, 25
temperature: Earth's regulation of, 8-12,
9; Earth-Sun distance as factor in,
5-8, 7
Teske, Andreas, 172n10
THEMIS (high resolution thermal
imaging system), 7
thermal springs, 17
Thiemens, Mark, 91
time, xiii-xiv, xiv

198 • Index

Transvaal Supergroup, 102 Triassic Period, 146 turbidites, 77, 166n7 Turekian, Karl, 64, 149, 164n7

Ueno, Yuichiro, 23 ultraviolet (UV) light, 93–94 upwelling, 118, 170n8 uraninite, 87–88, 100 uranyl ion, 87

vanadium, 167n8
Van Cappellen, Philippe, 69
Velbel, Mike, 139
Venus, 5, 6, 159n5
Vernadsky, Vladimir, 72–75, 86, 99
Vidal Gomez (ship), 53
volcanoes: and methane production, 19;
oxygen-reactive gases of, 60–61, 96–97,
106; pre-oxygen biosphere fueled by, 9,
19, 25; sulfur produced by, 93

Waldbauer, Jake, 83–84, 169n9 Walker, Jim, 8, 11 water: air-saturated, 172n9; boiling point of, 3–4; on Earth, 5–12; hydrogen converted to, 19; on Mars, 2, 5, 7–8; necessary for life, 2, 3–12, 42, 159n2; in photosynthesis, 30–31, 41–42; special

properties of, 4-5; in Venusian atmosphere, 5, 159n5 Waterbury, John, 49–50 water-column anoxia, 67-68 Watson, Andy, 71, 148, 165n14 weathering: CO₉ removed by, 9-10; factors influencing, 140, 173n3; geologic record compromised by, 113-14, 114; iron loss in, 168n2; organic matter's role in, 10-11, 111-12; oxygen's role in, 64-66, 73, 112-13, 116-17, 168n2; pyrite's role in, 111; in rock cycle, 60; of sulfides, 116-17; temperature-sensitive nature of, 9–10 Whitmire, Daniel, 6 Widdel, Fritz, 20-21, 161n12 wildfire, 71, 149, 165n14, 174n13 Wille, Martin, 94 Witwatersrand, South Africa, 86–88

Xiong, Jin, 33-34

yeast, 83 Yellowstone National Park, 17

zircon, 166n5 Zobell, Claude, 49 zooplankton, 135–37 Z-scheme, 29–30, *30*