Contents

A Brief Note on Sources	ix
Foreword, by Brian Cox	xi
Reflections on Richard Feynman, by Yo-Yo Ma	xv
Preface: My Quotable Father, by Michelle Feynman	xvii
Chronology	xxiii
Youth	3
Family	15
Autobiographical	23
Art, Music, and Poetry	51
Nature	57
Imagination	83
Humor	89
Love	103
Philosophy and Religion	109
Nature of Science	123
Curiosity and Discovery	165
How Physicists Think	185
The Quantum World	197
Science and Society	213
Mathematics	223
Technology	241
War	249
Challenger	261
Politics	271

viii	Contents	
Doubt and Uncertainty	7	281
Education and Teachir	ıg	293
Advice and Inspiration		317
Intelligence		327
The Nobel Prize		333
Worldview		345
The Future		355
Honoring Richard Feynman		363
Acknowledgments		383
Photo Credits		387
Sources		389
Index		397

Youth

I didn't get to do as much as I wanted to, because my mother kept putting me out all the time, to play.

- Surely You're Joking, Mr. Feynman!, p. 17

When I was a kid, I had this notion that you could take the importance of the problem and multiply it by your chance of solving it. You know how a technically minded kid is, he likes the idea of optimizing everything anyway, if you can get the right combination of those factors, you don't spend your life getting nowhere with a profound problem, or solving lots of small problems that others could do just as well.

- Omni interview, February 1979

Don't despair of standard dull textbooks. Just close the book once in a while and think what they just said in your own terms as a revelation of the spirit and wonder of nature. The books give you facts but your imagination can supply life. My father taught me how to do that when I was a little boy on his knee, and he read the *Encyclopaedia Britannica* to me!

 Letter to Rodney C. Lewis, August 1981 (Perfectly Reasonable Deviations from the Beaten Track, pp. 332–333)

I went to take the calculus book out, and the teacher — sorry, the librarian — said, "Child, you can't take this book out. Why are you taking this book out?" I said, "It's for my father." And so I took it home, and I tried to learn a little bit. My father looked at the first few paragraphs and couldn't understand it, and this was rather a shock to me — a little bit of a shock, I remember. It was the first time I realized that I could understand what he couldn't understand.

 Interview with Charles Weiner, March 4, 1966 (Niels Bohr Library and Archives with the Center for the History of Physics)

The Quotable Feynman

I learned very early the difference between knowing the name of something and knowing something.

- What Do You Care What Other People Think?, p. 14

When I was a child and found out Santa Claus wasn't real, I wasn't upset. Rather, I was relieved that there was a much simpler phenomenon to explain how so many children all over the world got presents on the same night.

- Los Angeles Times, November 27, 1994

6

When I was young, what I call the laboratory was just a place to fiddle around, make radios and gadgets and photocells and whatnot. I was very shocked when I discovered what they call a laboratory in a university. That's a place where you are supposed to measure something very seriously. I never measured a damn thing in my laboratory.

Future for Science interview

[On his first talk:] I remember getting up to talk, and there were these great men in the audience and it was frightening. And I can still see my own hands as I pulled out the papers from the envelope that I had them in. They were shaking. As soon as I got the paper out and started to talk, something happened to me which has always happened since and which is a wonderful thing. If I'm talking physics, I love the thing. I think only about physics, I don't worry where I am; I don't worry about anything, and everything went very easily.

Future for Science interview

For general queries, contact info@press.princeton.edu

The moment I realized that I was now working on something new was when I read something about quantum electrodynamics at the time, and I read a book, and I learned about it. For example, I read Dirac's book, and they had these problems that nobody knew how to solve. I couldn't understand the book very well because I wasn't up to it, but at the last paragraph at the very end of the book, it said, "Some new ideas are here needed!" And so there I was! Some new ideas were there needed, so I started to think of new ideas.

 Interview with Yorkshire Television program, "Take the World from Another Point of View," 1972

[To one of his former high school teachers:] Another thing that I remember as being very important to me was the time when you called me down after class and said, "You make too much noise in class." Then you went on to say that you understood the reason, that it was that the class was entirely too boring. Then you pulled out a book from behind you and said, "Here, you read this, take it up to the back of the room, sit all alone and study this; when you know everything that is in it, you can talk again." And so, in my physics class I paid no attention to what was going on but only studied Woods' *Advanced Calculus* up in the back of the room. It was there that I learned about gamma functions, elliptic functions, and differentiating under an integral sign. A trick at which I became an expert.

 Letter to Abram Bader, November 1965 (Perfectly Reasonable Deviations from the Beaten Track, pp. 176–177)

[CBS] asked me what I thought of the New York School System, and I said that I am only good in physics and I do not know the

New York School System except for the particular school that I went to thirty years ago. I thought that my high school was very good. There was a great variety of science courses offered for those times — advanced math, physics, chemistry, and biology. Several teachers gave me direct encouragement, good advice, and taught me special things outside the regular courses. I had a good time in high school.

- Letter to Miriam Cohen, November 1965

[To his aunt:] It is good to hear from someone who has known me for so long. You have gone through all the stages with mother, from ruined linen towels to mom's worrying about whether I would blow up the house with my laboratory.

Letter to Jesse M. Davidson, December 1965 (Perfectly Reasonable Deviations from the Beaten Track, p. 181)

[On his father:] He was rational; he liked the rational mind and things that could be understood by thinking.

 Interview with Charles Weiner, March 4, 1966 (Niels Bohr Library and Archives with the Center for the History of Physics)

When I got to kindergarten, which was much later — I was six years old — they had a thing in those days which was "weaving." They had a kind of colored paper — square paper with quarter-inch slots made parallel. And you have quarter-inch strips of paper. One was the weft and the other was the warp. You're supposed to weave it and make designs that were regular and interesting. And

apparently that's extremely difficult for a child. I was especially commented on; the teacher was very excited and surprised. I made elaborate patterns — correctly, without any difficulty, whereas it was so difficult for most of the children that they don't do that in kindergarten anymore.

 Interview with Charles Weiner, March 4, 1966 (Niels Bohr Library and Archives with the Center for the History of Physics)

My father would often take me to the Museum of Natural History — that was a great place. We would look at the dinosaur bones and stuff like that — it was great!

 Interview with Charles Weiner, March 4, 1966 (Niels Bohr Library and Archives with the Center for the History of Physics)

[On his father describing glaciers:] He understood! The thing that was very important about my father is not the facts but the process — the meaning of everything. How we find out; what is the consequence of finding such a rock? With a vivid description of the ice, which is probably not exactly right! Perhaps the speed was not ten inches a year but ten feet a year — I never knew; he never knew. But he would describe anyway, in a vivid way, and always with some kind of lesson about it. Like, "How do you think we find these things out?"

 Interview with Charles Weiner, March 4, 1966 (Niels Bohr Library and Archives with the Center for the History of Physics) [On his sister, also a physicist:] She would hear us talking, and she would ask me, and I would explain it to her. It wasn't so direct in her case.

 Interview with Charles Weiner, March 4, 1966 (Niels Bohr Library and Archives with the Center for the History of Physics)

I was always very upset if something went bad or if I was bad — I always tried to be a good boy.

 Interview with Charles Weiner, March 4, 1966 (Niels Bohr Library and Archives with the Center for the History of Physics)

Arithmetic was very easy; it was too easy. For instance, when I was ten or eleven, one day I was called from a class to a previous class that I had been in by a previous teacher to explain to the class how to do subtraction. I had "invented," (they claim) a better way of doing subtraction than they were using that she liked. She had forgotten it, in the meantime, so I was called from class to explain it to her.

 Interview with Charles Weiner, March 4, 1966 (Niels Bohr Library and Archives with the Center for the History of Physics)

[On his friend Bernard Walker:] I had a friend who was as interested in science as I was, so we did much together — I was about twelve. We studied together, we'd argue together, we did chemistry experiments.

 Interview with Charles Weiner, March 4, 1966 (Niels Bohr Library and Archives with the Center for the History of Physics)

I was not good at athletics. This always bothered me — I felt like a sissy because I couldn't play baseball. It was to me, at a childish age, a very serious business. I had trouble learning how to ride a bicycle Every once in awhile, I would get kicked out of the group. We had a hut, and each time I was kicked out of the group, I would invent something, like a periscope for the hut or a design for a second story or something.

 Interview with Charles Weiner, March 4, 1966 (Niels Bohr Library and Archives with the Center for the History of Physics)

We put sodium ferrocyanide — sodium ferrocyanide? — or something, in the towels, and another substance, an iron salt, probably alum, in the soap. When they come together, they make blue ink. So we were supposed to fool my mother, you see. She would wash her hands, and then when she dried them, her hands would turn blue. But we didn't think the towel would turn blue. This was all in the Cedarhurst era. Anyway, she was horrified. The screams of "My good linen towels!" But she was always cooperative. She never was afraid of those experiments.

 Interview with Charles Weiner, March 4, 1966 (Niels Bohr Library and Archives with the Center for the History of Physics)

[On boiling water:] I remember using the developing trays, which were waxed, so that they were insulated, putting water in them, and boiling it — and watching the most beautiful phenomenon at the end, when all the water boils away, and the last bit of water, it's dry, is making sparks, because it's breaking the circuit. And the sparks move around, because it breaks here, but the water

flows, you see, and it flows here and connects, and then it makes another spark here, and finally, these lines of salt, and beautiful yellow and blue sparks! It's a very beautiful thing. In fact, now that you remind me, I think I'll have to set one up and see what it looks like, after all these years. I used to boil water all the time with this thing.

 Interview with Charles Weiner, March 4, 1966 (Niels Bohr Library and Archives with the Center for the History of Physics)

I had lots of trouble, because I remember, my friend and I — the man drew on the blackboard (I still remember, you know, he's going to explain how a projection system works, you know, the projector that makes pictures on the wall) — so he drew a light bulb, and he draws a lens and so on to explain. Then he draws lines coming out of the light bulb parallel, the rays of light going parallel to each other. So, I don't remember whether it was I or my friend, but one of us said, "But that can't be right. The rays come out from the filament radially, in all directions." I don't know if I used the word "radially," but anyway, we explained. He turned around and said, "I say they go parallel, so they go parallel!" Well, this didn't sit well with us, because I knew, certainly, that no matter what he said, the rays didn't go parallel.

 Interview with Charles Weiner, March 4, 1966 (Niels Bohr Library and Archives with the Center for the History of Physics)

[On the Great Depression:] There was also the attitude that you should do something, work — you know, the idea that to hang

around and do nothing was somehow There was a feeling of some sort of responsibility to earn money. I can't explain it.

 Interview with Charles Weiner, March 4, 1966 (Niels Bohr Library and Archives with the Center for the History of Physics)

I always kept up this ability to work very quickly with the mathematics, so as to get rid of the homework.

 Interview with Charles Weiner, March 5, 1966 (Niels Bohr Library and Archives with the Center for the History of Physics)

I don't know much about the "general theory of intelligence," but I do remember when I was young I was very one-sided. It was science and math and no humanities (except for falling in love with a wonderful intelligent lover of piano, poetry writing, etc.).

 Letter to Dr. William L. McConnell, March 1975 (Perfectly Reasonable Deviations from the Beaten Track, p. 281)

I was inspired by the remarks in these books [Heitler and Dirac]; not by the parts in which everything was proved and demonstrated carefully and calculated, because I couldn't understand those very well. At the young age what I could understand were the remarks about the fact that this doesn't make any sense, and the last sentence of the book of Dirac I can still remember, "It seems that some essentially new physical ideas are here needed." So, I had this as a challenge and an inspiration. I also had a personal feeling, that since they didn't get a satisfactory answer to the

problem I wanted to solve, I don't have to pay a lot of attention to what they did do.

 From Nobel Lectures, Physics 1963–1970, Elsevier Publishing Company, Amsterdam, 1972

At the age of thirteen I was converted to non-Jewish religious views.

 Letter to Tina Levitan, January 1967 (Perfectly Reasonable Deviations from the Beaten Track, p. 234)

You see, what happened to me, what happened to the rest of us is we started for a good reason, but then we're working very hard to do something, and to accomplish it, it's a pleasure, it's excitement.

- UCSB talk, "Los Alamos from Below," February 1975

Index

Page numbers in italics refer to images.

abstruse math, 225–226 academic advising, 326 academic path, 42, 324 admission committee duties, 100 Advanced Calculus (Woods), 7 aesthetic sense, 54 Albert Einstein Award, 370-371 algebra rules, 236 American Philosophical Society membership, 115-116 amplitudes, 93 Andersen, Bjorn, 36 Anderson, Carl, 367, 373, 378 Anson, Fred, 375 antiquarks, 202 anti-Semitism, 352. See also Jewish people arithmetic, 10, 234-235, 298 art, 53 artificial intelligence, 245-246 assumptions, 144, 181 astrology, 141, 219 astronomy, 79, 80, 86, 94, 151, 191-192. See also stars athletic ability, 11 atom, 60, 149, 202, 205, 207, 211, 247, 350-351 atom bomb. See Los Alamos: Manhattan Project

Atomic Energy Commission, 278
atomic research, 154. See also Los
Alamos; Manhattan Project
authority, 32–33, 319–320
awards: Albert Einstein Award, xxiii,
370–371. See also Nobel Prize

Barish, Barry C., 371, 376
Barnes, Charles A., 367–369
base systems, 234
Bengelsdorf, Irving, 372–373
Benzer, Seymour, 370–371
Bessel functions, 173
Bethe, Hans, 349, 371

atomic energy, UN meeting, 278

Bessel functions, 173
Bethe, Hans, 349, 371
Bethe, Henry, 381
Big Bang, 26
bilateral nuclear arms freeze, 258
biology, 62, 127, 143, 154, 157,
312
Bjorken, James, 99
Bohr, Niels, 125, 161
bomb-making. See Los Alamos;
Manhattan Project
bongo playing, 54–55, 96, 102,
197, 336
brain, 70
Brazil lecture, 31

Brown, Laurie M., 378-379

398 Index

Buffalo, New York, 31 Conference on Color, Flavor, and Unification, 92-93 burn-out, 30 confusion, 291 calculus, 7, 48-49, 229, 361 conservation of energy law, 65, 69 California Institute of Technology consulting, 47 (Caltech), 41, 85, 331; loyalty, cooperation, 349-350 373 Corben, Mulaika, 31 camping van, 19 Cornell University, arrival, 46 capacitance, of elliptical condenser, cosmology, 96 239 Cox. Brian, xi-xiv capitalism, 275 creativity, 220 cargo cult science, 149-150, 325 Cronin, James, 218 Casals, Pablo, xv-xvi curiosity, 174-177, 180, 329-330 Challenger explosion: probability of failure, 244, 266-267; on Rogers Daylight Saving Time, 191 Commission activity, 246-247, death, 127 263-266, 278, 380; technical definition, 112 failures, 267-269 differentiation (calculus), 229 Chan, Sunney I., 381 discovery, 168, 183-184 charge parity, 218 division of labor, 157 chemistry: childhood experiments, dogmatism, 114 11-12; explanatory challenges dormitory living, 32-33 of, 93, 154 doubt, 283-284, 292 Christian ethics, 119. See also Drell, Sidney D., 365 religion Dyson, Freeman, 363 Christy, Robert F., 376-377 civilizations, 351-352 Earth, 68, 125 Civil War, 358 education, universal, 276 Columbus, 171 Einstein, Albert, 125, 159, communism, 275 161 company workers, 279 Eisenbud, 158–159 complex numbers, 236 elasticity, 78, 177 computer programming, electrical forces, 78, 158 225-226 electricity, 155 electron charge, 273 computers: communicating ability, 243-244; miniaturization, Encyclopaedia Britannica, 245, 246; quantum computers, 43 - 44243 engineer, 137 conference attendance, 43 engineering technology, 247

English classes: literature, 18; spelling, 41, 315 enjoyment of life, 102 Epstein, Samuel, 370 equation, 225 ethics: and science, 113; and survival, 114 evolution of life, 72 existence, 117 experimental physicists, 126. See also physicists experimentation: idea generation, 137; paradoxical ideas, 125; purpose, 139; scientific truth, 81, 132 exploration, 168, 171 exponents, 239 extra-terrestrial intelligence, 93

faith-healing, 219 fan-base, 100, 101 Feynman, Carl (son), xxi, 17, 18, 353, 362 Feynman, Michelle (daughter), ix, xvii-xxi, xxi Feynman, Richard: air travel, 255; American Institute of Physics oral history project, ix; athletic ability, 11; aunt, 8; autobiographies, 39 (see also Surely You're Joking, Mr. Feynman!); childhood, 3, 15, 180–181; Cornell University arrival, 46; dating, 106; daughter (Michelle Feynman), xvii-xxi, xxi, 353; father, 5, 8-9, 17, 19-21, 65, 153, 239; fatherhood, xviii, xxi, 18, 19; fraternity life, 41, 42-43;

graduate education, 44, 45, 307; high school algebra team, 239; honesty, 370; humor, 378-379, 380; intellectual interests, 46-47; intelligence, 366, 367; intuitiveness, 367-368; jogging habit, 348; kindergarten learning, 8-9; Las Vegas experiences, xviii-xix; life chronology, xxiii-xxiv; memory of names, 36; mental health, 353; mistaken identity, 99; mother, 11, 92, 106; musical interest, xv-xvi (see also music); National Academy of Sciences resignation, 25; Nobel Prize (see Nobel Prize); personality, 27, 34, 44-45, 371, 379, 381; photographs, 89, 109, 123, 165, 185, 197, 213, 225, 241, 249, 261, 271, 281, 327, 333, 345, 355, 363; playfulness, 374, 379; as polemicist, xiii-xiv; Portuguese skills, 31; post-World War II pessimism, 259; professional approach, 92; religious views, 14, 120, 371; reputation, 367; research philosophy, xi-xiii, 188-190; role model, 372; self-perception, 37, 37-38, 40, 44-45, 178, 331; self-teaching, 304; sister, 10; son (Carl Feynman), xxi, 17, 18, 353, 362; speech patterns, 38; teacher role, 293, 295, 300-302, 307, 369-370, 372-373, 375-377; undergraduate education, 42, 44, 324; university position, 30,

400 Index

Feynman, Richard (Continued) gravitons, 205 40, 41, 83, 173, 293, 317; wives, Great Depression, 12-13 40, 92, 105, 107, 341-342; Greeks, 96 work ethic, xix-xx, 177-179; Greenbaum, Arline (first wife), 105, worldview, 345, 347-353; 107 writing style, 40, 188, 189 gyros, 187 Feynman diagrams, xi, 49 Fitch, Val. 218 Hadron collision, 99, 203 Fitz-Gronin effect, 36 Hawaii, 33 flying saucers, 93, 131 Heisenberg, Werner, 378 fools, 329 helium, 182 foreign languages, 298 Heller, Joseph, 375 Fowler, William A., 377 Hellwarth, Robert, 373-374 Franklin, Benjamin, 273 Higgs Boson, xi high school algebra team, 239 fraternity life, 41 Frautschi, Steven C., 370 Hiroshima bomb damage, 256 fundamental physics, 132, 357 Hitler, 352 honesty, 216 honorary degrees, 25 galaxy, 61, 93 Galileo, 141, 289 honorary society membership, 30 gambling odds, 231 Howarth, Gweneth (third wife), 40, gauge theories, 156 92, 341-342 gender differences, 41, 106 human beings: and animals, 60-61; generalization, 35 future time span, 358-360 general theory of intelligence, 13 humanitarian problems, 215 generosity, 115 human mind, 56 genius, xi-xii, 365 human relationships, 27 geometry, 230-231, 232 humor, xx-xxi, 378-379 gluons, 204-205, 336 God, 61, 112, 116, 119 ignorance: admission of, 284, 285; growth potential, 288-289 government: versus private enterprise, 279; role, 277 imagination, 63, 83, 85-87, 151 gram (measure), 152 Indian caves, 32 gravitation: applications, 79; industry attraction, 222 elegance, 65, 77; experiment, information sharing, 132 135; inverse square law, 139; inspiration, and religion, 111 intellectual tyranny, 40, 219-220, 329 light in, 71; origin of force, 63 interest, 299

interviews, 98, 169 33; safety, 47; security, 49; wartime research, 254; work inverse square law of gravitation, 139 irresistible force, 62 attitude, 177-179. See also Manhattan Project Jewish people, 120, 338, 352 love, 105-107, 158 judicial system, 276 Ma, Yo-Yo, xv-xvi magnetic forces, 78 Kac, Marc, 365 Kauffmann's long-range force, 204 magnetism, 155 keynote speeches, 37 Manhattan Project: academic training knowledge: accumulation, 75, 361; at entry, 254; arithmetic use, of experts, 220, 222; power, 87, 234-235; committee, 29; 126; purposes, 80; universality, destructive capacity, 256, 258-259; moral stand, 48, 251, KNXT interview, 40 257-258, 259; plutonium, 50; secrecy, 260; work patterns, La Belle, Jenijoy, 370 255, 256 Massachusetts Institute of laboratory, 6 language: clarity of, 192-193, Technology: fraternity life, 41, 300; learning process, 300; of 42-43; keynote speech, 37; science, 299, 305 personal development, 45 large numbers, 225 mathematical model accuracy, 263 Las Vegas visits, xviii-xix, 50 mathematics: abstractness, laws of electrodynamics, 359 42; appreciation of, 226; laws of mechanics, 65

learning: difficult ideas, 313; of

light: in gravitational fields, 71;

197, 336

limits (calculus), 229

life, 39

76

interest, 320, 321-322; process,

297; rote learning, 313–314; of

special topics, 309; styles, 304

reflection, 205-206; wavelength,

leisure activities, 19, 55, 56, 96, 102,

Los Alamos: dormitory living, 32-33;

mail censure, 274; physicists,

calculation errors, 226–227, 230; characteristics, 227, 236; consistency, 97; and physics, 129, 130, 227–228; poetry in, 223; as problem solver, 66, 228, 233; teaching approaches, 233; young students, 310. See also individual concepts

Mead, Carver, 376
meanness, 115
memorization, inefficiency of,
296, 308
memory: doing by, 295; of names, 36

Mermin, David, 365–366

For general gueries, contact info@press.princeton.edu

402 Index

Meson theory, 74
metallography, 180
microphone usage, 97
modern society, problems of, 217
momentum, 74
moral values, 115, 117, 118
Morrison, Philip, 367, 379
muons, 205
music: bongo playing, 54–55, 56, 96,
102, 197, 336; experience of,
67; piano-playing, 106

NASA resource allocation, 263, See also Challenger explosion National Academy of Sciences, 25 nature: as accidental result, 60; complexities, 66, 69, 72, 73, 128; nebulae shapes, 191-192; nonrelativistic nature, 61; quantum mechanics simulation, 76; rules, 134; simplicity, 67-68, 69; understanding of, 63 neutrinos, 205 Newton, Isaac, 152 New York School System, 8 New Zealand, 43 Niels Bohr Medal recommendations, 36 Nobel Prize: felicitations, 336,

el Frize: telicitations, 336, 337, 339–341; Feynman reaction, 95, 101, 333, 335–336, 339–340, 342–343; lecture, xviii, 13–14, 67–68, 111–112, 125, 162, 170, 174–175, 183, 184, 209–210, 238, 337; newspaper reports, 221; research work, xi, 336, 368; source, 337; work environment, 56

nuclear arms freeze, 258
nuclear energy: future expectations,
359; interrelationships, 81;
peacetime plants, 47; wartime
development, 252
nuclear testing, 160, 253
nucleus, 60
number theory, 231

obituary, 50 Onnes, Kamerlingh, 157 ordinary people, 50

Pakistan Observer, 221
Pale Blue Dot (Sagan), xiv
paradoxical ideas, 125, 192
particles. See individual particles
Parton model, 99, 227, 380
Paul, Rodman W., 372
peace, 113
personality, 27
philosophers: critique of, 28, 109,
121; versus scientists, 113
physicists: experimental physicists,
126; goals, 59; humanity of, 94;
knowledge of, 195; world-view,
37, 112

physics: ability to understand, 36; versus astronomy, 79; fascination in, 38–39; fundamental physics, 133, 138; future expectations, 360; graduate education, 199; limitations, 147–148; and mathematics, 129, 130, 227–228; versus other sciences, 125, 302; predictive ability, 142–143, 285; problemsolving, 175–176; reversibility of laws, 207; solid-state physics,

201-202; teaching of, 301, 302, 308, 314-315. See also theoretical physics pi, 17, 20, 237, 239, 313-314 planetary movement, 66 plutonium, 50. See also Los Alamos; Manhattan Project poetry: of Auden, 55; by Feynman, 63-64, 91-92; nature in, 80; and science, 57 political party structure, 279-280 political questions, 121-122 politicians, expectations of, 274 Portuguese language skills, 31 positron, 199 precise language, 192-193 prejudice, 26 religion: certainty of faith, 120; President's Board of Master Christian ethics, 119; conflict Plumbers, 276 with science, 117, 118-119, Princeton University, 44 private enterprise, versus government, 279 problem-solving for learning, 296, 315 projection system, 12 proton, 203-205 psychiatrists, 219 psychoanalysis, 133 psychoanalysts, 216–217 publicity, 190-191, 220 public-speaking, 6, 23, 109 publishing, 144, 146, 160, 162 pure mathematicians, 232–235 pure mathematics, 240 puzzles, 177

quantum computers, 243 quantum electrodynamics theory: Dirac's book, 7, 13-14;

Feynman contributions, xi, xii; incompleteness of, 206-207; nature in, 203; strength of, 202 quantum mechanics: fundamental accuracy, 200; macroscopic descriptions, 208; teaching of, 128, 199, 372; undergraduate courses, 307, understanding of, 203, 210-211, 329 quantum theory of gravitation, 160 quarks, 202, 204 question types, 307, 330 radio broadcasts, 95 Reagan, Ronald, 258 relativity, 70, 71, 138, 209-210

121, 290-291; moral lessons, 118; role in life, 111 renaissance artists, 54 research, 162 research facilities, 153 resilience of material, 191 Rigden, John, 367 rituals, 38 Rogers Commission. See Challenger explosion Rorschach test, 100 rote learning, 313-314. See also learning rubber bands, 78, 177 rules, exception to, 170

Sagan, Carl, xiv Santa Claus, 6 school systems, 8 Schwinger, Julian, xi, 367

South Seas, 149-150

specialization, 122, 155

space, and time, 69

science: in decision-making, 105; Standard Time, 191 definition, 132, 156; and Stanford Linear Accelerator Center, ethics, 113, 116-117; and God, 116, 163; ignorance of, stars: beauty of, 57; galactic 217–218: imagination and. expanse, 61, 93; light from, 83, 151; interest in, 115, 151; 67. See also astronomy as international effort, 273; Stoppard, Tom, 379 irrelevance, 219; language of, stupidity, 101 299, 305; logic in, 321; nonsub-nuclear systems, 206 science, 139, 158; power of, 111, success, in science, 128 144, 222, 253; religious conflict, summer travel, 189 117, 118, 119, 121, 290-291; Surely You're Joking, Mr. Feynman!, structural interconnection, 180; xxiv, 5, 30 survival, 114 success in, 128, 150, 162-163; teaching of, 147, 163, 295; traditions, 221; uncertainty of, table of integrals, 229 213; universality, 140; young teaching: desire for, 293, 300; students, 310 entertainer role, 301; high Science and Children, 29 school, 7; as interruption, 300; science fiction writers, 199 philosophy of, 309, scientific discovery, 35 311; time effect, 313; time scientific innovations, 163 management, 302-303 scientific integrity, 132 Telegdi, Valentine L., 366 scientific lectures, 94, 127-128 television industry, 275 scientific method, 127, 131, textbooks, 5, 310 theoretical physicists, 98, 99, secrecy in work, lack of, 28, 182 158-159, 161, 360-361 self-positionality, 324 theoretical physics: as higher human set theory, 232 development, 48; limitations, Snow, C. P., 226, 365 200-201; perception of, 27, social elegance, 322-323 35; predictive ability, 138, 149, socialism, 275 171-172; research approach, 170 - 171Soffer, Bernard, 380 solid-state physics, 201-202 theory, development of, 44, 129,

134, 136, 146, 185, 239-240

Theory of Everything, xii

theory of relativity, 70, 72, 203

thermonuclear reactions, 273
Thorne, Kip, 374
time: absolute meaning, 73; direction
of, 62; as fourth geometrical
dimension, 200; limited
knowledge, 140; measurement,
193; and space, 69
Tollenstrup, Alvin V., 372
Tombrello, Thomas A., 366, 369–370
Tomonaga, Sin-Itiro, xi
trees, 75–76
triangulation, 325
truth, 72, 81, 136, 169, 181, 184, 290
typewriter science, 286

ultimate particle, 201
uncertainty, 283, 286–288
United Nations atomic energy
meeting, 278
United States of America: Civil
War, 358; government, 275;
ideals of freedom, 283; national
complexity, 276–277; political
party structure, 279–280
universal education, 276
universe: age, 73; beyond man,

universities: concentration of, 153; general education requirement, 310–311

119; expanse, 80; poetry on,

uranium: information security, 49; isotope separation, 254

vector, 225 Venus, 26 vocabulary, 114–115 Von Neumann, 120 voting, 275

Walker, Bernard, 10 wavelength, 76 wave-particle duality, 202-203, 208 W-Boson, 336 weaving, 9 Western civilization, heritages, 119 - 120Westphal, James A., 371 Wheeler, John, 374 Wigner, Eugene, 366 Wilson, Bob, 47-48, 256 wire space, 312 witch doctors, 216–217 witches, 38 Wood, David S., 372, 377 words, value of, 34 World War II. See Manhattan Project writing habit, 40 Wu, Theodore Y., 375–376

younger people, 180 Yukawa's field theory, 200–201