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Chapter 1

Just Enough Category Theory to Be Dangerous

Was mich nicht umbringt, macht mich starker. That which does not kill me, makes me stronger.

—F. Nietzsche [N, aphorism number 8]

Before we get to any interesting geometry, we need to develop a language to discuss things cleanly
and effectively. This is best done in the language of categories. There is not much to know about
categories to get started; itis just a very useful language. Like all mathematical languages, category
theory comes with an embedded logic, which allows us to abstract intuitions in settings we know
well to far more general situations.

Our motivation is as follows. We will be creating some new mathematical objects (such as
schemes, and certain kinds of sheaves), and we expect them to act like objects we have seen before.
We could try to nail down precisely what we mean by “act like,” and what minimal set of things
we have to check in order to verify that they act the way we expect. Fortunately, we don’t have
to—other people have done this before us, by defining key notions, such as abelian categories, which
behave like modules over a ring.

Our general approach will be as follows. I will try to tell you what you need to know, and
no more. (This I promise: If I use the word “topoi,” you can shoot me.) I will begin by telling you
things you already know, and describing what is essential about the examples, in a way that we
can abstract a more general definition. We will then see this definition in less familiar settings, and
get comfortable with using it to solve problems and prove theorems.

1.0.1. Example: product. For example, we will define the notion of product of schemes. We could
just give a definition of product, but then you should want to know why this precise definition
deserves the name of “product.” As a motivation, we revisit the notion of product in a situation
we know well: (the category of) sets. One way to define the product of sets U and V is as the set
of ordered pairs {(u,v) : we U, v eV} But someone from a different mathematical culture might
reasonably define it as the set of symbols {V : u € U, v € V}. These notions are “obviously the same.”
Better: There is “an obvious bijection between the two.”

This can be made precise by giving a better definition of product, in terms of a univer-
sal property. Given two sets M and N, a product is a set P, along with maps u: P—M and
v: P— N, such that for any set P’ with maps u': P’ — Mand~’: P’ — N, these maps factor uniquely
through P:

(1.0.1.1)

A
P — N
|
M
(The symbol 3 means “there exists,” and the symbol | means “unique.”) Thus a product is a
diagram
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4 Chapter 1 Just Enough Category Theory

and not just a set P, although the maps p and v are often left implicit.

This definition agrees with the traditional definition, with one twist: there isn’t just a single
product; but any two products come with a unique isomorphism between them. In other words,
the product is unique up to unique isomorphism. Here is why: If you have a product

P1L>N

g

M

and I have a product v,
P, —— N

.

M

then by the universal property of my product (letting (P2, p2,v2) play the role of (P, i, v) and
(P1, u1,v1) play the role of (P’,n',v’) in (1.0.1.1)), there is a unique map f: P; — P, making the
appropriate diagram commute (i.e., ;11 = 1 o f and vy =v; o f). Similarly, by the universal property
of your product, there is a unique map g: P, — Py making the appropriate diagram commute. Now
consider the universal property of my product, this time letting (P2, p2,v2) play the role of both
(P,,v) and (P’, p’,v') in (1.0.1.1). There is a unique map h: P, — P; such that

commutes. However, I can name two such maps: the identity map idp, and f o g. Thus f o g =idp, .
Similarly, g o f =idp, . Thus the maps f and g arising from the universal property are bijections. In
short, there is a unique bijection between Py and P, preserving the “product structure” (the maps
to M and N). This gives us the right to name any such product M x N, since any two such products
are uniquely identified.

This definition has the advantage that it works in many circumstances, and once we define
categories, we will soon see that the above argument applies verbatim in any category to show
that products, if they exist, are unique up to unique isomorphism. Even if you haven’t seen the
definition of category before, you can verify that this agrees with your notion of product in some
category that you have seen before (such as the category of vector spaces, or the category of
manifolds).

This is handy even in cases that you understand. For example, one way of defining the product
of two manifolds M and N is to cut them both up into charts, then take products of charts, then
glue them together. But if I cut up the manifolds M and N in one way, and you cut them up in
another, how do we know our resulting product manifolds are the “same”? We could wave our
hands, or make an annoying argument about refining covers, but instead, we should just show
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1.1 Categories and Functors

that they are “categorical products” and hence canonically the “same” (i.e., isomorphic). We will
formalize this argument in §1.2.

Another set of notions we will abstract is that of categories that “behave like modules.” We
will want to define kernels and cokernels for new notions, and we should make sure that these
notions behave the way we expect them to. This leads us to the definition of abelian categories, first
defined by Grothendieck in his Téhoku paper [Grl].

In this chapter, we will give an informal introduction to these and related notions, in the hope
of our developing just enough familiarity to comfortably use them in practice.

1.1 Categories and Functors

The introduction of the digit 0 or the group concept was general nonsense too, and math-
ematics was more or less stagnating for thousands of years because nobody was around to
take such childish steps.

—A. Grothendieck, [BroP, pp. 4-5]

Before functoriality, people lived in caves.
—B. Conrad

We begin with an informal definition of categories and functors.

1.1.1. Categories.

A category consists of a collection of objects, and for each pair of objects, a set of morphisms (or
arrows) between them. (For experts: technically, this is the definition of a locally small category. In
the correct definition, the morphisms need only form a class, not necessarily a set, but see Cau-
tion 0.3.1.) Morphisms are often informally called maps. The collection of objects of a category €
is often denoted by obj(%’), but we will usually denote the collection also by €. If A, B € ¢, then
the set of morphisms from A to B is denoted by Mor(A, B). A morphism is often written f: A — B,
and A is said to be the source of f, and B the target of f. (Of course, Mor(A, B) is taken to be disjoint
from Mor(A’,B’) unless A=A"and B=B".)

Morphisms compose as expected: there is a composition Mor (B, C) x Mor(A, B) — Mor(A, C),
and if f € Mor(A, B) and g € Mor(B, C), then their composition is denoted by g o f. Composition
is associative: if f € Mor(A, B), g € Mor(B, C), and h € Mor(C, D), then ho (gof)=(hog)of. For
each object A € ¢, there is always an identity morphism ida: A — A, such that when you (left-
or right-) compose a morphism with the identity, you get the same morphism. More precisely, for
any morphisms f: A—Band g: B— C,idg of =fand g oidg = g. (If you wish, you may check that
“identity morphisms are unique”: there is only one morphism deserving the name ida.) This ends
the definition of a category.

We have a notion of isomorphism between two objects of a category (a morphism f: A — B
such that there exists some—necessarily unique—morphism g: B— A, where fog and gof are
the identities on B and A respectively).

1.1.2. Example. The prototypical example to keep in mind is the category of sets, denoted by Sets.
The objects are sets, and the morphisms are maps of sets. (Because Russell’s paradox shows that
there is no set of all sets, we did not say earlier that there is a set of all objects. But as stated in §0.3,
we are deliberately omitting all set-theoretic issues.)

1.1.3. Example. Another good example is the category Vecy of vector spaces over a given field
k. The objects are k-vector spaces, and the morphisms are linear transformations. (What are the
isomorphisms?)

1.1.A. UNIMPORTANT EXERCISE. A category in which each morphism is an isomorphism
is called a groupoid. (This notion is not important in what we will discuss. The point of this
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Chapter 1 Just Enough Category Theory

exercise is to give you some practice with categories, by relating them to an object you know
well.)

(a) A perverse definition of a group is: a groupoid with one object. Make sense of this. (Similarly,
in case you care, a perverse definition of a monoid is: a category with one object.)
(b) Describe a groupoid that is not a group.

1.1.B. EXERCISE. If A is an object in a category ¢, show that the invertible elements of Mor(A, A)
form a group (called the automorphism group of A, denoted by Aut(A)). What are the auto-
morphism groups of the objects in Examples 1.1.2 and 1.1.3? Show that two isomorphic objects
have isomorphic automorphism groups. (For readers with a topological background: if X is a
topological space, then the fundamental groupoid is the category where the objects are points
of X, and the morphisms x — y are paths from x to y, up to homotopy. Then the automorphism
group of xo is the (pointed) fundamental group 711 (X, xo). In the case where X is connected, and
m1(X) is not abelian, this illustrates the fact that for a connected groupoid—whose definition
you can guess—the automorphism groups of the objects are all isomorphic, but not canonically
isomorphic.)

1.1.4. Example: Abelian groups. The abelian groups, along with group homomorphisms, form a
category Ab.

1.1.5. Important Example: Modules over a ring. If A is aring, then the A-modules form a category
Mod . (This category has additional structure; it will be the prototypical example of an abelian
category; see §1.5.) Taking A =k, we obtain Example 1.1.3; taking A =Z, we obtain Example 1.1.4.

1.1.6. Example: Rings. There is a category Rings, where the objects are rings, and the morphisms
are maps of rings in the usual sense (maps of sets that respect addition and multiplication, and
that send 1 to 1 by our conventions; see §0.3).

1.1.7. Example: Topological spaces. The topological spaces, along with continuous maps, form a
category Top. The isomorphisms are homeomorphisms.

In all of the above examples, the objects of the categories were in obvious ways sets with
additional structure (a concrete category, although we won’t use this terminology). This needn’t
be the case, as the next example shows.

1.1.8. Example: Partially ordered sets. A partially ordered set (or poset) is a set S along with a
binary relation > on S satisfying;:

(i) x>x (reflexivity),
(i) x>y andy >zimply x > z (transitivity), and
(iii) if x>y andy > x then x =y (antisymmetry).

A partially ordered set (S, >) can be interpreted as a category whose objects are the elements of S,
and with a single morphism from x to y if and only if x >y (and no morphism otherwise).
A trivial example is (S, >) where x >y if and only if x =y. Another example is

(1.1.8.1) °

Here there are three objects. The identity morphisms are omitted for convenience, and the two
non-identity morphisms are depicted. A third example is

(1.1.8.2) PO,
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1.1 Categories and Functors

Here the “obvious” morphisms are again omitted: the identity morphisms, and the morphism from
the upper left to the lower right. Similarly,

L L L
depicts a partially ordered set, where, again, only the “generating morphisms” are depicted.

1.1.9. Example: The category of subsets of a set, and the category of open subsets of a topological
space. If X is a set, then the subsets form a partially ordered set, where arrows are given by inclu-
sion. (Be careful: you may be expecting the arrows to go the other way, because of Example 1.1.8.)
Informally, if U C V, then we have exactly one morphism U — V in the category (and otherwise
none). Similarly, if X is a topological space, then the open sets form a partially ordered set, where
the maps are given by inclusions.

1.1.10. Definition. A subcategory < of a category % has as its objects some of the objects of %,
and some of the morphisms of %, such that the objects of < include the sources and targets of
the morphisms of <7, and the morphisms of & include the identity morphisms of the objects of
</, and are preserved by composition. (For example, (1.1.8.1) is in an obvious way a subcategory
of (1.1.8.2). Also, we have an obvious “inclusion” i: &/ — %, which will soon be an example of a
functor.)

1.1.11. Functors.

A covariant functor F from a category < to a category %, denoted by F: &/ — 2, is the following
data. It is a map of objects F: obj(.<7) — obj(#), and for each A1, A; € &/, and morphism m: A; —
Az, amorphism F(m): F(A;) — F(A2) in 4. We require that F preserve identity morphisms (for A €
</, F(ida) =idF(a)), and that F preserve composition (F(m; o m;) =F(m2) o F(m1)). (You may wish
to verify that covariant functors send isomorphisms to isomorphisms.) A trivial example is the
identity functor id: &/ — o7, whose definition you can guess. Here are some less trivial examples.

1.1.12. Example: A forgetful functor. Consider the functor from the category of vector spaces
(over a field k) Vecy to Sets that associates to each vector space its underlying set. The functor sends
a linear transformation to its underlying map of sets. This is an example of a forgetful functor,
where some additional structure is forgotten. Another example of a forgetful functor is Moda —
Ab from A-modules to abelian groups, which remembers only the abelian group structure of the
A-module.

1.1.13. Topological examples. Examples of covariant functors include the fundamental group
functor 77, which sends a topological space X with choice of a point xo € X to a group 7 (X, xo)
(what are the objects and morphisms of the source category?), and the ith homology functor
Top — Ab, which sends a topological space X to its ith homology group H;(X,Z). The covariance
corresponds to the fact that a (continuous) morphism of pointed topological spaces ¢p: X —Y
with ¢(x0) =yo induces a map of fundamental groups 7t1(X,x0) — 71 (Y, yo), and similarly for
homology groups.

1.1.14. Example. Suppose A is an object in a category €. Then there is a functor h*: ¢ — Sets
sending B € ¥ to Mor(A, B) and sending f: By — B, to Mor(A, By) — Mor(A, B2), described by

[g: A—Bi] ——— [fog: A—B; —Byl.
This seemingly silly functor ends up surprisingly being an important concept.

1.1.15. Definitions. If F: .o/ — % and G: % — ¥ are covariant functors, then we define a func-
tor GoF: &/ — ¢ (the composition of G and F) in the obvious way. Composition of functors is
associative in an evident sense.

A covariant functor F: & — 4 is faithful if for all A,A’ € o/, the map Mor. (A, A’) —
Morg (F(A),F(A")) is injective, and full if it is surjective. A functor that is full and faithful is fully
faithful. (For various philosophical reasons, the notion of “full” functor on its own is unimpor-
tant; “fully faithful” is the useful notion.) A subcategory i: &/ — Z is a full subcategory if i is full.
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(Inclusions are always faithful, so there is no need for the phrase “faithful subcategory.”) Thus a
subcategory &7’ of </ is full if and only if for all A, B € obj(«/"), Mor,,/(A,B) =Mor. (A, B). For
example, the forgetful functor Vecy — Sets is faithful, but not full; and if A is a ring, the category
of finitely generated A-modules is a full subcategory of the category Moda of A-modules.

1.1.16. Definition. A contravariant functor is defined in the same way as a covariant functor,
except the arrows switch directions: in the above language, F(A1 — A2) is now an arrow from
F(A2) to F(A1). (Thus F(m2 omy) =F(my) o F(m3), not F(m2) o F(my).)

It is wise to state whether a functor is covariant or contravariant, unless the context makes it
very clear. If it is not stated (and the context does not make it clear), the functor is often assumed
to be covariant.

Sometimes people describe a contravariant functor ' — 2 as a covariant functor " — 7,
where ¢°PP is the same category as ¢ except that the arrows go in the opposite direction. Here
¢°PP is said to be the opposite category to 4.

One can define fullness, etc. for contravariant functors, and you should do so.

1.1.17. Linear algebra example. If Vecy is the category of k-vector spaces (introduced in Exam-
ple 1.1.3), then taking duals gives a contravariant functor (-)" : Vecx — Veck. Indeed, to each linear
transformation f: V — W, we have a dual transformation f¥: WY — V", and (fog)Y =gV o f".

1.1.18. Topological example (cf. Example 1.1.13) for those who have seen cohomology. The ith

cohomology functor HY(-,Z): Top — Ab is a contravariant functor.

1.1.19. Example. There is a contravariant functor Top — Rings taking a topological space X to
the ring of real-valued continuous functions on X. A morphism of topological spaces X —Y (a
continuous map) induces the pullback map from functions on Y to functions on X.

1.1.20. Example (the functor of points; cf. Example 1.1.14). Suppose A is an object of a category
% . Then there is a contravariant functor ha: ¢ — Sets sending B € € to Mor(B, A), and sending
the morphism f: B; — B> to the morphism Mor(B2, A) — Mor(B1, A) via

[g: Bz—)A} | E— [gof: B; —)Bz—)A].

This example initially looks weird and different, but Examples 1.1.17 and 1.1.19 may be interpreted
as special cases; do you see how? What is A in each case? This functor might reasonably be called
the functor of maps (to A), but is actually known as the functor of points. We will meet this functor
again in §1.2.11 and (in the category of schemes) in Definition 7.3.10.

1.1.21.* Natural transformations (and natural isomorphisms) of covariant functors, and
equivalences of categories.

(This notion won't come up in an essential way until at least Chapter 7, so you shouldn’t read this
section until then.) Suppose F and G are two covariant functors from </ to 2. A natural transfor-
mation of covariant functors F — G is the data of a morphism ma: F(A) — G(A) for each A € &/
such that for each f: A — A’ in &7, the diagram

F(f)
F(A) —— F(A)

nn l lmm

G(A) —— G(A)
G(f)
commutes. A natural isomorphism of functors is a natural transformation such that each ma is
an isomorphism. (We make analogous definitions when F and G are both contravariant.)
The data of functors F: &/ — % and F': 8 — « such that FoF’ is naturally isomorphic to the
identity functor idg on % and F’ o F is naturally isomorphic to id . is said to be an equivalence of
categories. The right notion of when two categories are “essentially the same” is not isomorphism
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(a functor giving bijections of objects and morphisms) but equivalence. Exercises 1.1.C and 1.1.D
might give you some vague sense of this. Later exercises (for example, to show that “rings” and
“affine schemes” are essentially the same once arrows are reversed, Exercise 7.3.E) may help, too.

Two examples might make this strange concept more comprehensible. The double dual of a
finite-dimensional vector space V is not V, but we learn early to say that it is canonically isomorphic
to V. We can make that precise as follows. Let f.d.Vec, be the category of finite-dimensional vector
spaces over k. Note that this category contains oodles of vector spaces of each dimension.

1.1.C. EXERCISE. Let (-)VV: f.d.Vec, — f.d.Vec, be the double dual functor from the category of
finite-dimensional vector spaces over k to itself. Show that (-)¥" is naturally isomorphic to the
identity functor on f.d.Vec, . (Without the finite-dimensionality hypothesis, we only get a natural

transformation of functors from id to (-)¥V.)

Let ¥ be the category whose objects are the k-vector spaces k™ for each n > 0 (there is one
vector space for each n), and whose morphisms are linear transformations. The objects of ¥ can
be thought of as vector spaces with bases, and the morphisms as matrices. There is an obvious
functor ¥ — f.d.Vec,, as each k" is a finite-dimensional vector space.

1.1.D. EXERCISE. Show that ¥ — f.d.Vec, gives an equivalence of categories, by describing an
“inverse” functor. (Recall that we are being cavalier about set-theoretic assumptions—see Cau-
tion 0.3.1—so feel free to simultaneously choose bases for each vector space in f.d.Vec, . To make
this precise, you will need to use Gédel-Bernays set theory or else replace f.d.Vec, with a very
similar small category, but we won’t worry about this.)

1.1.22.%* Aside for experts. Your argument for Exercise 1.1.D will show that (modulo set-theoretic
issues) this definition of equivalence of categories is the same as another one commonly given: a
covariant functor F: &/ — 2 is an equivalence of categories if it is fully faithful and every object of
2 is isomorphic to an object of the form F(A) for some A € o/ (F is essentially surjective, a term
we will not need).

1.2 Universal Properties Determine an Object up to Unique Isomorphism

Given some category that we come up with, we often will have ways of producing new objects
from old. In good circumstances, definitions will be usefully made using the notion of a universal
property. Informally, we wish that there were an object with some property. We first show that if it
exists, then it is essentially unique, or more precisely, is unique up to unique isomorphism. Then
we go about constructing an example of such an object to show existence.

Explicit constructions are sometimes easier to work with than universal properties, but with a
little practice, universal properties are useful in proving things quickly and slickly. Indeed, when
learning the subject, people often find explicit constructions more appealing, and use them more
often in proofs, but as they become more experienced, they find universal property arguments
more elegant and insightful.

1.2.1. Products were defined by a universal property. We have seen one important example
of a universal property argument already in §1.0.1: products. You should go back and verify that
our discussion there gives a notion of product in any category, and shows that products, if they
exist, are unique up to unique isomorphism.

1.2.2. Initial, final, and zero objects. Here are some simple but useful concepts that will give
you practice with universal property arguments. An object of a category ¢ is an initial object if
it has precisely one map to every object. It is a final object if it has precisely one map from every
object. It is a zero object if it is both an initial object and a final object.

1.2.A. EXERCISE. Show that any two initial objects are uniquely isomorphic. Show that any two
final objects are uniquely isomorphic.
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In other words, if an initial object exists, it is unique up to unique isomorphism, and similarly
for final objects. This (partially) justifies the phrase “the initial object” rather than “an initial object,”

and similarly for “the final object” and “the zero object.” (Convention: We often say “the,” not “a,
for anything defined up to unique isomorphism.)

1.2.B. EXERCISE. What are the initial and final objects in Sets, Rings, and Top (if they exist)? How
about in the two examples of §1.1.9?

1.2.3. Localization of rings and modules. Another important example of a definition by
universal property is the notion of localization of a ring. We first review a constructive defini-
tion, and then reinterpret the notion in terms of universal property. A multiplicative subset S
of a ring A is a subset closed under multiplication containing 1. We define a ring S™'A. The
elements of S™'A are of the form a/s where a€ A and s €S, and where a;/s; =ax/s; if (and
only if) for some s € S, s(s2a1 —s1az) =0. We define (a1/s1) + (az2/s2) = (s2a1 +s1a2)/(s1s2), and
(ar1/s1) x (az2/s2) =(araz2)/(s1s2). (If you wish, you may check that this equality of fractions
really is an equivalence relation and the two binary operations on fractions are well-defined on
equivalence classes and make S~' A into a ring.) We have a canonical ring map

(1.2.3.1) A——>=ST"A

given by a— a/1. Note thatif 0 € S, S TA is the 0O-ring.

There are two particularly important flavors of multiplicative subsets. The firstis {1, f, 2.
where f€ A. This localization is denoted by As. (Can you describe an isomorphism A +—
Altl/(tf —1)?) The second is A\ p, where p is a prime ideal. This localization S~ TA is denoted
by A,. (Notational warning: If p is a prime ideal, then A, means you're allowed to divide by ele-
ments not in p. However, if f € A, A means you're allowed to divide by f. This can be confusing.
For example, if (f) is a prime ideal, then A #Ay).)

Warning: Sometimes localization is first introduced in the special case where A is an integral
domain and 0¢S. In that case, A< S™'A, but this isn’t always true, as shown by the follow-
ing exercise. (But we will see that noninjective localizations needn’t be pathological, and we can
sometimes understand them geometrically; see Exercise 3.2.L.)

1.2.C. EXERCISE. Show that A — S 'A is injective if and only if S contains no zerodivisors. (A
zerodivisor of a ring A is an element a such that there is a nonzero element b with ab =0. The
other elements of A are called non-zerodivisors. For example, an invertible element is never a
zerodivisor. Counterintuitively, 0 is a zerodivisor in every ring but the 0-ring. More generally, if M
is an A-module, then a € A is a zerodivisor for M if there is a nonzero m € M with am =0. The
other elements of A are called non-zerodivisors for M. Equivalently, and very usefully, a € A is a
non-zerodivisor for M if and only if xa: M — M is an injection, or equivalently in the language of
§1.4.4, if
0—>M—>M

is exact.)

If A is an integral domain and S = A\ {0}, then S7'A is called the fraction field of A, which
we denote by K(A). The previous exercise shows that A is a subring of its fraction field K(A). We
now return to the case where A is a general (commutative) ring.

1.2.D. EXERCISE. Verify that A — S™' A satisfies the following universal property: S™' A is initial
among A-algebras B where every element of S is sent to an invertible element in B. (Recall: The data
of “an A-algebra B” and “a ring map A — B” are the same.) Translation: Any map A — B where
every element of S is sent to an invertible element factors uniquely through A — S~'A. Another
translation: a ring map out of S~ ' A is the same thing as a ring map from A that sends every element
of S to an invertible element. Furthermore, an S~' A-module is the same thing as an A-module for
which s x -: M — M is an A-module isomorphism for all s € S.
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In fact, it is cleaner to define A — STTA by the universal property, and to show that it exists, and
to use the universal property to check various properties S~ 'A has. Let’s get some practice with
this by defining localizations of modules by the universal property. Suppose M is an A-module. We
define the A-module map ¢: M — S~'M as being initial among A-module maps M — N such that
elements of S are invertible in N (s x -: N — N is an isomorphism for all s € S). More precisely, any
such map o: M — N factors uniquely through ¢:

MLS*‘

\3!
* y
N

(Translation: M — S~ M is universal (initial) among A-module maps from M to modules that are
actually ™' A-modules. Can you make this precise by defining clearly the objects and morphisms
in this category?)

Notice: (i) This determines ¢p: M — S~ 'M up to unique isomorphism (you should think
through what this means); (ii) we are defining not only S~'M, but also the map ¢ at the same time;
and (iii) essentially by definition the A-module structure on S~'M extends to an S™' A-module
structure.

1.2.E. EXERCISE. Show that ¢: M — S™'M exists, by constructing something satisfying the uni-
versal property. Hint: Define elements of S~ "M to be of the form m/s where me M and s €S,
and my/s1 =mz/s; if and only if for some s €S, s(s2mi —symz) =0. Define the additive struc-
ture by (mq/s1)+ (ma/s2) = (s2mq +s1m2)/(s1s2), and the S~' A-module structure (and hence
the A-module structure) as given by (a1/s1) - (m2/s2) = (aim2)/(s152)-

1.2.F. EXERCISE.

(a) Show thatlocalization commutes with finite products, or equivalently, with finite direct sums.
In other words, if M1, ..., My are A-modules, describe an isomorphism (of A-modules, and
of ST'A-modules) ST (M7 x -+ X M) = S "My x --- x ST 'M,,.

(b) Show that localization commutes with arbitrary direct sums.

(c) Show that “localization does not necessarily commute with infinite products”: the obvious
map S~ (I, Mi) = [[; S ' M induced by the universal property of localization is not always
an isomorphism. (Hint: (1,1/2,1/3,1/4,...)€QxQ x ---.)

1.2.4. Remark. Localization does not always commute with Hom; see Example 1.5.10. But Exer-
cise 1.5.H will show that in good situations (if the first argument of Hom is finitely presented),
localization does commute with Hom.

1.2.5. Tensor products. Another important example of a universal property construction is the
notion of a tensor product of A-modules:

QA obj(Moda) x obj(Moda) — obj(Moda )

The subscript A is often suppressed when it is clear from context. The tensor product is often
defined as follows. Suppose you have two A-modules M and N. Then elements of the ten-
sor product M ®a N are finite A-linear combinations of symbols m®n (meM, neN), sub-
ject to relations (M + M) @N=m1 N+ M2 @M, M (N1 +1n2)=MN; + MmNz, a(mn) =
(am)®@n=m® (an) (where a€ A, m;, m; € M, ny,nz € N). More formally, M®a N is the free
A-module generated by M x N, quotiented by the submodule generated by (m;+mz,n)—
(my,n) —(mz2,n), (mn; +n2)—(m,n;)—(m,nz), a(m,n)— (am,n), and a(m,n) — (m, an) for
a€A, mm,m; €M, n,ni,n; €N. The image of (m,n) in this quotientis m®@ 1.
If A is a field k, we recover the tensor product of vector spaces.
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1.2.G. EXERCISE (IF YOU HAVEN'T SEEN TENSOR PRODUCTS BEFORE). Show that Z/(10)
®z7Z/(12)=7/(2). (This exercise is intended to give some hands-on practice with tensor
products.)

1.2.H. IMPORTANT EXERCISE: RIGHT-EXACTNESS OF (-) ®a N. Show that (-) ®a N gives a
covariant functor Moda — Moda. Show that (-) ® N is a right-exact functor, i.e., if
M =-M—-M"—0

is an exact sequence of A-modules (which means f: M — M" is surjective, and M’ surjects onto
the kernel of f; see §1.4.4), then the induced sequence

M/®AN—)M®AN—)MN®AN—)O

is also exact. This exercise is repeated in Exercise 1.5.G, but you may get a lot out of doing it now.
(You will be reminded of the definition of right-exactness in §1.5.6.)

In contrast, you can quickly check that the tensor product is not left-exact: tensor the exact

sequence of Z-modules

0 7% 7 7)(2) 0

with Z/(2).

The constructive definition of ® is a weird definition, and really the “wrong” definition. To
motivate a better one: notice that there is a natural A-bilinear map M x N = M ®x N. (If M, N, P €
Moda, amap f: M x N — P is A-bilinear if f(m; +mz,n) =f(mq,n) +f(m2,n), f(m,ns +n2) =
f(m,n1) +f(m,n2), and f(am,n) =f(m, an) = af(m, n).) Any A-bilinear map M x N — P factors
through the tensor product uniquely: M x N — M ®a N — P. (Think this through!)

We can take this as the definition of the tensor product as follows. It is an A-module T along
with an A-bilinear map t: M x N — T, such that given any A-bilinear map t': M x N — T’, there
is a unique A-linear map f: T— T’ such thatt’ =fot.

MxN— T

\ k Ell3

T/

1.2.I. EXERCISE. Show that (T,t: M x N — T) is unique up to unique isomorphism. Hint: First
figure out what “unique up to unique isomorphism” means for such pairs, using a category of
pairs (T, t). Then follow the analogous argument for the product.

In short, given M and N, there is an A-bilinear map t: M x N = M ®a N, unique up to unique
isomorphism, defined by the following universal property: for any A-bilinearmapt’: M x N—= T’
there is a unique A-linear map f: M®a N — T’ such thatt’' =fot.

As with all universal property arguments, this argument shows uniqueness assuming existence.
To show existence, we need an explicit construction.

1.2.J. EXERCISE. Show that the construction of §1.2.5 satisfies the universal property of tensor
product.

The three exercises below are useful facts about tensor products with which you should be
familiar.

1.2.K. IMPORTANT EXERCISE.

(a) If M is an A-module and A — B is a morphism of rings, give B®a M the structure of a B-
module (this is part of the exercise). Show that this describes a functor Modx — Modsg.

(b) (tensor product of rings) If further A — C is another morphism of rings, show that B®a C
has a natural structure of a ring. Hint: Multiplication will be given by (b1 ® ¢1)(b2®c2) =
(b1b2) ® (c1c2). (Exercise 1.2.U will interpret this construction as a fibered coproduct.)
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1.2.L.IMPORTANT EXERCISE. If S is a multiplicative subset of A and M is an A-module, describe
a natural isomorphism (S™'A) ®a M — S™"M (as S~' A-modules and as A-modules).

1.2.M. EXERCISE (® COMMUTES WITH @). Show that tensor products commute with arbitrary
direct sums: if M and {Nj}i¢1 are all A-modules, describe an isomorphism

M® (BiciNi) — Bier (M@ Ny).

1.2.6. Essential Example: Fibered products. Suppose we have morphisms «: X — Z and
B: Y — Z (in any category). Then the fibered product (or fibred product) is an object X x 7 Y along
with morphisms prx: X xz Y — X and pry: X xz Y =Y, where the two compositions ccoprx, § o
pry: X xz Y — Z agree, such that given any object W with maps to X and Y (whose compositions
to Z agree), these maps factor through some unique W — X xz Y:

(1.2.6.1)

X —% o 7.

(Warning: The definition of the fibered product depends on « and f3, even though they are omitted
from the notation X xz Y.)

By the usual universal property argument, if it exists, it is unique up to unique isomorphism.
(You should think this through until it is clear to you.) Thus the use of the phrase “the fibered
product” (rather than “a fibered product”) is reasonable, and we should reasonably be allowed to
give it the name X x z Y. We know what maps to it are: they are precisely maps to X and maps to
Y that agree as maps to Z.

1.2.7. Definition. Asanexample, if 71: X — Y is a morphism, and the fibered product X xv X exists,
then this determines a diagonal morphism - : X — X xy X. The diagonal morphism will turn out
to be a very useful notion.

Depending on your religion, the diagram

pry
XxXzY ——Y

X —>7Z
is called a fibered/pullback/Cartesian diagram/square (six possibilities—and even more are
possible if you prefer “fibred” to “fibered”).

The right way to interpret the notion of fibered product is first to think about what it means
in the category of sets.

1.2.N. EXERCISE (FIBERED PRODUCTS OF SETS). Show that in Sets,
XxzY={(x,y)eXxY : a(x)=py)}

More precisely, show that the right side, equipped with its evident maps to X and Y, satisfies
the universal property of the fibered product. (This will help you build intuition for fibered
products.)

1.2.0. EXERCISE. If X is a topological space, show that fibered products always exist in the
category of open sets of X, by describing what a fibered product is. (Hint: It has a one-word
description.)
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1.2.P. EXERCISE. If Z is the final object in a category ¢, and X, Y € %, show that “X xz Y =X x Y”:
“the” fibered product over Z is uniquely isomorphic to “the” product. Assume all relevant (fibered)
products exist. (This is an exercise about unwinding the definition.)

1.2.Q. USEFUL EXERCISE: TOWERS OF CARTESIAN DIAGRAMS ARE CARTESIAN
DIAGRAMS. If the two squares in the following commutative diagram are Cartesian diagrams,
show that the “outside rectangle” (involving U, V, Y, and Z) is also a Cartesian diagram.

uUu—yVv

L

W —X

|

Y —"Z

1.2.R. EXERCISE. Given morphisms X; —Y, X2 —Y, and Y — Z, show that there is a natural mor-
phism X; xv X2 = X; xz X3, assuming that both fibered products exist. (This is trivial once you
figure out what it is saying. The point of this exercise is to see why it is trivial.)

1.2.S. IMPORTANT EXERCISE: THE DIAGONAL-BASE-CHANGE DIAGRAM. Suppose we are
given morphisms Xi,X; — Y and Y — Z. Show that the following diagram is a Cartesian square.

X1 Xy Xy —= X1 Xz Xz

L

Y ———YxzY

Assume all relevant (fibered) products exist. (If this exercise is too hard now, you can try it again
at Exercise 1.3.B.) You will appreciate how useful this diagram is when you repeatedly use the
diagonal morphism in proofs and constructions.

If you liked this problem, you may enjoy Exercise 11.1.C.

1.2.8. Coproducts. Define coproduct in a category by reversing all the arrows in the definition of
product. Define fibered coproduct in a category by reversing all the arrows in the definition of
fibered product. Coproduct is denoted by | [.

1.2.T. EXERCISE. Show that coproduct for Sets is disjoint union. This is why we use the notation
11 for disjoint union.

1.2.U. EXERCISE. Suppose A — B and A — C are two ring morphisms, so in particular B and C
are A-modules. Recall (Exercise 1.2.K) that B®a C has a ring structure. Show that there is a natural
morphism B — B ®a C givenby b+ b ® 1. (This is not necessarily an inclusion; see Exercise 1.2.G.)
Similarly, there is a natural morphism C — B ®a C. Show that this gives a fibered coproduct on
rings, i.e., that

B®a C=——2¢C

B<~—A
satisfies the universal property of fibered coproduct.
1.2.9. Monomorphisms and epimorphisms.

1.2.10. Definition. A morphism 7t: X —Y is a monomorphism if any two morphisms p;: Z — X
and p2: Z— X such that 7o uy =mo py must satisfy w1 = po. In other words, there is at most one
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way of filling in the dotted arrow so that the diagram

XT>Y

commutes—for any object Z, the natural map Mor(Z, X) — Mor(Z,Y) is an injection. Intuitively, it
is the categorical version of an injective map, and indeed this notion generalizes the familiar notion
of injective maps of sets. (The reason we don’t use the word “injective” is that in some contexts,
“injective” will have an intuitive meaning that may not agree with “monomorphism.” One exam-
ple: in the category of divisible groups, the map Q — Q/Z is a monomorphism but not injective.
This is also the case with “epimorphism”—to be defined shortly—in contract with “surjective.”)

1.2.V. EXERCISE. Show that the composition of two monomorphisms is a monomorphism.

1.2.W. EXERCISE. Prove thata morphism 7t: X — Y is a monomorphism if and only if the fibered
product X xy X exists, and the induced diagonal morphism -: X — X xy X (Definition 1.2.7) is an
isomorphism. We may then take this as the definition of monomorphism. (Monomorphisms aren’t
central to future discussions, although they will come up again. This exercise is just good practice.)

1.2.X. EASY EXERCISE. We use the notation of Exercise 1.2.R. Show that if Y — Z is a monomor-
phism, then the morphism X; xy Xz — X5 xz X2 you described in Exercise 1.2.R is an isomor-
phism. (Hint: For any object V, give a natural bijection between maps from V to the first and maps
from V to the second. It is also possible to use the Diagonal-Base-Change diagram, Exercise 1.2.5.)

The notion of epimorphism is “dual” to the definition of monomorphism, where all the arrows
are reversed. This concept will not be central for us, although it turns up in the definition of an
abelian category. Intuitively, it is the categorical version of a surjective map. (But be careful when
working with categories of objects that are sets with additional structure, as epimorphisms need
not be surjective. Example: In the category Rings, Z — Q is an epimorphism, but obviously not
surjective.)

1.2.11. Representable functors and Yoneda’s Lemma. Much of our discussion about uni-
versal properties can be cleanly expressed in terms of representable functors, under the rubric of
“Yoneda’s Lemma.” Yoneda’s lemma is an easy fact stated in a complicated way. Informally speak-
ing, you can essentially recover an object in a category by knowing the maps into it. For example,
we have seen that the data of maps to X x Y are naturally (canonically) the data of maps to X and
to Y. Indeed, we have now taken this as the definition of X x Y.

Recall Example 1.1.20. Suppose A is an object of category %. For any object C € ¢, we have a
set of morphisms Mor(C, A). If we have a morphism f: B — C, we get a map of sets

(1.2.11.1) Mor(C,A) —— Mor(B,A)

by composition: given a map from C to A, we get a map from B to A by precomposing with f: B —
C. Hence this gives a contravariant functor ha: ¢ — Sets. Yoneda’s Lemma states that the functor
ha determines A up to unique isomorphism. More precisely:

1.2.Y. IMPORTANT EXERCISE THAT YOU SHOULD DO ONCE IN YOUR LIFE (YONEDA'S
LEMMA).

(a) Suppose you have two objects A and A’ in a category ¢, and maps
(1.2.11.2) ic: Mor(C,A) ——> Mor(C,A’)

that commute with the maps (1.2.11.1). Show that the ic (as C ranges over the objects of )
are induced from a unique morphism g: A — A’. More precisely, show that there is a unique
morphism g: A — A’ such that forall C€ %, icisur—gou.
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16 Chapter 1 Just Enough Category Theory

(b) If furthermore the ic are all bijections, show that the resulting g is an isomorphism. (Hint for
both: This is much easier than it looks. This statement is so general that there are really only a
couple of things that you could possibly try. For example, if you're hoping to find a morphism
A — A’, where will you find it? Well, you are looking for an element Mor(A, A’). So just plug
C=Anto (1.2.11.2), and see where the identity goes.)

There is an analogous statement with the arrows reversed, where instead of maps into A, you
think of maps from A. The role of the contravariant functor ha of Example 1.1.20 is played by the
covariant functor h* of Example 1.1.14. Because the proof is the same (with the arrows reversed),
you needn’t think it through.

The phrase “Yoneda’s Lemma” properly refers to a more general statement. Although it looks
more complicated, it is no harder to prove.

1.2.Z.* EXERCISE.

(a) Suppose A and B are objects in a category %'. Give a bijection between the natural transforma-
tions h — hP of covariant functors € — Sets (see Example 1.1.14 for the definition) and the
morphisms B — A.

(b) State and prove the corresponding fact for contravariant functors ha (see Example 1.1.20).
Remark: A contravariant functor F from ¢ to Sets is said to be representable if there is a
natural isomorphism

& F — > ha.

Thus the representing object A is determined up to unique isomorphism by the pair (F, &).
There is a similar definition for covariant functors. (We will revisit this in §7.6, and this
problem will appear again as Exercise 7.6.C. The element &' (ida) € F(A) is often called the
“universal object”; do you see why?)

(c) Yoneda’s Lemma. Suppose F is a covariant functor % — Sets, and A € €. Give a bijection
between the natural transformations h* — Fand F(A). (The corresponding fact for contravari-
ant functors is essentially Exercise 10.1.B.)

In fancy terms, Yoneda’s lemma states the following. Given a category %, we can produce a
new category, called the functor category of ¢, where the objects are contravariant functors ¢ —
Sets, and the morphisms are natural transformations of such functors. We have a functor (which
we can usefully call h) from % to its functor category, which sends A to ha. Yoneda’s Lemma states
that this is a fully faithful functor, called the Yoneda embedding. (Fully faithful functors were defined
in §1.1.15.)

1.2.12. Joke. The Yoda embedding, contravariant it is.

1.3 Limits and Colimits

Two important definitions, those of limits and colimits, are determined by universal properties.
They generalize a number of familiar constructions. I will give the definitions first, and then
show you why they are familiar. For example, fractions will be motivating examples of colim-
its (Exercise 1.3.D(a)), and the p-adic integers (Example 1.3.4) will be motivating examples of
limits.

1.3.1. Limits. We say that a category is a small category if the objects form a set and the mor-
phisms form a set. (This is a technical condition intended only for experts.) Suppose .# is any
small category, and ¢ is any category. Then a functor F: .# — % (i.e., with an object A; € ¢ for
each element i € .#, and appropriate commuting morphisms dictated by .#) is said to be a dia-
gram indexed by .#. We call .# an index category. Our index categories will usually be partially
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ordered sets (Example 1.1.8), in which, in particular, there is at most one morphism between any
two objects. (But other examples are sometimes useful.) For example, if (] is the category

and .« is a category, then a functor [ — &/ is precisely the data of a commuting square in <7.
Then the limit of the diagram is an object li;n A; (or mAi) of ¢ along with morphisms

7
fi: ligl Ai— Aj for each j € .#, such that if m: j — k is a morphism in .#, then

(1.3.1.1) lim A;
B4
i
fj l \
F(m)

Aj 4>Ak

commutes, and the object and the maps to each A; are universal (final) with respect to this property.
More precisely, given any other object W along with maps gi: W — A; commuting with the F(m)
(if m: j = k is a morphism in .#, then gx =F(m) o g;), there is a unique map

g: W—=limA;
7
so that g; =fi o g for all i. (In some cases, the limit is sometimes called the inverse limit or pro-

jective limit. We won’t use this language.) By the usual universal property argument, if the limit
exists, it is unique up to unique isomorphism.

1.3.2. Examples: Products. For example, if .# is the partially ordered set

we obtain the fibered product.
If .7 is

we obtain the product.

If .7 is a set (i.e., its only morphisms are the identity maps), then the limit is called the product
of the Aj, and is denoted by [ [, Ai. The special case where .# has two elements is the example of
the previous paragraph.

1.3.A. EXERCISE (REALITY CHECK). Suppose that the partially ordered set .# has an initial
object e. Show that the limit of any diagram indexed by .# exists.

1.3.B. EXERCISE: THE DIAGONAL-BASE-CHANGE DIAGRAM, AGAIN. Solve 1.2.5 again by
identifying both X7 Xy Xz and Y X (v« ,v) (X1 Xz X2) as the limit of the diagram

N
/

Xi

Y——Z

X2
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1.3.3. Example: Formal power series. For a ring A, the (formal) power series, A[[x]], are often
described informally (and somewhat unnaturally) as being the ring

Alx]l ={ao + a1x+ a2x2+...}

(where a; € A, and the ring operations are the “obvious” ones). It is an example of a limit in the
category of rings:

A[[X]]

A

- A/(¥’) —— AKI/(X*) —= AX/(x).

The universal property of limits yields a natural ring morphism A[x] — A[[x]]. If A=R or C, this
map factors through the ring of convergent power series.

1.3.4. Example: The p-adic integers. For a prime number p, the p-adic integers (or more infor-
mally, p-adics), Z,, are often described informally (and somewhat unnaturally) as being of the

form
ao+a1p+azp2+---

(where 0 < a; <p). They are an example of a limit in the category of rings:

Ly

D

- ——7Z/(p?) Z/(p?) Z/(p).

(Warning: Z, is sometimes used to denote the integers modulo p, but Z/(p) or Z/pZis better to use
for this, to avoid confusion. Worse: by §1.2.3, Z,, also denotes those rationals whose denominators
are a power of p. Hopefully the meaning of Z, will be clear from the context.)

The similarity of Examples 1.3.3 and 1.3.4 is no coincidence. Formal power series and the
p-adic integers are examples of completions, the topic of Chapter 28.

Limits do not always exist for any index category .#. However, you can often easily check that
limits exist if the objects of your category can be interpreted as sets with additional structure, and
arbitrary products exist (respecting the set-like structure).

1.3.C. IMPORTANT EXERCISE. Show that in the category Sets,
{(ai)igy IS H Ai:F(m)(a;) = ax for all m € Mor » (j, k) C Mor(ﬂ)},

along with the obvious projection maps to each Ay, is the limit li;n Al

This clearly also works in the category Moda of A-modules (in particular, Vecy and Ab), as
well as Rings.

From this point of view, 2+ 3p +2p”+ -+ €Z, can be understood as the sequence (2,2 +
3p,2+3p+2p%,...).

1.3.5. Colimits. More immediately relevant for us will be the dual (arrow-reversed version) of
the notion of limit (or inverse limit). We just flip the arrows f; in (1.3.1.1), and get the notion of
a colimit, which is denoted by colim » A; (or lii)ny Aj). (You should draw the corresponding dia-
gram.) Again, if it exists, it is unique up to unique isomorphism. (In some cases, the colimit is
sometimes called the direct limit, inductive limit, or injective limit. We won't use this language.
I prefer using limit/ colimit in analogy with kernel/cokernel and product/coproduct. This is more
than analogy, as kernels and products may be interpreted as limits, and similarly with cokernels
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Py x

©,
N

(0 (i)

Figure 1.1 A filtered category (pictorial definition).

and coproducts. Also, I remember that kernels “map to,” and cokernels are “mapped to,” which
reminds me that a limit maps to all the objects in the big commutative diagram indexed by .#; and
a colimit has a map from all the objects.)

1.3.6. Joke. A comathematician is a device for turning cotheorems into ffee.
Even though we have just flipped the arrows, colimits behave quite differently from limits.
1.3.7. Example. The abelian group 5~°°Z of rational numbers whose denominators are powers of

5 is a colimit colim;¢ + 5~ 'Z. More precisely, 5~ *°Z is the colimit of the diagram

7 ——=5'7 5727

in the category of abelian groups.
The colimit over an index set I is called the coproduct, denoted by | [. Ai, and is the dual
(arrow-reversed) notion to the product.

1.3.D. EXERCISE.

(a) Interpret the statement “Q = colim %Z."

(b) Interpret the union of some subsets of a given set as a colimit. (Dually, the intersection can
be interpreted as a limit.) The objects of the category in question are the subsets of the given
set.

Colimits do not always exist, but there are two useful large classes of examples for which
they do.

1.3.8. Definition. A nonempty partially ordered set (S, >) is filtered (or is said to be a filtered set)
ifforeach x,y € S, there is a z such that x >z and y > z. More generally (see Figure 1.1), anonempty
category .7 is filtered if:

(i) foreachx,yc .7, thereisaz¢€.# and arrows x — zand y — z, and
(i) foreverytwoarrowsu: x —yandv: x —y, thereisan arrow w: y — zsuch thatwou=wowv.

(Other terminologies are also commonly used, such as “directed partially ordered set” and “filtered
index category,” respectively.)

1.3.E. EXERCISE. Suppose .7 is filtered. (We will almost exclusively use the case where .7 is a
filtered set.) Recall the symbol | | for disjoint union of sets. Show that any diagram in Sets indexed
by .# has the following, with the obvious maps to it, as a colimit:

{(a- e HA}/( (ai, 1)~ (ay,j) if and only if there are f: A; — Ay and )

b g: Aj — Ax in the diagram for which f(ai) =g(a;) in Ax

(You will see that the “filtered” hypothesis is there is to ensure that ~ is an equivalence relation.)
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For example, in Example 1.3.7, each element of the colimit is an element of something upstairs,
but you can’t say in advance what it is an element of. For instance, 17/125 is an element of 537
(or 577, or later ones), but not 5 2Z.

This idea applies to many categories whose objects can be interpreted as sets with additional
structure (such as abelian groups, A-modules, groups, etc.). For example, the colimit colim M;
in the category of A-modules Moda can be described as follows. The set underlying colim M;
is defined as in Exercise 1.3.E. To add the elements m; € M; and m; € M;, choose an { € .# with
arrowsu: i— fand v: j — {, and then define the sum of m; and m; to be F(u)(mi) + F(v)(m;) € M.
The element m; € M; is 0 if and only if there is some arrow u: 1 — k for which F(u)(mi) =0, i.e., if
and only if it becomes 0 “later in the diagram.” Last, multiplication by an element of A is defined
in the obvious way.

1.3.F. EXERCISE. Verify that the A-module described above is indeed the colimit. (Make sure you
verify that addition is well-defined, i.e., is independent of the choice of representatives m; and m;,
the choice of {, and the choice of arrows u and v. Similarly, make sure that scalar multiplication is
well-defined.)

1.3.G. USEFUL EXERCISE (LOCALIZATION AS A COLIMIT). Generalize Exercise 1.3.D(a) to
interpret localization of an integral domain as a colimit over a filtered set: suppose S is a multi-
plicative setof A, and interpret S~ ' A = colim 1 A where the colimitis over s € S, and in the category
of A-modules. (Aside: Can you make some version of this work even if A isn’t an integral domain,
e.g., S~ A =colim A,? This will work in the category of A-algebras.)

A variant of this construction works without the filtered condition if you have another means
of “connecting elements in different objects of your diagram.” For example:

1.3.H. EXERCISE: COLIMITS OF A-MODULES WITHOUT THE FILTERED CONDITION. Sup-
pose you are given a diagram of A-modules indexed by .#: F: .# — Moda, where we let M :=F(i).
Show that the colimit is ®ic.# M modulo the relations m; — F(n)(m;) for every n: i—jin .7 (i.e.,
for every arrow in the diagram). (Somewhat more precisely: “modulo” means “quotiented by the
submodule generated by.”)

1.3.9. Summary. One useful thing to informally keep in mind is the following. In a category
where the objects are “set-like,” an element of a limit can be thought of as a family of elements
of each object in the diagram that are “compatible” (Exercise 1.3.C). And an element of a colimit
can be thought of as (“has a representative that is”) an element of a single object in the diagram
(Exercise 1.3.E). Even though the definitions of limit and colimit are the same, just with arrows
reversed, these interpretations are quite different.

1.3.10. Small remark. In fact, colimits exist in the category of sets for all reasonable (“small”) index
categories (see for example [E, Thm. A6.1]), but that won’t matter to us.

1.3.11. Joke. What do you call someone who reads a paper on category theory? Answer: A
coauthor.

1.4  Adjoints

We next come to a very useful notion closely related to universal properties. Just as a universal
property “essentially” (up to unique isomorphism) determines an object in a category (assuming
such an object exists), “adjoints” essentially determine a functor (again, assuming it exists). Two
covariant functors F: o/ — % and G: & — < are adjoint if there is a natural bijection for all A € &
and B € 4,

(1.4.0.1) Tag: Morg(F(A),B) — Mory (A, G(B)).

We say that (F, G) form an adjoint pair, and that F is left-adjoint to G (and G is right-adjoint to F).
We say F is a left adjoint (and G is a right adjoint). By “natural” we mean the following. For all
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f: A— A’ in &, we require

Ff*

(1.4.0.2) Morg(F(A'),B) —— Morg(F(A), B)

\LTA/B \LTAB

5

Mor,,(A’, G(B)) — Mor. (A, G(B))

to commute, and for all g: B— B’ in % we want a similar commutative diagram to commute.
(Here f* is the map induced by f: A — A’, and Ff* is the map induced by Ff: F(A) — F(A').)

1.4.A. EXERCISE. Write down what this diagram should be.

1.4.B. EXERCISE. Show that the map tag (1.4.0.1) has the following properties. For each A there
isamapmna: A — GF(A)so thatforany g: F(A) — B, the corresponding tas(g): A — G(B) is given

by the composition
nA Gg
A —2~ GF(A) —2> G(B).

Similarly, there is a map eg: FG(B) — B for each B so that for any f: A — G(B), the corresponding
map Tay(f): F(A) — B is given by the composition

F(A) — > FG(B) —>> B.

Here is a key example of an adjoint pair.

1.4.C. EXERCISE. Suppose M, N, and P are A-modules (where A is a ring). Describe a bijection
Homa (M ®a N, P) <3 Homa (M, Homa (N, P)). (Hint: Try to use the universal property of ®.)

1.4.D. EXERCISE (TENSOR-HOM ADJUNCTION). Show that (-) ®x N and Homa (N, -) are
adjoint functors.

1.4.E. EXERCISE. Suppose B — A is a morphism of rings. If M is an A-module, you can create a
B-module Mg by considering it as a B-module. This gives a functor -g: Moda — Modg. Show that
this functor is right-adjoint to - ®g A. In other words, describe a bijection

Homa (N ®g A, M) =Homg (N, Mg)
functorial in both arguments. (This adjoint pair is very important.)

1.4.1.* Fancier remarks we won’t use. You can check that the left adjoint determines the right
adjoint up to natural isomorphism, and vice versa. The maps na and ep of Exercise 1.4.B are
called the unit and counit of the adjunction. This leads to a different characterization of adjunc-
tion. Suppose functors F: &7 — % and G: S8 — & are given, along with natural transformations
n: ide — GF and e: FG — idg with the property that Ge onG =idg (for each B € %, the com-
position of ng(s): G(B) — GFG(B) and G(eg): GFG(B) — G(B) is the identity) and eF o Fj=1ids.
Then you can check that F is left-adjoint to G. These facts aren’t hard to check, so if you want to
use them, you should verify everything for yourself.

1.4.2. Examples from other fields. For those familiar with representation theory: Frobenius reci-
procity may be understood in terms of adjoints. Suppose V is a finite-dimensional representa-
tion of a finite group G, and W is a representation of a subgroup H < G. Then induction and
restriction are an adjoint pair (Ind§, ResS ) between the category of G-modules and the category of
H-modules.

Topologists’ favorite adjoint pair may be the suspension functor and the loop space functor.

1.4.3. Example: Groupification of abelian semigroups. Here is another motivating exam-
ple: getting an abelian group from an abelian semigroup. (An abelian semigroup is just like an
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abelian group, except we don’t require an identity or an inverse. Morphisms of abelian semi-
groups are maps of sets preserving the binary operation. One example is the nonnegative integers
77°={0,1,2,...} under addition. Another is the positive integers Z* ={1,2,3,...} under addi-
tion. Yet another is the positive integers Z" under multiplication. You may enjoy groupifying all
three.) From an abelian semigroup, you can create an abelian group. In our examples, from the
nonnegative integers under addition (ZZ°, +), we create the integers (Z, +), and from the positive
integers under multiplication (Z*, x), we create the positive rationals (Q", x). Here is a formal-
ization of that notion. A groupification of an abelian semigroup S is a map of abelian semigroups
7t: S — G such that G is an abelian group, and any map of abelian semigroups from S to an abelian
group G’ factors uniquely through G:

G/

(Perhaps “abelian groupification” would be more precise than “groupification.”)

1.4.F. EXERCISE (AN ABELIAN GROUP IS GROUPIFIED BY ITSELF). Show that if an abelian
semigroup is already a group then the identity morphism is the groupification. (More correct: the
identity morphism is a groupification.) Note that you don’t need to construct groupification (or
even know that it exists in general) to solve this exercise.

1.4.G. EXERCISE. Construct the “groupification functor” H from the category of nonempty
abelian semigroups to the category of abelian groups. (One possible construction: given an abelian
semigroup S, the elements of its groupification H(S) are ordered pairs (a,b) € S x S, which you
may think of as a —b, with the equivalence that (a,b)~(c,d) if a+d+e=b+c+e for some
e € S. Describe addition in this group, and show that it satisfies the properties of an abelian group.
Describe the abelian semigroup map S — H(S).) Let F be the forgetful functor from the category of
abelian groups Ab to the category of abelian semigroups. Show that H is left-adjoint to F.

(Here is the general idea for experts: We have a full subcategory of a category. We want to
“project” from the category to the subcategory. We have

Morcategory (S) H) = Morsubcategory ( G ) H)

automatically; thus we are describing the left adjoint to the forgetful functor. How the argu-
ment worked: we constructed something which was in the smaller category, which automatically
satisfies the universal property.)

1.4.H. EXERCISE (CF. EXERCISE 1.4.E). The purpose of this exercise is to give you more prac-
tice with “left adjoints of forgetful functors,” the means by which we get abelian groups from
abelian semigroups, and sheaves from presheaves. Suppose A is a ring, and S is a multiplicative
subset. Then S~' A-modules are a full subcategory (§1.1.15) of the category of A-modules (via the
obvious inclusion Modg 1 , < Moda ). Then Moda — Modg 1 5 can be interpreted as an adjoint to
the forgetful functor Modg 1, — Mod . State and prove the correct statements.

(Here is the larger story. Every S~ TA-module is an A-module, and this is an injective map,
so we have a forgetful functor F: Mods 1, — Moda. In fact this is a fully faithful functor: it is
injective on objects, and the morphisms between any two S~' A-modules as A-modules are just the
same when they are considered as S~"A-modules. Then there is a functor G: Moda — Modg 1,
which might reasonably be called “localization with respect to S,” which is left-adjoint to the for-
getful functor. Translation: If M is an A-module, and N is an S~ A-module, then Mor(GM, N)
(morphisms as S™' A-modules, which are the same as morphisms as A-modules) are in natural
bijection with Mor(M, FN) (morphisms as A-modules).)
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category category left adjoint right adjoint

situation of B Fiof =P G:AB— o

A-modules (Ex. 1.4.D) Moda Moda ()®a N Homa (N, -)

ring maps (@A M — Mg

B — A (Ex. 1.4.E) Modg Moda (extension (restriction
of scalars) of scalars)

(pre)sheaves on a presheaves sheaves

topological space on X on X sheafification forgetful

X (Ex. 2.4.K)

(semi)groups (§1.4.3) semigroups groups groupification forgetful

sheaves, sheaves sheaves ! s

m: X =Y (Ex. 2.7.B) onY on X

sheaves of abelian

groups or ¢-modules, sheaves sheaves i !

open embeddings onU onY

m: U—Y (Ex. 23.4.G)

quasicoherent sheaves, QCohy, QCohy e Ty

m: X—'Y (Prop. 14.5.7)

ring maps M— Mg Ni—

B — A (Ex. 17.1]) Moda Modg (restriction Homg (A, N)
of scalars)

quasicoherent sheaves,

affine t: X—Y QCohy QCoh,, " m

(Ex. 17.1.K(b))

Table 1.1 Some important adjoint pairs.

Table 1.1 gives most of the adjoints that will come up for us. Other examples will also come
up, such as the adjoint pair (~, I, ) between graded modules over a graded ring, and quasicoherent
sheaves on the corresponding projective scheme (§15.7).

1.4.4. Last comments only for people who have seen adjoints before. If (F, G) is an adjoint pair of
functors, then F commutes with colimits, and G commutes with limits. Also, limits commute with
limits and colimits commute with colimits. We will prove these facts (and a little more) in §1.5.14.

1.5  AnIntroduction to Abelian Categories

Ton papier sur I’Algebre homologique a été lu soigneusement, et a converti tout le monde
(méme Dieudonné, qui semble complétement fonctorisé!) a ton point de vue.

Your paper on homological algebra was read carefully and converted everyone (even
Dieudonné, who seems to be completely functorised!) to your point of view.
—]J.-P. Serre, letter to A. Grothendieck, July 13, 1955 [GrS, pp. 17-18]

Since learning linear algebra, you have been familiar with the notions and behaviors of ker-
nels, cokernels, etc. Later in your life you saw them in the category of abelian groups, and later
still in the category of A-modules.

We will soon define some new categories (certain sheaves) that will have familiar-looking
behavior, reminiscent of that of modules over a ring. The notions of kernels, cokernels, images,
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and more will make sense, and they will behave “the way we expect” from our experience
with modules. This can be made precise through the notion of an abelian category. Abelian
categories are the right general setting in which one can do “homological algebra,” in which
notions of kernel, cokernel, and so on are used, and one can work with complexes and exact
sequences.

We will see enough to motivate the definitions that we will see in general: monomorphism
(and subobject), epimorphism, kernel, cokernel, and image. But in this book we will avoid showing
that they behave “the way we expect” in a general abelian category because the examples we
will see are directly interpretable in terms of modules over rings. In particular, it is not worth
memorizing the definition of abelian category.

Two central examples of an abelian category are the category Ab of abelian groups, and the
category Moda of A-modules. The first is a special case of the second (just take A =Z). As we give
the definitions, you should verify that Moda is an abelian category.

We first define the notion of additive category. We will use it only as a stepping stone to
the notion of an abelian category. Two examples you can keep in mind while reading the
definition: the category of free A-modules (where A is a ring), and real (or complex) Banach
spaces.

1.5.1. Definition. A category ¢ is said to be additive if it satisfies the following properties.

Adl. For each A,B €%, Mor(A,B) is an abelian group, such that composition of morphisms
distributes over addition. (You should think about what this means—it translates to two
distinct statements.)

Ad2. % has a zero object, denoted by 0. (This is an object that is simultaneously an initial object
and a final object, Definition 1.2.2.)

Ad3. It has products of two objects (a product A x B for any pair of objects), and hence, by
induction, products of any finite number of objects.

In an additive category, the morphisms are often called homomorphisms, and Mor is denoted
by Hom. In fact, the notation Hom is a good indication that you're working in an additive cate-
gory. A functor between additive categories preserving the additive structure of Hom is called an
additive functor.

1.5.2. Remarks. It is a consequence of the definition of additive category that finite products are
also finite coproducts (i.e., sums)—the details don’t matter to us. The symbol @ is used for this
notion. Also, it is quick to show that additive functors send zero objects to zero objects (show
that Z is a 0-object if and only if idz =0z; additive functors preserve both id and 0), and preserve
products.

One motivation for the name 0-object is that the O-morphism in the abelian group Hom(A, B)
is the composition A — 0 — B. (We also remark that the notion of O-morphism thus makes sense in
any category with a 0-object.)

(A cleaner axiomatization of additive categories that makes clear that the abelian group struc-
ture of Mor(A, B) is intrinsic to the category itself is the following [Lur, pp. 21-22]. A0. € has a zero
object. A1. € has products of any two objects, and coproducts of any two objects. By the universal property
of product and coproduct, we have natural morphisms ¢pag: A [ [ B — A x B. A2. ¢pas is an isomor-
phism. This allows us to define a binary operation on Mor(A, B), with f 4 g (for f, g € Mor(A, B))
defined by the composition

—1

(f,9) Ppp

A BxB B][B — B,

where the last map is the “codiagonal” defined by the universal property of coproduct. A little
work shows that this endows Mor(A, B) with the structure of a commutative monoid, i.e., an
abelian semigroup with identity. The identity is the composition A — 0 — B. A3. This commutative
monoid Mor(A, B) is an abelian group.)
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1.5 An Introduction to Abelian Categories

1.5.3. The category of A-modules Moda is clearly an additive category, but it has even more
structure. We now formalize some essential aspects of this structure in the notion of abelian category.

1.5.4. Definition. Let ¢ be a category with a 0-object (and thus 0-morphisms). A kernel of a
morphism f: B — C is defined to be a map i: A — B such that foi=0, and that is universal with
respect to this property. Diagramatically:

(1.5.4.1) z

(Note that the kernel is not just an object; it is a morphism of an object to B. In practice, the term is
often applied to just the object, and the intended interpretation is clear from the context.) Hence it is
unique up to unique isomorphism by universal property nonsense. The kernel is written ker f — B.
A cokernel (denoted by coker f) is defined dually by reversing the arrows—do this yourself. The
kernel of f: B — C is the limit (§1.3) of the diagram

(1.5.4.2)

0
. i
B——C»
and similarly the cokernel is a colimit (see (2.6.0.1)).
If i: A — B is a monomorphism, then we say that A is a subobject of B, where the map 1 is

implicit. There is also the notion of quotient object, defined dually to subobject.
An abelian category is an additive category satisfying three additional properties.

(1) Every map has a kernel and cokernel.
(2) Every monomorphism is the kernel of its cokernel.
(3) Every epimorphism is the cokernel of its kernel.

It is a nonobvious (and imprecisely stated) fact that every property you want to be true about
kernels, cokernels, etc. follows from these three. (Warning: In part of the literature, additional
hypotheses are imposed as part of the definition.)

The image of a morphism f: A — B is defined as im(f) =ker(coker f) whenever it exists (e.g.,
in every abelian category). The morphism f: A — B factors uniquely through im f — B whenever
im f exists, and A — im f is an epimorphism and a cokernel of ker f — A in every abelian category.
The reader may want to verify this as a (hard!) exercise.

The cokernel of a monomorphism is called the quotient. The quotient of a monomorphism
A — B is often denoted by B/A (with the map from B implicit).

We will leave the foundations of abelian categories untouched. The key thing to remember
is that if you understand kernels, cokernels, images and so on in the category of modules over a
given ring, you can manipulate objects in any abelian category. This is made precise by the Freyd-
Mitchell Embedding Theorem (Remark 1.5.5).

However, the abelian categories we will come across will obviously be related to modules,
and our intuition will clearly carry over, so we needn’t invoke a theorem whose proof we haven’t
read. For example, we will show that sheaves of abelian groups on a topological space X form an
abelian category (§2.6), and the interpretation in terms of “compatible germs” will connect notions
of kernels, cokernels etc. of sheaves of abelian groups to the corresponding notions of abelian
groups.

1.5.5. Small remark on chasing diagrams. It is useful to prove facts (and solve exercises) about
abelian categories by chasing elements. Unfortunately, some commonly used abelian categories,
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such as the category of complexes (to be defined in Exercise 1.5.C), do not have “elements”—
they are not naturally “sets with additional structure” in any obvious way. Nonetheless, proof by
element-chasing can be justified by the Freyd—Mitchell Embedding Theorem: If ¢ is an abelian
category whose objects form a set, then there is a ring A and an exact, fully faithful functor from €
into Mod, which embeds % as a full subcategory. (Unfortunately, the ring A need not be commu-
tative.) A proof is sketched in [Weib, §1.6], and references to a complete proof are given there. A
proof is also given in [KS2, §9.6]. The upshot is that to prove something about a diagram in some
abelian category, we may assume that it is a diagram of modules over some ring, and we may then
“diagram-chase” elements. Moreover, any fact about kernels, cokernels, and so on that holds in
Moda holds in any abelian category.

If invoking a theorem whose proof you haven’t read bothers you, a short alternative is Mac
Lane’s “elementary rules for chasing diagrams,” [Mac, Thm. 3, p. 204]; [Mac, Lem. 4, p. 205] gives
a proof of the Five Lemma (Exercise 1.6.6) as an example.

But in any case, do what you need to do to put your mind at ease, so you can move forward.
Do as little as your conscience will allow.

1.5.6. Complexes, exactness, and homology.
(In this entire discussion, we assume we are working in an abelian category.) We say a sequence

15.6.1) A2

is a complex at B if go f =0, and is exact at B if ker g =im f. (More specifically, g has a kernel that
is an image of f. Exactness at B implies being a complex at B—do you see why?) A sequence is a
complex (resp., exact) if it is a complex (resp., exact) at each (internal) term. A short exact sequence
is an exact sequence with five terms, the first and last of which are zeros—in other words, an exact
sequence of the form

0 A B C 0.

For example, 0 —— A —— 0 isexactif and only if A =0;
0——A % B
is exact if and only if f is a monomorphism (with a similar statement for A . B—— 0);

0 A—>B 0

is exact if and only if f is an isomorphism; and

0— >A—>B—2s¢C

is exactif and only if f is a kernel of g (with a similar statement for A ! B —° C 0).

To show some of these facts it may be helpful to prove that (1.5.6.1) is exact at B if and only if the
cokernel of f is a cokernel of the kernel of g.

If you would like practice in playing with these notions before thinking about homology, you
can prove the Snake Lemma (stated in Example 1.6.5, with a stronger version in Exercise 1.6.B), or
the Five Lemma (stated in Example 1.6.6, with a stronger version in Exercise 1.6.C). (I would do
this in the category of A-modules, but see [KS2, Lem. 12.1.1, Lem. 8.3.13] for proofs in general.)

If (1.5.6.1) is a complex at B, then its homology at B (often denoted by H) is ker g /imf.
(More precisely, there is some monomorphism imf<skerg, and H is the cokernel of this

monomorphism.) Therefore, (1.5.6.1) is exact at B if and only if its homology at B is 0. We say that
elements of ker g (assuming the objects of the category are sets with some additional structure) are
the cycles, and elements of im f are the boundaries (so homology is “cycles mod boundaries”). If
the complex is indexed in decreasing order, the indices are often written as subscripts, and H; is the
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1.5 An Introduction to Abelian Categories

homology at Ai 1 — Ai — Ai_;. If the complex is indexed in increasing order, the indices are often
written as superscripts, and the homology H' at A™ ' — A" — A'*! is often called cohomology.
An exact sequence

fi1 . £t N

(1.5.6.2) A®: . Al Al Alt

can be “factored” into short exact sequences

0 — > kerf' — = A" — > kerf''' — = 0,

which is helpful in proving facts about long exact sequences by reducing them to facts about short
exact sequences.

More generally, if (1.5.6.2) is assumed only to be a complex, then it can be “factored” into short
exact sequences.

(1.5.6.3) 0 ker f! Al im ft 0,
0 —— imf"' —— kerf' ——= H'(A®*) ——= 0

1.5.A. EXERCISE. Describe exact sequences

(1.5.6.4) 0 imft AT coker f¥ —= 0,

0 —— HY(A®) —— coker f'! im f* 0

(These are somehow dual to (1.5.6.3). In fact, in some mirror universe this might have been given
as the standard definition of homology.) Assume the category is that of modules over a fixed ring
for convenience, but be aware that the result is true for any abelian category.

1.5.B. EXERCISE AND IMPORTANT DEFINITION. Suppose

d'l dn—l amn

0 Al A 0

is a complex of finite-dimensional k-vector spaces (often called A® for short). Define hi(A®):=
dimH'(A®). Show that 3 (—1)'dimA'=3 (—1)'h'(A®). In particular, if A® is exact, then
S (=1)'dim A'=0. (If you haven’t dealt much with cohomology, this will give you some
practice.)

1.5.C. IMPORTANT EXERCISE. Suppose % is an abelian category. Define the category Com« of
complexes) as follows. The objects are infinite complexes

i1 . £t fit+1

A°: L Ai*] Al Ai+]

in ¢, and the morphisms A® — B® are commuting diagrams

. . i . it+1
(15.6.5) AT Al oA

T R

i— i

[¢]

8171 Bi Bi+1

i1

Show that Come is an abelian category.

Feel free to deal with the special case of modules over a fixed ring. (Remark for experts: Essen-
tially the same argument shows that ¥ is an abelian category for any small category .# and any
abelian category ¢. This immediately implies that the category of presheaves on a topological
space X with values in an abelian category % is automatically an abelian category; cf. §2.3.5.)
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28 Chapter 1 Just Enough Category Theory

1.5.D. IMPORTANT EXERCISE. Show that (1.5.6.5) induces a map of homology H'(A®) —
HY(B*®). Show furthermore that H' is a covariant functor Con — €. (Again, feel free to deal with
the special case Moda.)

1.5.7. Homotopic maps induce the same maps on homology. We say two maps of complexes
f: C*—=D*® and g: C* — D*® are homotopic if there is a sequence of maps w: C' — D" such
that f — g=dw +wd.

1.5.E. EXERCISE. Show that two homotopic maps give the same map on homology.

1.5.8. Theorem (long exact sequences) — A short exact sequence of complexes

0° : 0 0 0
A° Al o Al fl ALH fi
B® gi-1 gt~1! B gt Bt git1
c* : ci-1 hi! ci hi i i
0° : 0 0 0

induces a long exact sequence in cohomology

- ———= H"'(C*) ——

HY(A®) —— H'(B*) HY(C*)
Hi+1(Ao) [,

(This requires a definition of the connecting homomorphism H"'(C*) = H'(A®), which is
“natural” in an appropriate sense.) In the category of modules over a ring, Theorem 1.5.8 will
come out of our discussion of spectral sequences—see Exercise 1.6.F—but this is a somewhat per-
verse way of proving it. For a proof in general, see [KS2, Theorem 12.3.3]. You may want to prove
it yourself, by first proving a weaker version of the Snake Lemma (Example 1.6.5), where in the
hypotheses (1.6.5.1), the 0’s in the bottom left and top right are removed, and in the conclusion
(1.6.5.2), the first and last 0’s are removed.

1.5.9. Exactness of functors. If F: o/ — 2 is an additive covariant functor from one abelian
category to another, we say that F is right-exact if the exactness of

A’ A A" 0

in o7 implies that
F(A)) ——= F(A) —— F(A") ——= 0

is also exact. Dually, we say that F is left-exact if the exactness of

0 A’ A A" implies

0 —— F(A) F(A) F(A") is exact.
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An additive contravariant functor is left-exact if the exactness of

A’ A A" 0 implies

0 F(A") F(A) —— F(A) is exact.

The reader should be able to deduce what it means for a contravariant functor to be right-exact.
An additive covariant or contravariant functor is exact if it is both left-exact and right-exact.

1.5.F. EXERCISE. Suppose F is an exact functor. Show that applying F to an exact sequence pre-
serves exactness. For example, if F is covariant, and A’ — A — A" is exact, then FA’ - FA - FA"
is exact. (This will be generalized in Exercise 1.5.1(c).)

1.5.G. EXERCISE. Suppose A is aring, S C A is a multiplicative subset, and M is an A-module.

(a) Show that localization of A-modules Moda — Mods 1 5 is an exact covariant functor.

(b) Show that () ®a M is a right-exact covariant functor Moda — Moda. (This is a repeat of
Exercise 1.2.H.)

(c) Show that Hom(M,-) is a left-exact covariant functor Moda — Moda. If € is any abelian
category, and C € €, show that Hom(C, -) is a left-exact covariant functor ¢ — Ab.

(d) Show that Hom(-, M) is a left-exact contravariant functor Moda — Moda. If € is any abelian
category, and C € ¢, show that Hom(+, C) is a left-exact contravariant functor ¢ — Ab.

1.5.H. EXERCISE. Suppose M is a finitely presented A-module: M has a finite number of gener-
ators, and with these generators it has a finite number of relations; or, equivalently, and usefully
fits in an exact sequence

(1.5.9.1) A®d A®P M 0.

Use (1.5.9.1) and the left-exactness of Hom to describe an isomorphism
S~ "Homa (M, N) <— Homg_1,(S""M,S"'N).

(You might be able to interpret this in light of a variant of Exercise 1.5.I below, for left-exact
contravariant functors rather than right-exact covariant functors.)

1.5.10. Example: Hom doesn’t always commute with localization. In the language of Exer-
cise 1.5.H, take A=N=7Z, M =Q, and S=7Z\{0}.

1.5.11." Two useful facts in homological algebra.

We now come to two (sets of) facts I wish I had learned as a child, as they would have saved me
lots of grief. They encapsulate what is best and worst of abstract nonsense. The statements are so
general as to be nonintuitive. The proofs are very short. They generalize some specific behavior
that is easy to prove on an ad hoc basis. Once they are second nature to you, many subtle facts
will become obvious to you as special cases. And you will see that they will get used (implicitly
or explicitly) repeatedly.

1.5.12.* Interaction of homology and (right/left-)exact functors.
You might wait to prove this until you learn about cohomology in Chapter 18, when it will first be
used in a serious way.

1.5.1. IMPORTANT EXERCISE (THE FHHF THEOREM). This result can take you far, and perhaps
for that reason it has sometimes been called the Fernbahnhof (FernbaHnHoF) Theorem, notably
in [Vakl, Exer. 1.5.I]. Suppose F: &/ — £ is a covariant functor of abelian categories, and C*® is a
complex in <7

(a) (F right-exact yields FH® —— H°®F) If F is right-exact, describe a natural morphism FH® —
H®F. (More precisely, for each i, the left side is F applied to the cohomology at piece i of C®,
while the right side is the cohomology at piece i of FC*.)
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(b) (F left-exact yields FH® <—— H®F) If F is left-exact, describe a natural morphism H®F — FH®.

(c) (F exact yields FH® <> H°F) If F is exact, show that the morphisms of (a) and (b) are
inverses and thus isomorphisms.

Hint for (a): Use C* @ cH! cokerd! ——= 0 to give an isomorphism F coker dt e
coker Fd'. Then use the first line of (1.5.6.4) to give an epimorphism Fim d* — im Fd'. Then use the
second line of (1.5.6.4) to give the desired map FH'C® — H'FC®. While you are at it, you may as
well describe a map for the fourth member of the quartet {coker, im, H, ker}: Fker d* — ker Fd".

1.5.13. If this makes your head spin, you may prefer to think of it in the following specific case,
where both &/ and & are the category of A-modules, and F is (-) @ N for some fixed A-module
N. Your argument in this case will translate without change to yield a solution to Exercise 1.5.1(a)
and (c) in general. If ®N is exact, then N is called a flat A-module. (The notion of flatness will turn
out to be very important, and is discussed in detail in Chapter 24.)

For example, localization is exact (Exercise 1.5.G(a)), so S'A is a flat A-algebra for all
multiplicative sets S. Thus taking cohomology of a complex of A-modules commutes with
localization—something you could verify directly.

1.5.14. Interaction of adjoints, (co)limits, and (left- and right-) exactness.
A surprising number of arguments boil down to the following statement:

Limits commute with limits and right adjoints. In particular, in an abelian category, because kernels
are limits, both limits and right adjoints are left-exact.

And to its dual:

Colimits commute with colimits and left adjoints. In particular, because cokernels are colimits, both
colimits and left adjoints are right-exact.

These statements were promised in §1.4.4, and will be proved below. The latter has a useful
extension:

In Moda, colimits over filtered index categories are exact. “Filtered” was defined in §1.3.8.

1.5.15.%* Caution. It is not true that in abelian categories in general, colimits over filtered index
categories are exact. (Grothendieck realized the desirability of such colimits being exact, and for-
malized this as his “AB5” axiom; see, for example, [Stacks, tag 079A].) Here is a counterexample.
Because the axioms of abelian categories are self-dual, it suffices to give an example in which a
cofiltered limit fails to be exact (where cofiltered has the obvious dual definition to filtered), and
we do this. Fix a prime p. In the category Ab of abelian groups, for each positive integer n, we
have an exact sequence Z — Z/(p™) — 0. Taking the limit over all n in the obvious way, we obtain
Z — Z, — 0, which is certainly not exact.)
Unimportant Remark 1.5.18 will dash another hope you may have.

1.5.16. If you want to use these statements (for example, later in this book), you will have to prove
them. Let’s now make them precise.

1.5.]J. EXERCISE (KERNELS COMMUTE WITH LIMITS). Suppose ¢ is an abelian category, and
a: Y =% and b: & — € are two diagrams in ¢ indexed by .#. For convenience, let A; = a(i) and
Bi =b(i) be the objects in those two diagrams. Let hi: A; — B be maps commuting with the maps
in the diagrams. (Translation: h is a natural transformation of functors a — b; see §1.1.21.) Then the
ker h; form another diagram in ¢’ indexed by .#. Describe a canonical isomorphism lim ker h; «—
ker(lim A; — lim B; ), assuming the limits exist.

Implicit in the previous exercise is the idea that limits should somehow be understood as
functors.
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1.5.K. EXERCISE. Make sense of the statement that “limits commute with limits” in a general cat-
egory, and prove it. (Hint: Recall that kernels are limits. The previous exercise should be a corollary
of this one.)

1.5.17. Proposition (right adjoints commute with limits) — Suppose (F: ¢ — 2,G: 9 — %)
is a pair of adjoint functors. If A =lim Ay is a limit in 9 of a diagram indexed by .%, then GA =1im GA;
(with the corresponding maps GA — GA) is a limit in €.

Proof. We must show that GA — GA; satisfies the universal property of limits. Suppose we have
maps W — GA; commuting with the maps of .#. We wish to show that there exists a unique
W — GA extending the W — GA;. By adjointness of F and G, we can restate this as: Suppose we
have maps FW — A; commuting with the maps of .#. We wish to show that there exists a unique
FW — A extending the FW — A;. But this is precisely the universal property of the limit. O

Of course, the dual statements to Exercise 1.5.K and Proposition 1.5.17 hold by the dual
arguments.

If F and G are additive functors between abelian categories, and (F, G) is an adjoint pair, then
(as kernels are limits and cokernels are colimits) G is left-exact and F is right-exact.

1.5.L. EXERCISE. Show thatin Moda, colimits over filtered index categories are exact. (Your argu-
ment will apply without change to any abelian category whose objects can be interpreted as “sets
with additional structure.”) Right-exactness follows from the above discussion, so the issue is
left-exactness. (Possible hint: After you show that localization is exact, Exercise 1.5.G(a), or stalkifi-
cation is exact, Exercise 2.6.E, in a hands-on way, you will be easily able to prove this. Conversely,
if you do this exercise, those two will be easy.)

1.5.M. EXERCISE. Show that filtered colimits commute with homology in Mod . Hint: Use the
FHHF Theorem (Exercise 1.5.), and the previous exercise.

In light of Exercise 1.5.M, you may want to think about how limits (and colimits) commute
with homology in general, and which way maps go. The statement of the FHHF Theorem should
suggest the answer. (Are limits analogous to left-exact functors, or right-exact functors?) We won't
directly use this insight, but see §18.1 (vii) for an example.

Just as colimits are exact (notjust right-exact) in especially good circumstances, limits are exact
(not just left-exact), too. The following will be used twice in Chapter 28.

1.5.N. EXERCISE. Suppose

0 —— An+1 Bn+1 Cn+1 0
0 An Bn Cn 0
0 Ao Bo CO 0
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is an inverse system of exact sequences of modules over a ring, such that the maps Any1 — An are
surjective. (We say: “transition maps of the left term are surjective.”) Show that the limit

(1.5.17.1) 0 —— limA, lim By limC, —— 0

is also exact. (You will need to define the maps in (1.5.17.1).)

1.5.18. Unimportant remark. Based on these ideas, you may suspect that right-exact functors
always commute with colimits. The fact that the tensor product commutes with infinite direct
sums (Exercise 1.2.M) may reinforce this idea. Unfortunately, it is not true—"“double dual” -V :
Vecy. — Vecy is covariant and right exact (in fact, exact), but does not commute with infinite direct
sums, as &2 (kVV) is not isomorphic to (B2, K)VV.

1.5.19." Dreaming of derived functors. When you see a left-exact functor, you should always
dream that you are seeing the end of a long exact sequence. If

0 m’ M m” 0

is an exact sequence in abelian category <7, and F: &/ — 4 is a left-exact functor, then

0 M’ M FM”

is exact, and you should always dream that it continues in some natural way. For example, the next
term should depend only on M’—call it R'FM’—and if it is zero, then FM — FM"” is an epimor-
phism. This remark holds true for left-exact and contravariant functors too. In good cases, such a
continuation exists, and is incredibly useful. We will discuss this in Chapter 23.

1.6*  Spectral Sequences

Je suis quelque peu affolé par ce déluge de cohomologie, mais j’ai courageusement tenu le
coup. Ta suite spectrale me parait raisonnable (je croyais, sur un cas particulier, I’avoir mise
en défaut, mais je m’étais trompé, et cela marche au contraire admirablement bien).

I'am a bit panic-stricken by this flood of cohomology, but have borne up courageously. Your
spectral sequence seems reasonable to me (I thought | had shown that it was wrong in a
special case, but | was mistaken, on the contrary it works remarkably well).

—1J.-P. Serre, letter to A. Grothendieck, March 14, 1956 [GrS, p. 38]

Spectral sequences are a powerful bookkeeping tool for proving things involving complicated
commutative diagrams. They were introduced by Leray in the 1940s at the same time as he
introduced sheaves. They have a reputation for being abstruse and difficult. It has been suggested
that the name ‘spectral’ was given because, like specters, spectral sequences are terrifying, evil, and
dangerous. I have heard no one disagree with this interpretation, which is perhaps not surprising
since I just made it up.

Nonetheless, the goal of this section is to tell you enough that you can use spectral sequences
without hesitation or fear, and why you shouldn’t be frightened when they come up in a seminar.
What is perhaps different in this presentation is that we will use spectral sequences to prove things
that you may have already seen, and that you can prove easily in other ways. This will allow you
to get some hands-on experience in how to use them. We will also see them only in the special case
of double complexes (the version by far the most often used in algebraic geometry), and not in the
general form usually presented (filtered complexes, exact couples, etc.). See [Weib, Ch. 5] for more
detailed information if you wish.

You should not read this section when you are reading the rest of Chapter 1. Instead, you
should read it just before you need it for the first time. When you finally do read this section, you
must do the exercises up to Exercise 1.6.F.

(continued...)
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Page numbers in boldface indicate definitions.

(—1)-curve, 448, 506, 590, 595, 597,
599, 606, 612, 614, see also
Castelnuovo’s Criterion;
blowing down

A(I)e (Rees algebra), 299

A (completion), 599

A-bilinear, 12

C™8, 435

F ® ¢ for quasicoherent sheaves, 125

Z (U) (section of sheaf .Z over U), 43

F(m) (“twist” of Z,
=Z ® 0(m)), 328

Z |u (restriction of sheaf to open
subset), 45

" (sheafification of presheaf %), 52

ZV (dual of Ox-module %), 48

Fp (stalk of (pre)sheaf ), 44

Z¢ (torsion-free quotient of .%), 313

Fiors (torsion subsheaf of %), 313

f lu=resyvy (f) (restriction of f to
u), 43

4 |x (pullback of ¢ to X), 317

V1 (radical of ideal 1), 78

ip (inclusion of point p), 46

ip,« (pushforward along i, ), 45

(& - L5 - L - F) (intersection
of &1, ..., Ln with F), 443

| Z | (complete linear series), 329

(M:x),537

M (I)e (A(I)e-module), 299

M(m)e (“shift” or “twist” of M4 by
m), 327

M, (Z-graded module), 322

Mors (torsion submodule of M), 123

M. (quasicoherent sheaf
corresponding to graded
module M,), 322

in terms of “compatible germs”, 322
is an exact functor, 322
may not be an isomorphism, 322

M (quasicoherent sheaf
corresponding to a module
M), 91

[p] (point of Spec A corresponding to
p), 67

P o (X) (arithmetic genus), 392

P4 (X) (geometric genus), 482

S~ T A (localization of ring), 10

S~ "M (localization of module), 11

S (constant sheaf), 45

s ® t (tensor of sections), 125, 305

Y4 (reduction of a scheme), 199, 232

A (diagonal locally closed subscheme
of X xy X), 236

I'(U, .#) (section of sheaf .# over
u), 43

I" adjoint to Spec, 152
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e (graded analog of I'), 348, 349
QA g (module of Kahler
differentials), 460, 466
Qx /v (relative cotangent sheaf), 468
Qg( /v (sheaf of relative i-forms), 481
x (X, Z) (Buler characteristic), 327,
390
LI (coproduct), 14, 19, 96
Y = (graph morphism), 237
—, 170, 187, 190, see (open, closed,
locally closed) embedding
A-invariant, 430
Hn (group scheme), 166
vq (Veronese embedding), 194
w (canonical / dualizing sheaf), 396,
415, 416, 418, 423425, 481,
619-621, 621, 622-633
@ (direct sum, in an additive
category), 24
® (tensor product), 11
®ox (tensor product of
O'x-modules), 58
X (box-times), 331, 331, 353, 354, 449,
571
P, &Y (cohomology and base
change map), 567, see also
push-pull map
m-ample, see ampleness, with respect
to 7t (relatively ample)
7t-very ample, see very ampleness,
with respect to 7t (relatively
very ample)
7" s (pullback of section s), 319
7" (pullback of
O-module/ quasicoherent
sheaf), 148, 316, 318, 319, see
also pullback; projection
formula; push-pull map
7% (occasional right adjoint to 7t,.),
369, 369, 370, 407, 626-628
computable affine-locally, 369, 370
for ©-modules and closed
embeddings, 630
! , 59, see inverse image sheaf
70, (pushforward sheaf), 46, see sheaf,
pushforward
70, 61, 524, see extension by zero
p(X) (Picard number), 395, 395, 451,
484
finiteness of, 614

A*M, A®*.Z (exterior algebra), 310, 310,

311, 311, 364, 365, 481, 506, 546

A (affine line), 67-70
A™ (affine n-space), 71
AL, 210

A-scheme, 114

A (X) (variant of Chow group), 453
map to homology, 454
A n -singularities, 502, 503, 603
Ab (category of abelian groups), 6
is an abelian category, 24
Abx (category of sheaves of abelian
groups on X), 48, 48, 49, 57,
58
has enough injectives, 523
is an abelian category, 57
abelian category, 5, 6, 15, 23-25, 25,
26-30, 32, 49, 56, 121, 127, 130,
131, 144, 303, 305, 306, 514-516,
520, 523, 552, see also Ab; Abx;
Cohx; Come; complex;
f.d.Vec, ; Mod a; Mod@X;
objects, in an abelian category;
QCohy; category; Vecy;
enough injectives; enough
projectives; FHHF Theorem;
Jordan-Holder package;
spectral sequence
e.g., coherent A-modules, 128
e.g., presheaves of abelian groups
on X, 49
abelian cone associated to coherent
sheaf, 369
abelian group scheme, 165
abelian semigroup, see semigroup
(abelian)
abelian varieties, 246, 246, 248, 434
are abelian, 248
absolute Frobenius, see Frobenius
abstract nonsense, 3
action of group variety /scheme, 166,
343, 365
transitive, 487
acyclic object, 518, 519, 523-525, 624,
626, see also resolution
(complexes)
additive category, 24, 24, 25, 48, 49, 56
additive functor, 24, 24, 28, 31, 516,
517, 519, 526, 552
ADE singularities, 503, 603
adj(M) (adjugate matrix), 172, 174,
231
adjoints, 20
(co)unit, 21
left, 20
are right-exact, 30
commute with colimits, 23
of forgetful functors, 22
right, 20
are left-exact, 30
commute with limits, 23, 31
preserves injectives, 526
table of, 23
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adjunction formula, 590, 633
for a curve on a surface, 448
for the canonical bundle %, 481,
482, 590
for the dualizing sheaf w, 629, 632,
632
Affine Communication Lemma, 91,
112, 113,115,121,129,130,150,
169,171,175,176,178,180,181,344
affine cone, 103, 108, 195, 195, 255,
257,263, 279, 323, 345, 498, 585
relative version, 373
affine cover cohomology vanishing,
380, 380, 381, 386, 406, 408
affine line, 67, 68, 68-70, 188
functorial characterization, 163
affine morphisms, 175
R %m, F =0 forall
quasicoherent .%, 405
7, exact (for quasicoherent
sheaves), 316, 607
7, preserves cohomology of
quasicoherent sheaves, 380
affine-local on target, 176
are quasicompact and
quasiseparated, 176
are separated, 236
as Spec, 368
e.g., closed embeddings, 187
e.g., finite morphisms, 176
preserved by base change, 218
preserved by composition, 175
reasonable class, 218
affine n-space, 71, 72, 75, 82
(over a field) is regular, 283
(over any base) is flat, 533
coordinate functions, 71
functorial characterization, 164
minus origin, or with doubled
origin, see recurring
(counter)examples
over a scheme X (AY), 210
affine open subscheme/subset, 95, 96
affine plane, 70, 73, 74, 76, 77, 94, 98,
100, 243, 285, 491, 502
affine schemes/ varieties, see schemes;
varieties
affine-diagonal morphisms, 239
affine-local properties, 112, 113
implied by stalk-local, 113, 169
on the source, 171
on the target, 169, 171
Alexandrov space, 525
algebraic equivalence, 558
implies numerical equivalence, 559
algebraic field extension, see field
extension
algebraic group, 246, 246, 247
Algebraic Hartogs’s Lemma, 101, 102,
115, 117, 290, 290, 291, 292, 308,
337, 339, 345, 419, 481, 595
algebraic space, 333
Alteration Theorem, 503
ample cone, 394, 451, 454, 456
= interior of nef cone, 456
is open, 454, 456
ampleness, 351, 353, 451, see also
Kleiman’s criterion; Kodaira
Embedding Theorem;

Nakai—-Moishezon criterion;
Serre’s cohomological criterion
X ample is ample, 354
® ample is ample, 354
® base-point-free is ample, 354
® nef is ample, 456
= positive degree for smooth
projective integral curves, 417
better-behaved than very
ampleness, 354
cohomological criterion, 354
implies nef, 395, 456
in the absolute setting, 356
properties of, 357
many characterizations of, 353
of vector bundle, 377
open condition in families, 354
over A, see ampleness, with respect
to T
preserved by finite pullback, 354,
376, 393, 407
with respect to 7t (relatively ample),
353, 357, 376
affine-local on the target, 377
analytification, 155, 155, 156, 239, 246,
293, 307, 347, 360, 392, 395, 401,
439, 447, 471, 479, 483, see also
varieties, complex
of a morphism, 155
André-Quillen homology, 463, 464
Anna m (annihilator ideal of m), 135
annihilator ideal, 134, 135, 137, 138,
490, 541
anticanonical bundle, 596, see also
canonical, bundle
arithmetic genus, see genus, arithmetic
arrow (category), see morphism
(category)
Artin-Rees Lemma, 271, 286, 299, 299,
300, 602
Artin-Schreier cover, 479
Artinian, see also finite length;
Jordan-Holder package; length
local ring, 133, 254, 293
ring, 133
scheme, 133, 293
ascending chain condition, 85, 86
Assa M (associated points/primes of
M), 134, 136
assassin, 136
associated graded, 273, 453, 613
associated points, 94, 133, 134, 135,
136, 141, 142, 198, 200, 225, 243,
344, 346, 347, 360, 362, 393, 399,
400, 444, 445, 447, 453, 472, 494,
535, 543, 550, 581, see also
Associated-to-Separated
Theorem
and depth, 581
and flatness, 535
behavior in exact sequences, 137,
138
commutes with localization, 134,
140
finitely many, 134
of coherent sheaf, 135
of integral schemes, 142
of locally Noetherian scheme,
141

zerodivisors must vanish at one,
134,137
associated prime ideals, 133, 134, 136,
138, 140, 262, 291, 535, 581-583,
see also associated points;
primary ideals
and depth, 583
annihilator of some element of M,
134,137
e.g., minimal prime ideals, 139
localization at, 136
of a ring, 136, 136
zerodivisors = element of
associated prime, 137
Associated-to-Separated Theorem, 243
Asymptotic Riemann-Roch, 446, 446,
448, 455
Atiyah flop, 505
Atiyah, M., xix
Auslander-Buchsbaum Theorem, 298,
299, 348, 447, 581, 588
automorphism group
infinitesimal, 484
of Pi, 343, 423, 424, 429-431, 437,
485
of P}, 331, 343, 425, 485, 544
of a curve, 423, 424, 426, 428, 437,
480, 481
of a scheme, 151
of an object in a category, 6
Axiom of Choice, xx, 512, 514, see also
Zorn’s Lemma

Blx Y (blow-up of Y along X), 492,
493
base (of a topology), 53, see also
presheaf, on a base; sheaf, on a
base
base (target of a morphism), 213
base change, 213
base ring, 105
base scheme, 151, 213
base change diagram/square, 213,
see also Cartesian
diagram/square; fibered
diagram/square; pullback,
diagram/square
base field extension, 212
base identity axiom/base gluability
axiom, 54, 89-91, see also
gluability axiom; identity
axiom
base locus, 329, 504, 505, see also
scheme-theoretic, base locus
base point, 329, 416, 456, 612
base-point-freeness, 329, 329, 351, see
also global generation
® ample is ample, 354
® very ample is very ample, 353
and maps to projective space, 329
base-point-free locus, 329
implied by very ampleness, 353
independent of base field, 387
preserved by ®, see global
generation
with respect to 7t (relatively
base-point-free), 357, 376
Bertini’s Theorem, 271, 281, 283, 283,
284, 401, 403, 425, 489, 504, 590,
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591, see also Kleiman-Bertini
Theorem
improved characteristic O version,
488
with weaker hypotheses, 285
Betti numbers, 484, 568
Bézout’s Theorem, 192, 194, 229, 282,
331, 400, 401, 401, 402, 426, 427,
434, 443, 585, 595
for plane curves, 401, 419, 420, 448
bilinear form (index of), 451
bilinear map, 12
birational, 484
(rational) map, 159, 159, 161, 228,
360, 503-505, 595, 615
factorization of, 506
invariant, 481, 615
e.g., geometric genus, 482
eg, h%(X, Q% ) =h"°, 481
e.g., jth plurigenus, 482
e.g., Kodaira dimension, 482
model, 615
model of integral curves, 357
morphism, 159, 159, 228, 231, 358,
410, 492, 595, 607, 608, 611, 612,
614
Zariski’s Main Theorem version,
607, 609
varieties /schemes, 159, 159, 358,
359, 449, 482, 486, 491, 506,
615
may not be isomorphic, 344
often means isomorphic dense
open subschemes, 159
birational transform, see proper
transform
blow-up, 216, 273, 491, 493, see also
Blx Y; ExY; exceptional
divisor; Hironaka’s Theorem;
proper transform; resolution
(singularities); total transform;
universal property; Weak
Factorization Theorem
and line bundles, 506
and the canonical bundle, 506
commutes with flat base change,
537, 603
computable locally, 493, 495, 497
does not commute with general
base change, 537
exists, 497
is projective, 497
locally principal closed subscheme,
494
not flat, 536
of a nonreduced subscheme, 503
of affine space, 369, 492
of an effective Cartier divisor, 493
of regular embeddings, 499
of smooth in smooth is smooth, 500
of the plane, 216, 344, 448, 449, 491,
501, 589, 594-597
as graph of rational map, 243
preserves irreducibility and
reducedness, 494
Proj description, 497
to resolve base locus, 504
to resolve singularities, 502,
503
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Blow-Up Closure Lemma, 493, 494,
496, 496, 502, 504
blowing down, 506, see also Weak
Factorization Theorem
(—1)-curve, 612, see also
Castelnuovo’s Criterion
Borel-Moore homology, 454
boundary (homological algebra), 26
box-times, see X
branch
divisor, 477, 478
locus, 477, 489
points, 421, 421, 422, 430, 478, 480
branched cover, 177, 421, 422, 425,
429, 439, 473, 476, 479, 531, see
also double cover

c1(L)U, 453, see also Chern class
Calabi-Yau variety, 266, 482, 482, 483,
see also trichotomy
Cancellation Theorem, 170, 233, 234,
234,237
for affine morphisms, 539
for closed embeddings, 353
for projective morphisms
(“unreasonable” class), 375,
607, 613, 627
for proper morphisms, 244, 246,
607, 611
for quasicompact morphisms, 175,
378, 379
for reasonable classes of
morphisms, 234
for separated morphisms, 379
in Sets, 234
canonical
bundle #x, 396, 481, 506, 590, 596
is Serre-dualizing, 396, 428, 473,
480485, 619, 629
curve, 425, 427, 483
embedding | #" |, 424, 425, 425, 426,
427,434
map | £ |, 423, 424-426
sheaf wx, 380, 395, 427, 619, 621
Caroll, L., 77
Cartan—Eilenberg resolution, 519, 520,
522,522
Cartesian diagram/square, 13, see also
base change diagram/square;
fibered diagram/square;
pullback, diagram/square
Cartier divisors, xix, 348, see also
effective Cartier divisors
Castelnuovo’s Criterion, 498, 595, 599,
606, 612, 612, 614
category, 5, see also Ab; Abx; abelian
category; additive category;
Cohx; Come; f.d.Vec, ;
equivalence; Groups; Mod a ;
Mod@X ; opposite; QCohy ;
Rings; Sets; Setsx ; Sch; Schs;
subcategory; Top; Veci
concrete, 6
filtered index, 19
index, 16
locally small, 5
of k-schemes/ A-schemes/ S-
schemes, see
SChk /SChA /Schs

Index 643

of complexes, see Coni
of open subsets, 7
of schemes, see Sch
of subsets of a set, 7
of vector bundles, 309
small, 9, 16, 16, 20, 27
catenary rings, 258, 587
Cayley-Bacharach Theorem, 419
Cech cohomology, xix, 233, 379, 383,
384, 384, 385, 516, 526, 528-530,
see also cohomology
= derived functor cohomology, 511,
523, 525
and change of base field, 386
behaves well in flat families, 557
commutes with filtered colimits, 380
commutes with flat base change,
536, 567
dimensional vanishing, 380, 387,
507, 546, 630
more generally, 387
relative, 406
of line bundles on projective space,
387
pullback, 380
Cech complex, 384, 384, 385, 386, 388,
389, 404, 422, 528, 529, 557, 572,
573, 622
Cech cover, 526, 529
Cech resolution, 385, 557
change of base, see base, change
Chasles’ Theorem, 419
Chern class, 392, 446, 453, 454
Chevalley’s Theorem, 181-183, 183,
184, 185, 196, 216, 217, 266, 446,
487, 549, 550
for finitely presented morphisms,
183,217
for locally finitely presented
morphisms, 217
Chinese Remainder Theorem, 93, 133,
211
as geometric fact, 101
Chow group, 454
Chow’s Lemma, 409, 410, 410, 411, 444
other versions, 412
CI(A]) =0,341
CI(X) (class group), 341
class (in set theory), 5
class group, 119, 341, 341, 342, 344,
345, see also excision exact
sequence
and unique factorization, 345, 346
in number theory, 307, 342, 345
closed embeddings, 177, 187, 187
affine-local on target, 187, 227
are affine, 187
are finite, 187
are monomorphisms, 189, 212
are proper, 244
are separated, 240
base change by, 210
in projective space, 191
intersections of, 210
preserved by base change, 210, 217
preserved by composition, 187
reasonable class, 217
closed immersions, see closed
embeddings
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closed map, 177, 185, 243, 412, see also
universally closed morphisms
not preserved by base change, 244
closed points, 72, 82, 109, 472, see also
degree, of closed point;
Nullstellensatz
dense for finitely generated
k-algebras, 82
dense for varieties, 109
may not be dense, 83
of ]P’%, 100, 101, 107, 193
of SpecQ(t) ®q C, 212
of Spec A correspond to maximal
ideals, 82
of affine n-space, 82
of locally finite type k-schemes, 114
quasicompact schemes have one,
109
schemes need not have one, 109,
334
closed subscheme exact sequence, 188,
309, 320, 321, 323, 346, 347, 391,
399, 408, 536, 579, 613, 632
closed subscheme-theoretic image, see
scheme-theoretic, image
closed subschemes, 93, 96, 104, 107,
170, 182, 187, 187, see also
effective Cartier divisors;
closed embeddings
= quasicoherent sheaves of ideals,
187
arbitrary intersections of, 188
cut out by function s, 189
cut out by section s of locally free
sheaf, 308
finite union of, 188
intersections of, 210
locally principal, 199, 199, 495, 496,
504, 555, see also divisor, locally
principal
codimension < 1, 262
pull back, 218
pull back, 210
closure, see scheme-theoretic, closure;
Zariski, closure
cocycle condition, 56, 99, 304
codim (codimension), 253
codimension
at most difference of dimensions,
253
inequality for fibers, 267
of a point, 253
of a prime ideal, 253
of an irreducible subset, 253
of regular embedding, 202
pathologies, 253, 265
sometimes difference of
dimensions, 258
cofiltered, 30
cofinal, 599, 599, 602, 610, 613, 616
Cohen Structure Theorem, 600
Cohen-Macaulayness, 134, 258, 298,
299, 396, 447, 581, 584, 584,
585-588, 620, 623, 627-629, 632,
633, see also Miracle Flatness;
Serre duality
and adding a variable, 587
e.g., all dimension 0 Noetherian
schemes, 584, 585

e.g., all dimension 1 Noetherian
schemes without embedded
points, 584

e.g., all dimension 2 normal
varieties, 588

e.g., Gorenstein, 633

e.g., regular embeddings in smooth
k-schemes, 585

e.g., regular local rings, 581, 585

fancy properties, 586

implies catenary, 587

implies no embedded points, 584,
585

open condition, 586

preserved by localization, 584,
586

slicing criterion, 584

stalk-local, 584

Coherence Theorem, see
Grothendieck’s Coherence
Theorem

coherent modules, 128, 130, 143, 144,
see also coherent sheaves

form an abelian category, 144

Homs are coherent, 144

over non-Noetherian rings, 143

coherent sheaves, 108, 130, 303, see also
coherent modules; finite type,
quasicoherent sheaves; finitely
presented, sheaves;
Grothendieck’s Coherence
Theorem

abelian cone of, 369

affine-local nature, 130

dual, 312

Euler characteristic, 390

flat = locally free, 542

higher pushforward, see sheaf,
higher pushforward

non-Noetherian context, 143

not good notion in smooth
geometry, 130

on X form an abelian category
Cohx, 130, 144, 306

pushforward, see sheaf,
pushforward

cohomology, xix, 8, 27, see also Cech
cohomology; cup product;
derived functor cohomology;
homology; long exact sequence

Cech = derived functor, 511, 523,
525

of a double complex, 33

Cohomology and Base Change
Theorem, 316, 403, 405, 569,
569, 570-576, 579, see also
push-pull map

Cohx (category of coherent sheaves
on X), 130

coker (cokernel), 25

cokerpre (cokernel presheaf), 49

cokernel, 25, see also universal
property

presheaf, 49

sheaf, 56

colim (colimit), 18

colimits, 18, see also universal property

are right-exact, 30

commute with colimits, 23, 30

commute with left-adjoints, 23, 30
e.g., cokernels, 30
e.g., localization, 20
e.g., stalks, 44
filtered, 19
commute with homology in
Mod A, 31, 541
in Mod 5 are exact, 30, 31, 60
not always exact, 30
in Mod o (non-filtered case), 20
may not commute with right-exact
functors, 32
collapse (of spectral sequence), 35
comathematician, 19
Come (category of complexes in &),
27
is abelian category, 27
commutative monoid, 24
compatible germs, 25, 50, 51-54, 60,
107, 124, 188, 322, 333
complete k-scheme, 244, see also
proper morphisms
complete intersections, 203, 403, 427,
434, 482, see also local complete
intersections
in affine space
are Cohen-Macaulay, 585
implies no embedded points, 585
in projective space, 403, 426, 427,
434, 482, 483, 632
positive-dimensional ones are
connected, 403
complete linear series, see linear series
complete with respect to an ideal I,
600
completion, 18, 143, 273, 544, 565, 599,
599, 600, 601, 603, 605, 606, 615
and Cohen-Macaulayness, 587
commutes with finite direct sums,
602
is flat, 601, 603
not always exact, 601
of A along I, 599
preserves exact sequences of finitely
generated modules, 601, 602
complex (in abelian category), 26
double complex, 32, 33
(hyper)cohomology of, 33
cohomology, 33
first quadrant, 34
total complex of, 33
exactness, 26, 26
(for sheaves) is stalk-local, 127
of sequence of sheaves is
stalk-local, 57
factorization into short exact
sequences, 27
homotopic maps give same map on
homology, 28, 512
complex geometry, see analytification;
manifolds, complex; varieties,
complex
complex manifolds, see manifolds,
complex
complex varieties, see varieties,
complex
component
connected, 84, 84, 85, 109, 113, 222,
305, see also
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idempotent-connectedness
package
are closed, 84
may not be open, 84
irreducible, 84, 84, 85, 88, 109, 225
= minimal primes for Spec A, 88
are closed, 84
Noetherian spaces have finite #,
84
composition series, 131, see also
Jordan-Holder package;
modules
composition-of-functors spectral
sequence, see Grothendieck
composition-of-functors
spectral sequence
compositum of subfields, 255
cone, see also abelian cone; affine cone;
ample cone; conormal cone;
effective cone; mapping cone;
nef cone; normal cone;
projective cone; tangent cone
over smooth quadric surface, 92,
102, 116, 118, 161, 227, 256, 273,
279, 281, 290, 345, 346, 505, see
also recurring (counter)ex-
amples; quadric surface
not factorial, 273
over twisted cubic/rational normal
curve, 81, 196, 255
traditional, i.e. x* + yz =22, 106,
195, 196, 229, 273, 290, 340, 344,
346, 426, 438, 439, 502, 503
conic (curve in P?), 192
=P if regular with a rational
point, 161, 418
classification of, 193
universal, 393
coniveau filtration on K(X), 453
connected, 80, see also component;
fibers;
idempotent-connectedness
package
schemes, 109
connecting homomorphism, 28
conormal
bundle, 464, 491
cone, 491
exact sequence, 463, 464, 470
affine version, 464
for smooth varieties, 471
left-exact in good circumstances,
464, 470, 471, 565
module, 464
sheaf, 464, 465, 491
of regular embedding is locally
free, 465
constant (pre)sheaf, 45
constant rank implies locally free on
reduced (for finite type
quasicoherent sheaves), 314,
361, 542, 558
constructible subsets, 182, see also
Chevalley’s Theorem
are finite disjoint unions of locally
closed subsets, 182
in more general situations, 217
contravariant functor, see functor
coordinates, 67
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on affine space, e.g., x{, 71
projective x, 100, 101, 107, 475
coproduct, 14, 19
of schemes (is disjoint union), 153,
205
of sets, 14
corank, 275, see also Jacobian corank
function; semicontinuity
cotangent, see also tangent
bundle, 396
complex, 463, 565
exact sequence, 463, 470, 563
affine version, 462, 463
left-exact in good circumstances,
463, 470, 477, 565
map, 274
sheaf, 459, 468, see also tangent sheaf
relative, 468
space, 42, 271
computed by Jacobian at rational
points, 274
computed by Jacobian at
separable closed points, 462,
472
is fiber of QQ, 462
vector, 271, 459, 459
= differential, 271
relative, 459
counterexamples, see recurring
(counter)examples
covariant functor, see functor
cover
by open subfunctors, 209
open, 41
covering space, 292, 560
Cremona transformation, 161, 243,
336, 505, 597
cross-ratio, 430, 430
and the j-invariant, 430
classifies 4 points on P!, 430
cubic, 229, 420, 427, 431-437, 440, 441,
504, 544, 546
curves, 504, see also cuspidal cubic
curve; nodal cubic curve;
twisted cubic curve
hypersurface, 192
plane curves, 281, 425
surface, xvii, xviii, 261, 426, 427,
504, 505, 589-596, see also del
Pezzo surfaces; Fermat cubic
surface
is blown-up plane, 595
singular, 591
cup product, 620, 623, 629
Curve-to-Projective Extension
Theorem, 160, 161, 335, 335,
336, 337, 358-360, 431,
433
necessity of hypotheses, 335
curves, 192, 252, see also (—1)-curve;
canonical, curve; elliptic
curves; genus; Fermat curve;
hyperelliptic curves; Klein
quartic curve; .# 4; rational
normal curve; Tate curve;
twisted cubic curve
curve singularities, 603
exists regular projective birational
model, 357

Index 645

genus, 413
arithmetic = topological, 392
geometric = topological, 479
genus 0, 402, 418-420, 423, 424, 428,
479, 485, 571, 604
are conics, 418
genus 1,402, 416, 420, 421, 423, 424,
428, 429, 436438, 440, 546, see
also elliptic curves
classified by j-invariant, 437
not classified by j-invariant, 437
genus 2, 423, 424, 479
hyperelliptic in precisely one
way, 423
genus 3, 392, 402, 423427, 479, 604
not all hyperelliptic, 423
genus 4, 403, 426, 427, 434
genus 5, 426, 427
genus 6, 402, 427, 604
moduli space .#4, 532
non-rational, 162
nonhyperelliptic, 423, 425-427, 434
of every genus, 422
plane, 281, 401, 419, 425, 426, 438,
448, 461, 496, 502, 546, 589, 603,
604, see also Bézout’s Theorem
proper implies projective, 417
trigonal, 425, 427
various categories are equivalent,
359
cusp, 229, 281, 413, 489, 503, 603, 604,
see also normalization, of cusp
cuspidal cubic curve, 229, 281, 489, 502
normalization, 550
cycle (homological algebra), 26

d: Ox — Qx vy, 468
d: A—Qp,p, 460
D (f) (projective distinguished
open set), 80, 106, 327
D (f) (distinguished open set), see
open set, distinguished
D, -singularities, 503, 603
55 (diagonal morphism), 13, 233
S-functors, 516, 625, 628, 629
covariant/contravariant, 517
e.g., derived functors, 516
morphism of, 517
universal, 516, 517, 625, 626, 628
d-invariant, 604
d-uple embedding v 4, see Veronese
embedding, 194
Dedekind domain, 118, 119, 230, 258,

289, 307
unique factorization of ideals, 131,
289
deformation theory, 274, 484, 532, 541,
589, 592

deformation to the normal cone, 508,
508, 543, see also normal cone
deg # =deg # (degree of coherent
sheaf on curve), 392
when .7 is line bundle, 391
degenerate linear series, 329, see also
linear series
degree
d map, 331
algebraic = analytic for maps of
curves, 360
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degree (cont.)
in projective space, 400, 531
additive for unions, 402
constant in flat families, 557
of curve, 331
topological definition, 401
of closed point of finite type
k-scheme, 115
of coherent sheaf on curve, 392
additive in exact sequences, 392
of discriminant of degree d
polynomials, 480
of divisor on regular curve over k,
391
of finite flat morphism is locally
constant, 215, 360, 446, 480,
507, 542, 543, 552, 592
of finite map from curve to regular
curve is constant, 360, 361, 392,
421,431, 558
of finite morphism at point, 315, 531
of generically finite morphism, 552
of generically finite rational map,
256
multiplicative under
composition, 256
of homogeneous element, 104, 104
of hypersurface, 192
of line bundle on curve, 361, 391,
443, 531
additive for ®, 393
is homomorphism, 393
of line bundle on projective space,
342
of projective morphism of curves,
359, 360, 543
of projective variety, 285
of torsion sheaf on curve, 392, 393
del Pezzo surfaces, 427, 483, 597, see
also cubic, surface; Fano variety
(classification theory); quadric
surface; surfaces,
Enriques-Kodaira
classification
delta-functor, see 6-functor
depth, 134, 581, 581, 582, 585, 587
as cohomological property, 582
bounded by dimension of
associated primes, 583
bounded by dimension of support, 581
of regularlocal ring = dimension, 583
derivation, 466, 466, 468, 469, 474
in differential geometry, 271
universal d: A — Q /g, 466
derived category, 384, 574, 627, 629
derived functors, xix, 32, 379, 387, 511
= Cech cohomology, 511, 523, 525
and spectral sequences, 517
computed with acyclic resolutions,
517
left, 404, 514, 515
right, 404, 515
derived pushforward, see higher
pushforward
descending chain condition, 84, 85,
262
descent, 122, 212, 436, 532, see gluing
desingularization, 492, see resolution
det .# (determinant bundle), 310

determinant (line) bundles, 310, 396,
619
behave well in exact sequences, 311
determinant map GL,, — G, 166
dévissage, xix, 444
diagonal A (locally closed subscheme
of X xv X), 236
diagonal morphism &, 13, 14, 15,
233, 233, 235, 238, 240, 411, 468,
489, 490
is a locally closed embedding, 236
Diagonal-Base-Change diagram, 14,
15,17, 234, 235, 240
diagonalizing quadratic forms, 118,
193, 194, 227, 273, 451
diagram indexed by, see category,
index
Dieudonné (completely functorised),
23
different ideal, 490, see also relative
different and discriminant
ideals
differentiable manifolds, see
manifolds, differentiable
differentials, 233, 271, 460, see also
cotangent exact sequence;
universal property
= cotangent vectors, 271
behave well with respect to base
change, 467, 470
explicit description, 460
fiber at a rational point, 462
module of (for ring maps), 460
on hyperelliptic curves, 473
on projective space, see Euler exact
sequence
pulling back, 467, 470
dimension, 70, see also pure dimension
= transcendence degree, 255
additive for products of varieties, 257
at a point, 260
constant in flat families, 557
Krull, 251
of a ring, 251
of a scheme, xvii, 115
topological in nature, 110
of a topological space, 251
of a variety at a point (upper
semicontinuous), 260
of a variety preserved by field
extension, 260
of fiber at a point (upper
semicontinuous), 269
of fiber of closed map (upper
semicontinuous), 269
of fibers, 266
never lower than expected, 592
dimensional cohomology vanishing,
380, 387, 546, 630
for quasiprojective schemes, 507
more generally, 387
relative, 406
dimensional filtration on K(X), 453
Diophantine equations, 154, 160-162,
418, 424, 589
direct image sheaf, see sheaf,
pushforward
direct limit, see colimits
discrete topology, 45

discrete valuation, 287, 295, 297, see
also discrete valuation rings;
valuations
discrete valuation rings, 73, 229, 271,
277, 288, 295, 297, see also
finitely generated modules,
over discrete valuation rings
(classification)
differentials over a field, 474, 478
flatness criterion, 541
discriminant ideal, 490, see also
relative different and
discriminant ideals
disjoint union of schemes, 92, 96, 563,
see also recurring
(counter)examples, infinite
disjoint union of schemes
is coproduct, 205
distinguished affine base, 123
distinguished open set, see open set,
distinguished
div(s) (Weil divisor of zeros and
poles), 338
divisible abelian group, 515
divisor, see also branch divisor;
effective Cartier divisors;
exceptional divisor; Q-Cartier
divisor; Weil divisor
Cartier, xix, 348
Doesn'’t-vanish set, see open set,
distinguished
domain of definition, 142, 242, see also
indeterminacy locus
dominant morphism, 158
dominant rational map, 158
double complex, see complex
double cover, 74, 177, 421, 421,
422-425, 429, 430, 433, 439, 440,
473, 476, 531, see also branched
cover; hyperelliptic map
dual
of coherent sheaf, 312
of locally free sheaf, 306
of 0-module, 48
projective space, 283
variety, 286
dual numbers, 69, 75, 93, 96, 111, 155,
187, 196, 241, 251, 274, 315, 349,
532, 541, 561
flatness criterion, 535, 541
dualizing sheaf, 380, 395, 619, 621, see
also canonical, sheaf
DVR, see discrete valuation rings
Dynkin diagrams, 503, 597

Ee¢, 589, 594, 603

Eg, 454, 603

E., 603

E -singularities, 503, 603

EP> 9 (entry in double complex), 33

EP 9 (entry (p, q) in rth page of
spectral sequence), 34

ExY (exceptional divisor), 492, 493

effaceable functor, see functor,
effaceable

effective Cartier divisors, xix, 134, 199,
199, 200203, 216, 243, 276, 335,
344-347,387, 399, 444, 445, 447,
448, 492-500, 503-507, 537, 553,
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555, 581, 584, 585, 595, 608, 613,
632, see also regular sequence;
slicing criterion
adding, 347
and Cohen-Macaulayness, 585
and invertible sheaves, 325, 346, 347
contain no associated point, 200
e.g., exceptional divisor Ex Y on
blow-up, 493
how to restrict, 344
is pure codimension 1, 262
normal (line) bundle to, 347, 465
not easily affine-local condition, 200
principal, 498
relative, 555, 555
slicing by, 199, 199, 401, 403, 563,
581, 629
effective cone, 450, 450
Eisenstein’s Criterion, 281
elementary transformation (ruled
surface), 614, 614
elimination of quantifiers, 184, 185
elimination theory, 181, 185, see also
Fundamental Theorem of
Elimination Theory
ellipse, 420, 438
elliptic curves, 117, 155, 161, 162, 246,
307, 422, 424, 428, 428, 429-431,
433, 434, 436-442, 449, 568
are group varieties, 434
counterexamples and pathologies,
439
degenerate, 437
degree 1 points = degree 0O line
bundles, 429
group law, 429, 430, 433, 434, 440,
595
geometrically, 433
level n structure, 430
non-torsion point, 440
not same as genus 1 curves, 429
elliptic fibration, 504
embedded points/primes, 135, 135,
140, 140, 291, 360, 362, 400, 401,
447, 448, 472, 583-585, 587, 632
of locally Noetherian scheme, 141
embedding (unwise terminology), 190
enough injectives, 515-517, 519
e.g., Ab, 515
e.g., Abx, 523
e.g., Mod o, xx, 515, 516
e.g., Modgx , 523,623, 624
e.g., QCohy, 530
enough projectives, 514, 515, 517, 525
not Mod(jx , 525,624
epimorphisms, 15, 15
may not be surjective, 15
equalizer exact sequence, 44, 89, 209
equidimensional, see pure dimension
equivalence of categories, 8, 9, 55, 124,
151, 160, 322, 359
espace étalé, see sheaf, space of
sections
essentially surjective functor, 9
étale cohomology, 127, 511
étale cover, 293, 479, 563
étale morphisms, 271, 278, 292, 292,
293, 490, 560, 561, 563, 565, 592,
594, 600, see also formally étale
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= locally finitely presented + flat +
unramified, 563
= smooth + unramified, 563
differential geometric motivation,
292
local on source and target, 293
not same as “local isomorphism”,
294
open condition, 293
preserved by base change, 293
preserved by composition, 293
reasonable class, 293
étale topology, 127, 479, 560, 601
Euclidean algorithm /Euclidean
domain, 69, 70, 117
Euler characteristic x (X, %), 327,
390, 401, 402, 447, 531, 532, 546
additive in exact sequences, 390,
391, 399, 453
constant in projective flat families,
532, 546, 557, 573, 574
constant in proper flat families, 403,
573
without Noetherian conditions,
576
is finite for proper X, 453
polynomiality, 398, 428
Euler exact sequence, 474, 474, 476,
483, 485
generalizations, 476
exact functor, 29, see also 7T 1 , 7Ty,
FHHF Theorem, flat
morphisms, localization,
stalkification
exact modules/exact morphisms,
531
exact sequence, see also Euler exact
sequence; Grassmannian,
universal exact sequence;
excision exact sequence;
equalizer exact sequence;
exponential exact sequence;
long exact sequence; normal
exact sequence
factored into short exact sequences,
27
grafting, 37
split, 522
exceptional divisor Ex Y, 216, 448,
492, 493, 497-504, 506, 508,
595-597, 603, 608, 612, 614
in minimal model program, 493
normal bundle to, 498
excision exact sequence for class
groups, 341
exponential exact sequence, 51, 53, 55,
57,58, 392
Ext functors, 511
first version, 515
for 0-modules, 624
computable by acyclics, 624
long exact sequence, 624
second version, 515
two definitions are same, 517
Ext functors, 624
Z;g; (coherent, coherent) =
coherent, 625
'E;(t; (coherent, quasicoherent) =
quasicoherent, 625

Index 647

behaves like derived functor in first
argument, 625
computable with locally free
resolutions, 625
long exact sequence in first
argument, 625
may not preserve quasicoherence,
624
extension by zero 7ty, 61, 369, 524, 524,
525, 526, 530
is exact, 524
left adjoint to inverse image 7t~ ',
61, 524
extension of an ideal, 210
extension of fields, see field extension
extension of scalars, 23
exterior algebra, 310

F .. (Hirzebruch surface), 373, 450
Z |, (stalk of Z at p), 97
factorial, 117
# normal, 118, 274
but no affine open is UFD
(example), 439
implied by regular
(Auslander-Buchsbaum
Theorem), 298
implies normal, 117
open condition, 117
ring, 117
stalk-local, 117
weaker than regular (example), 298
faithful functor, 7, 7, see also fully
faithful functor
faithful module, 174
faithfully flat algebra, 549
faithfully flat morphisms, 122, 548, 549
local on the target, 549
preserved by base change, 549
preserved by composition, 549
reasonable class, 549
faithfully flat sheaves, 549
Faltings’s Theorem (Mordell’s
Conjecture), 424
Fano variety (classification theory),
266, 482, 482, 483, 594, see also
del Pezzo surfaces; trichotomy
Fano variety (of lines), 594
fd.Vec,, 9
Fermat cubic surface, 590, 592, 594
Fermat curve, 162, 281
Fermat’s Last Theorem, 162, 424
FHHF Theorem, 29, 31, 387, 403-406,
538, 539, 624
fibered coproduct, 14, see also
universal property
fibered diagram/square, 13, see also
base change diagram/square;
Cartesian diagram /square;
pullback, diagram/square
fibered product, 13, see also base
change; product; pullback;
universal property
“commutes with localization”, 212
in category of open sets, 13
of functors, 208
of schemes, 205
of sets, 13
with open embedding, 170
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fibers of a morphism of schemes, 169,
213, 214, see also generic fiber;
scheme-theoretic

connected, 222, 607, 608
from Zariski’s Connectedness
Lemma, 606
dimension of, 266
well-behaved for flat morphisms,
536, 548, 550
geometric, 220, 220, 532, 562, 565,
571
geometrically connected (etc.), 220
properties preserved by base
change, 220
fibers of an &'x-module, 97
field
imperfect, 246
perfect, 225, 226, 298, 485, 588
separably closed, 220, 223, 224, 239
field extension, see also transcendence
theory
algebraic, 171, 172, 230, 252, 254,
260, 462
and differentials, 462, 467
finite, 71, 83, 114, 118, 177, 183, 211,
215, 220, 225, 230, 231, 252, 255,
256, 259, 280, 357, 421, 439, 462,
489, 490, 560, 563
finitely generated, 160, 160, 225,
255, 267, 402, see also
transcendence degree
Galois, 211, 259, 479
normal, 259
purely inseparable, 219, 222, 222,
231, 486
purely transcendental, 160, 260
separable, 225, 231, 462, 477, 489,
490, 560, 563
separably generated, 225, 225, 467
filtered, 19, see also colimits, filtered
final object, see object, in a category,
initial/final/ zero

finite B-algebra, 172, 176

finite extension, see also field extension

of integrally closed domains, 258,
259, 549, see also Going-Down
Theorem

of rings, 177, 258

finite fibers not preserved by base
change, 218

finite flat morphisms, 542, 576, 589,
627, 628

have locally constant degree, 215,
360, 446, 480, 507, 542, 543, 552,
592

finite global generation, see global
generation

finite length, 131, see also Artinian;
Jordan-Hélder package; length

scheme, 133

finite morphisms, 176

= integral + finite type, 179

= projective + affine, 382

= projective + finite fibers, 360, 375,
382, 383, 393, 414, 592, 614

= projective + quasifinite, 382

= proper + affine, 246, 382, 409, 610

= proper + affine (Noetherian
setting), 610

= proper + finite fibers, 382
= proper + finite fibers (Noetherian
setting), 610
= proper + quasifinite, 246
= proper + quasifinite (Noetherian
setting), 610
= proper + quasifinite + locally
finitely presented, 610
affine-local on target, 176
are affine, 176
are closed, 178, 193
are integral, 172, 178
are projective, 177, 374
are proper, 244
are quasifinite, 178, 179
are separated, 236
e.g., closed embeddings, 187
have finite fibers, 178, 214, 215
not same as finite fibers, 178
preserved by base change, 218
preserved by composition, 177
reasonable class, 218
separable, 477
to Speck, 177
finite presentation, see finitely
presented (algebras, sheaves,
modules, morphisms)
finite type
A-scheme, 114, 114
implied by quasiprojective, 114
over a ring, 114
quasicoherent sheaves, 130, see also
modules, finitely generated
affine-local, 130
constant rank implies locally free
on reduced, 314, 361, 542, 558
support is closed, 312
finite type morphisms, 179
affine-local on the target, 179
e.g., proper morphisms, 244
preserved by base change, 218
preserved by composition, 179
reasonable class, 218
finitely generated domain, 255
finitely generated field extension, see
field extension
finitely generated modules, 128, see
also finite type, quasicoherent
sheaves
over discrete valuation rings
(classification), 129, 308, 313,
327, 362, 429, 474
over principal ideal domains
(classification), xx, 129, 131,
308, 313, 327, 395, 429, 474,
533
over regular local rings have finite
free resolutions, 547
finitely globally generated, see global
generation
finitely presented, see also local finite
presentation
= finite type under Noetherian
hypotheses, 180, 181, 217
algebras (ring map), 180, 180, 181,
181, 460
affine-local property, 180
implies always finitely presented,
180

sheaves, 130, 576, see also modules,
finitely presented
affine-local, 130
flat = locally free, 542
local freeness is stalk-local
property, 313
finitely presented modules, 29, 128,
143, 144, 460, 541, 542, see also
finitely presented, sheaves
= coherent for Noetherian rings, 144
“finitely presented implies always
finitely presented”, 129, 313,
542
graded, 323
localization and Hom commute, 11
finitely presented morphisms, 174,
179, 180, 181, 354, 532, 543, 552,
564, 565, 570, 576-579
= “finite in all ways”, 181
affine-local on the target, 181
Chevalley’s Theorem, 183, 217
locally pullbacks of nice
morphisms, 216, 217
preserved by base change, 218
preserved by composition, 181
reasonable class, 235
finiteness of integral closure, see
integral closure
finiteness of normalization, see
normalization
Five Lemma, 26, 37, 38
subtler, 38, 622
flabby sheaf, see sheaf, flasque/flabby
flag variety, 167, 476
bundles, 476
partial, 167, 365
flasque sheaf, see sheaf, flasque/ flabby
flatness, 182, 245, 360, 387, 394, 403,
405, 443, 454, 508, 511-514, 534,
559, see also Euler
characteristic, constant in
projective flat families; faithful
flatness; finite flat morphisms;
generic flatness; Going-Down
Theorem; Miracle Flatness
Theorem; resolution
(complexes); slicing criterion
= free = projective for finitely
presented modules over local
rings, 532, 541
= locally free for finitely presented
sheaves, 542
= projective for finitely presented
modules, 542
= torsion-free for PID, 541
and blowing up, 537
and regular sequences, 200
at a point, 534
constancy of fiber
degree/dimension/arithmetic
genus, 557
criterion over regular curve, 543
e.g., affine space, 533
e.g., completion, 601, 603
e.g., free modules, 533
e.g., localization, 533
e.g., open embeddings, 534
e.g., projective modules, 533
equational criterion, 540
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fiber dimension well-behaved, 536,
550, 557
fibral, 555, 555, 556
flat limit, 543, 543, 545, 546
explicit example, 544
ideal-theoretic criteria, 532, 537, 540,
540, 541, 552, 602
finitely generated version, 540
stronger form, 602
implies torsion-free, 533, 537, 541,
553, 586
local criterion, 532, 552, 552, 569, 579
no higher Tor, 513, 514, 532, 537,
538, 540, 541
of modules, 30, 532
of quasicoherent sheaf over a base,
534
of relative dimension n, 550, 550,
551, 561, 562, 586
includes locally finite type
hypotheses, 550
preserved by base change, 550
reasonable class, 551
of ring morphism, 533
open condition, 552
open map in good situations, 532,
549
over a field, 533
over discrete valuation rings, 532,
541
over integral domains, 532, 533
over local rings, 532
over principal ideal domains, 532,
533, 541
over regular curves, 542
over the dual numbers, 532, 535, 541
preserved by base change, 533, 535,
553
preserved by composition, 533, 535
reasonable class, 535
regular embeddings pull back
under flat morphisms, 537
sends associated points to
associated points, 535
stalk / prime-local property, 533, 534
topological aspects, 532, 548
Tor -criterion, 513
valuative criterion, 543
variation of cohomology, 544
flex, 432, 432, 433
forgetful functor, see functor, forgetful
form of degree d, 104
formal neighborhood, 600, 601, 605,
605, 606, 613, 615
formal power series, 18, see power
series
formal schemes, xvii, xix, 605
formally étale, 565, 565, 601
formally smooth, 565, 565
formally unramified, 489, 565, 565
e.g., localization, 489
Four Squares Theorem, 162
fraction field, 10, see also total fraction
ring
fractional ideal, 303, 307, 345
fractional linear transformations, 343,
343, 425
free resolution, see resolution
(complexes)
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free sheaf, 128, 303, see also trivial
bundle
Freyd-Mitchell Embedding Theorem,
26
Frobenius, 246, 255, 278, 413, 477, 479
absolute, 179
full functor (unimportant), 7
full rank quadratic form, see maximal
rank
full subcategory, see subcategory, full
fully faithful functor, 7, 9, 16, 22, 26,
241
function field, 111, see also rational
function
and birational maps, 159
and dominant rational maps, 158
determines irreducible regular
projective curve, 359
functions, 46, see also differentiable
functions; rational function
= maps to Al , 163
determined by values on reduced
scheme, 110
global, 46
multiplicity at regular point, 503,
506
not determined by their values,
75
on a ringed space, 46
on a scheme, 67, 95
on an open subset, 46
on projective space, 101
value at a point, 67, 96
vanishes at a point, 96
functor, see also additive; derived;
essentially surjective; exact;
faithful; full; fully faithful;
half-exact; left-exact; natural
transformation; representable;
right-exact
composition of, 7
contravariant, 8
covariant, 7
effaceable, 517
forgetful, 7, 8, 22, 23, 52, 58, 165,
348, 350
left adjoints to, 22, see also
groupification; saturation;
sheafification
functor category, 16, 208
identity, 7
natural isomorphism, 8
of points, 8, 154
fundamental groupoid, 6
fundamental point (of rational map),
242
Fundamental Theorem of Elimination
Theory, 182, 185, 185, 186, 193,
245, 266, 335, 382, 383

G (k, n) (Grassmannian), 166

G(k —1,n — 1) (Grassmanian), 167

GAGA Theorem, 483, 531

Galois cohomology, 127

Galois theory, 69, 70, 72, 76, 211, 231,
259, 280, 421, 431, 479, 532, 594

Gauss’s Lemma, 117

Gaussian integers Z[i], 117, 215, 229,
282,289

Index 649

general fiber, 216, see also generic
fiber
general linear group scheme, 166
general point, 83, 256, 286, 504, 595
general type (variety), 266, 482, 482,
483, see also trichotomy
generated by (a finite number of)
global sections, see global
generation
generated in degree 1, 105
generic fiber, 214, 216, 216, 268, 543
generic flatness, 83, 552, 552
generic point, 68, 69, 73, 76, 77, 81, 83,
109
and function field, 111
generic smoothness, 83, 425, 485, 486,
488
of varieties, 485
on the source, 486
on the target, 487
generically finite, 216, 216, 503
degree, 256, 552
implies generally finite, 269, 552
usually means generally finite,
216
generically separable morphisms, 477,
477, see also separable finite
morphisms
generization, 83, 109
stable under, 183, 549
genus, 398, see also curves, genus 0, 1,

arithmetic, 392, 427, 482, 531, 557,
576, 604
constant in projective flat
families, 557
arithmetic = topological (for
curves), 392
geometric, 472, 482
is a birational invariant, 481, 482
geometric = topological (for
curves), 479
topological, 392
geometric fiber, see fibers, geometric
geometric genus, see genus,
geometric
Geometric Nakayama’s Lemma, see
Nakayama’s Lemma
geometric Noether normalization, see
Noether normalization
geometric point, 219
geometrically con-
nected /integral /irreducible
/reduced, 220
germs, 42, 44, see also compatible
germs
determine section of sheaf, 50
GLyn (group scheme), 166
global functions, 46
global generation (of quasicoherent
sheaf), 351, 351, 407, see also
base-point-freeness
at a point, 352
e.g., any quasicoherent sheaf on any
affine scheme, 352
finite, 351
e.g., every finite type
quasicoherent sheaf on every
affine scheme, 352
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global generation (of quasicoherent
sheaf) (cont.)
open condition, 352
preserved by @, 352
preserved by ®, 332, 352
with respect to 7t (relatively
globally generated), 357, 375
affine-local on target, 376
for locally ringed spaces, 375
global section, 43
gluability axiom, 44, see also base
gluability axiom
gluing morphisms
of locally ringed spaces, 150
of ringed spaces, 148
of schemes, 151, 152, 206, 208
of topological spaces, 45
gluing ringed spaces along open sets,
99
gluing schemes
along closed subschemes, 332
along open subschemes, 98, 99, 188,
206, 332
Gm (multiplicative group scheme), 164
Going-Down Theorem, 173
for finite extensions of integrally
closed domains, 258, 258, 259,
549
for flat morphisms, 259, 548, 549,
549, 550
for integral extensions of integrally
closed domains, 259
Going-Up Theorem, 172, 173, 252, 259,
549
Gorenstein, 633
graded ideal, see homogeneous ideal
graded modules, 23, 322, 342, 348, 349,
see also saturated graded
module; saturation functor
quasicoherent sheaf corresponding
to, 322, 348
graded rings, 23, 102, 105
=72°-graded ring, 104
finitely generated over A, 105
generated in degree 1, 105
maps of, 156
over A, 105
standing assumptions on, 105
Z-,104
graph (of a) morphism, 237, 411, 412,
449
is a locally closed embedding, 237,
412
to a separated scheme is a closed
embedding, 237, 412
graph of a rational map, 237, 242, 242,
243, 505
and blow-ups, 505
Grassmannian, 108, 166, 167, 167, 343,
362, 363, 365, 476, 576, 578-580,
592, see also Pliicker
as moduli space, 362
bundle, 365, 476
functor (contravariant), 362, 363
G(2,4) =G(1, 3),261, 365,591, 592
G(2,5), 427,434
tautological bundles, 364, 476, 577
universal exact sequence, 363
Grauert’s Theorem, 568, 568,
571-576

Grothendieck
composition-of-functors
spectral sequence, 38, 519, 519,
523, 626

proof, 522

Grothendieck functor, 163

Grothendieck group of coherent
sheaves on X (K (X)), 453

Grothendieck topology, 126, 126, 127,
532, 560

Grothendieck’s “six operations”,

627

Grothendieck’s Coherence Theorem,
245, 316, 351, 376, 380, 382, 390,
409, 409, 410, 411, 453, 573, 604,
607, 615, 617

for projective morphisms, 382, 404

Grothendieck’s Theorem (vector
bundles on P'), 397

Grothendieck-Riemann-Roch, 446

group (perverse definition), 6

group law on elliptic curve, see elliptic
curves, group law

group object (in a category), 164

group variety /scheme, 163165, 165,
166, 246, 246, 248, 343, 365, 434,
437,438, 487, 488, 571, see also
action of group variety / scheme

abelian, 165

morphism of, 166

structure on elliptic curves, 436
groupification (of abelian semigroup),

22,23

left adjoint to forgetful functor, 22
groupoid, 5
Groups (the category of groups), 165

H ((co)homology), 26
HO (U, .7) (section of sheaf .Z over
u), 43
h.z (m) (Hilbert function), 398
h? (functor of maps from A), 7
h A, see functor, of points
Hairy Ball Theorem, 473
half-exact functor, 552
Hartogs’s Lemma, 98, 290, see also
Algebraic Hartogs’s Lemma
Hausdorff, 233, see also separated
morphisms
in terms of separatedness, 236
height, see codimension
Hensel’s Lemma, 600, 601
Hermitian metric, 354
higher direct image sheaf, see sheaf,
higher pushforward
Hilbert Basis Theorem, 85, 86
Hilbert function, 85, 398, 402, 428, 557
of coherent sheaf, 398
of projective scheme, 398
Hilbert functor, 576, 577
Hilbert polynomial, 381, 398, 398, 399,
400, 402, 427, 444, 446, 531,
577
locally constant in flat families, 557,
558
Hilbert scheme, 532, 576, 577, 580, 594
universal family, 577
Hilbert Syzygy Theorem, 85, 351, 351,
399, 546, 548
proof, 547

Hilbert's (Weak) Nullstellensatz, see
Nullstellensatz

Hilbert's fourteenth problem, 441

Hironaka’s example, 245, 559

Hironaka’s Theorem, 503, 506, 615,
see also resolution
(singularities)

Hirzebruch surfaces F,,, 373, 373, 450,
501, 604, 614, see also elementary
transformation; ruled surface

Hirzebruch-Riemann-Roch, 446

Hodge diamond, 484, 484, 615

Hodge Index Theorem, 395, 451, 451,
452

Hodge numbers, 311, 483, 483, 484,
568

birational invariance of some, 483
not all are birational invariants,
484
Hodge theory, 481, 483, 484, 568
Hom
is left-exact, 29
may not commute with localization,
29
right-adjoint to tensor product, 21
Hom, 48, 311
is left-exact, 58
may not commute with
stalkification, 48
of quasicoherent sheaves not
necessarily quasicoherent,
311

homogeneous element, 104

homogeneous ideal, 104

homogeneous space, 487

homology, 26, see also cohomology

commutes with exact functors, 30,
see also FHHF Theorem

commutes with filtered colimits in
Mod a, 31

homomorphism (in additive
category), 24

homotopic maps of complexes give
same map on homology, 28, 28,
512

Hopf algebra, 166

horseshoe construction, 513, 521

Hurwitz’s Automorphisms Theorem,
480

hypercohomology, see cohomology, of
a double complex

hyperelliptic

curves, 413, 421, 421, 422-426, 433,
473, 474, see also curves,
nonhyperelliptic;
Riemann-Hurwitz formula,
hyperelliptic
differentials on, 473
moduli spaces, 423
most not if g > 2, 423
involution, 434
map, 421, 423
unique for g > 2,423
hyperplane, 104, 192
universal, 283, 489, 577

hyperplane class, 340, 401

hypersurface, 71, 102, 104, 191, 253, see
also quadric

associated points of, 136
degree, 192
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discriminant, 591
in A} have no embedded points,
140

id (identity morphism), 5
I(S) (ideal of functions vanishing on
S), 87
I-adic completion, 599
I-adic filtration, 299
I-adically separated, 600
I-depth, see depth
I-filtration of a module, 299
I-stable filtration, 299
ideal, see also different ideal;
discriminant ideal; fractional
ideal; homogeneous ideal;
maximal ideals; minimal prime
ideals; prime ideals; principal
ideal
extension of, 210
of denominators, 116, 116, 117, 291
product of two, 78
ideal sheaves, 125, 187
product of, 347, 465, 497, 537
idempotent, 81, 153, 223, 606
idempotent-connectedness package,
81, 223, 223
identity axiom, 44, see also base
identity axiom
identity functor, 7
identity morphismida, 5
image (of morphism in a category), 25
image (of morphism of schemes)
set-theoretic, see Chevalley’s
Theorem; closed map;
Fundamental Theorem of
Elimination Theory; open
maps; surjective; universally
closed; universally open
morphisms
image (of morphism of schemes)
scheme-theoretic, see
scheme-theoretic, image
image presheaf, 49
immersion
of manifolds, 66, 560
of schemes (unwise terminology),
190
imperfect field, see field, imperfect
incidence correspondence/ variety,
261, 283, 489, 591
inclusion-exclusion via sheaf
cohomology, 528
indeterminacy locus, 142, 242
index category, 16
index of symmetric bilinear form,
451
induced reduced subscheme, see
reduced subscheme structure
inductive limit, see colimits
infinitesimal neighborhood, see formal
neighborhood
initial object, see object, in a category,
initial / final / zero
injection of vector bundles, 309,
563, see also maps of vector
bundles
injective limit, see colimits
injective maps of rings induce
dominant maps of schemes, 80
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injective morphisms of schemes not
preserved by base change, 218,
see also universally injective
morphisms
injective objects, 515, see also enough
injectives; projective objects;
resolution (complexes)
closed under product, 523
have no Cech cohomology, 528
preserved by right adjoints,
526
integral closure, 174, see also
normalization
finiteness of, 231, 231
of Noetherian need not be
Noetherian, 231
integral element of B-algebra, 171
integral extensions of rings, 171, see
also Going—-Down Theorem
preserved by localization of source,
171
integral morphisms of rings, 171
does not imply finite, 172
e.g., finite, 172
preserved by composition, 172
preserved by localization of source,
quotient of source and target,
171
integral morphisms of schemes, 178
affine-local on target, 178
are affine, 178
are closed, 178
e.g., finite morphisms, 178
fibers of, 178, 252
may not be finite, 178
preserved by base change, 178, 218
preserved by composition, 178
reasonable class, 218
integral scheme, 111
= irreducible and reduced, 111
almost a stalk-local property, 112,
114
integrally closed, 115, see also integral
closure
intersection, see scheme-theoretic,
intersection
intersection number/ product of
L, ..., ZLn with 7, 443,
443, 444-447, 451-453
deformation invariance, 443
is symmetric multilinear, 444
locally constant in flat families, 558
on a surface, 447
intersection theory, 331, 443, 508, 531,
589
on a surface, 447
inverse image (scheme), see
scheme-theoretic preimage
inverse image sheaf, 58, 59, 316
construction, 59
exact (for sheaves of abelian
groups), 60
left adjoint to pushforward, 59
preserves stalks, 59
right adjoint to extension by zero,
61, 524
inverse limit, see limit
invertible sheaves, see line bundles
irreducible, 81, 81, see also component
criterion to be, 269

Index 651

schemes, 109
Weil divisor, 337
irreducible object in abelian category,
131, see also Jordan—-Holder
package
irregularity (surface), 484
irrelevant ideal, 105, 105, 107, 193, 195
isomorphism
(category), 5
of ringed spaces, 95
of schemes, 95, 151

j-invariant, 422, 428, 431, 431, 433, 437
and the cross-ratio, 430
Jacobian
computes cotangent space at
rational points, 274
computes cotangent space at
separable closed points, 462,
472
criterion for regularity, 276, 276,
277-279, 282, 421, 461, 471
for projective hypersurfaces, 281
description of Q, 462, 470
matrix, 274
Jacobian corank function J C, 275
bounds dimension of variety, 275
for projective k-schemes, 275
independent of presentation, 275
preserved by field extension, 275
Jacobson radical, 174
J C (Jacobian corank function), 275
Jordan-Hélder package, 130
Jordan-Holder Theorem, 130, 131,
131

Ko (the Koszul complex), 547
k[e]/(e?), see dual numbers
Kx (canonical divisor), 448
x (canonical sheaf /bundle), 396,
481
[[x1,...,xnll, 599
A) (fraction field), 10, 111
p) (residue field), 96
X) (Kodaira dimension), 482
X) (function field of X), 111
X) (Grothendieck group of
coherent sheaves on X), 453
K(X)=49 (dimensional filtration), 453
k-point/ k-rational point, see
k-valued point
k-scheme, see A-scheme
k-smooth, see smoothness, over a
field
k-valued point, 154
k-variety, see variety
K3 surfaces, 482, 483, 483
Kahler differentials, see differentials
ker (kernel), 25
kerpre (presheaf kernel), 49
is a sheaf, 50
kernels, 25, see also universal property
are limits, 30
commute with limits, 30
presheaf, 49
sheaf, 50
Kleiman’s criterion for ampleness,
395, 451, 454, 456, 456, see also
Nakai-Moishezon criterion
Kleiman’s Theorem, 456, 456

k

K(
K(
K(
K(
K(
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Kleiman—Bertini Theorem, 284, 487,
488, 488, see also Bertini’s
Theorem

poor man’s, 488

Klein quartic curve, 426

Kodaira dimension « (X)), 482, 482
is a birational invariant, 482

Kodaira Embedding Theorem, 354

Kodaira Vanishing Theorem, 380, 483,
483

Koszul complex, 201, 475, 546, 546,
547, 555, 581

Koszul homology, 547

Koszul resolution, 547, 547

Krull dimension, see dimension

Krull Intersection Theorem, 300, 599,
600

Krull’s Height Theorem, 202, 254, 264,
265, 283, 294, 403

Krull’s Principal Ideal Theorem, 202,
256, 261, 262, 262, 263-266, 272,
282, 286, 399, 585

for tangent spaces, 272, 276
proof, 262

Kiinneth formula for quasicoherent

sheaves, 389, 538, 540

L F (left derived functors), 514, 515
£(+) (length of module or coherent
sheaf), 131, 133
Lefschetz principle, 483, 568
left derived functors, see derived
functors, left
left-adjoints, see adjoint, left
left-exact functors, 28, 29
and derived functors, 379
and right derived functors, 515
and the FHHF Theorem, 30
and universal &-functors, 517
e.g., global section functor, 58
e.g.,, Hom, 29
e.g., Hom, 58
e.g., limits, 30
e.g., pushforward, 58
e.g., right adjoints, 30, 31
e.g., sections over U, 58
not pullback of quasicoherent
sheaves, 320
Leibniz rule, 271
length, 131, see also Jordan—-Holder
package
additive in exact sequences, 132
at a point, 133
of a coherent sheaf, 133
of a scheme, 133
of dimension 0 scheme, 448
of regular sequence, 200
Leray spectral sequence, 380, 405, 409,
410, 511, 519, 523, 525
Lie groups, 246, 248, 589
lim (colimit), 18
=
M (limit), 17
limits, 17, see also universal property
are left-exact, 30, 617
commute with kernels, 30
commute with limits, 23, 30, 31
commute with right adjoints, 23, 30,
31
e.g., kernels, 30

lim is exact if transition maps of
source are surjective, 32
line, see also affine line; projective line;
ruling of quadric; tangent
in P, 192
on cone, 273
with doubled origin, 92, 99, 114,
233, 238, 239, 242, 296, see also
recurring (counter)examples
line bundles, xix, 107, 155, 290, 303,
304, 305, see also algebraic
equivalence; ampleness;
base-point-freeness; degree of
line bundle on curve; global
generation; numerically trivial;
Picard group; Q-line bundle;
total space; very ampleness
= invertible sheaves, 305
additive notation, 444
and maps to projective schemes, 328
nef, 394, 395, 456, see also nef cone
= limit of amples, 456
numerical property, 394
numerically effective, see line
bundles, nef
numerically trivial, 394, 394, 451,
452, 559
on P}, 327
cohomology, 387
on projective schemes, 327
semiample, 356
twisting by, 328
twisting by divisors, 342
linear independence of characters,
211, 231
linear series, 329, 329, 331, 332, 356, 395,
400,416,419,420,433,436,441,
447,449,451, 488, 489,504, 590
(non)degenerate, 329
anticanonical, 597
base points, base-point-free, base
locus, . . ., 329
canonical, 423
complete, 329, 330, 331, 415, 423,
434, 436, 612
is always nondegenerate, 329
linear space, 192
linear system, 329, see linear series
local, see also affine-local; stalk-local
on the source, 171
on the target, 169
local finite presentation, see also finite
presentation
morphisms, 174,179, 180,181,293, 489,
490, 550,552,561-563,565,610
“limit-preserving”, 181
affine-local on target, 181
Chevalley’s Theorem, 217
preserved by base change, 218
preserved by composition, 181
reasonable class, 218
over B, 180
local freeness of finitely presented
sheaf is stalk-local, 313
local isomorphism, 560
local rings, xx, see also regular local
rings
morphisms of, 150
are faithfully flat, 549

localization, 10, see also universal
property
as colimit, 20
commutes with direct sums, 11
give monomorphisms of schemes,
212
is exact, 29-31, 122, 314, 477, 533
is flat, 533
may not commute with Hom, 11, 29
may not commute with infinite
products, 11
of regular local rings are regular
local rings, 298
"preserved by base change”, 212
locally (of) finite presentation, see local
finite presentation
locally closed embeddings, 170, 187,
189, 190
are locally of finite type, 190
are monomorphisms, 190, 212
are separated, 236
finite intersections of, 190, 211, 211
preserved by base change, 211
reasonable class, 217
locally closed immersions, see locally
closed embeddings
locally closed subschemes, 190, see also
locally closed embeddings
locally closed subset, 182
locally constructible subsets, see
constructible subsets
locally finite type
A-scheme, 114
over a ring, 114
locally finite type morphisms, 178
affine-local on the target, 179
preserved by base change, 218
preserved by composition, 179
reasonable class, 218
locally finitely presented, see local
finite presentation
locally free resolution, see resolution
locally free sheaf, 303-305, 306, see also
vector bundle
= finitely presented sheaf with free
stalks, 313
in short exact sequences, 308
is quasicoherent, 307
rational / regular section, 308
~ vector bundle, 369
locally of finite type, see locally finite
type
locally principal closed subscheme,
see closed subscheme, locally
principal
locally principal divisor, see Weil
divisor, locally principal
locally ringed spaces, 67, 96, see also
gluing morphisms
functions have values; values pull
back; zeros of functions pull
back, 150
morphisms of, 150, 375
LocPrin (group of locally principal
divisors), 340
locus where two morphisms agree,
241, 242, 247, 248
long exact sequence, 28
for Ext, 515, 582, 584, 624
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for Ext-functors of &-modules, 624
for Tor, 511, 513, 538
for higher pushforward sheaves,
404, 579
lower semicontinuity, see
semicontinuity
Liiroth’s Theorem, 431, 479, 479
Lutz-Nagell Theorem, 440
Lying Over Theorem, 173, 173, 178,
228, 256, 259, 269, 296
geometric translation, 173

my, (maximal ideal of stalk of
functions), 42
M ¢ (moduli space of curves), 428
manifolds, xvi, xvii, xx, 4, 41, 45, 47,
65-67, 96, 97, 147, 150, 155, 163,
166, 167, 169, 233, 251, 292, 303,
305, 307, 441, 459, 465, 468, 560,
see also immersion; submersion
analytic, 42, 65
complex, xx, 67, 74, 97, 98, 130, 143,
155, 156, 162, 244, 290, 341, 354,
428, 431, 439, 471, 478, 492, 604,
see also varieties, complex
differentiable, 42, 65-67, 97, 147,
271,274,292
morphisms of, 66
smooth, 97
vector bundle on, 303
map, see also morphism; rational map
(category), 5, sce morphism
(category)
of graded rings, 156
of vector bundles, 309, 309, 310, 315
mapping cone, 34, 38, 38, 386, 573,
574
Max Noether’s AF + BG Theorem,
585
maximal ideals of A
= closed points of Spec A, 82
existif A # 0, xx
maximal rank (quadratic form), 118,
194, 227
= smooth, 281
maximum principle, 245
minimal prime ideals, 88
= irreducible components of
Spec A, 88
are associated primes, 139
Noetherian ring has finitely many,
88
Miracle Flatness Theorem, 581, 585,
586, 586, 627
algebraic version, 586
Mobius strip, 303
Mod o (category of A-modules), 6
has enough injectives, xx
is an abelian category, 24
Mod o, (category of O'x -modules),
48,127
has enough injectives, 523
is an abelian category, 58
not enough projectives, 525
modular curve, 430
modular form, 430
modules, see also coherent; depth;
finitely generated; finitely
presented; flatness; graded;
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length; Noetherian; Kéhler
differentials; projective
Mod A has enough injectives, 515,
516
Cohen-Macaulay, 584, see also
Cohen-Macaulayness
free implies projective implies flat,
533
topological, 599
moduli space, 167, 296, 297, 329,
423-425, 427, 428, 430, 434, 532,
571, 575, 576, 589, 592, 594, see
also parameter space
of curves .# 4, 428, 532, 569
universal families, 577
monoid, 6
monomorphisms, 14
are separated, 236
are universally injective, 221
diagonal characterization, 15
e.g., closed embeddings, 189
e.g., locally closed embeddings, 190
e.g., open embeddings, 148
e.g., open embeddings of schemes,
171
local on the target, 235
preserved by base change, 235
preserved by composition, 15, 212
reasonable class, 235
Mor, 5
Mordell’s conjecture (Faltings’s
Theorem), 424
Mordell-Weil Theorem, group, and
rank, 429, 439
morphisms, 5, see also diagonal
morphism; gluing morphisms;
morphisms of schemes
in a category, 5
more fundamental than objects, 169
of (pre)sheaves, 47
induce morphisms of stalks, 48
of graded rings, 156
of local rings, 150
of locally ringed spaces, 150
of manifolds, 66
of ringed spaces, 148
of sheaves determined by stalks, 51
morphisms of schemes, xvii, 149, 151,
see also affine morphisms;
closed embeddings; gluing
morphisms; locally closed
embeddings; open
embeddings; projective
morphisms; proper
morphisms; quasiaffine
morphisms; quasiseparated
morphisms; reasonable class;
separated morphisms; smooth
morphisms
and tangent spaces, 274
criterion to be a closed embedding,
413, 413
dominant, 158
from Spec of local ring, 153
glue, 150
of group schemes, 166
to affine schemes, 152
multiplicative group G, 164
multiplicative subset, 10

Index 653

multiplicity of function at regular
point, 503

multiplicity of zero or pole, see order
of pole/zero

mult, D, 506

Mumford complex, 572

N (nilradical), 75
N (X) = Pic X/ Pic™ X, 394, 395
NG () =N"(X) ®z Q, 395, 395,
449-451, 454, 455, 506
b /x (normal bundle to effective
Cartier divisor), 347
NS (X) (Néron-Severi group), 394
N x Y (normal cone), 499
JVXV/Y (conormal sheaf), 465
N ;v (normal sheaf), 465
n-fold, 252
n-plane, 192
Nagata’s Compactification Theorem,
611, 611
Nagata’s Lemma, 117, 345, 345, 346
Nagell-Lutz Theorem, 440
Nakai-Moishezon criterion for
ampleness, 417, 443, 447, 454,
454, 455-457, see also Kleiman’s
criterion
Nakayama’s Lemma, 130, 171, 173,
174, 174, 202, 262, 265, 279,
286-288, 300, 314, 415, 474, 490,
542, 553, 564, 570, 584
for half-exact functors, 552, 553
geometric, 312-314, 352, 506
graded version, 548
natural isomorphism of functors, 8
natural transformation of functors, 8,
9, 16, 21, 30, 48, 208, 209, 364,
517, 620
nef, see line bundles, nef
nef cone, 394, 395, 395, 449, 451, 456
= closure of ample cone, 456
Néron-Severi group N'S(X), 394, 559
Néron-Severi Theorem (Theorem of
the Base), 394, 395, see also
Picard number p (X)
nilpotent, xvi, 75, 75
=vanishes at every associated point,
135
nilradical, 75
is intersection of all primes, 75
nodal cubic curve, 177, 229, 499, 502,
531, 542, 544, 546
normalization of, 229, 544
node, 229, 281, 281, 503, 599, 603, 604
normalization, 414
Noether normalization, 231, 254, 256,
256, 257, 258, 267, 268, 357
geometric, 256
projective, 627
Noether-Lefschetz Theorem, 261
Noetherian, see also scheme, locally
Noetherian; scheme,
Noetherian
hypotheses, xvii, xix, 86, 87, 575
induction, 85
local ring has finite dimension, 254,
265
module, 86
rings, 82, 84, 85
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Noetherian (cont.)
e.g., principal ideal domains, 85
finitely generated module over,
136, 138
finitely many minimal primes, 88
important facts about, 85, 86
infinite-dimensional, 251, 254, 265
preserved by quotients and
localization, 85
topological space, 84, 84, 85, 86, 109,
113, 182, 387
finitely many irreducible
components, 84
open subsets are quasicompact,
86
non-affine scheme (example), 96,
98-101, 178
non-Archimedean, 127, 130, 143, 287
non-zerodivisor, 10, 10, 199-202, 347,
466, 495, 498, 500, 501, 504, 533,
535, 553, 554, 582-586, see also
zerodivisor
nondegenerate linear series, 329
nonprojective proper variety, see
proper nonprojective variety
(examples)
nonsingular, see regular
normal (ring/scheme), 98, 115, 116,
116, see also normalization;
Serre’s criterion for normality
=Ry + S, see Serre’s criterion for
normality
implied by factorial, 117
may not be integral, 116
may not be UFD, 118
stalk-local property, 116
normal bundle, 465, see also normal
exact sequence; normal sheaf
projectivized, 498, 500
to effective Cartier divisor, 347,
447-449, 465
to exceptional divisors, 498-500,
502, 612
to regular embedding, 465
normal cone, 499, see also deformation
to the normal cone
projective completion, 508
normal exact sequence for smooth
varieties, 468, 471, see also
conormal, exact sequence
normal form for quadrics, see
diagonalizing quadratic forms
normal sheaf, 465, 632, see also normal
bundle
to regular embedding is locally free,
465
normalization, 177, 228, 228, 229, 231,
252, 290, 296, 358-360, 367, 368,
370, 371, 407, 417, 421, 425, 482,
489, 542, 544, 604, 608, 613, see
also integral closure; universal
property
finiteness of, 231, 357, 360

in field extension, 230, 230, 231, 282, 357

is a birational morphism, 228, 231
is integral and surjective, 228

not flat, 542

of cusp, 413, 489, 502, 550

of node, 360, 414

Nullstellensatz, 71, 71, 72, 76, 77, 82,
87,109, 185, 205, 280, 429
proofs, 183, 255
weak, 71, 76, 83, 155, 219
number field, 230, see also ring, of
integers in number field
numerical criterion
for ampleness, see Kleiman's
criterion
for line bundle on curve to be
base-point-free, 416, 417
for line bundle on curve to be very
ample, 417
numerical equivalence, 394, 445, 454
implied by algebraic equivalence,
559
numerically effective line bundles, see
line bundles, nef
numerically trivial line bundles, see
line bundle, numerically trivial

O (structure sheaf), 46, 89
O-modules, 47, 121
Ext-functors for, see Ext functors
may not have enough projectives,
525
not always quasicoherent, 123
on X form an abelian category, 58,
305
on a base, 55
tensor product, 58
O (1) on relative Proj, 372
051 (M), Opn (M), 325,326
0% = ¢, free sheaf of “rank 17, 303
O (ring of integers in number field
K), 230
Z Spec A s 89
Ox (—D) for D an effective Cartier
divisor, 347
Ox (D), 339
for D an effective Cartier divisor,
347
is line bundle if X Noetherian
factorial, 341
is quasicoherent, 339
ﬁx P 46
O-connected morphisms, 570, 570,
571, 607-610
+ proper implies connected fibers,
606
+ proper implies surjective, 570,
610
+ proper not reasonable class, 570
local on the target, 570
not preserved by base change, 570
preserved by composition, 570
preserved by flat base change, 570
object
in a category, 5, see also
automorphism; group object
initial / final / zero, 9
in an abelian category, see acyclic;
injective; irreducible;
projective; quotient; simple;
subobject
Oka’s Theorem, 130, 143
open embeddings, 170, 611
are flat, 534
are locally finitely presented, 181

are locally of finite type, 179
are monomorphisms, 148, 212
are separated, 240
base change by, 210
local on the target, 170
not local on the source, 171
of ringed spaces, 46, 148
of schemes are monomorphisms,
171
preserved by base change, 170, 217
preserved by composition, 170
reasonable class, 170
open immersions, see open
embeddings
open maps of topological spaces, 222,
532, see also universally open
morphisms
e.g., flat morphisms (in reasonable
situations), 549
open subfunctors, 209
open subschemes, 96, 170, see also
affine open subscheme/subset
open (sub)sets, see also affine open
subscheme /subset
distinguished D (f), 73, 77, 79
form base for Zariski topology, 80
projective distinguished D  (f),
80, 106, 106
form base for Zariski topology,
106
opp (opposite category), 8
opposite category, 8, 151, 160, 359
Rings and affine schemes, 151
orbifolds, xvii, 428
order of pole/zero, 288, 289
ordinary double point, 603
ordinary multiple (m-fold) point, 603
orientation (of spectral sequence), 33,
36

IP’L (projective line), 100

P(dq,...,dn) (weighted projective
space), 196

P.% (projectivization of finite type
quasicoherent sheaf, with
caution over notation), 372

PV (dual projective space), 283

P™ (projective space), 107

P™-bundle (projective bundle), 373

P (projective space over A), 101

is quasicompact, 109

P} (proective space over a field k), 100

PV (projectivization of vector space),
108

p-adics, 16, 18, 30, 288, 298, 541, 599

page of spectral sequence, 33

Pappus’s Theorem, 419, 419, 420

parabola, 70, 73, 74, 83, 84, 94, 104,
214, 215, 220, 361, 401, 560

parameter space, 261, 266, 393, 571,
578, 580, 591, see also moduli
space

partial flag variety, see flag variety

partially ordered set (poset), 6, see also
filtered

partition of unity, 90, 115, 171, 385, 539

Pascal’s “Mystical Hexagon”
Theorem, 419, 419, 420, 589

perfect field, see field, perfect
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perfect pairing of vector bundles, 311
Pfaffian, 434
Pic(Al') =0, 341
Pic(P]') = 7, 342
Pic® (X), 558
Pic® (E), 429, 434, 441
433
) (the degree d line bundles
on C), 391
Pic™ (X) (group of numerically trivial
line bundles), 394
Pic(X) (Picard group), 306
Picard group, 306, 307, 326, 338,
340-342, 344, 345, 347, 392, 394,
395, 429, 437, 439, 441, 447-450,
453, 506, 558, 559, 571, see also
line bundles
of Spec of UFD is 0, 341
of cone, 344
of projective space, 340
torsion example, 344
Picard number p(X), 395, 484, 614
finiteness of, see also Néron-Severi
Theorem (Theorem of the Base)
complex case, 395
PID, see principal ideal domains
pinched plane, 290, 328, 587
normalization of, 229, 290
not Cohen-Macaulay, 588
plane, 192, see also affine space;
curves, plane
with doubled origin, see recurring
(counter)examples
Pliicker
embedding, 167, 364, 365, 427, 434
equations, 364
plurigenus (birational invariant),
482
point, see also closed point; general
point; generic point; geometric
point
field-valued/ring-valued / scheme-
valued, 154
pole, 115, 288, 289
of order n for discrete valuation
rings, 288
of order n for Noetherian scheme,
289
Poncelet’s Porism, 438, 438, 439
poset, see partially ordered set
power series (formal, convergent,
etc.), 18, 18, 502, 599, 612
preimage, 214, see also
scheme-theoretic preimage
preserved by base change
e.g., any reasonable class of
morphisms, 169
e.g., projective morphisms, 374, 375
not “has finite fibers”, 218
not closed maps, 244
not injective morphisms of
schemes, 218
not &-connected morphisms, 570
preserved by composition
e.g., any reasonable class of
morphisms, 169
e.g., O-connected morphisms, 570
projective morphisms, usually,
377

=E,
Pic? (

For general queries, contact info@press.princeton.edu

preserved by products
e.g., any reasonable class of
morphisms, 169, 233
e.g., projective morphisms (despite
unreasonableness), 375
presheaf, 43
# sheaf (examples), 44
as contravariant functor, 43
cokernel, 49
espace étalé, see sheaf, space of
sections
germ, 44, see germ
image, 49
kernel, 49
is a sheaf, 50
on a base, 54
stalk, 54
quotient, 49
section of, 43
separated, 44
stalk, 44
prevarieties (complex analytic), 155,
see also varieties, complex
analytic
primary decomposition, 134, 142, 143
primary ideal, 134, 142, 142, 143, 262
prime avoidance, 259, 259, 263, 265,
535
prime ideals, 88, see also maximal
ideals; minimal prime ideals;
primary ideals
are the points of Spec, 67
correspond to irreducible closed
subsets, 87
Prin (group of principal Weil
divisors), 340
principal divisor, see effective Cartier
divisors, principal; Weil
divisor, principal
principal fractional ideal, 307, see
fractional ideal
principal ideal, 70, 98, 136, 199, 273,
286, 289, 307, see also Krull’s
Principal Ideal Theorem
principal ideal domains, 70, 282, 286,
287,313, 327,429, 532, 533, 541,
see also finitely generated
modules, over principal ideal
domains (classification)
are Noetherian, 85
Principal Ideal Theorem, see Krull’s
Principal Ideal Theorem
principal Weil divisor, see Weil
divisor, principal
principality not affine-local, 199, 200,
441
product, 3, 3, 17, see also fibered
product; ideal sheaves, product
of; universal property
of irreducible varieties /X is
irreducible, 218
of schemes, 205
of schemes isn’t product of sets, 205
of varieties, 239
profinite topology, 211
Proj S,, 102, 105, 107
Proj, Se, 370
Proj (relative Proj), 367, 370, 371
and affine base change, 370

Index 655

commutes with base change, 372
finite generation in degree 1, 371
no great universal property, 370
0(1),372
projection formula, 400, 405, 407, 446,
446, 454, 629
for quasicoherent sheaves, 321
more general, 446
projective
A-scheme, 104
S-scheme, 335
Y-scheme, 374
over Y, 374
projective morphisms, 375
projective bundle, 155, 261, 285, 373,
571
projective change of coordinates, 343,
see also coordinates, projective;
projective transformation
projective completion, 195, 546
of normal cone, 508
projective cone, 103, 108, 195, 195, 196,
257
relative version, 373
projective coordinates, see coordinates
projective distinguished open set, see
open set
projective limit, see limit
projective line, 100, 472
projective module
=directsummand of freemodule, 514
= free if finitely generated over local
ring, 541
e.g., free module, 514
is flat, 514
projective morphisms, 335, 359, 367,
373, 374, 374, 375, 377, 382, 383,
404, 406, 410, 411, 413, 414, 543,
557-559, 592, 607, 613, 614, 627
are proper, 374
not a reasonable class, 375
notion not local on target, 375, 559
preserved by base change, 374, 375
preserved by product (despite
unreasonableness), 375
usually preserved by composition,
375,377, 411, 497, 559
projective objects, 514, see also
injective objects
projective resolution, see resolution
projective schemes, see scheme,
projective
projective space, 100, 107, see also
coordinates, projective x;;
projective, change of
coordinates; x; /; (coordinates
on patches for projective space)
automorphisms, 343, 425
cohomology of line bundles on, 387
functions on, 101
functorial definition, 329
is finite type, 179
is separated, 238
line bundles on, 325
Serre duality for, 621, 625
tautological bundle, 369
projective transformation, 343, see also
projective change of
coordinates
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projective variety, see variety,
projective
projectively normal, 588
projectivization
of finite type quasicoherent sheaf,
372, see also normal bundle,
projectivized; tangent cone,
projectivized
of vector space, 108
projectivized tangent cone, see tangent
cone, projectivized
proper (=strict) transform (of
blow-up), 448, 492, 493, 495,
495, 496, 502, 506, 559, 597,
614
of nodal curve, 502
proper (=strict=birational) transform
(of blow-up), 493
proper morphisms, 82,102, 233, 244,
see also Chow’s Lemma;
Grothendieck’s Coherence
Theorem; valuative criteria
e.g., projective morphisms, 374
local on the target, 244
of projective schemes, 245
over A, 244
preserved by base change, 244, 247
preserved by composition, 244
preserved by product, 244
reasonable class, 244
proper nonprojective variety
(examples), 245, 332, 449, 559
property Ry, see Ry
property Sy, see Sy
pseudo-morphisms, 158
Puiseux series, 288
pullback, see also 7t*; universal
property
diagram/square, 13, 213, see also
base change diagram/square;
Cartesian diagram/square;
fibered diagram/square
in cohomology, 380
of &-modules, 148, see also 7t*
of a section, 319
of quasicoherent sheaves, 315, 327,
see also 7t*
construction via affines, 317
explicit construction, 319
left-adjoint to pushforward for
qecqs morphisms, 319
not left-exact, 320
of ideal sheaves (subtleties), 321
preserves ®, 320
preserves finite type and finite
presentation, 320
pullback of vector bundle is
vector bundle, 319
right-exact functor, 320
stalks and fibers, 320
of schemes, 213, see also base
change; scheme-theoretic,
pullback
of closed subschemes by flat
morphisms, 536
pure dimension, 252
purely inseparable, see field extension
push-pull map
for &-modules, 149

for cohomology, 405, 405, 567, see
also Cohomology and Base
Change Theorem
isomorphism for flat base change,
536
for quasicoherent sheaves, 321
for sheaves, 60
pushforward
occasionally left-adjoint to 7t ?, 630,
631
of O-modules, 148
of quasicoherent sheaves, 315
is exact for affine morphisms, 316
right adjoint to inverse image, 59
sheaf, 46, see sheaf, pushforward
Pythagorean triples, 160-162, 418

Q-Cartier Weil divisor, 345
Q-line bundles, 395
ampleness, 395
nef, 395
QCohy (category of quasicoherent
sheaves on X), 121, 127
is an abelian category, 127
qcgs (quasicompact quasiseparated),
xix, 110, 110, 126, 175, 175, 176,
181, 297, 316, 319-321, 342, 355,
375, 378, 408, 611
down-to-earth interpretation, 110
Qcgs Lemma, 126, 176
generalization, 342
quadratic forms, see diagonalizing
quadratic forms; maximal
rank; rank
quadric hypersurface, 104, 192, 194,
365, 427
quadric surface, 92, 102, 116, 118, 161,
194, 227, 256, 273, 279, 290, 346,
403, 426, 427, 438, 505, see also
del Pezzo surfaces; cone over
quadric surface; recurring
(counter)examples
quartic, 482
hypersurface, 192
plane curve, 221, 425-427, 433, 589,
see also Klein quartic curve
surface, 261, 482
most contain no lines, 261
quasiaffine morphisms, 354, 378, 378
affine-local on target, 378
e.g., quasicompact locally closed
embeddings, 378
preserved by base change, 378
preserved by composition, 378
properties of, 378
reasonable class, 378
quasiaffine schemes, 378
= Ox ample, 378
quasicoherent sheaves, xvii, 91, 121,
121, 303, 305, see also coherent;
finite type; finitely presented;
global generation; Kiinneth
formula
characterization using
distinguished affine base, 123,
125
corresponding to graded modules,
322,322,348
corresponding to modules, 121

higher pushforward, see sheaf,
higher pushforward
local nature of, 322
morphisms of, 127
not all locally free, 307
not necessarily preserved by Hom,
311
on X form an abelian category
QCohy, 127,188, 303
on affines have no derived functor
cohomology, 528
on projective schemes, 322
on ringed spaces, 128
pullback of, 319
pushforward, see sheaf,
pushforward
pushforward usually
quasicoherent, 316
restriction of, 317
quasicompact morphisms, xix, 175
affine-local on the target, 175
preserved by base change, 218
preserved by composition, 175
reasonable class, 218
quasicompact schemes, 109
e.g., affine schemes, 82
have closed points, 109
quasicompact topological space, 81
quasifinite morphisms, 177, 179, 610,
611
from proper to separated is finite,
246
how to picture, 180, 611
may not be finite, 179
most are open subsets of finite
morphisms, 611
preserved by base change, 218
reasonable class, 218
to fields are finite, 179, 183, 216, 218,
611
quasiisomorphism, 384, 572, 573
quasiprojective, see also scheme;
variety
implies finite type, 114
implies separated, 240
morphisms, 377
quasiseparated morphisms, 169, 174,
175,175, 176, 181, 235, 235, 237,
296, 297, 316, 319-321, 375, 530,
536
affine-local on target, 175
e.g., morphisms from locally
Noetherian schemes, 175
e.g., morphisms from
quasiseparated schemes, 175
preserved by base change, 218
preserved by composition, 175
reasonable class, 235
quasiseparated schemes, xix, 109, 109,
110, 126, 175, 176, 342, 355, 357,
378, 611
e.g., affine schemes, 110
e.g., locally Noetherian schemes,
113,175
e.g., projective A-schemes, 110
not A* with doubled origin, 110,
see also recurring
(counter)examples
quasiseparated topological space, 109
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Quillen-Suslin Theorem, 341

quotient

object, 25

of monomorphism in abelian
category, 25

presheaf, 49

sheaf, 53

R 7, (higher pushforward sheaf), 404
RiF (right derived functor), 515
Ry (regular in codimension k)
Ry = generically reduced, 587
Ry (regular in codimension 1), 289
radical ideal, 78
radical of ideal, 78
= intersection of primes containing
ideal, 78
commutes with finite intersections,
78
radicial morphisms, see universally
injective (radicial) morphisms
ramification
divisor, 477
and number of preimages, 478
locus, 477, 489
order, 478
point, 421, 478
tame/wild, 478
rank
of (locally) free sheaf, 303
of coherent sheaf is additive in
exact sequences, 314
of finite type quasicoherent sheaf at
point, 314
of Ox-module, 97
of quadratic form, 118, see also
maximal rank (quadratic form)

of quasicoherent sheaf, 314
of vector bundle on manifold,
304

rank,, (rank of #-module at p), 97
rational function, 46, 67-69, 98, 111,
115, 142
rational map, 158, see also birational;
degree; domain of definition;
dominant; graph;
Reduced-to-Separated
Theorem
rational normal curve, 81, 194, 196,
331, 403, 423, 451, see also
twisted cubic curve; Veronese
embedding
not complete intersection for d > 2,
403
rational point of k-scheme, see
k-valued point
rational section
of line bundle, 337
of locally free sheaf, 308
rational variety, 159, 161, 595
reasonable classes of morphisms,
169
not projective morphisms, 375
by definition include all
isomorphisms, are preserved
by composition, are preserved
by base change, are local on the
target, 169
e.g., closed embeddings, 217
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e.g., étale morphisms, 293

e.g., faithfully flat morphisms, 549

e.g., finitely presented, 235

e.g., flat morphisms, 535

e.g., flat of relative dimension n,
551

e.g., isomorphisms, 170

e.g., locally closed embeddings, 217

e.g., monomorphisms, 235

e.g., open embeddings, 170

e.g., proper morphisms, 244

e.g., quasiaffine morphisms, 378

e.g., quasicompact; affine; finite;
integral; locally finite type;
finite type; locally finitely
presented, 218

e.g., quasifinite morphisms, 218

e.g., quasiseparated morphisms,
235

e.g., separated morphisms, 236

e.g., smooth morphisms, 293

e.g., surjective morphisms, 218

e.g., universally closed morphisms,

243

e.g., universally injective (radicial)
morphisms, 222, 240

e.g., unramified morphisms, 489

P reasonable implies P&
reasonable, 234

preserved by products, 169

satisfy the Cancellation Theorem,
234

recurring (counter)examples, xviii, 92

1 F,, 82, 84,92, 542

k(x) ®« k(y), 92,212,261, 551

x? = 0 in the projective plane, 92,
111, 246, 403

(cone over) quadric surface, 92, 102,
116, 118, 161, 192, 194, 227, 256,
273,279, 281, 290, 344-346, 426,
438, 505

affine space minus the origin, 82,
86, 92,98, 178, 179, 196, 387

affine space with doubled origin,
92,99, 100, 110, 178, 233, 238,
239, 242, 296

embedded point on line, 92, 94, 111,

134, 141, 142, 242, 536
infinite disjoint union of schemes,
92,96, 98, 111, 126, 197, 199,
561, 601
Spec Q@ — Spec @, 92, 172, 178, 179,
206, 211, 218, 220
two planes meeting at a point, 91,
92, 396, 403, 542, 543, 554, 583,
584, 586-588, 623
reduced subscheme structure, 199,
296, 487, 507, 635
Reduced-to-Separated Theorem, 157,
241, 242, 242, 243, 295, 335,
595
reducedness, 110
is stalk-local, 110, 113, 116, 225
not open condition in general, 111
of ring, 75
often open condition, 199
reduced rings have no embedded
primes, 140
reducible, see irreducible

Index 657

reduction
of a morphism, 232
of a scheme, 199, 232, 371, 393,
407, 546, see also universal
property
Rees algebra, 299, 497, 616
reflexive sheaf, 312, 465
regular
Ay is, 283
does not imply smooth over field,
278
implies Cohen-Macaulay, 585
in codimension 1, 289, see R
in codimension k, 587, see Ry
ring, 276, see also regular local ring
scheme, 276
stalk-local property, 276

regular embeddings, 199, 202, 202,

263, 274, 278, 279, 465, 466, 472,
498-500, 537, 581, 585, 587, 619,
632, 633

blowing up, 499

e.g., regular in regular, 278

in smooth k-schemes are
Cohen-Macaulay, 585

normal bundle is locally free, 465

open condition, 202

pull back under flat morphisms, 537

regular function, 46, 142, see function
regular local rings, 276, 276, 278, 279,

283, 286-289, 474, 563, 586, 600,
608

are Cohen-Macaulay, 299, 581, 585,
588

are integral domains, 278

are integrally closed, 299, 581, 588

are Noetherian by definition, 276

are unique factorization domains,
see Auslander-Buchsbaum
Theorem

finitely generated modules have
finite free resolutions, 547

preserved by localization, 277, 298,
461, 485, 587, 588

regular in regular is regular
embedding, 278

regular section of locally free sheaf,

308

regular sequence, 134, 199, 200, 200,

201-203, 465, 466, 499-501, 555,
581-585

and the Koszul complex, 547

cohomological criterion for
existence, 582

length, 200

maximal, 582

order doesn’t matter (over
Noetherian local rings), 201

order matters, 201

preserved by flat base change, 200

relative cotangent sheaf, 468
relative different and discriminant

ideals, 490

relative dimension, see flat

morphisms, relative dimension
1; smooth morphisms, of
relative dimension n

relative Proj and relative Spec, see Proj

and Spec
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relative tangent sheaf, 468
relatively ample, see ampleness, with
respect to 7t
relatively base-point-free, see
base-point-freeness, with
respect to 7t
relatively globally generated, see
global generation, with respect
to T
relatively very ample, see very ample,
with respect to 7t
Remainder Theorem, 500
representable functor, 15, 16, 163, 163,
208-210, 343, 362, 363, 365, 367,
577-580, see also fibered
product; Grassmannian;
Hilbert scheme; Yoneda’s
Lemma; Zariski sheaf
residue field k(p) of a point p, 96
Residue Theorem, 361, 622
resolution (complexes), 351, see also
Cartan-Eilenberg resolution;
Cech resolution; Ext functors
acyclic, 517, 519
flat, 519
free, 512, 517, 537, 547, 625
graded, 548
injective, 517, 519-522, 526, 528, 582,
624, 625, 631
locally free, 624, 625, 632
projective, 514
resolution (singularities), 491, 492,
502, 503, 604, 615, see also
Alteration Theorem;
Hironaka’s Theorem; Weak
Factorization Theorem
for curves, 608
for surfaces, 608, 615
of indeterminacy of rational maps,
491
small, 477, 505, 505
nonisomorphic, 505
restriction, see also pullback;
quasicoherent sheaves
map (sections of sheaves), 43
of scalars, 23
of sheaf to open subset ¢ |y, 45
of Weil divisor, 337
resultant, 185
Riemann surface, xx, 66, 359, 424, 479,
622
genus, 392
Riemann-Hurwitz formula, 413, 432,
473, 474, 476, 478, 479, 480, 482
applications, 479
hyperelliptic, 421, 422, 424, 429, 474
Riemann—-Roch, 390, 390, 395, 396, 400,
416, 426, 428, 432, 446, 448, see
also Asymptotic Riemann
Roch;
Grothendieck—-Riemann—-Roch;
Hirzebruch-Riemann-Roch
common formulation, 392
for coherent sheaves or vector
bundles, 392
for nonreduced curves, 393
for surfaces, 446, 448, 448, 451
restatement using Serre duality, 396
right adjoints, see adjoints, right

right derived functors, see derived
functors, right
right-exact functors, 12, 28, 29
and derived functors, 379
and left derived functors, 515
and the FHHF Theorem, 29
e.g., left adjoints, 30, 31
e.g., tensor product, 12, 29
may not commute with colimits,
32
Rigidity Lemma, 246, 247, 247, 248,
383
ring, see also Noetherian; graded ring;
local rings; regular local rings
catenary, 258, 587
of integers in number field, 230,
230, 289, 303, 307, 345, 490
topological, 599
ring scheme, 165
ringed spaces, xvii, 46, see also locally
ringed spaces; gluing
morphisms; structure sheaf
(locally) free sheaf on, 303, 305
(quasi)coherent sheaves on, 128, 130
functions on, 46, 67, 96
gluing along open sets, 99
higher pushforwards for, 523
isomorphism of, 95, 95, 96, 148, 610
Leray spectral sequence, 523
morphisms of, 147, 148, 148,
149-151, 318, 319, 367, 523-525
open embedding of, 46, 148, 151,
170, 318
Picard functor for, 307
pullback for, 317
pushforward of &-modules, 148
Rings (category of rings), 6
ruled surface, 373, 449, 450, 614, see
also elementary transformation;
Hirzebruch surface
self-intersection of section of, 450
ruling of quadric, 102, 194, 194, 227,
261, 279, 346, 438, 439
of higher-dimensional quadrics,
194,195
of quadric hypersurfaces in P>, 365

Se (graded ring), 104
S, (irrelevant ideal), 105
Sy, 587,587, 588
and Cohen-Macaulayness, 587
S1 =no embedded points, 587
S, (elementary interpretation), 587
saturated graded module, 350
saturation functor, 322, 348, 349, 349,
350
left-adjoint to forgetful functor, 348,
350
may not be injective or surjective,
349
Sch (category of schemes), 151
Schs (category of schemes over S),
152
scheme-theoretic, 141, 189
base locus, 329
closure, 141, 196, 198, 242, 411,
494-496, 543
fiber, 141, 169, 214, 214, 215, 222,
563, 593

image, 141, 196, 196, 197, 198, 243,
245, 329
and set-theoretic image, 198
of proper is proper, 245
usually computable affine-locally,
197
intersection, 141
of closed subschemes, 94, 188,
203, 273, 285, 329, 401, 447, 448,
493, 496
of locally closed subschemes,
218
inverse image, see scheme-theoretic,
preimage
preimage, 141, 213, 213, 214, 315,
360, 448, 493, 496, 497, 593, 613
pullback, see scheme-theoretic
preimage
support (of a module or finite type
quasicoherent sheaf), 141, 189,
393, 410
union (finite) of closed subschemes,
188, 273, 508
scheme-theoretically dense, 141
schemes, 95, see also disjoint union;
finite type; functions; gluing;
isomorphism; locally of finite
type; morphisms; gluing
morphisms; normal scheme;
quasiaffine;
quasiseparatedness; regular; ...
affine, 89, 95, see also Serre’s
cohomological criterion for
affineness
is quasicompact, 82
is quasiseparated, 110
morphisms to, 152
locally Noetherian, 110, 113
implies quasiseparated, 113
Noetherian, xix, 109, 113
fibered product need not be
Noetherian, 206
finitely many connected and
irreducible components, 113
finiteness of zeros and poles, 289
with non-Noetherian ring of
functions, 442
non-affine, 96
over a ring, 114
projective, 23, 102, 103, 108
are qcgs, 110
line bundles on, 327
morphisms to, 330
quasiprojective, 102, 108
visualizing, 70, 73, 76, 92, 93, 155,
180, 195, 315
Schubert cell, 167
Second Riemann Extension Theorem,
290
section
of a morphism, 237
of sheaf
means global section, 43
over open set, 43
Segre embedding, 226, 227, 238, 332,
353, 377, 415
as complete linear series, 331
coordinate-free description, 227
Segre variety, 227
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self-intersection of curve on a surface,
447
semiample line bundle, 356
semicontinuity, 260
(lower) rank of matrix, 260, 572-574
(upper) Jacobian corank function,
275
(upper) degree of finite morphism,
260, 315, 414
(upper) dimension of a variety at a
point, 260
(upper) dimension of tangent space,
462
(upper) dimension of tangent space
at closed points, 260
(upper) fiber dimension, 260, 267,
383, 414, 592, 609
(upper) fiber dimension (for closed
maps), 269
(upper) fiber dimension at a point,
269
(upper) rank of cohomology
groups, 260, see Semicontinuity
Theorem
(upper) rank of sheaf, 260, 314, 315,
485, 568
list of examples, 260
Semicontinuity Theorem, 260, 544,
546, 557, 568, 568, 572, 573, 576
semigroup (abelian), 21, see also
groupification
graded, 156
separable field extension, see field
extension
separable finite morphisms, 477
separably closed, see field
separably generated, see field
extension
separated morphisms, 99, 102, 109,
110, 114, 158, 175, 233, 236, see
also Associated-to-Separated
Theorem;
Reduced-to-Separated
Theorem; valuative criteria
e.g., affine morphisms, 236
e.g., proper morphisms, 244
implies quasiseparated, 236
local on the target, 236
over A, 236
preserved by base change, 236
preserved by composition, 240
reasonable class, 236
topological characterization, 236
separated presheaf, 44
separating transcendence basis, 225
proof of existence, 225
Serre duality, 369, 381, 395-397, 413,
415, 426, 428, 448, 451, 452, 473,
474, 481, 484, 515, 516, 581, 585,
619, 623
for Cohen-Macaulay projective
schemes, 396
for Ext, 619, 623
functorial, 623, 626, 627, 629-633
functorial (for projective space),
625
trace version, 623, 623
for Hom, 619, 620, 621, 621, 623, 628
for projective space, 621
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functorial, 620, 628, 630
functorial = trace version, 620
trace version, 628
for projective schemes, 626
for smooth projective varieties, 395
for vector bundles, 619, 620, 620, 623
functorial, 623, 626-629
functorial (for projective space),
626
trace version, 623, 629
functorial vs. trace version, 619
Serre vanishing, 381, 390, 397, 398,
407, 455, 456, 557, 612, 623, 629,
630
relative, 406
Serre’s cohomological criterion for
affineness, 380, 387, 407, 408,
408
Serre’s cohomological criterion for
ampleness, 354, 407, 407, 417
Serre’s criterion for normality, 291,
581, 587, 587, 588
Serre’s property Sy, see Si
Serre’s Theorem A, 352, 354, 397, 630
Sets (category of sets), 5
Setsx (category of sheaves of sets on
X), 48
sextic, 192, 426, 431
sheaf, 44, see also coherent; dualizing;
extension by zero; finite
presentation; finite type;
germs; inverse image; kernels;
line bundle; locally free;
pullback; quasicoherent;
quotient; section; skyscraper;
structure sheaf; subsheaf;
support; Zariski sheaf; ...
determined by sheaf on
distinguished affine base, 54,
124
direct image, see sheaf, pushforward
espace étalé, see sheaf, space of
sections
flasque (flabby), 523
have no Cech cohomology, 528
implies acyclic, 524
preserved by pushforward, 524
gluability axiom, 44
gluing, 55
higher pushforward, 351, 403406,
410, 454, 525, 529, 536, 557, 567,
568, 572, 579
and base change, 405
as derived functor, 523
commutes with affine flat base
change, 405
commutes with flat base change,
536
quasicoherent definition, 404
identity axiom, 44
injective, see also injective objects
have no Cech cohomology, 528
implies flasque, 524
morphisms determined by stalks, 51
of (relative) i-forms Q;/Y, 481
of differentiable functions, 65
of ideals, see ideal sheaves
of nilpotents, 125
of relative differentials, 459

Index 659

of sections
of a map, 46
of a vector bundle, 47, 304
of smooth functions, 41
on a base, 53, 54, 123
determines sheaf, 54
pushforward, 46,46,48,58,59,66,148,
315, 316, 318, 320, 321, 369, 382,
405, 454, 523, 568, 570, 615, 626
induces maps of stalks, 46
preserves coherence for
projective morphisms, 382
preserves coherence for proper
morphisms, see Grothendieck’s
Coherence Theorem
right adjoint to 7t ! (for sheaves
of sets), 59
right-adjoint to 7t* (for
O-modules), 148
usually right-adjoint to 7t* (for
quasicoherent sheaves), 319
restriction to open subset ¢ [, 316
sections determined by germs, 50
space of sections (espace étalé), 41,
43, 46, 52, 60
sheaf Hom, sheaf Proj, sheaf Spec, see
Hom; Proj; Spec
sheafification, 23, 49, 51, see also
universal property
construction, 52
induces isomorphism of stalks, 52
is a functor, 52
left-adjoint to forgetful functor, 52
short exact sequence, 26
signature of symmetric bilinear form,
451
simple group (of order 168), 426
simple object in abelian category, 131,
see Jordan-Holder package
simply connected (étale), 479
singular (point), see regular
singularities, 276, 599, 603, see also
ADE singularities;
A -singularities; curves;
D, -singularities;
E »-singularities; resolution
(singularities)
site, see Grothendieck topology
skyscraper sheaf, 45
slicing criterion, 554, see also effective
Cartier divisors, slicing by
for Cohen-Macaulayness, 584, 585
geometric interpretation, 584
for flatness, 553, 584
on the source, 554, 562
on the target, 554, 554, 555, 586
for regularity, 276, 435, 500, 563, 584
SLy (group scheme), 166, 246
small resolution, see resolution
(singularities)
smooth functions (sheaf), 41, 42, 45,
47, 65-67, 147
not coherent, 130
smooth morphisms, 66, 271, 292, 293,
293, 560, 563, 565, see also
formally smooth; generic
smoothness; smooth varieties
differential geometric motivation,
292
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smooth morphism (cont.)
implies flat, 561
local on source and target, 293
of relative dimension n, 292, 292,
294, 470, 488, 490, 561, 563
open condition, 293
preserved by base change, 293
open condition, 425
preserved by base change, 293
preserved by composition, 293
preserved by product, 293
“reasonable” class, 293
smooth varieties, 245, 246, 271, 276,
277,277,471, 487, 491, 563
are Cohen-Macaulay, 585
implies reduced, 279, 472
of dimension d, 277, 294
smoothness preserved by base field
extension, 277
smoothness over a ring, 294
Smoothness-Regularity Comparison
Theorem, 278, 500
proof, 563
Sne C Se (Veronese subring), 157
Snake Lemma, 26, 28, 35, 36, 37, 143
space of sections of sheaf, see sheaf,
space of sections
Spec (relative Spec), 367, 368, see also
universal property
and affine morphisms, 368
and base change, 369
computable affine-locally, 368
universal property, 368
Spec 0 = &, 69
Spec A, 67
Spec adjoint to T, 152
Speck, 69
SpecZ, 69
specialization, 83, 83, 84, 109, 182, 183,
265
spectral functor, 39, 530
spectral sequence, 28, 32, 33, 33, 34-39,
201, 202, 410, 517, 519, 520, 522,
525, 526, 528-530, 540, 625, see
also Grothendieck
composition-of-functors
spectral sequence; Leray
spectral sequence; orientation
of spectral sequence
abut, 35
and derived functors, 517
collapse of, 35
convergence, 35
local-to-global for Ext, 626, 626, 630
page of, 33
split exact sequence, 522
split node, 603
stacks, xvii, 56, 127, 239, 428, 430, 569
stalk-local properties, 50
Cohen-Macaulayness, 584
exactness for sheaves, 57, 127
factoriality, 117
flatness, 534
implies affine-local, 113, 169
inverse image sheaf, 60
local freeness of finitely presented
sheaves, 313
morphisms of sheaves, 51
being epimorphisms, 53

being injective, 52
being isomorphisms, 51
cokernels, 57
kernels, 56
normality, 116
reducedness, 110, 113, 116, 225
regularity of a locally Noetherian
scheme, 276
sections of a sheaf, 50
support, 61
tensor product of sheaves, 58
torsion-freeness, 123
stalkification, 48
doesn’t commute with Hom, 48
is exact, 31, 57
stalks
as colimit, 44
determine isomorphisms, 51
determine morphisms, 51
of (pre)sheaf on base, 54
of a presheaf, 44
of a sheaf, 44
preserved by inverse image, 59
Stein factorization, 606, 607, 607, 608,
609
commutes with flat base change,
608
Stein Factorization Theorem, 599, 607,
607
Stein space, 409, 439
stereographic projection, 160
strict transform, see proper transform
structure morphism, 152
structure sheaf, 89
of ringed space, 46
subcategory, 7
full, 7, 8, 22, 26, 47, 51, 92, 127, 132,
208
submersion, 66, 292, 459, 468, 560, 561,
see also smooth morphisms
subobject, 25
subpresheaf, 49
subschemes = locally closed
subschemes, 190, see also
closed /locally closed /open
subschemes
subsheaf, 53
subtler Five Lemma, see Five Lemma
subvariety (e.g., open or closed), 239
Supp D (support of divisor), 337
Supp ¢ (support of a sheaf), 61
Supp m (support of element of
module), 92
Supp M (support of module), 92
Supp s (support of a section), 60
support
commutes with localization, 140
of me M, 92
of a module, 92
= closure of associated points,
134
of a section s, 60, 312
is closed, 61
of a sheaf, 61
of a Weil divisor, 337
of finite type quasicoherent sheaf is
closed, 312
scheme-theoretic, 189
stalk-local notion, 61

surfaces, 192, 252, 482, see also cubic;
Fermat cubic surface;
intersection theory;
irregularity; quadric surface;
quartic; resolution
(singularities); Riemann-Roch;
ruled surface
Enriques-Kodaira classification,
483, see also del Pezzo surfaces;
Hirzebruch surfaces; K3
surfaces; minimal models, 615
proper but no nontrivial line
bundles, 441
proper nonprojective, 441, 449
surjective morphisms, 173
checking on closed points, 183
preserved by base change, 218
reasonable class, 218
Sylvester’s law of intertia, 451
Sym® M, Sym® .Z (symmetric
algebra), 310, 311
symbolic power of an ideal q(™/,
262
symmetric algebra, 105, 310
system of parameters, 265, 267, 276

t: H™ (X, wx) — k (trace map),
619
T*M, T*.Z (tensor algebra), 310,
311
Ix sy (relative tangent sheaf), 468
tacnode, 229, 281, 503, 603, 604
tame ramification, 478
tangent
bundle, 303
cone, 499, 499
= tangent space for regular point,
499, 500
projectivized, 499
line, 272, 281, 282, 282, 285, 432, 433,
435, 438, 439
map, 413
plane, 281, 282
sheaf, 468, sce also cotangent, sheaf
relative, 463, 468
space, 66, 260, 271, 271, 272-275,
282,290, 294, 340, 414, 459,
462-464, 472, 499, 500, 560, 561
and morphisms, 274
vector, 271, 459
relative, 459
Taniyama—-Shimura Conjecture, 424
Tate curve, 431
tautological bundle
on projective space, 369
on the Grassmannian, 364, 476, 577
tensor algebra, 310
tensor product, 11, see also universal
property
by locally free sheaf is exact, 306
commutes with direct sum, 13, 32,
512, 602
is not left-exact, 12
is right-exact, 12, 29, 534, 602
left-adjoint to Hom, 21
of Ox-modules, 58
of quasicoherent sheaves, 125
of rings, 12
is fibered coproduct, 14, 206
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tensor-finiteness trick, 223, 223, 224-226
Theorem on Formal Functions, 599,
604-606, 606, 612—614
proof, 615
thickening, see formal neighborhood
Top (category of topological spaces), 6
topological spaces, see gluing
morphisms; Noetherian
topology, see base of a topology;
discrete topology; étale
topology; Grothendieck
topology; profinite topology;
Zariski topology
topos, 3, 127
Tor functors, 511, 514, 532, 537
computable with flat resolution,
519
criterion for flatness, 513
long exact sequence, 513
symmetry of, 517, 538
torsion
(sub)module, 123
quasicoherent sheaf on reduced
scheme, 123, 313
torsion-freeness, 123
= flat for PID, 541
implied by flatness, 533, 537, 541,
553, 586
is a stalk-local notion, 123
module, 123
sheaf, 123, 313
torsor, 211
total complex (of a double complex),
33
total fraction ring (total quotient ring),
142, 142, 500, see also fraction
field
total space
of line bundle, 439, 441, 450, 613
of vector bundle/locally free sheaf,
305, 369, 369, 442, 499
total transform (of blow-up), 493, 495,
495, 502, 503
trace map, 312, 619, 620, 621, 621, 622,
623, 628, 629
transcendence basis, 255, see also
separating transcendence basis
transcendence degree, 255, 267
= dimension, 255
transcendence theory, 172, 224, 254
transition functions/matrices, 304,
304, 305, 306, 308, 311, 325-327,
330, 337, 369, 371, 392, 398, 400,
450
trdeg (transcendence degree), 255
trichotomy (classification of varieties),
424, 482,483
triple point, 603, 603
trivial bundle/sheaf of rank n, 303,
304
trivialization of vector bundle /locally
free sheaf, 303
tropical geometry, 87
Tsen’s Theorem, 571
tubular neighborhood, 465, 499
twisted cubic curve, 81, 192, 192, 194,
255, 281, 282, 323, 400, 544, 546,
see also rational normal curve;
Veronese embedding

For general queries, contact info@press.princeton.edu

two planes meeting at a point, see
recurring (counter)examples
not S, or Cohen-Macaulay, 588

ultrafilter, 82
uniformizer, 286, 288, 312, 336, 360,
362, 474, 478, 541
union (scheme-theoretic), see
scheme-theoretic, union
unique factorization domain, 68, 69,
116-119, 131, 136, 162, 229, 263,
264, 273, 274, 286, 288-290, 298,
299, 341, 342, 344-346, 439, 485,
506, 588, see also factorial
= all codimension 1 primes
principal, 117, 253, 254, 264,
274,341, 345
= integrally closed and class group
0, 345
is integrally closed, 117
list of useful criteria, 117
not affine-local property, 119, 344
uniruled variety, 266
universal d-functors, see d-functors,
universal
universal family over moduli spaces,
577,577, 579
universal hyperplane, see hyperplane,
universal
universal property, 3, 9
and Yoneda’s Lemma, 15
of blow-up, 491, 492, 492, 493, 494,
496, 497, 537, 613
of cokernel, 25, 49, 56
of colimit, 18, 56
of coproduct, 14
of differentials, 460, 466, 466, 467, 469
of fibered coproduct, 14, 14
of fibered product, 13, 13, 205, 207,
208, 217
of inverse image sheaf, 59, 59
of kernel, 25, 49, 50
of limit, 17, 31
of localization, 10, 10, 11, 125
of normalization, 228, 228, 229, 358,
613
of product, 3,4, 9
of Proj (not great), 370
of pullback of &-modules, 318, 319
of pullback of quasicoherent
sheaves, 317, 318, 318, 319
of reduction of a scheme, 232
of sheafification, 51, 51, 52, 57
of Spec, 367, 367, 368
of stalks, 44, 46
of Sym and A, 310
of tensor product, 11, 12, 12, 21, 469
universally, 219
universally closed morphisms, 219,
243,297, 333, 374, 411, see also
valuative criteria
e.g., proper morphisms, 244
reasonable class, 243
universally injective (radicial)
morphisms, 219, 221, 221, 222,
240
= surjective diagonal, 240
are separated, 240
eg., monomorphisms, 221
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local on the target, 222
of varieties over k, 240
preserved by composition, 222
reasonable class, 222, 240
universally open morphisms, 222
e.g., maps to Spec k, 222-224, 551
unramified morphisms, 66, 187, 190,
413, 481, 489, 560, 561, 563, 565,
609
characterizations by fibers, 489
diagonal characterization, 489
e.g., étale morphisms, 563
examples, 489
formal, see formally unramified
in number theory, 490
open condition, 490
reasonable class, 489
upper semicontinuity, see
semicontinuity

V(S) (vanishing set), 77
projective case, 106
val = valy, (valuation), 287
valuation rings, 87, 143, 288, 288, 290,
294-297, see also discrete
valuation rings
rank 2 example, 334
Serre makes the case, 297
valuations, 287, 337, 358, see also
discrete valuations
valuative criteria, xix, 271, 294, 295
for flatness, 543
for properness, 297, 297, 335, 565
for separatedness, 295, 296, 296, 297,
565
for universal closedness, 297, 297
value of a function at a point, see
functions, value at a point
vanishing scheme, 104, 107, 107, 189,
191, 477
vanishing set, 77, 77, 87, 96, 103, 106
properties of, 78
vanishing theorems, 390, see also affine
cover cohomology vanishing;
dimensional cohomology
vanishing; Kodaira vanishing;
Serre vanishing
varieties, 114, 239
affine, 114
classically, 83
complex algebraic, xvi, 65, 72, 74,
76,102, 153-156, 237, 239, 246,
293, 307, 347, 360, 392, 395, 401,
439, 441, 447, 471, 479, 483, 484,
see also analytification
complex analytic, xvi, xvii, 67, 128,
130, 155, 156, 239, 246, 293, 307,
347, 360, 392, 395, 401, 409, 429,
431, 439, 447, 471, 479, 483, 604
product of, 239
projective, 114
quasiprojective, 114
with non-finitely generated ring of
global sections, 441
Vecy (category of vector spaces over
k), 5
vector bundles, xvii, 46, 47, 108, 130,
303-306, 308, 309, 312, 315, 351,
369, 373, 392, 398, 449, 465, 476,
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vector bundles (cont.)

498, 532, 538, 568, 571, 572, 619, 620,
623, 626629, see also Serre
duality, for vector bundles;
total space

ample, 377

classification on P!, 396

~ locally free sheaves, 369

not always direct sum of line
bundles, 476

on manifold, 303

perfect pairing, 311

pulling back, 317

trivialization, 303

Veronese embedding v 4, 81, 157, 192,
193, 194, 227, 238, 284, 330, 331,
400, 401, 415, 423, 627, see also
rational normal curve, twisted
cubic curve

as complete linear series, 330, 415

Veronese subring Sy, 157, 157, 193
Veronese surface, 194, 194
very ample, 353, 353

X very ample is very ample, 353

® base-point-free is very ample, 353

® very ample is very ample, 353

implies base-point-free, 353

with respect to 7t (relatively very
ample), 353, 372, 375

affine-local on the target, 377

worse-behaved than ample, 354

very general, 261

Weak Factorization Theorem, 506, 615
Weierstrass normal form, 433, 433,
434, 436
and double cover of P!, 433

weighted projective space,
196
Weil divisor, 325, 337, 337
effective, 337
irreducible, 337
locally principal, 340, 340, 341, 342,
505, see also closed subscheme,
locally principal
not necessarily locally principal,
340, 345
of zeros and poles, 338
principal, 340, 341
Q-Cartier, 345
restriction to open set, 337
support of, 337
twisting line bundles by, 342
Weil X (group of Weil divisors on X),
337
Weyl group, 589, 594, 597
wild ramification, 478

Xan (analytification of X), 155

X¢ (f€T(X, Ox)), 80,126

xi,; (coordinates on patches for
projective space), 100, 100, 103,
105, 167, 191, 227, 238, 325, 326,
330, 364, 472, 473, 475, 476

X (s €T(X, £)), 342

Yoda embedding, 16

Yoneda’s Lemma, xvi, 15, 15, 16, 16,
154, 163, 205, 208, 295, 329, 364,
493, 577

Z-graded rings, see graded rings, Z
7=°-graded rings =: graded rings,
105, see graded rings

Zp (p-adics), 18
Zariski closure, 78
Zariski cotangent space, see cotangent,
space
Zariski sheaf (sheaf on the big Zariski
site), 208, 209, 209, 210, 363
Zariski tangent space, see tangent,
space
Zariski topology, 76-81, 92, 95
onk", 184, 260
on Proj S,, 106
on Spec A, 78
on a scheme, 95
Zariski’s Connectedness Lemma, 570,
599, 606, 606, 607, 609
Zariski’s Lemma, 71, see
Nullstellensatz
Zariski’s Main Theorem, 180, 246, 595,
606, 610
for birational morphisms, 607,
609
Grothendieck’s form, 599, 609, 610
misnamed, 608
other versions, 610-612
zero object, see object, in a category,
initial/final / zero
zero/pole of order n
for discrete valuation rings, 288
for Noetherian scheme, 289
zerodivisor, 10, 134, see also
non-zerodivisor
= element of associated prime,
137
= vanish at some associated point,
134,137
Zorn’s Lemma, xx, 75, 84, 218, 515, see
also Axiom of Choice
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