© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

CONTENTS

Preface xix

How to Use This Book xxiii

CONTINUUM MECHANICS 1

1	Kine	matics	3
	1.1	Motion	5
		1.1.1 Compatibility	7
	1.2	Vectors: Material Velocity	8
	1.3	One-Forms	11
		1.3.1 Duality Product	13
	1.4	Tensors	14
	1.5	Covariant Derivative	14
		1.5.1 Evolution of Connection Co	pefficients16
	1.6	Metric	17
		1.6.1 Covariant Derivative of the	Metric19
	1.7	Deformation Rate and Vorticity	19
	1.8	Lie Derivative	22
	1.9	Euler Derivative	24
	1.10	Material Derivative	24
	1.11	Corotational Material Derivative .	25
	1.12	Levi-Civita Density and Capacity .	26
	1.13	Levi-Civita Pseudotensor and Vol	ume Form27
	1.14	Pullback and Pushforward	30
	1.15	Volumes	31

	1.16	Jacobia	n of the Motion	33
	1.17	Surface	s	34
	1.18	Reynold	ls Transport Theorem	39
		1.18.1	Lagrangian Version	45
	1.19	Conserv	vation of Mass	45
		1.19.1	Lagrangian Version	47
	1.20	Strain		48
		1.20.1	Deformation Gradient Tensor	48
		1.20.2	Cauchy-Green Tensor	50
		1.20.3	Stretch Tensor	54
		1.20.4	Lagrangian or Material Strain Tensor	55
		1.20.5	Eulerian or Almansi Strain Tensor	56
		1.20.6	Logarithmic or Hencky Strain Tensor	57
		1.20.7	Seth-Hill Strain Tensors	57
		1.20.8	Arguments for Logarithmic Strain	57
		1.20.9	Logarithmic Strain Rate	59
		1.20.10	Strain as a Two-Vector.	61
2	Dyna	amics		65
	2.1			
	۷.۱	2.1.1	Cauchy Stress Tensor	
		2.1.1	Kirchhoff Stress Tensor	
		2.1.2	Second Piola-Kirchhoff Stress	
	2.2	2.1.4	First Piola-Kirchhoff Stress	
	2.2	2.2.1	dynamics	
			First Law of Thermodynamics	
		2.2.2	Second Law of Thermodynamics	
		2.2.3	Helmholtz Free Energy	
		2.2.4	Elasticity	
	2.2	2.2.5	Material Frame Indifference	
	2.3		utive Relationships	
		2.3.1	Truesdell Stress Rate	
		2.3.2	Logarithmic Stress Rate.	
	2.4	2.3.3	Viscosity	
	2.4		n's Principle	
	2.5		vation of Linear Momentumr's Theorem	95 99
	26			

		2.6.1	Conservation of Linear Momentum (Revisited)	103
		2.6.2	Conservation of Angular Momentum	103
		2.6.3	Conservation of Energy	106
	2.7	Rotation	1	121
		2.7.1	Centrifugal Potential	121
	2.8	Self-Gra	vitation	122
		2.8.1	Poisson's Equation	122
		2.8.2	Gravitational Energy	123
		2.8.3	Action Due to Gravity	124
	2.9	Navier-9	Stokes Equations	124
	2.10	Equation	ns of Motion in Terms of Displacement	125
Conti	inuum	Mecha	nics Glossary	129
			,	
3	Defe	cts		133
	3.1	Integrab	ility	135
	3.2	Compat	ible Motion	136
	3.3	Tetrad F	ormalism	138
	3.4	Connect	ion	139
	3.5	Metric		140
	3.6	Torsion a	and Curvature	141
		3.6.1	Eulerian Description	141
		3.6.2	Lagrangian Description: Incompatibilities	142
	3.7	Nonmet	ricity	146
	3.8	Applicat	ion to Defects	148
		3.8.1	Lagrangian Dynamics of Defects	149
		3.8.2	Mixed Dynamics of Defects	150
		3.8.3	Four-Dimensional Kinematics of Defects	152
		3.8.4	Incompatibilities	152
	3.9	Alternat	ive Approach Based on a Referential Manifold	153
	3.10	Three-D	imensional Dynamics and Kinematics of Defects	157
		3.10.1	Three-Dimensional Incompatibilities	160
		3.10.2	Burgers and Frank Vectors	161
	3.11	Variation	nal Approach	162
		3.11.1	Properties of the 4D Volume Form	163
		3.11.2	Material Geometry Action.	165
		3.11.3	Defect Action	167
		3 11 4	Defect Field Equations	168

x Contents

		3.11.5	Anatomy of the Defect Hypermomentum Current	. 169
		3.11.6	Anatomy of the Lagrangian Connection Coefficients	. 169
		3.11.7	Defect Dynamics	. 170
		3.11.8	Metricity	. 172
		3.11.9	Linear Defect Equations	. 173
		3.11.10	Three-Dimensional Defect Equations	. 174
	3.12	Continu	um Mechanics with Spin	. 177
		3.12.1	Anatomy of the Stress-Energy and Spin Tensors	. 178
		3.12.2	Classical Conservation Laws with Spin	. 179
		3.12.3	Stress and Couple-Stress Gluts	. 180
ı	Seismol	logy 183	3	
ı	Linea	arized E	equations of Motion	. 185
	4.1	Simplifie	ed Notation	. 185
	4.2	Infinites	imal Strain	. 186
	4.3	Constitu	utive Relationship without Prestress	. 186
	4.4	Elastic V	Nave Equation	. 188
		4.4.1	Plane-Wave Solutions.	. 189
		4.4.2	Weak Form	. 190
	4.5	Acoustic	c Wave Equation	. 191
		4.5.1	Weak Form	. 192
	4.6	Earthqu	ake Fault	. 192
		4.6.1	Ideal Fault	. 194
		4.6.2	Earthquake Source Contribution	. 196
	4.7	Betti Re	ciprocal Relation	. 197
		4.7.1	Reciprocity	. 198
		4.7.2	Volterra Representation Theorem	. 199
		4.7.3	Fault Slip	. 200
	4.8	Momen	t Tensor	. 200
		4.8.1	Ideal Fault	. 201
		4.8.2	Beach Balls	. 202
		4.8.3	Source-Time Function	. 203
	4.9	Seismol	ogy with Spin	
		4.9.1	Alternative Approach	. 207

		4.9.2	Homogeneous Medium	207
		4.9.3	Couple-Moment Tensor	210
	4.10	Equilibriu	um State	211
		4.10.1	Hydrostatic Earth Model	213
		4.10.2	Spherically Symmetric Earth Model	213
		4.10.3	Ellipticity	214
	4.11	Density F	Perturbations	217
	4.12	Gravity F	Perturbations	218
	4.13	Constitu	tive Relationship with Prestress	219
	4.14	Displace	ment Variational Principle	221
	4.15	Displace	ment-Potential Variational Principle	223
	4.16	Elastic Te	ensor Selection	224
	4.17	Fluid Reg	gions	226
		4.17.1	Potential Formulation	227
	4.18	Quasi-Hy	drostatic Approximation	228
	4.19	Generali	zed Betti Reciprocal Relation	230
		4.19.1	Generalized Reciprocity	231
		4.19.2	Generalized Volterra Representation Theorem	233
	4.20	Idealized	l Seismometer Response	233
	4.21	Weak Gl	obal Equations of Motion	234
	4.22	Cowling	Approximation	238
	4.23	Ocean-Lo	oad Approximation	239
	4.24	Global B	ody-Wave Propagation	240
	4.25	Seismic N	Noise	240
		4.25.1	Noise Cross-Correlation	241
5	Anela	asticity	and Attenuation	243
	5.1	Creep ar	nd Stress Relaxation Functions	243
	5.2	Springs a	and Dashpots	244
	5.3	Standard	l Linear Solid	245
	5.4	Linear Co	ombination of Standard Linear Solids	247
	5.5	Linear Vi	scoelasticity	249
		5.5.1	Maxwell Rheology	251
	5.6	Constant	t-Q Absorption Band Model	252
	5.7	Viscoaco	ustics	253
Seism	nology	Glossa	ry	257

III Forward Problems 259

6	Stro	ng Me	thods
	6.1	Finite-	Difference Method262
		6.1.1	Taylor Series and Finite Differences
		6.1.2	Homogeneous Wave Equation
		6.1.3	Inhomogeneous Wave Equation
		6.1.4	Grid Dispersion
		6.1.5	Staggered Grids
		6.1.6	Shallow-Water Waves
		6.1.7	Grid Anisotropy
		6.1.8	Heat Equation
	6.2	Pseudo	ospectral Method
		6.2.1	Fourier Transform
		6.2.2	Velocity-Stress Wave Equation
		6.2.3	Grid Dispersion
7	Wea	ak Meth	nods
	7.1	Raylei	gh–Ritz Method
		7.1.1	Coupled-Mode Method
		7.1.2	Direct-Solution Method
	7.2	Bound	ary-Element Method
	7.3	Finite-	Element Method282
		7.3.1	Static Heat Equation
		7.3.2	Dynamic Heat Equation
		7.3.3	Generalized Trapezoidal Time Scheme
		7.3.4	Local-Element Method
		7.3.5	General Finite-Element Method
	7.4	Spectr	al-Element Method297
		7.4.1	Dynamic Heat Equation
		7.4.2	Wave Equation
		7.4.3	Newmark Time Scheme
		7.4.4	General Spectral-Element Method
		7.4.5	3D Seismic Wave Equation
		7.4.6	Absorbing Boundary Conditions
		7.4.7	Attenuation
		7.4.8	Compact Notation

		7.4.9	Hexahedral Meshing	. 312
		7.4.10	Cubed Sphere	. 313
		7.4.11	Global Wave Propagation Simulations	. 314
		7.4.12	Normal-Mode Benchmarks	. 318
	7.5	Discont	tinuous Galerkin Method	. 318
	7.6	Infinite	-Element Method	. 322
	7.7	Spectra	al-Infinite-Element Method	. 325
		7.7.1	Self-Gravitation	. 326
		7.7.2	Coseismic and Post-Earthquake Deformation	. 329
		7.7.3	Examples	. 333
		7.7.4	Full-Gravity Global Wave Propagation Simulations	. 333
		7.7.5	Idealized Seismometer Response	. 339
IV	Invers	e Probl	lems 341	
8	Adjo	int-Sta	te Method	343
	8.1	Born A	pproximation	. 344
		8.1.1	Unperturbed Equations of Motion	. 345
		8.1.2	Perturbed Equations of Motion	. 345
	8.2	Wavefo	orm Tomography	. 348
	8.3	Adjoint	Equations	. 352
	8.4	Lagran	ge Multiplier Method	. 353
	8.5	Travelti	ime Tomography	. 355
		8.5.1	Banana-Doughnut Kernels	. 355
		8.5.2	Cross-Correlation Traveltime Misfit Kernels	. 358
		8.5.3	Differential-Traveltime Tomography	. 360
	8.6	Amplit	ude Tomography	. 360
	8.7	Attenua	ation	. 362
	8.8	Generi	c Tomography	. 362
	8.9	Point-S	ource Perturbations	. 364
	8.10	Topogr	aphy on Internal Discontinuities	. 366
	8.11	Source	Encoding	. 367
		8.11.1	Encoded Forward Wavefield	. 369
		8.11.2	Source-Encoded Inversion	. 370
		8.11.3	Fréchet Derivatives	. 372
		8.11.4	Attenuation	. 373
		8.11.5	Laplace-Domain Source Encoding	. 374

xiv Contents

	8.12	Interfer	ometry 37	7.5
		8.12.1	Noise Cross-Correlation Tomography	;1
9	Opti	mizatio	on	35
	9.1	Prelimir	naries	36
	9.2	Model	Parameter Selection	37
	9.3	Objecti	ve Function	88
	9.4	Bayesia	ın Inference)]
		9.4.1	Linear Inverse Problems)3
	9.5	Local C	Optimization)5
		9.5.1	Secant Method)7
		9.5.2	Steepest Descent Method	3(
		9.5.3	Conjugate-Gradient Method	3(
		9.5.4	Variable Metric Method	9
		9.5.5	DFP Method)]
		9.5.6	BFGS Method)]
		9.5.7	L-BFGS Method)2
	9.6	Precond	ditioning40)3
	9.7	Regular	rization)4
		9.7.1	Tikhonov Regularization)4
		9.7.2	Total Variation Regularization)4
		9.7.3	Projection)5
		9.7.4	Smoothing)5
		9.7.5	Level-Set Methods)5
	9.8	Multisc	ale Inversion	16
	9.9	Line Se	arch)(
		9.9.1	Bracketing Line Search)7
		9.9.2	Backtracking Line Search)7
	9.10	Point-S	pread Function)7
	9.11	Uncerta	ainty Quantification	3(
		9.11.1	Exploration Seismology	. 1
		9.11.2	Global Seismology	4
Intr	oductio	on to th	ne Appendices 41	5
A	Line	ar Spac	es and Transformations 41	7
	A.1	Propert	ties of Linear Spaces41	. 7
	A.2	Vector	Spaces	8
	A.3	Linear 7	Transformations	8

В	Diffe	rentiab	ole Manifolds 42	21
	B.1 B.2 B.3 B.4 B.5	Definition Local Conference Function	and Coordinates	23 24 24
C	Vecto	ors and	One-Forms 42	27
	C.1	Vectors	42	27
		C.1.1	Vectors as Tangents to Curves	28
		C.1.2	Bases and Coordinates. 42	29
		C.1.3	Vector Field 43	31
		C.1.4	Transformations	31
	C.2	One-Fo	rms	33
		C.2.1	Duality43	33
		C.2.2	Bases	34
		C.2.3	Transformations	36
	C.3	Alternat	tive Perspective43	36
	C.4	Lie Brac	ket	37
D	Tenso	ors	44	41
	D.1	Definition	on44	41
	D.2	Operati	ons on Tensors44	43
		D.2.1	Addition	
		D.2.2	Tensor Product	43
		D.2.3	Contraction	14
		D.2.4	Transpose of (2,0) and (0,2) Tensors	45
		D.2.5	Transpose of a (1,1) Tensor	16
	D.3	Transfor	rmations44	16
		D.3.1	Tetrad Formalism	17
		D.3.2	Pseudotensors	18
	D.4	Kroneck	cer or Identity Tensor44	18
	D.5	Logarith	nms and Exponentials of (1,1) Tensors	19
	D.6	Tensor I	Densities and Capacities44	19
		D.6.1	Pseudotensor Densities and Capacities	50
	D.7	Levi-Civ	rita Density and Capacity45	50
		D.7.1	Cross Product	51
	D.8	Determ	inant of Rank-2 Tensors45	51

xvi Contents

	D.9	Inverse	of Rank-2 Tensors	. 452
	D.10	Metric 7	「ensor	. 452
		D.10.1	Formulation	. 453
		D.10.2	Geometrical Meaning	. 455
		D.10.3	Norm of Vectors and One-Forms	. 455
		D.10.4	Metric in Tetrads	. 456
	D.11	Adjoint	of a (1,1) Tensor	. 456
	D.12	Tensor I	Densities and Capacities Revisited	. 457
	D.13	Levi-Civ	ita Pseudotensor	. 457
		D.13.1	Cross Product	. 458
	D.14	Kroneck	er Determinants	. 458
	D.15	Rotation	ns	. 460
		D.15.1	Euler Angles	. 461
		D.15.2	Rodrigues's Formula	. 463
E	Map	s betwe	een Manifolds	. 465
	E.1	Maps		. 465
	E.2	Maps b	etween Manifolds of Different Dimensions	. 466
		E.2.1	Pullback	. 466
		E.2.2	Pushforward	. 468
	E.3	Maps b	etween Manifolds of the Same Dimensions	. 470
F	Diffe	rentiat	ion on Manifolds	. 471
	F.1	Covaria	nt Derivative	. 471
		F.1.1	Formulation	. 471
		F.1.2	Transformation of Connection Coefficients	. 474
		F.1.3	Divergence	. 475
		F.1.4	Parallel Transport	. 475
		F.1.5	Torsion and Curvature Tensors	. 477
		F.1.6	Bianchi Identities	. 479
		F.1.7	Torsion-Free Connection	. 480
		F.1.8	Covariant Derivative of the Metric Tensor	. 480
		F.1.9	Mixed Covariant Derivative in Tetrad Basis	. 483
		F.1.10	Spin Connection	. 484
		F.1.11	Contracted Bianchi Identities	. 484
		F.1.12	Covariant Derivative of Tensor Densities and Capacities	. 486
			Nonmetricity	

	F.2	Euler D	Derivative	6
	F.3	Lie Der	rivative	7
		F.3.1	Lie Derivative of Vectors	8
		F.3.2	Geometrical Interpretation	0
		F.3.3	Autonomous Lie Derivative	1
		F.3.4	Lie Derivative of One-Forms	1
		F.3.5	Lie Derivative of (p,q) Tensors	2
		F.3.6	Lie Derivative of Functions	3
		F.3.7	Lie Derivative of Metric Tensors	3
		F.3.8	Lie Derivative of Levi-Civita Tensor	4
G	Diffe	erential	Forms	5
	G.1	Definit	ion49	5
	G.2	Operat	tions on Forms	8
		G.2.1	Addition	8
		G.2.2	Exterior Product	8
		G.2.3	Interior Product	9
	G.3	k-Vecto	ors50	0
	G.4	Hodge	Dual	1
	G.5	Volume	es50	2
		G.5.1	Properties	3
	G.6	Surface	es50	3
	G.7	Exterio	or Derivative50	4
		G.7.1	Coordinate-Free Definition	5
		G.7.2	Cartesian Examples	6
		G.7.3	Exact Forms	7
		G.7.4	Commutativity with Pullback and Pushforward 50	8
	G.8	Lie Der	rivative of a Form50	8
	G.9	Vector-	and Tensor-Valued Forms51	0
		G.9.1	Transformations of Tensor-Valued Forms	1
		G.9.2	Operations on Tensor-Valued Forms	1
		G.9.3	Connection One-Forms	2
		G.9.4	Torsion Two-Forms	3
		G.9.5	Exterior Covariant Derivative	5
		G.9.6	Covariant Lie Derivative	6
		G.9.7	Curvature Two-Forms	7
		G.9.8	Commutator of Covariant Lie and Exterior Covariant Derivatives 51	9

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

xviii Contents

	G.9.9	Bianchi Identities Revisited	519
	G.9.10	Nonmetricity Revisited	520
G.10	Integrat	tion of Forms	520
	G.10.1	Line Integrals	520
	G.10.2	Surface Integrals	521
	G.10.3	Volume Integrals	522
G.11	General	lized Stokes's Theorem	523
	G.11.1	Fundamental Theorem of Calculus	523
	G.11.2	Green's Theorem	524
	G.11.3	Gauss's Theorem	525
	G.11.4	Stokes's Theorem	525
	G.11.5	Variational Principles	525
	G.11.6	Noether's Theorem	526

Appendix Glossary 529

Bibliography 531

Author Index 551

Index 559

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Chapter 1

KINEMATICS

Nature is written in mathematical language.
—GALILEO GALILEI

Computations must be based on a thorough theoretical framework, and in this chapter, we build the necessary foundation. We regard the Earth as a continuous distribution of matter, which can interact both through short-range and long-range forces governed by the laws of continuum mechanics. The mathematical description of such a continuum involves basic differential geometry and tensor calculus, which is prerequisite knowledge for this chapter of the book and reviewed in the appendices.

We develop a theory of continuum mechanics in which all physical quantities—for example, mass density, material velocity, and stress—are defined as unique tensors with respect to an *inertial* or *Galilean reference frame*, independent of any coordinate system. Guided by the theory of general relativity, there can be only one set of coordinate-free tensor equations that captures the laws of continuum mechanics, which include conservation of mass, linear momentum, angular momentum, and energy. The natural variables of tensor fields in continuum mechanics are Newtonian time and space positions in the Galilean frame.

To explore the governing tensor equations, we investigate two primary classes of coordinate systems within a *spatial manifold*.¹ The first class comprises *spatial* or *Eulerian* coordinates, which remain unaffected by the continuum's motion. The second class encompasses *comoving* or *Lagrangian* coordinates, which can be accelerated by the continuum's motion. The transformations between these two coordinate representations are governed by the well-established principles of standard tensor calculus, offering a rigorous mathematical foundation for our theoretical framework.

To describe *deformation* of the continuum, we introduce a quiescent *referential state* of matter characterized by some *referential time*, for example, the equilibrium configuration

 $^{^1}$ For our exploration, we define a manifold as a collection of interconnected "patches" that locally resemble Euclidean space, specifically \mathbb{R}^3 , and are seamlessly "stitched" together. It is important to note that the manifolds we work with in this context possess a differentiable structure, enabling us to conduct calculus operations on these manifold spaces, thereby enriching our understanding and analytical capabilities.

4 Chapter 1. Kinematics

of an elastic material at rest. To identify individual elements of the continuum in this referential state, we introduce *referential* coordinates in a *referential manifold*. The Lagrangian coordinates in the spatial manifold are chosen such that at the referential time, when the spatial and referential manifold describe the same state of the continuum, they coincide with the referential coordinates. In other words, the referential coordinates are identical to the comoving Lagrangian coordinates at the referential time.

In this chapter, we investigate the *kinematics* of a continuum, and in chapter 2 we explore its *dynamics*.

Notation

Throughout this book, we use bold Latin and Greek letters to denote vectors and tensors, for example, we use \mathbf{v} to denote the material velocity and $\boldsymbol{\sigma}$ to denote the Cauchy stress tensor. We use a dot \cdot to denote contraction between the last index of the first tensor and the first index of the second tensor (e.g., for the stress tensor $\boldsymbol{\sigma}$ and the material velocity \mathbf{v} , $\boldsymbol{\sigma} \cdot \mathbf{v}$), and a colon : to denote the contraction of two second-order tensors (e.g., for the stress tensor $\boldsymbol{\sigma}$ and the deformation-rate tensor \mathbf{D} , $\boldsymbol{\sigma} : \mathbf{D}$).

We introduce Cartesian spatial, or *Eulerian*, components of vectors, one-forms, and general tensors, which are denoted by Latin letters with lowercase Latin super- and subscripts (e.g., v^i , ω_i , or σ^i_j). Cartesian Eulerian or spatial coordinates are identified by a lowercase Latin r with lowercase Latin superscripts, r^i , Eulerian basis vectors by a bold lowercase e with lowercase Latin subscripts, e^i , and Eulerian basis one-forms by a bold lowercase e with lowercase Latin superscripts, e^i . These coordinates and associated basis vectors and one-forms are independent of the motion and rigidly attached to an inertial laboratory. The functional dependence of the spatial components of a tensor field on space and time is denoted by (r, t), for example, $v^i(r, t)$. Partial derivatives with respect to these coordinates are denoted by ∂_i and ∂_t , and such partial derivatives *can only act on the Eulerian components of tensor fields*.

Comoving, or Lagrangian, components of tensors are denoted by Latin letters with uppercase Latin super- and subscript (e.g., v^I or $\sigma^I{}_J$). Lagrangian coordinates are identified by the symbol X and uppercase Latin superscripts, X^I , Lagrangian basis vectors are denoted by a bold lowercase e with uppercase Latin subscripts, e_I , and Lagrangian basis one-forms are denoted by a bold lowercase e with uppercase Latin superscripts, e^I . The functional dependence of the comoving components of a tensor field on space and time is denoted by (X, T), for example, $\sigma^I{}_J(X, T)$. Partial derivatives with respect to these coordinates are denoted by ∂_I and ∂_T , and these partial derivatives can only act on the Lagrangian components of a tensor. One can think of t as Newtonian time and of T as a "comoving" or "convected" time. The distinction between the partial derivatives ∂_I and ∂_T is important for two reasons: (1) to make clear which kind of component of a tensor is being differentiated with respect to time, and (2) to indicate which remaining coordinates are held fixed.²

Scalar quantities—that is, tensors of rank zero—are denoted by Greek or Latin letters, for example, ρ for the mass density and q for a physical quantity "q-stuff". We use lowercase italicized letters to express the functional dependence of such a quantity in Cartesian Eulerian coordinates, for example, $\rho(r,t)$ and q(r,t). To express the functional dependence of

²In general relativity, two four-dimensional coordinate systems may be expressed as $\{x^0, x^i\}$ and $\{x^{0'}, x^{i'}\}$, in which case x^0 and $x^{0'}$ indicate the two different time coordinates; in other words, one would naturally distinguish between the two time coordinates.

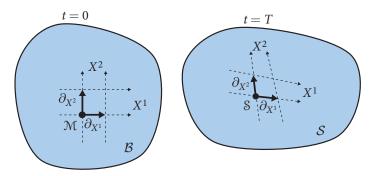


Figure 1.1: Left: Referential state of the continuum at time t=0 captured by the referential manifold \mathcal{B} . A material point \mathcal{M} may be identified with referential coordinates $\{X^I\}$, which define a chart in the referential manifold. A local vector basis in the tangent space of the referential manifold at \mathcal{M} is denoted by the partial derivatives $\{\partial_{X^I}\}$. For convenience, the referential coordinates are chosen to be Cartesian, but this is not required. Right: Deformed state of the continuum at time t=T captured by the spatial manifold \mathcal{S} . A spatial point \mathcal{S} , not tied to a specific element of the continuum, may be identified with the comoving Lagrangian coordinates $\{X^I\}$ of the material particle that happens to occupy its location at time t=T. Thus, Lagrangian coordinates define an evolving local chart in the spatial manifold at time t=T. A local non-orthonormal vector basis in the tangent space of the spatial manifold at \mathcal{S} at time t=T is denoted by the partial derivatives $\{\partial_{X^I}\}$. Importantly, Lagrangian coordinates in the spatial manifold are chosen such that they are identical to the referential coordinates in the referential manifold at the referential time t=0, when the referential and spatial manifolds capture the same state of the continuum. Thus, the Lagrangian coordinates move along with the flow of matter.

such quantities in Lagrangian coordinates, we use uppercase italicized letters, for example, $\rho(X, T)$ and Q(X, T). A glossary of the notation is provided at the end of chapter 2.

Occasionally, we will need to explore an issue that has come up in the main text in further detail. When this occurs, we introduce a "box" in which we delve further into the topic.

1.1 Motion

Before we discuss the notion of *deformation* of a continuum, we need to introduce the concept of a *referential state* of the material. In seismology, this is typically the quiescent state of the Earth before an earthquake, which we identify with time t=0 or sometimes $t=T_0$. As illustrated in figure 1.1 (*left*), an element of the continuum in the referential state is labeled by a *material point* \mathcal{M} , which may be identified with a set of Cartesian *referential coordinates* $\{X^I\}$. These referential coordinates define a *chart* in the *referential manifold* and remain associated with whichever element of the continuum they identify. The local vector basis in the tangent space of the referential manifold at material point \mathcal{M} is identified with the partial derivatives ∂_{X^I} , analogous to the identification of vectors with tangents to curves, as discussed in appendix C.1.1.

The state of the continuum at a later time t=T is captured by the *spatial manifold* S, shown in figure 1.1 (right). A spatial point S in the spatial manifold is not tied to a specific element of the continuum: it simply denotes a location in inertial space. Thus, whereas a material point M labels a specific particle in the referential manifold at time t=0, a spatial point S labels a location in the inertial spatial manifold not tied to any particular particle or

6 Chapter 1. Kinematics

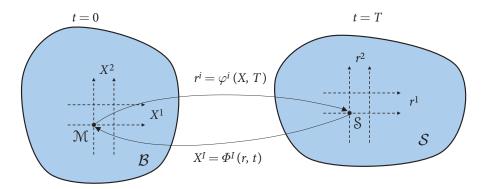


Figure 1.2: Left: Referential state of the continuum at time t=0. A material point $\mathfrak M$ may be identified with Lagrangian coordinates $\{X^I\}$ in the referential manifold $\mathcal B$. For convenience, in this figure, the Lagrangian coordinates are chosen to be Cartesian, but this is not required. Right: Deformed state of the continuum at time t=T. A spatial point $\mathcal S$ may be identified with Cartesian spatial coordinates or Eulerian coordinates $\{r^i\}$ in the inertial spatial manifold $\mathcal S$. The motion $\varphi^i(X,T)$ defines a map $\varphi:\mathcal B\to\mathcal S$, that is, from the referential manifold $\mathcal B$ to the spatial manifold $\mathcal S$, identifying the spatial location r^i of a particular element of the continuum at time t=T. Its inverse $\Phi^I(r,t)$ defines a map $\Phi:\mathcal S\to\mathcal B$.

time. Spatial points are identified by a set of Cartesian Eulerian coordinates $\{r^i\}$, with an associated orthonormal Cartesian vector basis (see appendix C.1)

$$\mathbf{e}_i \equiv \partial_i,$$
 (1.1)

where we introduced the compact notation $\partial_i = \partial_{r^i}$.

Alternatively, a spatial point S may also be identified with the Lagrangian coordinates $\{X^I\}$ of whatever material particle happens to occupy location S at time t=T (see, e.g., Sedov, 1966; Weile et al., 2013). Thus, Lagrangian coordinates define an evolving local chart in the spatial manifold S. Lagrangian coordinates in the spatial manifold are chosen such that they are identical to the Cartesian referential coordinates in the referential manifold S at the referential time t=0, when the referential and spatial manifolds capture the same state of the continuum. In other words, at times $t\geq 0$ the referential coordinates comove or convect with the material to evolve into a set of Lagrangian or convected or comoving coordinates. A local nonorthogonal Lagrangian vector basis in the tangent space of the spatial manifold S at S at time t=T may be defined in terms of the evolving partial derivatives ∂_{X^I} , namely,

$$\mathbf{e}_I \equiv \partial_I,$$
 (1.2)

where we introduced the compact notation $\partial_I = \partial_{X^I}$.

The *motion* of the continuum is captured by the map

$$r^{i} = \varphi^{i}(X, T),$$

$$t = T.$$
(1.3)

This map, $\varphi: \mathcal{B} \to \mathcal{S}$, takes us from Cartesian referential coordinates $\{X^I\}$ assigned in the referential manifold \mathcal{B} at time t=0 to Cartesian spatial coordinates or Eulerian coordinates $\{r^i\}$ in the inertial spatial manifold \mathcal{S} at time t=T, as illustrated in figure 1.2.³

 $^{^3}$ Because, unlike Euclidean space, a manifold has no origin, one cannot define "position vectors" ${\bf r}$ or ${\bf X}$. Motion in Euclidean space is discussed in box 1.1.

We assume that the motion is invertible (no tearing of the continuum, a topic we explore in chapter 3), such that

 $X^{I} = \Phi^{I}(r, t),$ T = t,(1.4)

as illustrated in figure 1.2. The inverse map, $\Phi: \mathcal{S} \to \mathcal{B}$, takes us from inertial Cartesian spatial coordinates $\{r^i\}$ assigned in the spatial manifold \mathcal{S} at time t=T to Cartesian referential coordinates $\{X^I\}$ in the referential manifold \mathcal{B} at time t=0.

Alternatively, we may regard the motion (1.3) and its inverse (1.4) as a coordinate transformation between Cartesian Eulerian coordinates and evolving curvilinear Lagrangian coordinates in the spatial manifold, as illustrated in figure 1.4 and discussed in appendix B.3. It is important to recognize the dual role of the motion (1.3), describing both the location of a specific material particle in the spatial manifold and a coordinate transformation between Eulerian and Lagrangian coordinates in the spatial manifold.

In box 1.1, we consider the motion of a particle in *Euclidean space* with origin *O*. Particles in the material are labeled by their position "vector" \mathbf{X} at time T=0, and the position "vector" \mathbf{r} of particle \mathbf{X} at time $T\geq 0$ is denoted by $\mathbf{r}=\phi(\mathbf{X},T)$, as illustrated in figure 1.3. More generally, in a manifold, the motion (1.3) *does not* define the components of a vector, rather it is a map between Eulerian and Lagrangian *coordinates*.

Box 1.1 Motion in Euclidean Space

In this box, we consider motion in *Euclidean space*. In such a space, the motion $\phi(\mathbf{X},T)$ may be regarded as a "position vector" relative to an origin O, giving the spatial position \mathbf{r} of the particle originally located at \mathbf{X} at a later time T:

$$\mathbf{r} = \phi(\mathbf{X}, T), \tag{1.5}$$

as illustrated in figure 1.3. In this expression, bold quantities are interpreted as "position vectors." Such an approach is only permissible in Euclidean space when an origin O may be defined and vectors associated with distinct spatial locations may be combined. Dahlen and Tromp (1998) abbreviate the description further by expressing the position of particle \mathbf{X} at time T as $\mathbf{r}(\mathbf{X}, T)$.

In future boxes, we will further explore other aspects of continuum mechanics in Euclidean space, thereby drawing parallels with the approach used in Dahlen and Tromp (1998).

1.1.1 Compatibility

A smooth motion satisfies the *compatibility conditions*

$$\alpha_{IJ}{}^{i} \equiv (\partial_{I}\partial_{J} - \partial_{J}\partial_{I}) \varphi^{i}$$

$$= 0. \tag{1.6}$$

Equation (1.6) states that partial derivatives of the motion with respect to comoving coordinates *commute*. For an *incompatible motion*, the tensor $\alpha_{IJ}{}^i$ is nonzero and is referred to as the *incompatibility tensor*. Such a situation involves *material defects* in the form of *dislocations* and *disclinations*, as discussed extensively in chapter 3.

8 Chapter 1. Kinematics

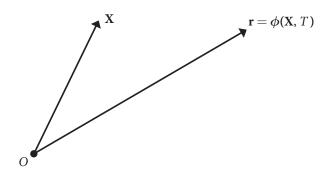


Figure 1.3: Motion in Euclidean space with origin O. Particles in the material are labeled by their referential position "vector" \mathbf{X} at time T = 0, and the position "vector" \mathbf{r} of particle \mathbf{X} at time $T \ge 0$ is denoted by $\mathbf{r} = \phi(\mathbf{X}, T)$. The generalization of Euclidean space is a manifold, which has no origin, and one cannot define "position vectors."

Compatibility is related to the *Lie bracket* (see appendix C.4). The Lie bracket of two Eulerian or Lagrangian basis vectors is zero

$$[\mathbf{e}_i, \mathbf{e}_j] = \mathbf{0}, \qquad [\mathbf{e}_I, \mathbf{e}_J] = \mathbf{0},$$
 (1.7)

due to the commutativity of partial derivatives

$$\partial_i \partial_i - \partial_i \partial_i = 0, \qquad \partial_I \partial_I - \partial_I \partial_I = 0.$$
 (1.8)

Such a basis is called *holonomic*. The Lie bracket is related to the *autonomous Lie derivative*, discussed in appendix F.3.3, in the sense $\mathcal{L}_{\mathbf{e}_i}\mathbf{e}_i = [\mathbf{e}_i, \mathbf{e}_i]$.

When basis vectors fail to commute, the basis is called *nonholonomic* or *anholonomic*. In that case,

$$[\mathbf{e}_i, \mathbf{e}_j] = \tau_{ij}^k \, \mathbf{e}_k, \tag{1.9}$$

or

$$\partial_i \partial_j - \partial_j \partial_i = \tau_{ij}^k \partial_k. \tag{1.10}$$

The parameters τ_{ij}^k are known as *structure coefficients*. We discuss an example of an anholonomic basis in spherical coordinates in box 1.2.

It is important to note that anholonomicity does not imply incompatibility. The former is a property of a vector basis, whereas the latter is a property of a motion.

1.2 Vectors: Material Velocity

The temporal derivative of the motion (1.3), that is, the partial derivative of $\varphi^i(X, T)$ with respect to time T, holding the Lagrangian coordinates X^I fixed, defines the Eulerian components of the *material velocity*:

$$v^i \equiv \partial_T \, \varphi^i. \tag{1.11}$$

The Eulerian components of the material velocity, v^i , are a function of the Eulerian variables $\{r^i,t\}$, and the motion is a function of the Lagrangian variables $\{X^I,T\}$, so the equality (1.11) should be understood explicitly as

Box 1.2 Anholonomicity

Consider the transformation from Cartesian coordinates $\{x,y,z\}$ to spherical coordinates $\{r,\theta,\phi\}$. The associated holonomic basis vectors are $\{\partial_x,\partial_y,\partial_z\}$ and $\{\partial_r,\partial_\theta,\partial_\phi\}$, respectively. We have the relationships

$$x = r \sin \theta \cos \phi$$
, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$,

with inverse

$$r = \sqrt{x^2 + y^2 + z^2},$$
 $\theta = \arctan(\sqrt{x^2 + y^2}/z),$ $\phi = \arctan(y/x).$

The spherical basis vectors are related to the Cartesian basis vectors via

$$\mathbf{e}_{r} \equiv \partial_{r} = \sin \theta \cos \phi \, \partial_{x} + \sin \theta \sin \phi \, \partial_{y} + \cos \theta \, \partial_{z},$$

$$\mathbf{e}_{\theta} \equiv \partial_{\theta} = r \cos \theta \cos \phi \, \partial_{x} + r \cos \theta \sin \phi \, \partial_{y} - r \sin \theta \, \partial_{z},$$

$$\mathbf{e}_{\phi} \equiv \partial_{\phi} = -r \sin \theta \sin \phi \, \partial_{x} + r \sin \theta \cos \phi \, \partial_{y}.$$

It is important to note that these basis vectors are not all "unit" a vectors. Specifically,

$$\mathbf{e}_r = \hat{\mathbf{r}}, \qquad \mathbf{e}_\theta = r\,\hat{\boldsymbol{\theta}}, \qquad \mathbf{e}_\phi = r\,\sin\theta\,\hat{\boldsymbol{\phi}},$$

where $\hat{\mathbf{r}}$, $\hat{\boldsymbol{\theta}}$, and $\hat{\phi}$ denote traditional unit vectors in the directions of increasing r, θ , and ϕ , respectively. The basis vectors $\{\mathbf{e}_r, \mathbf{e}_\theta, \mathbf{e}_\phi\}$ are holonomic, thanks to the commutativity of the partial derivatives ∂_r , ∂_θ , and ∂_ϕ . However, the unit basis vectors

$$\hat{\mathbf{r}} = \partial_r, \qquad \hat{\boldsymbol{\theta}} = r^{-1} \partial_{\theta}, \qquad \hat{\boldsymbol{\phi}} = (r \sin \theta)^{-1} \partial_{\phi},$$

are anholonomic:

$$[\hat{\mathbf{r}}, \hat{\boldsymbol{\theta}}] = -r^{-1}\hat{\boldsymbol{\theta}}, \qquad [\hat{\mathbf{r}}, \hat{\boldsymbol{\phi}}] = -r^{-1}\hat{\boldsymbol{\phi}}, \qquad [\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\phi}}] = -r^{-1}\cot\theta\,\hat{\boldsymbol{\phi}}.$$

The main conceptual difference is that a holonomic basis is integrable, whereas an anholonomic basis is non-integrable.

$$v^{i}(\varphi^{i}(X,T),T) = \partial_{T}\varphi^{i}(X,T), \tag{1.12}$$

so that both sides are evaluated at a particle labeled by $\{X^I, T\}$. Even though the motion φ^i itself *does not* define the components of a vector, its temporal derivatives $\partial_T \varphi^i$ *do* define the components of the material velocity *vector*.

At this point, we have introduced two sets of coordinate systems in the spatial manifold, namely, Cartesian Eulerian or spatial coordinates $\{r^i\}$ and Lagrangian or comoving coordinates $\{X^I\}$, related via the motion (1.3) and its inverse (1.4), as illustrated in figure 1.4. As discussed extensively in appendix C, vectors, and their generalization in the form of tensors, should be viewed as geometrical objects *independent of any coordinate system*. For practical applications, we choose to express tensors in a basis, and in continuum mechanics, the two most commonly used bases are the ones we just introduced, namely, those associated with Eulerian and Lagrangian coordinates. Consequently, as illustrated in figure 1.4, we may express the material velocity ${\bf v}$ in the following two equivalent component forms (see appendix C.1.4):

^aSee section 1.6 for a discussion on *length*.

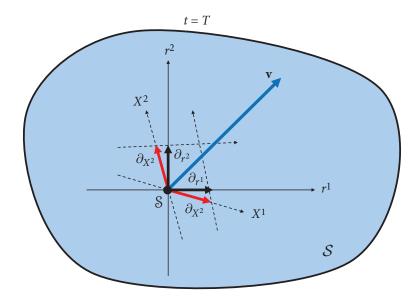


Figure 1.4: In continuum mechanics, a spatial point δ in the spatial manifold \mathcal{S} at time t=T may be identified with either a set of Eulerian coordinates $\{r^i\}$ or a set of Lagrangian coordinates $\{X^I\}$. These coordinates induce a set of Eulerian basis vectors $\{\partial_{r^i}\}$ (shown in solid arrows) or Lagrangian basis vectors $\{\partial_{X^I}\}$ (shown in dashed arrows) in the tangent space at S. The material velocity **v** (shown by the thin arrow) is a geometrical object that lives in the tangent space at S and may be expressed in either set of basis vectors, as stated mathematically in equation (1.13). The Eulerian coordinates are chosen to be Cartesian in this example, but this is not required.

$$\mathbf{v} = v^{I} \mathbf{e}_{i}$$

$$= v^{I} \mathbf{e}_{I}.$$
(1.13)

In these expressions, we introduced the usual Einstein summation convention, in which a sum must be performed over a repeated upper and lower index, in this case the index i in the first equality and the index I in the second equality. The Eulerian components of the material velocity v are defined by (1.11), whereas its Lagrangian components are identified by the set $\{v^I\}$.

Problem 1.1 By differentiating the inverse motion (1.4) with respect to time T, show that the Lagrangian components of the material velocity are given in terms of the inverse motion Φ^I by

 $v^I = -\partial_t \Phi^I$. (1.14)

As discussed in detail in appendix C.1.4, Eulerian and Lagrangian basis vectors are related via the transformations

$$\mathbf{e}_I = F^i{}_I \, \mathbf{e}_i \quad \text{and} \quad \mathbf{e}_i = (F^{-1})^I{}_i \, \mathbf{e}_I,$$
 (1.15)

where we have defined the deformation gradient4

⁴The nomenclature deformation "gradient" is not ideal; in view of definitions (C.14), deformation "matrix" would be preferable.

$$F^{i}{}_{I} \equiv \partial_{I} \varphi^{i},$$
 (1.16)

with inverse

$$(F^{-1})^I_{\ i} \equiv \partial_i \Phi^I. \tag{1.17}$$

Our nomenclature and notation for the deformation gradient, $F^i{}_I$, are chosen to coincide with those of Malvern (1969, section 4.5) and Marsden and Hughes (1983, section 1.3). Unlike these authors, we do not regard the deformation gradient as a tensor, eschewing the introduction of *two-point tensors* (see box 1.4 for further discussion). Matrices $F^i{}_I$ and $(F^{-1})^I{}_i$ are inverses of one another, in the sense that

$$F_{I}^{i}(F^{-1})_{i}^{I} = \delta_{i}^{i}$$
 and $(F^{-1})_{i}^{I}F_{I}^{i} = \delta_{I}^{I}$, (1.18)

where $\delta^i{}_i$ and $\delta^I{}_I$ denote the Kronecker-delta symbol (for further details, see appendix D.4):

$$\delta^{i}_{j} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases} \quad \text{and} \quad \delta^{I}_{J} = \begin{cases} 1 & \text{if } I = J, \\ 0 & \text{if } I \neq J. \end{cases}$$
 (1.19)

Since the basis vectors transform according to rules (1.15), it follows from equation (1.13) that the components of the material velocity **v** transform according to

$$v^{I} = (F^{-1})^{I}_{i} v^{i}, \qquad v^{i} = F^{i}_{I} v^{I}.$$
 (1.20)

Examining equations (1.15) and (1.20), we see that bases transform with the inverses of matrices used in the transformation of components and vice versa.

1.3 One-Forms

To describe the physics of a continuum, we are going to need more than vectors. To see why this is the case, consider the differential⁵ of a scalar field q. In Eulerian coordinates, this field has the functional dependence q(r, t), so we have⁶

$$dq = \partial_i q \, dr^i. \tag{1.21}$$

Alternatively, in Lagrangian coordinates, this field has the functional dependence Q(X, T), and we have $dq = \partial_I Q dX^I. \tag{1.22}$

Using the chain rule, being mindful of the nature of coordinate "slots," as discussed in box 1.3, we have the relationship $\partial_I Q = F^i{}_I \partial_i q$, (1.23)

where F^{i}_{I} denotes elements of the deformation gradient (1.16).

Because equations (1.21) and (1.22) both represent the *same* differential scalar field dq, the Eulerian and Lagrangian differentials, dr^i and dX^I , must be related via

$$dX^{I} = (F^{-1})^{I}{}_{i} dr^{i}, dr^{i} = F^{i}{}_{I} dX^{I}.$$
 (1.24)

⁵Strictly speaking, the *exterior derivative*, discussed in appendix G.7.

 $^{^6}$ We generally use the notation d to denote the exterior derivative in three dimensions. However, when working in four dimensions, as in general relativity or to describe the dynamics and kinematics of defects, discussed in chapter 3, we use d to denote the four-dimensional exterior derivative and $\bar{\rm d}$ to denote its restriction to three dimensions.

Box 1.3 Scalars as Tensors of Rank Zero

In this book, scalar fields, such as the mass density, are viewed as geometrical objects independent of any coordinate system, just like all other tensors. As noted in the introduction to this chapter, to indicate the status of a scalar field as a tensor, we use Greek or Latin letters. Thus, the value of a scalar field q at location S and time t in the spatial manifold is written in the coordinate-free form q(S,t). If we introduce a set of Cartesian Eulerian coordinates $\{r^i\}$ in the spatial manifold, then we may express the scalar field at time t in these coordinates as q(r,t), with partial derivatives $\partial_i q$ and $\partial_t q$. Next, if we introduce a complementary set of curvilinear Lagrangian coordinates $\{X^I\}$ in the spatial manifold, then we may also express the scalar field at time T in these coordinates as Q(X,T), with partial derivatives $\partial_I Q$ and $\partial_T Q$. The motion (1.3) enables us to relate the two descriptions of this scalar field because

$$q(\varphi^{i}(X,T),T) = Q(X,T). \tag{1.25}$$

This result is self-evident, inasmuch as both sides give the value of q recorded by particle X^I , which is at point $r^i = \varphi^i(X, T)$ at time t = T.

Whenever one takes partial derivatives of a tensor field in a specific coordinate system, one needs to be mindful of the nature of its coordinate and time "slots." For example, a scalar field q expressed in Eulerian coordinates, $\{r^i,t\}$, has slots that accept only such coordinates, q(r,t), and one can take only partial derivatives of the field with respect to these coordinates. For this reason, the partial time derivative of a scalar field q in Lagrangian coordinates, $\partial_T Q$, is related to partial derivatives $\partial_t q$ and $\partial_i q$ in Cartesian Eulerian coordinates via

$$\partial_T Q = \partial_t q + (\partial_T \varphi^i) \partial_i q.$$

This relationship may be readily obtained by differentiating equation (1.25) with respect to time T and using the chain rule.

Similarly, the spatial partial derivatives $\partial_I Q$ and $\partial_i q$ are related via

$$\partial_I Q = (\partial_I \varphi^i) \, \partial_i q,$$

where, again, the left- and right-hand sides are evaluated at the location of material particle X^I at time T.

Upon comparing these expressions to the transformation rule for basis vectors (1.15), we note that the rules appear to be "reversed." This motivates us to introduce two new sets of basis elements defined in terms of differentials dr^i and dX^I , namely,

$$\mathbf{e}^i \equiv \mathrm{d}r^i,\tag{1.26}$$

and

$$\mathbf{e}^I \equiv \mathrm{d}X^I. \tag{1.27}$$

These basis elements are referred to as *one-forms* and are discussed in detail in appendix C.2. The transformations (1.24) may now be rewritten in the forms

$$\mathbf{e}^{I} = (F^{-1})^{I}_{i} \, \mathbf{e}^{i}, \qquad \mathbf{e}^{i} = F^{i}_{I} \, \mathbf{e}^{I}.$$
 (1.28)

These one-form basis transformation rules should be contrasted with the vector basis transformation rules (1.15).

We conclude that the differential dq should be regarded as a new form of tensor called a *one-form*, discussed in appendix C.2. Such a tensor, say ω , may be expressed in either Eulerian or Lagrangian coordinates as

$$\boldsymbol{\omega} = \omega_i \, \mathbf{e}^i$$

$$= \omega_I \, \mathbf{e}^I,$$
(1.29)

and its components transform according to the rules

$$\omega_I = \omega_i F_I^i, \qquad \omega_i = \omega_I (F^{-1})_i^I. \tag{1.30}$$

We note that one-forms have components labeled with subscripts, to clearly distinguish them from vectors, which have components labeled with superscripts.

1.3.1 Duality Product

As discussed in appendix C.2.1, spatial basis vectors and spatial basis one-forms are *duals* of each other; namely, for Eulerian vector basis elements \mathbf{e}_i and one-form basis elements \mathbf{e}^j , we have

$$\langle \mathbf{e}^i, \mathbf{e}_i \rangle = \delta^i_{\ i}, \tag{1.31}$$

and for the Lagrangian bases

$$\langle \mathbf{e}^I, \mathbf{e}_I \rangle = \delta^I_{I}. \tag{1.32}$$

Here $\langle \cdot, \cdot \rangle$ denotes the bilinear⁸ *duality product* between a one-form, to be placed in the first slot, and a vector, inserted in the second (see, e.g., Schutz, 1980; Dubrovin et al., 1985).

In the language of differential geometry, we may express the products (1.31) and (1.32) fancifully as

$$dr^{i}(\partial_{j}) = \delta^{i}_{j}$$
 or $\partial_{i}(dr^{j}) = \delta^{j}_{i}$. (1.33)

and

$$dX^{I}(\partial_{I}) = \delta^{I}_{I}$$
 or $\partial_{I}(dX^{J}) = \delta^{J}_{I}$. (1.34)

These expressions reflect the view discussed in appendix C.2.1 and in the next section that vectors are linear "machines" with a "slot" that accepts one-forms, whereas one-forms are linear machines with a slot that accepts vectors (Misner et al., 1973). For a discussion of linear spaces and linear transformations, the reader is referred to appendix A.

The Eulerian and Lagrangian components of a vector field **u** may now be defined in terms of the duality product as, respectively,

$$u^{i} \equiv \langle \mathbf{e}^{i}, \mathbf{u} \rangle, \qquad u^{I} \equiv \langle \mathbf{e}^{I}, \mathbf{u} \rangle.$$
 (1.35)

Problem 1.2 Express the vector \mathbf{u} in Eulerian or Lagrangian components and use the duality product (1.31) or (1.32) to verify (1.35).

⁷In old terminology, one-forms were called *covariant vectors*, *covectors*, and *dual vectors*. However, we do not use these terms because they contain the word "vector," which contradicts our understanding of a one-form as a collection of sheets. ⁸See appendix A for a description of linear spaces.

Similarly, the Eulerian and Lagrangian components of a one-form field ω may be defined in terms of the duality product as, respectively,

$$\omega_i \equiv \langle \boldsymbol{\omega}, \, \mathbf{e}_i \rangle, \qquad \omega_I \equiv \langle \boldsymbol{\omega}, \, \mathbf{e}_I \rangle.$$
 (1.36)

1.4 Tensors

Based on the discussion in the previous section, specifically the dualities (1.33) and (1.34), any vector, \mathbf{u} , may be viewed as a linear "machine" with one slot that accepts a one-form, $\boldsymbol{\omega}$, and returns a number:

 $\mathbf{u}(\boldsymbol{\omega}) = u^i \,\omega_i = u^I \,\omega_I. \tag{1.37}$

Such a machine is an example of a (1,0)-tensor: a machine with one one-form slot. Similarly, a one-form, ω , may be viewed as a linear machine with one slot that accepts a vector, \mathbf{u} , and returns a number:

 $\boldsymbol{\omega}(\mathbf{u}) = \omega_i \, u^i = \omega_I \, u^I. \tag{1.38}$

A one-form is an example of a (0, 1)-tensor: a machine with one vector slot.

As discussed in appendix D, the generalization of vectors and one-forms is a *tensor*, **T**, which is a multilinear machine with multiple slots that accept either vectors or one-forms. Specifically, a (p, q) tensor is a machine with p one-form slots and q vector slots in any order. For example, the rank-4 tensor **r** with three vector slots followed by a one-form slot returns

$$\mathbf{r}(\mathbf{u}, \mathbf{v}, \mathbf{w}, \boldsymbol{\omega}) = r_{iik}^{\ \ell} u^{i} v^{j} w^{k} \omega_{\ell} = r_{IIK}^{\ L} u^{I} v^{J} w^{K} \omega_{L}$$
(1.39)

when fed three vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} , and one one-form $\boldsymbol{\omega}$.

The components of a tensor may be obtained by inserting the appropriate basis vectors and one-forms, in this instance

$$\mathbf{r}(\mathbf{e}_i, \mathbf{e}_i, \mathbf{e}_k, \mathbf{e}^{\ell}) = r_{iik}^{\ell}, \qquad \mathbf{r}(\mathbf{e}_I, \mathbf{e}_I, \mathbf{e}_K, \mathbf{e}^L) = r_{IIK}^{L},$$
 (1.40)

such that we have

$$\mathbf{r} = r_{ijk}^{\ell} \mathbf{e}^{i} \otimes \mathbf{e}^{j} \otimes \mathbf{e}^{k} \otimes \mathbf{e}_{\ell}$$

$$= r_{IIK}^{L} \mathbf{e}^{I} \otimes \mathbf{e}^{J} \otimes \mathbf{e}^{K} \otimes \mathbf{e}_{L},$$
(1.41)

where the symbol \otimes designates a *tensor product* (see appendix D.2.2). Equation (1.41) illustrates how higher-order tensor fields may be expressed in terms of combinations of Eulerian or Lagrangian basis vectors and basis one-forms.

The transformation of a tensor from spatial to Lagrangian coordinates and vice versa may be accomplished based on a generalization of the vector and one-form transformation rules (1.20) and (1.30), for example,

$$r_{IJK}{}^{L} = F^{i}{}_{I} F^{j}{}_{I} F^{k}{}_{K} (F^{-1})^{L}{}_{\ell} r_{ijk}{}^{\ell}, \qquad (1.42)$$

and

$$r_{ijk}^{\ell} = (F^{-1})^{I}_{i} (F^{-1})^{J}_{j} (F^{-1})^{K}_{k} F^{\ell}_{L} r_{IJK}^{L}.$$
(1.43)

In some textbooks, tensors are *defined* as objects that transform according to these rules.

1.5 Covariant Derivative

In this section, we introduce a tensorial description of the "gradient of a vector field," such as the material velocity **v**. This is accomplished by means of the *covariant derivative*, which

is denoted by the symbol ∇ and discussed in detail in appendix F.1. In spatial coordinates, the covariant derivative is expressed as ∇_i , and in these Cartesian coordinates it is identical to the partial derivative ∂_i : $\nabla_i v^j \equiv \partial_i v^j. \tag{1.44}$

If the elements $\nabla_i v^j$ are to define the spatial components of a tensor, we have

$$\nabla \mathbf{v} = \nabla_i \mathbf{v}^j \, \mathbf{e}^i \otimes \mathbf{e}_i. \tag{1.45}$$

In Lagrangian coordinates the components of this tensor must be given by the tensor transformation rule discussed in section 1.4, namely,

$$\nabla_{I} v^{J} = F^{i}_{I} (F^{-1})^{J}_{j} \nabla_{i} v^{j}. \tag{1.46}$$

Problem 1.3 Show that the Lagrangian components of the material velocity gradient are given by

 $\nabla_I v^J = \partial_I v^J + \Gamma_{IK}^J v^K, \tag{1.47}$

where the Lagrangian connection coefficients are defined by

$$\Gamma_{IK}^{J} \equiv (F^{-1})_{j}^{J} \partial_{I} F_{K}^{j}$$

$$= (\partial_{i} \Phi^{J}) \partial_{I} \partial_{K} \varphi^{j}.$$
(1.48)

Problem 1.4 For a non-Cartesian Eulerian basis, as discussed in appendix F.1.2, show that the relation between Eulerian and Lagrangian connection coefficients, Γ^k_{ij} and Γ^K_{II} , is

$$\Gamma_{II}^{K} = (F^{-1})^{K}{}_{k} F^{i}{}_{I} F^{j}{}_{J} \Gamma_{ii}^{k} + (F^{-1})^{K}{}_{k} \partial_{I} F^{k}{}_{J}. \tag{1.49}$$

We conclude from equation (1.47) that the covariant derivative of the material velocity in Lagrangian coordinates is $\partial_I v^I$ augmented by a *connection* to ensure the covariant derivative of the vector field is tensorial, that is, independent of the chosen coordinate system. We note that, thanks to the compatibility condition (1.6), the Lagrangian connection coefficients (1.48) exhibit the symmetry,

$$\Gamma_{II}^K = \Gamma_{II}^K, \tag{1.50}$$

which means that the connection is torsion-free, as discussed in appendix F.1.7.

Problem 1.5 For a non-Cartesian Eulerian basis, use relation (1.49) between Eulerian and Lagrangian connection coefficients to show that vanishing torsion requires the symmetry

 $\Gamma_{ij}^k = \Gamma_{ji}^k. \tag{1.51}$

We conclude that if the Eulerian connection coefficients are torsion-free, then so are the Lagrangian connection coefficients. In problem 1.7, we demonstrate that this property corresponds to a vanishing *torsion tensor*.

Based on this discussion, we may now regard the gradient of the material velocity, $\nabla \mathbf{v}$, as a (1,1) tensor, $\nabla \mathbf{v} = \nabla_i v^j \mathbf{e}^i \otimes \mathbf{e}_i = \nabla_I v^J \mathbf{e}^I \otimes \mathbf{e}_I, \tag{1.52}$

subject to the transformation rules

$$\nabla_{i} v^{j} = (F^{-1})^{I}{}_{i} F^{j}{}_{I} \nabla_{I} v^{J}, \qquad \nabla_{I} v^{J} = F^{i}{}_{I} (F^{-1})^{J}{}_{i} \nabla_{i} v^{j}. \tag{1.53}$$

The covariant derivative of higher-rank tensors involves additional terms with connection coefficients, as we will see in the next section when we apply the covariant derivative operator twice to the material velocity.

1.5.1 Evolution of Connection Coefficients

The Lagrangian connection coefficients Γ_{II}^{K} evolve over time with the flow of matter.

Problem 1.6 To see what form this evolution takes, differentiate the relationship $\Gamma_{IJ}^K \partial_K \varphi^i = \partial_I \partial_J \varphi^i$, easily obtained from (1.48), with respect to time T, and show, using the general definition of the covariant derivative of a tensor (F.20), that

$$F^{i}_{K} \partial_{T} \Gamma^{K}_{IJ} = F^{i}_{K} \nabla_{I} \nabla_{J} \nu^{K}. \tag{1.54}$$

We conclude that

$$\partial_T \Gamma_{II}^K = \nabla_I \nabla_I v^K. \tag{1.55}$$

Although the Lagrangian connection coefficients Γ_{IJ}^K do not define a tensor, their time rate of change $\partial_T \Gamma_{IJ}^K$ does, because the right-hand side of equation (1.55) is the tensor $\nabla \nabla \mathbf{v}$. Equation (1.55) has important consequences. For example, it implies that

$$\partial_T \left(\Gamma_{IJ}^K - \Gamma_{JI}^K \right) = (\nabla_I \nabla_J - \nabla_J \nabla_I) v^K = 0, \tag{1.56}$$

because the connection is torsion-free, as expressed by equation (1.50). Thus, we find that, in continuum mechanics, covariant derivatives commute,

$$[\nabla_I, \nabla_J] = 0. \tag{1.57}$$

Problem 1.7 Show, based on the expression for the general covariant derivative (F.20), that, more generally for a vector $\mathbf{u} = u^{I} \mathbf{e}_{I}$, we have the Ricci identity

$$(\nabla_I \nabla_I - \nabla_I \nabla_I) u^K = r_{III}^K u^L - t_{II}^L \nabla_L u^K, \tag{1.58}$$

where

$$t_{IJ}^{K} = \Gamma_{IJ}^{K} - \Gamma_{JI}^{K} \tag{1.59}$$

denotes the components of the torsion tensor, and where

$$r_{IJL}{}^{K} \equiv \partial_{I}\Gamma_{JL}^{K} - \partial_{J}\Gamma_{IL}^{K} + \Gamma_{IM}^{K}\Gamma_{JL}^{M} - \Gamma_{JM}^{K}\Gamma_{IL}^{M}$$

$$(1.60)$$

⁹The rate of change with respect to the convected time *T* corresponds to the *Lie derivative* relative to the material velocity, as discussed in section 1.8.

denotes the components of the curvature tensor or Riemann tensor. In continuum mechanics, space has zero torsion, $t_{IJ}^{K} = 0$, and zero curvature, $r_{IJL}^{K} = 0$, which leads to expression (1.56) and the commutability of covariant derivatives (1.57).

Note that although the Lagrangian connection coefficients Γ_{IJ}^K do not define a tensor, their difference $\Gamma_{IJ}^K - \Gamma_{JI}^K$ does. This difference in status is reflected in the placement of the indices on the connection coefficients Γ_{IJ}^K (not tensorial) and the elements of the torsion tensor t_{IJ}^K (tensorial).

1.6 Metric

To introduce a notion of *length*, let us consider the squared norm of a vector \mathbf{u} . In Cartesian Eulerian coordinates r^i , this squared norm is given by

$$\|\mathbf{u}\|^2 = u^i u^j g_{ij}$$

= $(u^1)^2 + (u^2)^2 + (u^3)^2$, (1.61)

where we have used the fact that the Cartesian components of the *metric tensor* (see appendix D.10) are defined in terms of the Kronecker-delta symbol:

$$g_{ii} = \delta_{ii}. \tag{1.62}$$

In convected Lagrangian coordinates we have

$$\|\mathbf{u}\|^2 = u^I u^J g_{IJ}, \tag{1.63}$$

where g_{IJ} denotes the Lagrangian components of the metric tensor. Equations (1.61) and (1.63) measure the length of the same vector, which implies that the Eulerian and Lagrangian components of the metric tensor,

$$\mathbf{g} = g_{ij} \, \mathbf{e}^i \otimes \mathbf{e}^j = g_{IJ} \, \mathbf{e}^I \otimes \mathbf{e}^J, \tag{1.64}$$

are related via

$$g_{ij} = (F^{-1})^{I}{}_{i} (F^{-1})^{J}{}_{j} g_{IJ},$$
 (1.65)

$$g_{IJ} = F^{i}{}_{I} F^{j}{}_{J} g_{ij}. \tag{1.66}$$

Writing expressions (1.65) and (1.66) out explicitly, being mindful of the functional dependencies, we obtain

$$g_{ij}(r) = (F^{-1})^{I}{}_{i}(r,t) (F^{-1})^{J}{}_{j}(r,t) g_{IJ}(\Phi(r,t),t),$$
(1.67)

$$g_{IJ}(X,T) = F^{i}_{I}(X,T) F^{j}_{J}(X,T) g_{ij}(\varphi(X,T)).$$
 (1.68)

Here we have used the fact that the Eulerian components of the metric tensor may depend on the Eulerian spatial coordinates $\{r^i\}$, but they do not depend on time: $g_{ij} = g_{ij}(r)$. The Lagrangian components of the metric tensor, on the other hand, depend both on the Lagrangian coordinates $\{X^I\}$ and time $T: g_{IJ} = g_{IJ}(X, T)$. In classical continuum mechanics (see, e.g., Malvern, 1969), the combination of terms on the right-hand side of equation (1.66) is called the *right Cauchy–Green deformation tensor* or *Green deformation*

tensor, with components denoted as $C_{IJ} = F^i{}_I F^j{}_J \delta_{ij}$. This tensor is discussed extensively in section 1.20.2.

The metric tensor is an example of a symmetric (0, 2) tensor:

$$g_{ij} = g_{ji}, g_{IJ} = g_{JI}, (1.69)$$

or expressed as a tensor equation

$$\mathbf{g}^t = \mathbf{g}.\tag{1.70}$$

A superscript t denotes the transpose of a rank-2 tensor, which is discussed in appendix D.2.5.

A manifold endowed with a metric is called a Riemannian manifold. As discussed in appendix D.10, it may be used to define the *dot product* between two vectors:

$$(\mathbf{u}, \mathbf{w}) \equiv \mathbf{g}(\mathbf{u}, \mathbf{w}) = \mathbf{u} \cdot \mathbf{w},\tag{1.71}$$

such that the norm of a vector is obtained by taking the dot product of a vector **u** with itself:

$$\|\mathbf{u}\|^2 \equiv (\mathbf{u}, \mathbf{u}) = \mathbf{g}(\mathbf{u}, \mathbf{u}) = \mathbf{u} \cdot \mathbf{u}. \tag{1.72}$$

In spatial and comoving components, we have

$$\mathbf{u} \cdot \mathbf{w} = u^i \, w^j \, g_{ii} = u^I \, w^J \, g_{II}, \tag{1.73}$$

and the component expressions for the squared norm of a vector are given by equations (1.61) and (1.63). The two vectors are *orthogonal* to one another if $\mathbf{g}(\mathbf{u}, \mathbf{w}) = \mathbf{0}$.

The metric tensor has an inverse

$$\mathbf{g}^{-1} = g^{ij} \, \mathbf{e}_i \otimes \mathbf{e}_j = g^{IJ} \, \mathbf{e}_I \otimes \mathbf{e}_J, \tag{1.74}$$

such that $\mathbf{g} \cdot \mathbf{g}^{-1} = \mathbf{g}^{-1} \cdot \mathbf{g} = \mathbf{I}$, or, in components,

$$g^{ik}g_{kj} = \delta^{i}_{j}, \qquad g^{IK}g_{KJ} = \delta^{I}_{J}.$$
 (1.75)

Here I denotes the *identity tensor* or *Kronecker tensor* (see appendix D.4)

$$\mathbf{I} = \delta^{I}_{j} \, \mathbf{e}_{i} \otimes \mathbf{e}^{j} = \delta^{I}_{J} \, \mathbf{e}_{I} \otimes \mathbf{e}^{J}, \tag{1.76}$$

which is defined in terms of the Kronecker-delta symbols (1.19).

Problem 1.8 Show that the identity tensor I transforms as a tensor from Eulerian to Lagrangian coordinates and vice versa.

Like the metric tensor, the inverse metric tensor is symmetric:

$$(\mathbf{g}^{-1})^t = \mathbf{g}^{-1}. \tag{1.77}$$

It is conventional to denote elements of the inverse metric by g^{ij} , rather than—more accurately but more cumbersomely—by $(g^{-1})^{ij}$. The metric tensor and its inverse may be used to "raise" or "lower" indices, for example, $\omega^i = g^{ij} \omega_j$ or $D_{IJ} = g_{IK} D^K_{J}$, or in the dot product: $u^I v^J g_{II} = u^I v_I = u_I v^I$. An implication is that, in a Riemannian manifold, the nature of a tensor becomes less important because one can change the character of its "slots" with the metric tensor.

1.6.1 Covariant Derivative of the Metric

An important property of the metric tensor is that its covariant derivative vanishes:

$$\nabla \mathbf{g} = \mathbf{0}.\tag{1.78}$$

This is obvious in Cartesian Eulerian coordinates: $\nabla_i g_{jk} = \nabla_i \delta_{jk} = \partial_i \delta_{jk} = 0$. In comoving Lagrangian coordinates, we must therefore have

$$\nabla_{I}g_{JK} = \partial_{I}g_{JK} - \Gamma_{II}^{M}g_{MK} - \Gamma_{IK}^{M}g_{JM} = 0, \qquad (1.79)$$

where we have used expression (F.20) for the covariant derivative of a general tensor. We demonstrate in appendix F.1.8 that the implication is that the Lagrangian connection coefficients may be expressed in terms of the Lagrangian components of the metric tensor and its inverse as

 $\Gamma_{IK}^{I} = \frac{1}{2} g^{IL} \left(\partial_{K} g_{LJ} + \partial_{J} g_{KL} - \partial_{L} g_{JK} \right). \tag{1.80}$

In classical tensor calculus, the torsion-free connection coefficients Γ^I_{JK} are also referred to as the *Christoffel symbols of the second kind* and are denoted by $\left\{\begin{smallmatrix}I\\JK\end{smallmatrix}\right\}$. If the covariant derivative of the metric vanishes, then so does the covariant derivative of the inverse metric, which may be confirmed by taking the covariant derivative of the expression $g^{IK}\,g_{KJ}=\delta^I{}_J$. An important consequence of the vanishing of the covariant derivative of the metric and its inverse is that raising and lowering indices commutes with covariant differentiation.

A non-vanishing covariant derivative of the metric tensor is captured by the *nonmetricity tensor*, as discussed in appendices F.1.13 and G.9.10. As an example, nonmetricity is used to capture *point defects* in crystals, as discussed in chapter 3.

1.7 Deformation Rate and Vorticity

The gradient of the material velocity \mathbf{v} is captured by the expression

$$G_j^i \equiv \nabla_j \nu^i, \tag{1.81}$$

which defines the Cartesian Eulerian components of a (1, 1) tensor:

$$\mathbf{G} = G_{j}^{i} \mathbf{e}_{i} \otimes \mathbf{e}^{j} = \nabla_{j} v^{i} \mathbf{e}_{i} \otimes \mathbf{e}^{j} = (\nabla \mathbf{v})^{t}. \tag{1.82}$$

In the first equality, we used the spatial Eulerian vector and one-form basis elements. In the second equality, we used the transpose of the covariant derivative of the material velocity, $\nabla \mathbf{v}$, which we introduced in section 1.5. The transpose of a (1,1) tensor is discussed in appendices D.2.5 and D.11. In a nutshell, we have

$$(G^t)^i_{j} \equiv g^{i\ell} G^k_{\ell} g_{kj} = G^i_{j}, \qquad (1.83)$$

where in the last expression we used the metric to raise and lower the indices. If we think of a (1,1) tensor as a matrix, then the last equality in expression (1.83) implies exchanging its rows and columns to obtain its transpose. Taking the transpose a second time returns the original tensor: $(\mathbf{G}^t)^t = \mathbf{G}$.

We can write the material velocity gradient (1.82) as the sum of a symmetric and an antisymmetric tensor, as discussed in appendices D.2.4 and D.2.5, namely

$$G = D + W, \tag{1.84}$$

where

$$\mathbf{D} \equiv \frac{1}{2} \left(\mathbf{G} + \mathbf{G}^t \right) = \widehat{\mathbf{G}} = \frac{1}{2} \left[(\nabla \mathbf{v})^t + \nabla \mathbf{v} \right]$$
 (1.85)

is the *symmetric deformation-rate tensor*,

$$\mathbf{D} = \mathbf{D}^t, \tag{1.86}$$

and

$$\mathbf{W} \equiv \frac{1}{2} \left(\mathbf{G} - \mathbf{G}^t \right) = \widetilde{\mathbf{G}} = \frac{1}{2} \left[(\nabla \mathbf{v})^t - \nabla \mathbf{v} \right]$$
 (1.87)

the antisymmetric vorticity tensor,

$$\mathbf{W} = -\mathbf{W}^t. \tag{1.88}$$

Problem 1.9 Express equations (1.85) and (1.87) in general spatial components, using the definition of the transpose of a (1, 1) tensor (D.22).

Problem 1.10 Show that

$$\operatorname{tr}(\mathbf{D}) = \nabla \cdot \mathbf{v}$$
 and $\operatorname{tr}(\mathbf{W}) = 0$, (1.89)

where the trace operation, an example of the contraction of a tensor, is defined in appendix D.2.3.

The action of the vorticity tensor on a vector **u** may be expressed as

$$\mathbf{W} \cdot \mathbf{u} = \frac{1}{2} \left(\nabla \times \mathbf{v} \right) \times \mathbf{u}, \tag{1.90}$$

involving the dot product between the vorticity tensor **W** and the vector **u**, that is $W_i^i u^j$. We also encounter the cross product "×" denoting the "curl" or the cross product of two vectors; this is an element of classical tensor calculus we will eschew in favor of the more general Levi-Civita pseudotensor, as discussed in appendices D.7 and D.13. Equation (1.90) justifies the use of the name "vorticity tensor" for W and shows that $\nabla \times \mathbf{v}$ is twice the instantaneous angular velocity of the material in the vicinity of point S at time t.

Problem 1.11 *Prove expression* (1.90) *by writing it out in index notation in Cartesian* Eulerian coordinates, using the properties of the alternating tensor (see appendix D.14).

Problem 1.12 By differentiating the deformation gradient (1.16) with respect to time T, show that $\partial_T F^i_I = G^i_k F^k_I$. (1.91)

We conclude from equation (1.91) that the velocity gradient **G** and the deformation gradient are related to each other via

$$G_{j}^{i} = (F^{-1})_{j}^{I} \partial_{T} F_{I}^{i}. \tag{1.92}$$

Problem 1.13 *Show that, equivalently,*

$$G_{i}^{i} = -F_{I}^{i} \partial_{T} (F^{-1})_{i}^{I}. \tag{1.93}$$

The Lagrangian components of the material velocity gradient may be obtained based on the transformation

$$G_{J}^{I} = (F^{-1})^{I}{}_{i} G_{j}^{i} F_{J}^{j} = (F^{-1})^{I}{}_{i} \partial_{T} F_{J}^{i}.$$

$$(1.94)$$

In box 1.4, we investigate deformation in Euclidean space.

Box 1.4 Deformation in Euclidean Space

In box 1.1, we expressed the motion in Euclidean space in terms of the "position vector" form (1.5), namely, $\mathbf{r} = \phi(\mathbf{X}, T)$. In this box, we consider deformation in Euclidean space. The *deformation tensor* is now defined as the two-point tensor

$$\mathbf{F} = (\nabla_{X}\phi)^{t}, \tag{1.95}$$

where ∇_X denotes the gradient with respect to the particle labeled **X**. If two material particles currently located at Euclidean positions **r** and **r** + d**r** were initially located at **X** and **X** + d **X**, then the relative current and initial position vectors d**r** and d **X** are related via the deformation tensor:

$$d\mathbf{r} = \mathbf{F} \cdot d\mathbf{X}.\tag{1.96}$$

The velocity gradient **G** and the deformation tensor are related to each other via

$$\partial_T \mathbf{F} = \mathbf{G} \cdot \mathbf{F},\tag{1.97}$$

which is a tensorial form of equation (1.91).

The suitability of the name "deformation-rate tensor" for **D** may be appreciated by considering the rate of change of the Lagrangian components of the metric tensor (1.66).

Problem 1.14 Show that

$$\partial_T g_{IJ} = 2 g_{IK} D^K_{\ J} = 2 D_{IJ}.$$
 (1.98)

We conclude that the rate of change of the Lagrangian components of the metric tensor equals two times the Lagrangian components of the deformation-rate tensor, thereby justifying the latter's name. Expression (1.98) is an example of what is called a *Lie derivative*, which we discuss in the next section.

1.8 Lie Derivative

As discussed in appendix F.3, the Lie derivative of a tensor field T relative to the flow of matter v takes a very simple form in Lagrangian coordinates, namely,

$$\mathcal{L}_{\mathbf{v}}\mathbf{T} = \partial_T T^{I_1 \cdots I_p}{}_{I_1 \cdots I_q} \mathbf{e}_{I_1} \otimes \cdots \otimes \mathbf{e}_{I_p} \otimes \mathbf{e}^{I_1} \otimes \cdots \otimes \mathbf{e}^{I_q}. \tag{1.99}$$

This definition implies that Lie derivatives with respect to the flow of Lagrangian basis vectors and one-forms vanish:

$$\mathcal{L}_{\mathbf{v}}\mathbf{e}_{I} = \mathbf{0}, \qquad \mathcal{L}_{\mathbf{v}}\mathbf{e}^{I} = \mathbf{0}. \tag{1.100}$$

The Eulerian components are less intuitive, as discussed in appendix F.3.

Problem 1.15 The Lagrangian components of the Lie derivative of a scalar q are $\partial_T Q$. Show that its Eulerian components are given in terms of the material velocity ${\bf v}$ by $\partial_t q +$ $v^j \partial_i q$.

Problem 1.16 Show that the Eulerian components of the Lie derivative of a vector **u** relative to the material velocity \mathbf{v} are determined by

$$(\mathcal{L}_{\mathbf{v}}\mathbf{u})^i = \partial_t u^i + v^j \, \partial_i u^i - u^j \, \partial_i v^i.$$

Problem 1.17 *Show that the autonomous Lie derivative, discussed in appendix F.3.3,* of a vector \mathbf{u} relative to the material velocity \mathbf{v} equals their Lie bracket:

$$\mathcal{L}_{\mathbf{v}}\mathbf{u} = [\mathbf{v}, \mathbf{u}].$$

Given the definition of the Lie derivative with respect to the material velocity (1.99), we observe that equation (1.98) may be expressed in terms of this derivative in the tensor form

$$\mathcal{L}_{\mathbf{v}}\mathbf{g} = 2\,\mathbf{g} \cdot \mathbf{D}.\tag{1.101}$$

It is important to note that raising and lowering indices does not commute with the Lie derivative, that is, $g_{IK} \partial_T T^{KJ} \neq \partial_T T_I^J$, as a consequence of (1.101). Thus, we should know the precise nature of the tensor of which we are taking the Lie derivative. For this reason, it is sometimes useful to distinguish between the three versions of a rank-2 tensor, as explored in box 1.5.

In section 1.14, we will give an alternative definition of the Lie derivative relative to the flow of matter in terms of the pullback and pushforward.

Box 1.5 Distinguishing Rank-2 Tensors

A rank-2 tensor, such as the deformation-rate tensor \mathbf{D} , may be expressed as a (2,0), (1,1), or (0,2) tensor, with components D^{IJ} , $D^I{}_J = D_J{}^I$, or D_{IJ} , respectively. Most of the time, these distinctions are immaterial because, in a Riemannian manifold, we can raise and lower indices with the metric tensor and its inverse. However, we encountered the problem of raising and lowering indices not commuting with the Lie derivative, which led to a desire to be clear about the nature of the tensor of which we are taking the Lie derivative. This may be accomplished by borrowing notation from music in the form of the *accidentals* "sharp" (\sharp), "natural" (\sharp), and "flat" (\flat) to label (2,0), (1,1), and (0,2) versions of a rank-2 tensor. Thus, the deformation-rate tensor \mathbf{D} has three versions, a sharp version \mathbf{D}^{\sharp} with elements D^{IJ} , a natural version \mathbf{D}^{\sharp} with elements D^{IJ} , and a flat version \mathbf{D}^{\flat} with elements D_{IJ} . In this notation, equation (1.101) for the Lie derivative of the metric relative to the flow of matter becomes

$$\mathcal{L}_{\mathbf{v}}\mathbf{g} = 2\,\mathbf{g}\cdot\mathbf{D}^{\natural} = 2\,\mathbf{D}^{\flat}.\tag{1.102}$$

To reduce clutter, we continue to use D, W, and G to denote the natural forms D^{\natural} , W^{\natural} , and G^{\natural} .

Problem 1.18 *Using the notation in box 1.5, show that*

$$\mathcal{L}_{\mathbf{v}}\mathbf{g}^{-1} = -2\mathbf{D} \cdot \mathbf{g}^{-1} = -2\mathbf{D}^{\sharp}.$$
 (1.103)

Problem 1.19 Let ${\bf T}$ denote a (1,1) tensor with Lie derivative ${\cal L}_{\bf v}{\bf T}$ relative to the flow of matter. Show that

$$(\mathcal{L}_{\mathbf{v}} \mathbf{T})^{t} = \mathcal{L}_{\mathbf{v}} \mathbf{T}^{t} + 2 \mathbf{D} \cdot \mathbf{T}^{t} - 2 \mathbf{T}^{t} \cdot \mathbf{D}, \tag{1.104}$$

which illustrates that raising and lowering indices does not commute with taking the Lie derivative:

$$(\mathcal{L}_{\mathbf{v}} \mathbf{T})^t \neq \mathcal{L}_{\mathbf{v}} \mathbf{T}^t.$$

If we take the transpose of equation (1.104), remembering that for two (1, 1) tensors **A** and **B** we have $(\mathbf{A} \cdot \mathbf{B})^t = \mathbf{B}^t \cdot \mathbf{A}^t$, we find that

$$\mathcal{L}_{\mathbf{v}} \mathbf{T} - (\mathcal{L}_{\mathbf{v}} \mathbf{T}^{t})^{t} = 2 [\mathbf{T}, \mathbf{D}], \tag{1.105}$$

where we have introduced the *commutator* of two (1, 1) tensors:

$$[\mathbf{T}, \mathbf{D}] \equiv \mathbf{T} \cdot \mathbf{D} - \mathbf{D} \cdot \mathbf{T}. \tag{1.106}$$

We conclude that if a (1,1) tensor commutes with the deformation rate tensor, $[\mathbf{T},\mathbf{D}] = \mathbf{0}$, then $(\mathcal{L}_{\mathbf{v}}\mathbf{T})^t = \mathcal{L}_{\mathbf{v}}\mathbf{T}^t$. We encountered an example of the Lie derivative previously when we investigated the time evolution of the connection coefficients. Specifically, equation (1.55) may be expressed in terms of the Lie derivative in the tensor form

$$\mathcal{L}_{\mathbf{v}}\Gamma = \nabla \nabla \mathbf{v}.\tag{1.107}$$

1.9 Euler Derivative

In complementary fashion to the Lie derivative discussed in the previous section, the Euler derivative of a general tensor field T takes a very simple form in Cartesian Eulerian coordinates:

 $d_t \mathbf{T} \equiv \partial_t T^{i_1 \cdots i_p}{}_{i_1 \cdots i_a} \, \mathbf{e}_{i_1} \otimes \cdots \otimes \mathbf{e}_{i_p} \otimes \mathbf{e}^{j_1} \otimes \cdots \otimes \mathbf{e}^{j_q}.$ (1.108)

In this book, we will not use the commonly used notation $\partial_t \mathbf{T}$ to denote the Euler derivative of a tensor field T, because we reserve ∂_t strictly for partial differentiation of tensor field components expressed in Eulerian coordinates.

In this case, the Lagrangian components of the Euler derivative are less intuitive.

Problem 1.20 The Eulerian components of the Euler derivative of a scalar q are $\partial_t q$. Show that its Lagrangian components are given by $\partial_T Q - v^J \partial_I Q$.

Problem 1.21 Show that the Lagrangian components of the Euler derivative of a vector u are given by $(\mathbf{d}_{t}\mathbf{u})^{I} = \partial_{T} u^{I} - v^{J} \partial_{I} u^{I} + u^{J} \partial_{I} v^{I}$. (1.109)

Problem 1.22 *Use the fact that the Lagrangian connection coefficients are torsion-free* to demonstrate that the Lagrangian components of the Euler derivative of a vector may also be expressed as $(\mathbf{d}_{t}\mathbf{u})^{I} = \partial_{T} u^{I} - v^{J} \nabla_{I} u^{I} + u^{J} \nabla_{I} v^{I}.$ (1.110)

Thus, in tensor notation, for a torsion-free connection, we have the following relationship between the Euler derivative and the Lie derivative of a vector:

$$d_t \mathbf{u} = \mathcal{L}_{\mathbf{v}} \mathbf{u} - \mathbf{v} \cdot \nabla \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{v}, \tag{1.111}$$

a result we could have anticipated based on problem 1.16. In particular, for the material velocity $d_t \mathbf{v} = \mathcal{L}_{\mathbf{v}} \mathbf{v}.$ (1.112)

Problem 1.23 Show that

$$\mathbf{d}_t \mathbf{v} = \partial_t v^i \, \mathbf{e}_i = \partial_T v^I \, \mathbf{e}_I. \tag{1.113}$$

1.10 Material Derivative

The material derivative or substantial derivative of a general tensor field T is defined in terms of the Euler derivative, the material velocity v, and the covariant derivative as

$$D_t \mathbf{T} \equiv d_t \mathbf{T} + \mathbf{v} \cdot \nabla \mathbf{T}. \tag{1.114}$$

This derivative combines the local change of a tensor field, $d_t \mathbf{T}$, with a term due to advection, $\mathbf{v} \cdot \nabla \mathbf{T}$. Thus, it captures the rate of change of a tensor field experienced by an observer who "rides along" with an element of the continuum.

Problem 1.24 *Show that for a* (0,0) *tensor, that is, a scalar,* q*, its material derivative and Lie derivative relative to the motion are equivalent:*

$$D_t q = \mathcal{L}_{\mathbf{v}} q. \tag{1.115}$$

Problem 1.25 Show that

$$D_{t}\mathbf{v} = d_{t}\mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v}$$

$$= (\partial_{t}v^{i} + v^{j} \nabla_{j}v^{i}) \mathbf{e}_{i}$$

$$= (\partial_{T}v^{I} + v^{J} \nabla_{J}v^{I}) \mathbf{e}_{I}.$$
(1.116)

It is important to note that the material derivative involves the covariant derivative, and thus a connection, whereas the Lie Euler derivatives require no connection.

1.11 Corotational Material Derivative

Corotational material derivatives capture the rate of change experienced by an observer who comoves and *corotates* with an element of the continuum; we use the notation \mathring{D}_t to denote a generic corotational material derivative. Depending on the rate of rotation, these derivatives carry different names. The most obvious option is to consider a corotation rate determined by the vorticity tensor (1.87). These derivatives are most commonly used to capture the rate of change of (1,1) tensors.

Problem 1.26 Let T be a (1,1) tensor. Show that for a torsion-free connection

$$D_{t}T = \mathcal{L}_{v}T + G \cdot T - T \cdot G. \tag{1.117}$$

Using the decomposition (1.84), we see that equation (1.117) implies the identity

$$D_t \mathbf{T} + \mathbf{T} \cdot \mathbf{W} - \mathbf{W} \cdot \mathbf{T} = \mathcal{L}_{\mathbf{v}} \mathbf{T} + \mathbf{D} \cdot \mathbf{T} - \mathbf{T} \cdot \mathbf{D}. \tag{1.118}$$

The terms on the left-hand side of this equation define the *Zaremba–Jaumann rate* (Zaremba, 1903; Jaumann, 1911) of the (1, 1) tensor **T**, which is an example of a corotational material derivative:

$$\mathring{\mathbf{D}}_{t}^{\mathbf{J}}\mathbf{T} \equiv \mathbf{D}_{t}\mathbf{T} + \mathbf{T} \cdot \mathbf{W} - \mathbf{W} \cdot \mathbf{T}. \tag{1.119}$$

The Zaremba–Jaumann rate is an example of a so-called *objective rate*, which means that it is a measure of a time rate of change that is *independent of the frame of reference*. In other words,

an objective rate is unaffected by rigid translations and rotations of the reference frame. The material time derivative is not objective, but the Lie derivative is.

For a general tensor T, we define the corotational material derivative due to a generic spin tensor Ω as

$$(\mathring{\mathbf{D}}_{t}^{\Omega} \mathbf{T})^{ij\cdots}{}_{k\ell\cdots} \equiv (\mathbf{D}_{t} \mathbf{T})^{ij\cdots}{}_{k\ell\cdots} - \Omega^{i}{}_{m} T^{mj\cdots}{}_{k\ell\cdots} - \Omega^{j}{}_{m} T^{im\cdots}{}_{k\ell\cdots} - \cdots + T^{ij\cdots}{}_{m\ell\cdots} \Omega^{m}{}_{k} + T^{ij\cdots}{}_{km\cdots} \Omega^{m}{}_{\ell} + \cdots .$$

$$(1.120)$$

Note how each contravariant and covariant component is rotated by the spin tensor. The Zaremba–Jaumann rate of a general tensor is obtained by using the vorticity tensor as the spin tensor, $\Omega = W$, in equation (1.120).

1.12 Levi-Civita Density and Capacity

Most readers will be familiar with the *alternating symbol* or *Levi-Civita symbol* $\underline{\epsilon}_{ijk}$, ¹⁰ which is used to express cross products in index notation, for example, $\mathbf{u} \times \mathbf{w}$ has components $\underline{\epsilon}_{ijk} u^j w^k$. The indices on the alternating symbol suggest that it is tensorial, and in this section, we investigate to what extent this is the case.

We begin by defining two different alternating symbols in spatial coordinates with all lower and all upper indices:

$$\underline{\epsilon}_{ijk} = \begin{cases} +1 & \text{if } i, j, k \text{ is an } even \text{ permutation of } 1, 2, 3, \\ 0 & \text{if any indices are identical }, \\ -1 & \text{if } i, j, k \text{ is an } odd \text{ permutation of } 1, 2, 3, \end{cases}$$

$$(1.121)$$

and11

$$\overline{\epsilon}^{ijk} = \begin{cases}
+1 & \text{if } i, j, k \text{ is an } even \text{ permutation of } 1, 2, 3, \\
0 & \text{if any indices are identical }, \\
-1 & \text{if } i, j, k \text{ is an } odd \text{ permutation of } 1, 2, 3.
\end{cases} (1.122)$$

A complementary set of alternating symbols in Lagrangian coordinates is written as $\underline{\epsilon}_{IJK}$ and $\overline{\epsilon}^{IJK}$, and these symbols also take values of +1, 0, or -1.

The introduction of these alternating symbols enables us to define the determinant of the deformation gradient as

$$F = \begin{vmatrix} F^{1}_{1} & F^{1}_{2} & F^{1}_{3} \\ F^{2}_{1} & F^{2}_{2} & F^{2}_{3} \\ F^{3}_{1} & F^{3}_{2} & F^{3}_{2} \end{vmatrix} \equiv \frac{1}{3!} \, \underline{\epsilon}_{ijk} \, F^{i}_{I} \, F^{j}_{J} \, F^{k}_{K} \, \overline{\epsilon}^{IJK}. \tag{1.123}$$

The expression for the determinant given by the second equality in equation (1.123) is more general than the first equality, which is borrowed from matrix algebra.

 $^{^{10}}$ The reason for using the underline will become clear in a moment.

¹¹The reason for using the overline will become clear in a moment.

Let us transform the symbol $\underline{\epsilon}_{ijk}$ to Lagrangian coordinates as if it were a tensor. We have

$$\underline{\epsilon}'_{IJK} = F^i{}_I F^j{}_J F^k{}_K \underline{\epsilon}_{ijk}. \tag{1.124}$$

How is the transformation result $\underline{\epsilon}'_{IJK}$ related to the symbol $\underline{\epsilon}_{IJK}$? If we contract equation (1.124) with the alternating symbol $\overline{\epsilon}^{IJK}$ we obtain

$$\bar{\epsilon}^{IJK} \underline{\epsilon'}_{IJK} = \bar{\epsilon}^{IJK} F^i_{I} F^j_{J} F^k_{K} \underline{\epsilon}_{ijk} = 3! F, \qquad (1.125)$$

where in the second equality we used equation (1.123). We conclude that $\underline{\epsilon}'_{IJK}$ must take the form

$$\underline{\epsilon}'_{IIK} = F \underline{\epsilon}_{IIK}, \tag{1.126}$$

such that equation (1.125) is satisfied. Thus, we conclude from equation (1.124) that the alternating symbols $\underline{\epsilon}_{ijk}$ and $\underline{\epsilon}_{IJK}$ are related via

$$\underline{\epsilon}_{IJK} = \frac{1}{F} F^i{}_I F^j{}_J F^k{}_K \underline{\epsilon}_{ijk}. \tag{1.127}$$

This transformation rule is modified from the usual tensor transformation rule by the factor 1/F. Objects which transform according to this modified rule are called *tensor capacities* of *weight* one.

A similar approach shows that the alternating symbols $\bar{\epsilon}^{ijk}$ and $\bar{\epsilon}^{IJK}$ are related via

$$\bar{\epsilon}^{IJK} = F(F^{-1})^{I}_{i} (F^{-1})^{J}_{i} (F^{-1})^{K}_{k} \bar{\epsilon}^{ijk}. \tag{1.128}$$

This is the transformation rule for a *tensor density* of weight one. Tensor densities and capacities are discussed in detail in appendix D.6.

An important implication of the results in this section is that the cross product between two vectors, $\mathbf{u} \times \mathbf{w}$, expressed in terms of the alternating symbol, $\underline{\epsilon}_{ijk} u^j w^k$, defines a (0,1) tensor *capacity*.

1.13 Levi-Civita Pseudotensor and Volume Form

Upon calculating the determinant of the metric tensor in Lagrangian coordinates (1.66) based on definition (D.58), using the rule det(AB) = det(A) det(B) for the product of two matrices A and B (see box 1.6), and taking the square root of the result, we find

$$\overline{G} = F\overline{g}.\tag{1.129}$$

Here F is the determinant of the deformation gradient given by equation (1.123), and we defined the Lagrangian and Eulerian square roots of the determinant of the metric as

$$\overline{G} \equiv \left(\frac{1}{3!} \overline{\epsilon}^{IJK} g_{IL} g_{JM} g_{KN} \overline{\epsilon}^{LMN}\right)^{1/2}, \qquad (1.130)$$

and

$$\bar{g} \equiv \left(\frac{1}{3!} \,\bar{\epsilon}^{ijk} \,g_{i\ell} \,g_{jm} \,g_{kn} \,\bar{\epsilon}^{\,\ell mn}\right)^{1/2},\tag{1.131}$$

respectively. We deduce from (1.129) that the square root of the determinant of the metric \bar{g} transforms like a scalar density of weight one.

Box 1.6 det(A · B)

In this box we demonstrate that $det(\mathbf{A} \cdot \mathbf{B}) = det(\mathbf{A}) det(\mathbf{B})$ for two (1,1) tensors \mathbf{A} and \mathbf{B} . Using definition equation (D.58), the determinant of $\mathbf{A} \cdot \mathbf{B}$ is

$$\det(\mathbf{A} \cdot \mathbf{B}) = \frac{1}{3!} \, \overline{\epsilon}^{IJK} A^L_P B^P_I A^M_Q B^Q_J A^N_R B^R_K \underline{\epsilon}_{LMN}.$$

According to equation (1.127), we have

$$A^{L}_{P}A^{M}_{Q}A^{N}_{R}\underline{\epsilon}_{LMN} = \det(\mathbf{A})\underline{\epsilon}_{POR},$$

and

$$\overline{\epsilon}^{IJK} B^P_I B^Q_I B^R_K = \det(\mathbf{B}) \overline{\epsilon}^{PQR}.$$

Thus

$$\det(\mathbf{A} \cdot \mathbf{B}) = \frac{1}{3!} \det(\mathbf{A}) \, \underline{\epsilon}_{PQR} \det(\mathbf{B}) \, \overline{\epsilon}^{PQR} = \det(\mathbf{A}) \det(\mathbf{B}) \,,$$

as advertised.

Problem 1.27 *Show that the determinant of the inverse metric,*

$$\underline{g} \equiv \frac{1}{\overline{g}},\tag{1.132}$$

transforms as a scalar capacity of weight one:

$$\underline{G} = \frac{1}{F} \underline{g}. \tag{1.133}$$

Problem 1.28 Show that

$$\bar{\epsilon}^{IJK} g_{PL} g_{IM} g_{KN} \bar{\epsilon}^{LMN} = 2 \, \bar{G}^2 \, \delta^I_P.$$
 (1.134)

Problem 1.29 *Demonstrate Cramer's rule for the inverse of the metric tensor:*

$$g^{NK} = \frac{1}{2} \underline{G}^2 \, \overline{\epsilon}^{IJK} \, \overline{\epsilon}^{LMN} g_{IL} g_{JM}, \qquad (1.135)$$

using equation (1.134). Cramer's rule may be used to solve a system of three simultaneous linear equations.

Problem 1.30 Show that

$$\underline{g}\,\partial_{i}\overline{g} = \Gamma^{j}_{ij} \quad \text{and} \quad \underline{G}\,\partial_{I}\overline{G} = \Gamma^{J}_{IJ}.$$
 (1.136)

The transformation rule (1.129) motivates the introduction of the tensor

$$\boldsymbol{\epsilon} = \epsilon_{ijk} \, \mathbf{e}^i \otimes \mathbf{e}^j \otimes \mathbf{e}^k = \epsilon_{IJK} \, \mathbf{e}^I \otimes \mathbf{e}^J \otimes \mathbf{e}^K, \tag{1.137}$$

where

$$\epsilon_{ijk} \equiv \overline{g} \, \underline{\epsilon}_{ijk} \quad \text{and} \quad \epsilon_{IJK} \equiv \overline{G} \, \underline{\epsilon}_{IJK}.$$
 (1.138)

Equation (1.137) defines a tensor, since it transforms according to rules (D.26) and (D.27). Instead of $\{+1,0,-1\}$, it takes values of $\{+\overline{g},0,-\overline{g}\}$ and $\{+\overline{G},0,-\overline{G}\}$, respectively. However, a change in the *orientation* or *handedness* of the coordinate system changes the sign of this tensor, which means it is a *pseudotensor* (Frankel, 2004), as discussed in appendix D.6.

The implication for the "cross product" in three dimensions is that one should use the pseudotensor ϵ for this purpose, *not* the alternating symbols $\underline{\epsilon}_{ijk}$ and $\underline{\epsilon}_{IJK}$, especially in curvilinear Lagrangian coordinates.

We identify the Levi-Civita pseudotensor (1.137) with the *volume form*, a completely antisymmetric (0, 3) *pseudoform*. To justify the nomenclature *volume form*, imagine feeding the (0, 3)-pseudotensor ϵ three small vectors $\Delta \mathbf{u} = \Delta u^i \, \mathbf{e}_i$, $\Delta \mathbf{v} = \Delta v^j \, \mathbf{e}_j$, and $\Delta \mathbf{w} = \Delta w^k \, \mathbf{e}_k$. The result is the scalar

$$\epsilon(\Delta \mathbf{u}, \Delta \mathbf{v}, \Delta \mathbf{w}) = \epsilon_{iik} \, \Delta u^i \, \Delta v^j \, \Delta w^k = \Delta \mathbf{u} \cdot (\Delta \mathbf{v} \times \Delta \mathbf{w}). \tag{1.139}$$

This is, of course, precisely the volume of the parallelepiped spanned by the three vectors $\Delta \mathbf{u}$, $\Delta \mathbf{v}$, and $\Delta \mathbf{w}$.

In appendix G.5, we identify a three-dimensional volume with a *three-form* expressed using either Eulerian or Lagrangian basis one-forms:

$$\epsilon = \frac{1}{3!} \epsilon_{ijk} \mathbf{e}^{i} \wedge \mathbf{e}^{j} \wedge \mathbf{e}^{k}
= \overline{g} \epsilon_{123} dx^{1} \wedge dx^{2} \wedge dx^{3}
= \frac{1}{3!} \epsilon_{IJK} \mathbf{e}^{I} \wedge \mathbf{e}^{J} \wedge \mathbf{e}^{K}
= \overline{G} \epsilon_{123} dX^{1} \wedge dX^{2} \wedge dX^{3}.$$
(1.140)

Problem 1.31 Show that

$$\partial_i \epsilon_{jk\ell} = \Gamma_{im}^m \epsilon_{jk\ell}$$
 and $\partial_I \epsilon_{JKL} = \Gamma_{IM}^M \epsilon_{JKL}$. (1.141)

Problem 1.32 Show that

$$\nabla_i \epsilon_{jk\ell} = 0$$
 and $\nabla_I \epsilon_{JKL} = 0$. (1.142)

It is straightforward to show that the three-vector with Lagrangian and Eulerian elements $\epsilon^{ijk} = g \, \overline{\epsilon}^{ijk}$ and $\epsilon^{IJK} = \underline{G} \, \overline{\epsilon}^{IJK}$, respectively, has similar properties as the volume form.

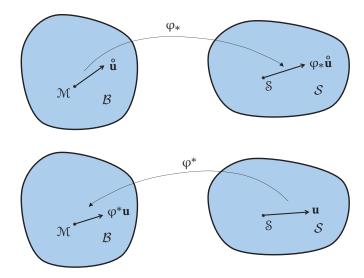


Figure 1.5: *Top*: Let $\mathring{\mathbf{u}} = \mathring{u}^I \mathring{\mathbf{e}}_I$ denote a vector in tangent space of the referential manifold \mathcal{B} at material location \mathcal{M} . The pushforward of $\mathring{\mathbf{u}}$ from the referential manifold \mathcal{B} to the spatial manifold \mathcal{S} with the motion φ is defined as $\varphi_*\mathring{\mathbf{u}} \equiv \mathring{u}^I F^i{}_I \mathbf{e}_i$, which defines a vector in tangent space of the spatial manifold S at the current location of the particle S. Bottom: Conversely, let $\mathbf{u} = u^i \mathbf{e}_i$ denote a vector in tangent space of the spatial manifold $\mathcal S$ at location $\mathcal S$. The *pullback* of $\mathbf u$ from the spatial manifold $\mathcal S$ to the material manifold \mathcal{B} with the motion φ is defined as $\varphi^* \mathbf{u} \equiv u^i (F^{-1})^{l_i} \mathring{\mathbf{e}}_l = u^l \mathring{\mathbf{e}}_l$. If the referential vector \mathbf{u} is the pullback of a spatial vector \mathbf{u} , that is, $\mathbf{u} = \boldsymbol{\varphi}^* \mathbf{u}$, then $\mathbf{u}^I = \mathbf{u}^I$; in other words, the referential components of the referential vector equal the Lagrangian components of the spatial vector.

The volume form (1.137) and the metric (1.64) are the two most important entities capturing the structure of a Riemannian manifold.

1.14 Pullback and Pushforward

To introduce the notions of *strain* and *stress*, we need to define an equilibrium state at some referential time T_0 , for example, the state of the Earth prior to an earthquake. This state is captured by the referential manifold \mathcal{B} introduced in section 1.1 and illustrated in figure 1.1. Thus, we need to be able to compare tensors in the spatial manifold S at time t = T with tensors in the referential manifold \mathcal{B} at time $t=T_0$ and vice versa. This is accomplished based on "pushforwards" and "pullbacks" associated with the motion φ , which are concepts discussed in appendix E.3 and illustrated in figure 1.5.

To clearly distinguish tensors in the referential manifold $\mathcal B$ from tensors in the spatial manifold S, we use a "°" for their identification, and we use $\overset{\circ}{\mathbf{e}}_I$ and $\overset{\circ}{\mathbf{e}}^I$ to denote referential basis vectors and one-forms, respectively. For example, the metric tensor in the referential manifold is denoted by

$$\mathring{\mathbf{g}} = \mathring{g}_{IJ} \, \mathring{\mathbf{e}}^I \otimes \mathring{\mathbf{e}}^J, \tag{1.143}$$

where

$$\mathring{g}_{IJ}(X) \equiv g_{IJ}(X, T_0),$$
 (1.144)

and the square root of its determinant is

$$\overset{\circ}{\overline{G}}(X) \equiv \overline{G}(X, T_0). \tag{1.145}$$

We have thus far chosen this to be a Cartesian metric; here, we accommodate the more general case of a curvilinear referential coordinate system.

As an example, the pushforward of the metric in the referential manifold to the spatial manifold is defined by

 $\varphi_* \mathring{\mathbf{g}} \equiv \mathring{\mathbf{g}}_{IJ} (F^{-1})^I_{i} (F^{-1})^J_{j} \mathbf{e}^i \otimes \mathbf{e}^j$ $= \mathring{\mathbf{g}}_{IJ} \mathbf{e}^I \otimes \mathbf{e}^J, \tag{1.146}$

where in the second equality we expressed the pushforward in Lagrangian coordinates in the spatial manifold. Because referential coordinates in the referential manifold coincide with Lagrangian coordinates in the spatial manifold at time $t = T_0$, the Lagrangian components of the pushforward $\phi_* \mathring{\mathbf{g}}$ are identical to the referential components of the referential metric tensor, \mathring{g}_{II} .

Similarly, the pullback of the metric tensor in the spatial manifold to the referential manifold is defined by

 $\varphi^* \mathbf{g} \equiv g_{ij} F^i{}_I F^j{}_J \mathring{\mathbf{e}}^I \otimes \mathring{\mathbf{e}}^J$ $= g_{IJ} \mathring{\mathbf{e}}^I \otimes \mathring{\mathbf{e}}^J.$ (1.147)

In this case, the referential components of the pullback $\phi^* \mathbf{g}$ are identical to the Lagrangian components of the spatial metric tensor, g_{II} .

In general, the Lagrangian components of the pushforward of a tensor \mathring{T} from the referential to the spatial manifold, $\phi_*\mathring{T}$, are identical to its referential components, and the referential components of the pullback of a tensor T from the spatial to the referential manifold, ϕ^*T , are identical to its Lagrangian components.

In terms of the inverse map $\Phi: \tilde{S} \to \tilde{B}$, we note that the pullback Φ^* is equivalent to the pushforward ϕ_* , and that the pushforward Φ_* is equivalent to the pullback ϕ^* . With this understanding, we will continue to use the notation ϕ_* and ϕ^* for pushforwards and pullbacks.

At the end of section 1.1, we noted the dual role of the motion (1.3), describing both a map between material points in the referential manifold and the location of that element of the material in the spatial manifold, and defining a coordinate transformation between Eulerian and Lagrangian coordinates in the spatial manifold. The pushforward and pullback involve a subtle third use of the motion, this time to provide a means of "pulling" or "pushing" tensors between the referential and spatial manifolds.

Finally, we note that the Lie derivative relative to the flow of matter (1.99) may be expressed in terms of a pullback and a pushforward as

$$\mathcal{L}_{\mathbf{v}}\mathbf{T} = \mathbf{\phi}_* \, \partial_T \, \mathbf{\phi}^* \mathbf{T}. \tag{1.148}$$

Problem 1.33 *Demonstrate equation* (1.148) *for a* (1,1) *tensor.*

1.15 Volumes

If we feed the volume form (1.137) three infinitesimal vectors expressed in Eulerian basis vectors, $dr^1 \mathbf{e}_1$, $dr^2 \mathbf{e}_2$, and $dr^3 \mathbf{e}_3$, it returns

$$\epsilon(dr^1 \mathbf{e}_1, dr^2 \mathbf{e}_2, dr^3 \mathbf{e}_3) = \epsilon(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) dr^1 dr^2 dr^3 = \overline{g} \underline{\epsilon}_{123} dr^1 dr^2 dr^3.$$
 (1.149)

The Eulerian and Lagrangian components of the infinitesimal vectors are related via $r^i = F^i{}_I dX^I$, such that

$$\bar{g} \, \underline{\epsilon}_{123} \, dr^1 \, dr^2 \, dr^3 = \bar{g} \, \underline{\epsilon}_{123} \, F^1{}_I \, F^2{}_J \, F^3{}_K \, dX^I \, dX^J \, dX^K
= \frac{1}{3!} \, \bar{g} \, \underline{\epsilon}_{ijk} \, F^i{}_I \, F^j{}_J \, F^k{}_K \, dX^I \, dX^J \, dX^K
= \frac{1}{3!} \, \bar{g} \, F \, \underline{\epsilon}_{IJK} \, dX^I \, dX^J \, dX^K
= \bar{g} \, F \, \underline{\epsilon}_{123} \, dX^1 \, dX^2 \, dX^3,$$
(1.150)

where we used relationship (1.127). Thus, we find the relationship

$$\bar{g} dr^1 dr^2 dr^3 = F \bar{g} dX^1 dX^2 dX^3 = \bar{G} dX^1 dX^2 dX^3,$$
 (1.151)

where, in the last equality, we used (1.129). This is, of course, precisely what happens in a change of variables during integration:

$$\overline{g} d^3 r = \overline{G} d^3 X. \tag{1.152}$$

We may wish to establish the *change in volume* when an element of the continuum transitions from the referential manifold to the spatial manifold. In the referential manifold \mathcal{B} , the volume element is

$$\overset{\circ}{\epsilon} = \overset{\circ}{\epsilon}_{IJK} \overset{\circ}{\mathbf{e}}^{I} \otimes \overset{\circ}{\mathbf{e}}^{J} \otimes \overset{\circ}{\mathbf{e}}^{K}
= \overset{\circ}{G} \overset{\circ}{\epsilon}_{IJK} \overset{\circ}{\mathbf{e}}^{I} \otimes \overset{\circ}{\mathbf{e}}^{J} \otimes \overset{\circ}{\mathbf{e}}^{K},$$
(1.153)

or, expressed as a three-form,

$$\overset{\circ}{\epsilon} = \frac{1}{3!} \, \mathring{\epsilon}_{IJK} \, \mathring{\mathbf{e}}^{I} \wedge \mathring{\mathbf{e}}^{J} \wedge \mathring{\mathbf{e}}^{K}
= \frac{\mathring{G}}{G} \underline{\epsilon}_{123} \, \mathring{\mathbf{e}}^{1} \wedge \mathring{\mathbf{e}}^{2} \wedge \mathring{\mathbf{e}}^{3},$$
(1.154)

where $\overset{\circ}{G}$ is the square root of the determinant of the referential metric given by (1.145). The pushforward of the referential volume element is

$$\varphi_* \mathring{\boldsymbol{\epsilon}} = \overset{\circ}{\overline{G}} \underline{\epsilon}_{IJK} (F^{-1})^{I}_i (F^{-1})^{J}_j (F^{-1})^{K}_k \mathbf{e}^i \otimes \mathbf{e}^j \otimes \mathbf{e}^k
= \overset{\circ}{\overline{G}} \underline{G} \epsilon_{IJK} \mathbf{e}^I \otimes \mathbf{e}^j \otimes \mathbf{e}^K
= F^{-1} \overset{\circ}{\overline{G}} \underline{g} \boldsymbol{\epsilon}
= J^{-1} \boldsymbol{\epsilon},$$
(1.155)

where in the third equality we used equation (1.133), and where in the last equality we have introduced the *Jacobian of the motion* (see, e.g., Marsden and Hughes, 1983, Proposition 5.3)

$$J \equiv \overline{G} \stackrel{\circ}{G} = F \overline{g} \stackrel{\circ}{G}. \tag{1.156}$$

Note that at the referential time, we have

$$J(X, T_0) = 1. (1.157)$$

(continued...)

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Bellman, R. E. 393

Bensen, G. D. 240

AUTHOR INDEX

Aagaard, B. T. 282 Abdel-Fattah, T. T. 325 Acharya, A. 162 Adkins, C. J. 12, 76 Aghasi, A. 405 Akçelik, V. 344, 385 Aki, K. 54, 201, 348 Akl, A. Y. 322, 325 Al-Attar, D. 282, 338 Alkhalifah, T. 405 Alterman, Z. 262 Amari, S. 133 Ambriosio, L. 405 Anderson, D. L. 214, 215, 218, 252, 318, 329, 362 Angelov, T. A. 322 Appel, W. 501

Babuška, I. 296, 298

Aravkin, A. Y. 393

Bachmann, E. 370, 371, 373, 374, 376, 392, 393 Backus, G. E. 54, 142, 144, 180, 192, 194, 394

Baeten, G. 406

Baig, A. M. 344, 361, 385 Bamberger, A. 343, 348

Bao, H. 282 Bar, L. 405 Barou, F. 133 Basini, P. 312 Bassin, C. 414 Baysal, E. 274 Bazaraa, A. S. 322 Beausir, B. 133 Beer, G. 322 Behle, A. 274 Beller, S. 410, 411 Bérenger, J. P. 308, 309 Berry, B. S. 243 Betancourt, M. 393 Bettess, P. 322, 323 Bielak, J. 282, 344, 385 Bilby, B. A. 133 Birch, A. C. 240, 242 Biros, G. 344, 385 Bishop, R. L. 415 Blitz, C. 312 Bobra, P. 205 Bóna, A. 187 Boore, D. M. 262 Borgnakke, C. 12, 76 Bouchon, M. 282 Bozdağ, E. 314, 333, 334, 351, 363, 364, 371, 386, 390, 408, 411-414 Brenders, A. J. 385, 405 Brenguier, F. 240 Broschat, S. L. 309 Brossier, R. 393, 403 Bruhns, T. T. 61 Bull, A. L. 395 Bullen, K. E. 214, 227

Cabral, F. 169 Callen, H. B. 12, 76 Campillo, M. 240, 282 Canuto, C. 298

Bullough, B. R. 133

Bunks, C. 406

Burger, M. 405

Bunge, H.-P. 344, 386

Cao, H. 362	217-220, 222-224, 226, 233, 243, 244, 246,
Capdeville, Y. 191, 227, 281, 297, 298	279–281, 297, 335, 344, 346, 347, 355, 357,
Capolungo, L. 133	358, 360, 361, 365, 367, 385, 462
Capozziello, S. 134	Dalton, C. A. 405
Carcione, J. M. 274, 297, 298	Daubechies, I. C. 313, 315
Carroll, S. M. 163, 415, 429, 483, 484, 501	De la Puente, J. 318
Cartan, E. 134	De Maag, J. W. 406
Casarotti, E. 312	De Rham, G. 135, 136, 142, 143
Cassereau, D. 344	De Sterck, H. 411
Castillo-Covarrubias, J. M. 308	Demouchy, S. 133
Chaljub, E. 191, 227, 262, 297, 298, 313	Dennis, J. 407
Chan, T. F. 405	Deuss, A. 281, 340
Chandrasekhar, S. 214	DeWit, R. 135, 153, 174, 177, 181
Chao, D. 361, 414	Djikpéssé, H. 385
Chapman, C. H. 344, 355, 357, 385	Do Carmo, M. P. 421, 424, 495
Charléty, J. 313, 315	Doyle, T. C. 82
Chavent, G. 343, 344, 348, 406	Duane, S. 393
Chen, M. 361, 414	Dubrovin, B. A. 13, 415
Chen, P. 385	Dudek, M. 162
Chen, Y. 369	Dumbser, M. 318
Chew, W. C. 309	Dziewoński, A. M. 214, 215, 218, 252, 318, 329,
Chouet, B. A. 262	385, 414
Christensen-Dalsgaard, J. 240	
Chu, R. 239	Eaton, W. 333, 338-340
Chung, G. 405	Eckart, C. 226
Cianci, R. 134	Edelen, D.G.B. 135, 152, 157, 158
Ciardelli, C. 364	Edmonds, A. R. 461
Claerbout, J. F. 403, 410	Eikrem, K. S. 393
Clairaut, A. C. 214	Einstein, A. 178
Clayton, R. 308	Ekström, G. 414
Cockburn, B. 318	El-Esnawy, N. A. 322
Cohen, G. 297	Emson, C. 322, 323
Collino, F. 309	Engdahl, E. R. 358
Cordier, P. 133	Engl, H. 404, 405
Cosserat, E. 135	Engquist, B. 308
Cosserat, F. 135	Epanomeritakis, I. 344, 385
Courtier, P. 344, 350	Epstein, M. 135, 149
Crase, E. 349, 385	Ericksen, J. L. 82
Crawford, O. 282	Eshelby, J. D. 192
CUBIT 312	
Cui, C. 370, 371, 373, 374, 376, 392, 393,	Faccioli, E. 297
411–414	Fan, Y. 240
Cummins, P. R. 281	Fang, Z. 393
Cupillard, P. 241	Fernández, A. 344, 385
Curnier, A. 323	Ferrazzini, V. 240
Curtis, A. 393	Festa, G. 191, 227, 298
	Fichtner, A. 344, 349, 362, 385, 386, 393, 407, 410
Da Silva, C. 393	Filho, A. Q. 274
Dahlen, F. A. 1, 3, 4, 7, 36, 39, 65, 67, 68, 85, 86,	Fink, M. 344

96, 127, 142, 144, 186, 192, 202, 203, 214, 215, Flanders, H. 495

Fletcher, R. 351, 398 Hara, T. 281 Fomel, S. 410 Hastings, F. D. 309 Fomenko, A. T. 13, 415 Hastings, W. K. 393 Forsyth, D. 274 Hatori, T. 281 Fournier, A. 297, 335 He, J. Q. 309 Frankel, T. 4, 29, 38, 68, 458, 499, 502, 503, 508, Heaton, R. E. 182 523 Heaton, T. H. 182, 282 French, S. W. 386 Hehl, F. W. 5, 69, 134, 135, 138, 147, 150, 162, 163, 165, 167, 169, 173, 485, 486, 520 Fressengeas, C. 133 Friberg, P. 314, 414 Hencky, H. 57 Fu, L. 364 Henriksen, S. W. 217 Herman, G. C. 207 Furumura, M. 274 Furumura, T. 274 Hermann, V. 318 Herrmann, F. J. 393 Galis, M. 262 Hesthaven, J. S. 309 Gallagher, K. 392 Hilbert, D. 163 Gao, F. 364 Hill, J. 333, 334, 386, 408, 414 Gao, Y. 349 Hill, R. 57 Garatani, K. 282 Hill, T. R. 318 Garecki, J. 162 Hjörleifsdóttir, V. 314, 414 Gauthier, O. 385 Hodge, P. G. 207 Gazonas, G. 6, 136 Hodhod, H. A. 325 Gebraad, L. 393 Hoffman, J. 371, 374, 393 Geller, R. J. 262, 280, 281 Holländer, E. F. 133 Gharti, H. N. 298, 312, 323-327, 329-333, Hopkins, D. 6, 136 338-340 Hosseini, K. 297, 335 Ghattas, O. 282, 344, 385 Howse, A.J.M. 411 Gilbert, F. 54, 233, 338, 394 Hu, X. 362 Gizon, L. 240, 242 Huang, H.-Y. 400 Goldbart, P. 415 Huber, C. 405 Goldberg, S. I. 415 Hudson, J. A. 348, 367 Gonzalez, D. 162 Hughes, J. R. 1, 11, 32, 51, 65, 98, 99, 102, 133, Graves, R. W. 262 282, 415, 508 Grekova, E. F. 207 Hung, S.-H. 344, 355, 357, 358, 360, 385 Gropp, W. 312 Hussaini, M. Y. 298 Gross, B. 243 Hutko, A. 314, 414 Gu, Y. J. 386 Iacono, R. 313-315 Gubbins, D. 393 Gudmundsson, O. 262 Igel, H. 262, 274, 318, 319, 344, 385, 386 Guo, B. 364 Iosifidis, D. 134, 172 Gupta, A. 134 Iskandarani, M. 313 Ito, H. 133 Hadley, D. 364 Jackson, A. 392 Hagelberg, C. R. 344 Halada, L. 262 Jacobsen, M. 393 Halko, N. 408 Jahnke, G. 274 Hall, J. F. 282 Jameson, A. 405 Hanasoge, S. 375, 377, 379, 380 Jang, S. 403 Hanke, M. 404, 405 Jankowski, R. 205

Hansen, P. 404

Jaroszewicz, L. R. 205

554 Author Index

Jaumann, G. 25	Kuske, R. 393
Jeffreys, H. 214, 217	Kustowski, B. 414
Ji, C. 297	
Joly, P. 297	Lagoudas, D. C. 135, 152, 157, 158
Jordan, T. H. 344, 355, 357, 385	Lailly, P. 343, 348
Judd, J. S. 313, 315	Lambeck, K. 217
Jung, M. 405	Landa, E. 393
Jurgens, H. 262	Langer, L. 312, 329-332
	Larose, E. 240
Kagekawa, K. 133	Laske, G. 414
Kallivokas, L. F. 282	Le Dimet, FX. 344
Kanamori, H. 362, 364	Le Goff, N. 312
Karal, F. C. 262	Le, K. C. 149
Karniadakis, G. E. 297	Le Loher, P. 312
Käser, M. 318	Lee, W.H.K. 204
Kawase, H. 282	Lefebvre, M. 333, 334, 386, 408, 414
Kelley, C. T. 398	Lei, W. 333, 334, 386, 390, 408, 410-412, 414
Kennedy, A. D. 393	Levander, A. R. 262
Kennett, B.L.N. 54, 274, 349, 386	Levshin, A. L. 240
Kerlick, G. D. 134, 135, 138, 150, 163, 165, 173,	Li, X. 393
485	Li, XD. 385
Kessler, D. 274	Liberati, S. 134, 135, 150, 486
Khan, A. 240	Liberty, E. 408
Ki, H. 362	Lions, J. 344
Kibble, T.W.B. 134	Liu, D. 406
Kilmer, M. 405	Liu, H. P. 362
Kim, E. J. 344, 385	Liu, Q. 297, 298, 312, 314, 351, 352, 357–359,
Kim, Y. 364, 365, 385	364, 365, 368, 385, 386, 393, 409-412, 414
Kimman, W. P. 240	Liu, Q. H. 309
Kiryati, N. 405	Liu, Q. Y. 378, 385
Kleinert, H. 135, 136, 149, 152	Liu, Z. 370, 371, 373, 374, 376, 392, 393
Komatitsch, D. 191, 227, 230, 239, 250, 251, 253,	Lobo, F.S.N. 169
295, 297, 298, 308, 309, 312, 314, 333, 334,	Loewenthal, D. 274
351, 361, 386, 408, 414	Lognonné, P. 281
Kondo, K. 133	Lomax, A. 393
Koren, Z. 393	Lomax, H. 262
Koroni, M. 366	López, J. 344, 385
Kosevich, A. M. 133	Loris, I. 313, 315
Kosloff, D. 274	Lovelock, D. 415, 446, 465, 479
Kosmanis, T. I. 309	Lu, M. 362
Kossecka, E. 135, 174	Luo, Y. 312, 355, 375, 377, 379, 380, 403, 404
Kowalski, J. K. 205	Lusk, E. 312
Krajewski, Z. 205	Lévěque, JJ. 395
Krischer, L. 297, 335	•
Kristek, J. 262	Macready, W. G. 393
Kulesh, M. A. 207, 209	Madariaga, R. 262
Kumar, P. 322, 324	Maggi, A. 359, 361, 364, 385, 414
Kumar, R. 393	Maggio, F. 297
Kupferman, R. 135	Magnoni, F. 312
Kurzych, A. 205	Maitra, M. 177, 282

Malvern, L. 1, 11, 17, 65, 104, 110, 135, 179, 445 Nakamura, H. 282 Mao, W. 369 Nakamura, Y. 240 Marć, P. 205 Neal, R. M. 393 Marfurt, K. J. 393, 411 Ne'eman, Y. 134, 135, 147, 150, 162, 163, 167, Marquering, H. 344, 355, 357, 385 169, 486, 520 Nercessian, A. 240 Marques, J.M.M.C. 324 Nester, J. M. 134, 135, 138, 150, 163, 165, 173, Marsden, J. E. 1, 11, 32, 51, 65, 82, 98, 99, 102, 133, 415, 508 485 Martin, D. 415, 421 Neubauer, A. 404, 405 Martin, G. S. 393, 411 Ni, S. 239 Martin, R. 297, 312 Nissen-Meyer, T. 274, 297, 312, 335 Martinsson, P.-G. 408 NOAA 315 Masters, G. 227, 338, 344, 358, 385, 414 Noble, M. 349, 385 Mathé, P. 405 Nocedal, J. 402, 403, 406-408 Matthies, H. 402 Noether, E. 100, 526 Maugin, G. A. 104, 441 Nolet, G. 313, 315, 344, 348, 355, 357, 358, 360, Mavriplis, C. 322 385 Noll, W. 133 McCrea, J. D. 5, 69, 134, 135, 147, 150, 162, 163, Novikov, S. P. 13, 415 167, 169, 486, 520 McDonald, J. 349, 385 Nowacki, W. 104, 135 McNamara, A. K. 395 Nowick, A. S. 243 McRitchie, D. 314, 414 Nye, J. F. 133 Medina, F. 322 Obukhov, Y. N. 134 Meek, J. L. 322 Oh, J.-W. 405 Métivier, L. 403 Metrikine, A. V. 104 O'Hallaron, D. R. 282, 344, 385 Metropolis, N. 393 Ohminato, T. 262, 280, 281 Meyers, A. 61 Okuda, H. 282 Mielke, E. W. 134, 135, 147, 150, 162, 163, 167, Olami, E. 135 169, 486, 520 Operto, S. 385, 414 Miller, E. L. 405 Örsvuran, R. 390 Min, D.-J. 403, 405 Osher, S. 405 Misner, C. 13, 43, 141, 433, 436, 437, 442 Oshima, N. 133 Moczo, P. 262 Owen, D.R.J. 324 Modrak, R. T. 351, 390, 399, 404 Mohieddine, R. 405 Pan, W. 362 Monk, P. 309 Paolucci, P. S. 313-315 Montagner, J.-P. 281, 391 Paolucci, R. 297 Montelli, R. 344, 358, 385 Park, J. 281 Montesinos, M. 162 Patera, A. T. 297, 298 Mora, P. 351, 385 Paul, A. 240 Pellegrini, F. 296, 312 Morales, J. L. 403 Mosegaard, K. 391, 393 Pendleton, B. J. 393 Mulcahy, M. 142, 144, 180, 192, 194 Penrose, R. 478 Mumford, D. 405 Pereverzev, S. 405 Munkres, J. R. 421, 428 Peter, D. 312, 314, 333, 334, 351, 370, 373, Mura, T. 133 375-377, 379, 380, 386, 392, 393, 408-412, Nabarro, F.R.N. 133 Petersson, J. 405 Nævdal, G. 393 Pica, A. 349, 385

DI : D 205	0.1.1. E.M. 406
Plessix, R. 385	Saleck, F. M. 406
Plessix, RE. 406	Sales de Andrade, E. 351
Podhorszki, N. 333, 334, 386, 408, 411–412, 414	Sambridge, M. 392, 393, 410
Popławski, N. J. 134	Sánchez-Sesma, F. J. 282, 308
Powell, M. 399	Savage, B. 253
Powers, B. 6, 136	Scherbaum, F. 262
Prada, C. 344	Schnabel, R. 407
Pratt, R. G. 385, 405	Schneider, J. B. 309
Priolo, E. 297, 298	Schultz, C. A. 282
Pugmire, D. 333, 334, 386, 408, 411–412, 414	Schuster, G. T. 355, 364
Pujol, J. 205	Schutz, B. 13, 415, 428, 431, 436, 446, 488, 523
1 4)03,). 200	Sciama, D. W. 134
Quarteroni, A. 297, 298, 308	Sedov, L. I. 6, 136
Quarteroni, 11. 257, 250, 500	
Dadan D 217	Segev, R. 135, 149
Radau, R. 217	Seriani, G. 297, 298
Ragon, T. 329	Seth, B. R. 57
Randono, A. 162	Sethian, J. A. 405
Rawlinson, N. 410	Shah, J. 405
Reed, W. H. 318	Shapiro, N. M. 240
Reeves, C. M. 351	Shaw, J. H. 297
Reshef, M. 274	Sherwin, S. J. 297
Reuber, G. S. 405	Shewchuk, J. R. 282
Richards, P. G. 54	Shimbo, M. 133
Rickett, J. E. 403	Shin, C. 403
Rickwood, P. 392	Shipp, R. M. 385
Rietbrock, A. 349	Shu, CW. 318
Ritsema, J. 297, 361, 395	Sieminski, A. 358, 385
Ritzwoller, M. H. 240	Sigmund, O. 405
Rivera, L. 395	Silva, C. D. 393
Rivera, L. A. 361	Simo, J. C. 82
Roberts, P. H. 214	Simons, F. J. 313, 315, 363, 364, 371, 374, 393,
Robertsson, J.O.A. 262	405, 406
Rodrigues, O. 464	Skjellum, A. 312
Rokhlin, V. 408	Sladen, A. 329
Roman, J. 296, 312	Slob, E. 240
Romanowicz, B. 217, 281, 385, 386	Smith, E. 133
	Snieder, R. 240
Romero, R. 162	
Ronchi, C. 313–315	Sochen, N. 405
Rosenbluth, A. W. 393	Song, J. 362
Rosenbluth, M. N. 393	Song, Z. M. 385
Roth, M. 312	Sonntag, R. E. 12, 76
Roweth, D. 393	Sotiriou, T. 134, 135, 150, 486
Roychowdhury, A. 134	Spivak, M. 421, 488, 523
Ruan, Y. 333, 334, 386, 390, 408, 414	Spruit, H. C. 240
Rubiera-Garcia, D. 169	Stacey, R. 308
Ruggiero, M. L. 134	Stähler, S. C. 297, 335
Rund, H. 415, 446, 465, 479	Stehly, L. 240
	Stidham, C. 297
Sadourny, R. 313	Stone, M. 415
Sakata, S. 133	Stornaiolo, C. 134
Sakowicz, B. 205	Strahilevitz, R. 274

Strang, G. 402 Stumpf, H. 149 Stutzmann, E. 281 Süss, P. 297 Tagliani, A. 308 Takenaka, H. 274 Takeo, M. 133 Takeuchi, N. 262, 281, 282 Tal-Ezer, H. 274 Talagrand, O. 344, 350 Tanimoto, T. 240, 385 Tape, A. 385 Tape, C. 359, 361, 364, 378, 385, 393, 414 Tarantola, A. 262, 343, 348, 349, 385, 391, 393, 408-410, 414, 457 Tartaglia, A. 134 Taupin, V. 133 Taylor, M. A. 297, 313 Taylor, R. L. 322, 324 Teisseyre, R. 133 Teller, A. H. 393 Teller, E. 393 Ten Kroode, F. 406 Tessmer, E. 274 Thomas, C. 262 Thore, P. 393 Thorne, K. 13, 43, 141, 433, 436, 437, 442 Thurin, I. 393 Tilmann, F. 349 Töksoz, M. N. 282 Tolstoy, I. 226 Tordjman, N. 297 Torres del Castillo, G. F. 421 Tortorelli, V. M. 405 Toupin, R. A. 57, 104, 135 Trabant, C. 314, 414 Trampert, J. 240, 282, 358, 363, 366, 371, 385, 407 Trautman, A. 134, 135, 150, 162, 163, 171, 485, 503 Travis, B. J. 344 Tribbia, J. 313 Tromp, J. 1, 3, 4, 7, 36, 39, 65, 67, 68, 85, 86, 96, 127, 142, 144, 177, 186, 192, 202, 203, 214, 215, 217-220, 222-224, 226, 227, 230, 233, 239, 243, 244, 246, 250, 251, 253, 279-281, 295, 297, 298, 309, 312, 314, 323-327, 329-334, 346, 347, 351, 352, 357–359, 361, 363-365, 368, 370, 371, 373-380, 385, 386, 390, 392, 393, 399, 404, 408, 410, 411, 414, 462 Tropp, J. A. 408 Truesdell, C. A. 57, 104, 135 Tsai, V. C. 405 Tsiboukis, T. D. 309 Tsuboi, S. 227, 281, 297, 298 Tu, T. 344, 385 Tygert, M. 408 Uehara, T. 133 Urbanic, J. 344, 385 Vaaland, U. 312 Vai, R. 308 Valentine, A. P. 282 Valette, B. 191, 227, 297, 298 Van Driel, M. 297, 335, 362 Van Heijst, H. J. 340, 361 Van Leeuwen, T. 393 Vese, L. A. 405 Vetter, P. A. 313, 315 Vignolo, S. 134 Vilotte, J.-P. 191, 227, 297, 298, 308 Virieux, J. 262, 385, 403, 414 Vitagliano, V. 134, 135, 150, 486 Vogel, C. 404 Volterra, V. 136 Von der Heyde, P. 134, 135, 138, 150, 163, 165, 173, 485 Vonesch, C. 313, 315 Voronin, S. 313, 315 Wahr, J. M. 233 Wald, R. M. 471, 478, 484 Wang, P. J. 274 Wang, Y. 274 Wapenaar, K. 240 Warner, M. 385 Weber, M. 262 Weedon, W. H. 309 Weile, D. 6, 136 Weinberg, S. 134, 485 Weingarten, J. 181 Wheeler, J. 13, 43, 141, 433, 436, 437, 442 Wiley, R. 393, 411 Williamson, P. R. 385 Wingate, B. A. 297 Wittlinger, G. 395 Wolpert, D. M. 393 Woodard, M. F. 240, 242

Woodhouse, J. H. 281, 338, 340, 385

558 Author Index

Wright, S. 407, 408Zampini, S. 298, 323–327Wu, F. 344Zang, T. A. 298Wu, R. 348Zaremba, S. 25Zembaty, Z. 205Zener, C. 243Xiao, H. 61Zeng, Y. Q. 309Xu, J. 282Zhang, H. 369Yagawa, G. 282Zhang, Q. 369Yan, Z. 312Zhao, L. 344, 355, 357, 385Yang, P. 403Zhou, H. 369Yang, Y. 240Zhou, W. 403Yang, Z. 362Zhou, W. 403Yao, H. 239Zhu, H. 314, 408, 414Yioultsis, T. V. 309Zhu, J. Z. 324Young, M. K. 410Zielhuis, A. 385Yu, Y. 281Zienkiewicz, O. C. 282, 322–324Yuan, Y. O. 364, 406Zingg, D. W. 262Yuki, M. 133Zunino, A. 393	Woolfe, F. 408 Worthington, M. H. 385	Zaleski, S. 406 Zampieri, E. 308
Wu, R. 348Zaremba, S. 25Xiao, H. 61Zener, C. 243Xie, Z. 351Zeng, Y. Q. 309Xu, J. 282Zhang, H. 369Yagawa, G. 282Zhang, Y. 393Yan, Z. 312Zhao, L. 344, 355, 357, 385Yang, P. 403Zhou, H. 369Yang, Y. 240Zhou, W. 403Yang, Z. 362Zhou, Y. 239, 357Yao, H. 239Zhu, H. 314, 408, 414Yioultsis, T. V. 309Zhu, J. Z. 324Young, M. K. 410Zielhuis, A. 385Yu, Y. 281Zienkiewicz, O. C. 282, 322–324Yuan, Y. O. 364, 406Zingg, D. W. 262	Wright, S. 407, 408	Zampini, S. 298, 323-327
Xiao, H. 61Zembaty, Z. 205Xiao, H. 61Zener, C. 243Xie, Z. 351Zeng, Y. Q. 309Xu, J. 282Zhang, H. 369Yagawa, G. 282Zhang, Y. 393Yan, Z. 312Zhao, L. 344, 355, 357, 385Yang, P. 403Zhou, H. 369Yang, Y. 240Zhou, W. 403Yang, Z. 362Zhou, Y. 239, 357Yao, H. 239Zhu, H. 314, 408, 414Yioultsis, T. V. 309Zhu, J. Z. 324Young, M. K. 410Zielhuis, A. 385Yu, Y. 281Zienkiewicz, O. C. 282, 322–324Yuan, Y. O. 364, 406Zingg, D. W. 262	Wu, F. 344	Zang, T. A. 298
Xiao, H. 61 Zener, C. 243 Xie, Z. 351 Zeng, Y. Q. 309 Xu, J. 282 Zhang, H. 369 Zhang, Q. 369 Zhang, Y. 393 Yan, Z. 312 Zhao, L. 344, 355, 357, 385 Yang, P. 403 Zhou, H. 369 Yang, Y. 240 Zhou, W. 403 Yang, Z. 362 Zhou, Y. 239, 357 Yao, H. 239 Zhu, H. 314, 408, 414 Yioultsis, T. V. 309 Zhu, J. Z. 324 Young, M. K. 410 Zielhuis, A. 385 Yu, Y. 281 Zienkiewicz, O. C. 282, 322–324 Yuan, Y. O. 364, 406 Zingg, D. W. 262	Wu, R. 348	Zaremba, S. 25
Xie, Z. 351Zeng, Y. Q. 309Xu, J. 282Zhang, H. 369Yagawa, G. 282Zhang, Y. 393Yan, Z. 312Zhao, L. 344, 355, 357, 385Yang, P. 403Zhou, H. 369Yang, Y. 240Zhou, W. 403Yang, Z. 362Zhou, Y. 239, 357Yao, H. 239Zhu, H. 314, 408, 414Yioultsis, T. V. 309Zhu, J. Z. 324Young, M. K. 410Zielhuis, A. 385Yu, Y. 281Zienkiewicz, O. C. 282, 322–324Yuan, Y. O. 364, 406Zingg, D. W. 262		Zembaty, Z. 205
Xu, J. 282Zhang, H. 369 Zhang, Q. 369Yagawa, G. 282Zhang, Y. 393Yan, Z. 312Zhao, L. 344, 355, 357, 385Yang, P. 403Zhou, H. 369Yang, Y. 240Zhou, W. 403Yang, Z. 362Zhou, Y. 239, 357Yao, H. 239Zhu, H. 314, 408, 414Yioultsis, T. V. 309Zhu, J. Z. 324Young, M. K. 410Zielhuis, A. 385Yu, Y. 281Zienkiewicz, O. C. 282, 322–324Yuan, Y. O. 364, 406Zingg, D. W. 262	Xiao, H. 61	Zener, C. 243
Zhang, Q. 369 Yagawa, G. 282 Zhang, Y. 393 Yan, Z. 312 Zhao, L. 344, 355, 357, 385 Yang, P. 403 Yang, Y. 240 Yang, Z. 362 Zhou, W. 403 Yang, Z. 362 Zhou, Y. 239, 357 Yao, H. 239 Zhu, H. 314, 408, 414 Yioultsis, T. V. 309 Zhu, J. Z. 324 Young, M. K. 410 Zielhuis, A. 385 Yu, Y. 281 Zienkiewicz, O. C. 282, 322–324 Yuan, Y. O. 364, 406 Zingg, D. W. 262	Xie, Z. 351	Zeng, Y. Q. 309
Yagawa, G. 282Zhang, Y. 393Yan, Z. 312Zhao, L. 344, 355, 357, 385Yang, P. 403Zhou, H. 369Yang, Y. 240Zhou, W. 403Yang, Z. 362Zhou, Y. 239, 357Yao, H. 239Zhu, H. 314, 408, 414Yioultsis, T. V. 309Zhu, J. Z. 324Young, M. K. 410Zielhuis, A. 385Yu, Y. 281Zienkiewicz, O. C. 282, 322–324Yuan, Y. O. 364, 406Zingg, D. W. 262	Xu, J. 282	Zhang, H. 369
Yan, Z. 312Zhao, L. 344, 355, 357, 385Yang, P. 403Zhou, H. 369Yang, Y. 240Zhou, W. 403Yang, Z. 362Zhou, Y. 239, 357Yao, H. 239Zhu, H. 314, 408, 414Yioultsis, T. V. 309Zhu, J. Z. 324Young, M. K. 410Zielhuis, A. 385Yu, Y. 281Zienkiewicz, O. C. 282, 322–324Yuan, Y. O. 364, 406Zingg, D. W. 262		Zhang, Q. 369
Yang, P. 403Zhou, H. 369Yang, Y. 240Zhou, W. 403Yang, Z. 362Zhou, Y. 239, 357Yao, H. 239Zhu, H. 314, 408, 414Yioultsis, T. V. 309Zhu, J. Z. 324Young, M. K. 410Zielhuis, A. 385Yu, Y. 281Zienkiewicz, O. C. 282, 322–324Yuan, Y. O. 364, 406Zingg, D. W. 262	Yagawa, G. 282	Zhang, Y. 393
Yang, Y. 240Zhou, W. 403Yang, Z. 362Zhou, Y. 239, 357Yao, H. 239Zhu, H. 314, 408, 414Yioultsis, T. V. 309Zhu, J. Z. 324Young, M. K. 410Zielhuis, A. 385Yu, Y. 281Zienkiewicz, O. C. 282, 322–324Yuan, Y. O. 364, 406Zingg, D. W. 262	Yan, Z. 312	Zhao, L. 344, 355, 357, 385
Yang, Z. 362Zhou, Y. 239, 357Yao, H. 239Zhu, H. 314, 408, 414Yioultsis, T. V. 309Zhu, J. Z. 324Young, M. K. 410Zielhuis, A. 385Yu, Y. 281Zienkiewicz, O. C. 282, 322–324Yuan, Y. O. 364, 406Zingg, D. W. 262	Yang, P. 403	Zhou, H. 369
Yao, H. 239Zhu, H. 314, 408, 414Yioultsis, T. V. 309Zhu, J. Z. 324Young, M. K. 410Zielhuis, A. 385Yu, Y. 281Zienkiewicz, O. C. 282, 322–324Yuan, Y. O. 364, 406Zingg, D. W. 262	Yang, Y. 240	Zhou, W. 403
Yioultsis, T. V. 309 Zhu, J. Z. 324 Young, M. K. 410 Zielhuis, A. 385 Yu, Y. 281 Zienkiewicz, O. C. 282, 322–324 Yuan, Y. O. 364, 406 Zingg, D. W. 262	Yang, Z. 362	Zhou, Y. 239, 357
Young, M. K. 410 Zielhuis, A. 385 Yu, Y. 281 Zienkiewicz, O. C. 282, 322–324 Yuan, Y. O. 364, 406 Zingg, D. W. 262	Yao, H. 239	Zhu, H. 314, 408, 414
Yu, Y. 281 Zienkiewicz, O. C. 282, 322–324 Yuan, Y. O. 364, 406 Zingg, D. W. 262	Yioultsis, T. V. 309	Zhu, J. Z. 324
Yuan, Y. O. 364, 406 Zingg, D. W. 262	Young, M. K. 410	Zielhuis, A. 385
ee ee	Yu, Y. 281	Zienkiewicz, O. C. 282, 322-324
Yuki, M. 133 Zunino, A. 393	Yuan, Y. O. 364, 406	Zingg, D. W. 262
	Yuki, M. 133	Zunino, A. 393

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

INDEX

absorbing boundary, 191, 192, 308, 329 absorption band, 252, 309 absorption-band solid, 362 accidentals, 23 acoustic wave equation, 191 weak-form, 192 action, 93, 116, 117, 525 classical mechanics, 93 defects, 167, 168 form version, 116 form version with spin, 117 gravity, 124 material geometry, 165 Noether's theorem, 99 rotation, 121 Adams–Williamson relation, 227 adiabatic process, 79, 82, 110, 113 adjoint, 456 adjoint boundary conditions, 352 adjoint equation, 352 full gravity, 352 rotation, 352 viscoelastic, 352 adjoint operator, 387, 468 adjoint source Q, 362 amplitude, 361 ensemble, 377 generic, 363 traveltime, 356 waveform, 349	ensemble, 377 traveltime, 356 waveform, 350 adjoint-state method, 343, 344 admissible variation, 93 Almansi strain, 56 alternating symbol, 26, 450 amplitude adjoint source, 361 amplitude adjoint wavefield, 361 amplitude misfit function, 361 amplitude misfit kernel, 361 amplitude tomography, 360 anelasticity, 243, 309, 373 angular frequency, 189 angular velocity material, 108 anholonomic, 8, 9, 141, 438 anholonomicity two-forms, 141 anti-Green tensor, 232 antisymmetric, 445 antisymmetric tensor, 445 Armijo condition, 406 artificial boundary, 308, 329 assembling, 290, 296 associative, 417 atlas, 421 attenuation, 243, 309, 362, 373 attenuation tomography, 362 autonomous Lie derivative, 22, 491 auxiliary plane, 201 axis
adjoint tomography, 414	B, 202
adjoint wavefield	intermediate, 202
Q, 362	P, 202
amplitude, 361	T, 202

B-axis, 202 Cauchy deformation tensor, 53 backward-difference approximation, 263 Cauchy stress, 66, 83 banana-doughnut kernel, 344, 355, 356, symmetry, 81 385 two-forms, 69 basis, 429 Cauchy stress two-forms, 69 anholonomic, 438 Cauchy stress tensor, 65, 68, 220 holonomic, 438, 478 weighted, 67 linearly independent, 429 Cauchy-Green tensor, 50 left, 51, 56 basis vector, 429 Bayesian inference, 391 right, 51, 56 beach ball, 202 centered-difference approximation, 263 bend-twist one-forms, 159 central flux, 321, 322 bend-twist-spin one-forms, 152, 159 centrifugal acceleration, 121 Betti reciprocal relation, 197 centrifugal force, 121 generalized, 231 centrifugal potential, 121, 229 BFGS method, 401 equilibrium, 212 Bianchi identities, 142, 146, 479, 519 centripetal acceleration, 121 contracted, 484, 485 centroid moment tensor, 202 bijective, 423, 467 chart, 5, 6, 421 bilinear form, 284 Christoffel equation, 189, 224 Christoffel symbol Biot strain, 57 body force, 196, 200 first kind, 482 Born approximation, 344 second kind, 19, 482 boundary circulation tube, 499, 500 absorbing, 191, 192 Clairaut's equation, 214–217 fluid-solid, 191, 192 Clairaut's theorem, 135 free-slip, 189 Clausius-Duhem inequality, 76, 110 stress-free, 190, 192 closed form, 505, 527 boundary condition co-Einstein tensor, 166 absorbing, 308 co-Ricci tensor, 165 PML, 308 co-Weyl vector, 165 boundary perturbations, 344, 366 coframe, 447 bracketing line search, 407 orthogonal, 456 Broyden-Fletcher-Goldfarb-Shanno method, commutative, 417 commutator, 23, 437 401, 402 Brunt-Väisälä frequency, 226 comoving coordinates, 3, 6 bulk modulus, 187 comoving time, 4 bulk sound speed, 388 comoving volume, 40 bulk viscosity, 91 compact, 524 Bullen stratification parameter, 227 compact finite-difference operators, Burgers vector, 136, 153, 161 compact notation, 309 caloric equation of state, 77, 81, 111, 112 compatibility, 7 canonical energy-momentum current, 168 compatibility conditions, 7, 136 capacity compatible motion, 136 Levi-Civita, 26, 450 compliance, 244 tensor, 449, 457 relaxed, 244 capacity matrix, 292 unrelaxed, 244 Cartan homotopy formula, 509, 516 compliance tensor, 187 Cartan magic formula, 46, 98, 509, 516 compressional waves, 190 Cartan tensor, 164, 485 compressional wavespeed, 189

conditional probability, 392	Lagrangian, 3, 6
congruence, 431, 488	referential, 4, 5
conjugacy, 399	spatial, 3, 6
conjugate pair, 61	Coriolis acceleration, 121
conjugate thermodynamic parameters, 111	corotation, 25
conjugate variables, 77, 111	corotational material derivative, 25, 59, 87
conjugate-gradient method, 398	logarithmic, 61
connection, 15, 139	Zaremba-Jaumann, 25, 53
spin, 484	coseismic deformation, 329
torsion-free, 15, 480	Cosserat micropolar medium, 104, 134, 179
connection coefficients, 139, 474	cotangent bundle, 433
frames, 483	cotangent space, 433
Lagrangian, 15	couple potency, 182
nonmetricity, 486	couple stress, 104
torsion-free, 482	couple-moment tensor, 211
transformation, 474	couple-moment-density tensor, 182, 210
connection one-form, 140, 512	couple-stress glut, 180, 210
connection one-forms	couple-stress tensor, 178, 206
Eulerian, 43	coupled-mode method, 281
Lagrangian, 43	Courant number, 265, 266
conservation law, 73, 95, 103, 527	Courant–Friedrichs–Lewy condition, 265
angular momentum, 103	covariance matrix
energy, 106	data, 387
Eulerian, 45	model, 387
Lagrangian, 47, 48	covariant, 442, 444
linear momentum, 95, 103	covariant derivative, 14, 139, 471
linearized, 185	mixed, 483
mass, 45	modified, 166
conservative force, 122	tensor capacity, 486
constant-Q absorption band model, 252, 309	tensor density, 486
constitutive relationship, 82, 83, 87, 186, 219	tetrad, 483
differential, 245	torsion-free, 480
failure of, 192	covariant Lie derivative, 516
viscoelastic, 249	covariant vector, 13, 436
with prestress, 219	covector, 13, 436
without prestress, 186	Cowling approximation, 238, 314, 338
continuity equation, 46	Cramer's rule, 28
continuous symmetry, 526	Crank–Nicolson scheme, 274
continuum, 3	cross product, 20, 501
continuum mechanics, 3, 10, 89, 110, 111, 447	cross-correlation, 240
contortion tensor, 170, 481, 486	ensemble average, 241
contracted Bianchi identities, 484, 485	crustal correction, 414
contraction, 20, 444, 512	cubed sphere, 313
contravariant, 442, 444	cubic symmetry, 187
convected coordinates, 6, 488	CUBIT, 312
coordinate system, 421	curl, 20, 506
convected, 488	current
coordinates, 421	dilation, 169
comoving, 3, 6	shear, 169
convected, 6	spin, 169
Eulerian, 3, 6	strain, 169

curse of dimensionality, 393	derivative
curvature, 134, 141	corotational material, 25
material, 146, 149	covariant, 14, 139, 471
Ricci, 485	Euler, 24, 486
curvature condition, 406	exterior, 11, 434, 504
curvature tensor, 17, 477–479	exterior covariant, 515
Gaussian curvature, 478	Fréchet, 343
curvature two-forms, 141, 162, 517, 518	Gâteaux, 343
curve, 428	Lie, 16, 21, 22, 487
	material, 24, 25
dashpot, 244-245	descent direction, 398
data space, 261, 343	design matrix, 393
Davidon-Fletcher-Powell method, 401	determinant, 26, 448, 449, 451
De Rham current, 135, 142, 145, 147	deviatoric deformation rate tensor, 91
Debye peak, 246	deviatoric strain, 187
defect dynamics, 170	deviatoric stress, 212, 213
classical, 174	DFP method, 401
linear, 173	diffeomorphism, 422, 466, 527
defects, 7, 133, 486	differentiable
action, 167	piecewise, 41
disclination, 133	differentiable manifold, 421, 422, 427
dislocation, 133	differential, 434
dynamics, 149, 157	differential constitutive relation, 245
field equations, 168	differential forms, 42, 495
kinematics, 152, 157	differential geometry, 427
point, 19, 133	differential traveltime, 360
rotational, 133	differential-traveltime tomography, 360
deformation, 3, 5	diffusion equation, 75
adiabatic, 79	diffusivity matrix
elastic, 111, 113	global, 284
isentropic, 79	local, 289
plastic, 111, 113	dilation current, 169
reversible, 79	direct-solution method, 281
deformation gradient, 10, 49, 68, 96, 137	directional derivative, 476
determinant, 26	disclination, 7, 133, 162, 479
deformation rate, 19	twist, 148
deformation-rate tensor, 20	wedge, 148
deviatoric, 91	disclination current, 157
deformation tensor, 21, 37, 51, 56	disclination density, 158
Cauchy, 53	disclination density tensor, 173
Finger, 51, 53	discontinuity, 344, 366
Green, 18, 51	fluid-solid, 189
right Cauchy-Green, 17	solid-solid, 189
density, 217	topography, 344, 366
disclination, 158, 161, 177	discontinuous Galerkin method, 318, 322
dislocation, 136, 157, 161, 177	disformation tensor, 170, 486
Levi-Civita, 26, 450	dislocation, 7, 133, 162, 479
mass, 45	edge, 148, 177
point-defect, 158, 160, 162	screw, 148, 177
tensor, 449, 457	twist, 177
density perturbation, 217	wedge, 177

dislocation current, 157 elasticity with spin, 204 dislocation density, 136, 157 ellipticity, 214 dislocation line, 136, 148 encoding, 369 displacement, 37, 38 endomorphism, 457 displacement field, 125, 186 energy displacement gradient, 125 gravitational, 123 distance, 452 inter-atomic potential, 73 distortion one-forms, 160 internal, 73, 92, 109 distortion-velocity one-forms, 152 kinetic, 73, 92 distribution, 136, 194 total, 73 ensemble adjoint source, 377 divergence, 475, 507 ensemble adjoint wavefield, 377 Doppler effect, 232 dot product, 18, 444, 454 ensemble average, 241, 242 double couple, 196, 201 ensemble cross-correlation, 242 double-difference, 363 ensemble forward wavefield, 376 double-difference measurements, ensemble sensitivity kernels, 375 371 entropy, 76 double-dot product, 74, 350, 445, 455, envelope, 363 464, 512 equation of state Doyle-Ericksen formula, 82, 83 caloric, 77, 81, 111 Doyle-Ericksen tensor, 57 equations of motion Dreibein, 447 linearized, 185, 221, 223 dual, 433, 437 equatorial bulge, 217 basis equilibrium, 211 hydrostatic, 213 one-form, 13 vector, 13 equilibrium state, 211 dual space, 433 Euclidean frame, 121 dual vector, 13, 436 Euclidean space, 3, 7, 21, 37, 56, 68, 96, 121, 122, duality, 433, 437 127, 220, 421 duality condition, 434 Euler angles, 461 duality product, 13, 386, 434, 446 Euler derivative, 24, 486, 487, 510 data space, 386 Euler-Lagrange equation, 93, 94, 526 model space, 386 Eulerian, 4 Eulerian coordinates, 3, 6 dummy index, 443 Eulerian strain, 56 dynamic rupture, 321 dynamic viscosity, 91 Eulerian strain tensor, 186 dynamics, 4, 65 event, 136 event kernel, 358 dynamics of defects, 149, 157 eversible process, 76, 111 edge dislocation, 148, 177 exact form, 505, 507 Einstein relativity, 520 excess equatorial bulge, 217 Einstein summation convention, 10, 429 explicit time scheme, 272 Einstein tensor, 166, 485 explosion, 203 exponentiated phase, 364 Einstein-Cartan relativity, 486, 520 elastic deformation, 111, 113 exterior covariant derivative, 44, elastic tensor, 84, 186, 229 515 exterior derivative, 11, 41, 434, elastic wave equation, 188 weak-form, 190 504 elasticity covariant, 515 exterior differential forms, second-order, 85 third-order, 84 495

1	. 505 505
exterior product, 498, 512	exact, 505, 507
Grassmann product, 498	integration, 520
wedge product, 498	Lie derivative, 508
C 1.	operations, 498
fault	stress, 69
ideal, 194	tensor-valued, 510
fault plane, 201	vector-valued, 510
fault slip, 200, 210	forward problem, 261
fault-plane rotation, 210	forward-difference approximation, 262
feedback force, 234	four-velocity, 137, 139
Finger deformation tensor, 51, 53	Fourier convention
finite element, 288	space, 275
finite-difference method, 262	time, 241
finite-difference operators, 262	Fourier transform, 275
compact, 262	Fourier's law, 75
optimal, 262	Fréchet derivative, 343
finite-frequency sensitivity kernel, 344	frame, 447
first law of thermodynamics, 73, 74, 108	frames
first Piola-Kirchhoff stress, 66, 67, 79, 95, 220	orthogonal, 456
two-forms, 71	Frank vector, 136, 153, 161
first Piola-Kirchhoff stress tensor, 68, 96, 220	free slip boundary, 189
flattening, 215	frequency
flat b, 23	angular, 189
Fletcher-Reeves formula, 398	Brunt-Väisälä, 226
fluid, 188	stability, 226
isotropic, 91	Frobenius inner product, 445
potential formulation, 227	Frobenius norm, 445, 449
fluid potential, 191	full-waveform inversion, 348, 385, 388
fluid-solid boundary, 189, 191, 192	fundamental theorem of calculus, 523
fluids, 226, 227	fundamental theorem of exterior calculus,
flux, 499, 510	524
central, 321, 322	
upwind, 321, 322	Gâteaux derivative, 343
flux scheme, 320	Galerkin method, 280
focal sphere, 202	discontinuous, 318
force	Galilean reference frame, 3
body, 196, 200	Galilean relativity, 137
centrifugal, 121	gas, 188
centripetal, 121	Gauss quadrature, 296
conservative, 122	Gauss's theorem, 40, 525
Coriolis, 121	2D, 347
feedback, 234	Gauss-Lobatto-Legendre points, 298
long-range, 3	Gauss-Lobatto-Legendre quadrature, 299
point, 199, 232	Gauss-Lobatto-Legendre weights, 299
short-range, 3, 65	Gauss–Newton approximation, 396
surface, 196, 200	Gauss–Radau quadrature, 322, 326
total, 194	Gauss-Lobatto-Legendre quadrature, 326
force-balance seismometer, 234	general relativity, 162, 447
form	action, 162
closed, 505, 527	Einstein–Cartan, 134
connection, 512	metric-affine, 134
connection, 512	metric tillie, 154

generalized Betti reciprocal relation, 231 heat, 73 generalized Kronecker-delta symbol, 458 advection, 74 generalized source-receiver reciprocity conduction, 74 principle, 232 flux, 74 generalized Stokes's theorem, 41, 523 production, 74 generalized trapezoidal time scheme, 292 heat equation, 74, 75 generalized Volterra representation theorem, steady-state, 282 heat flux, 74-76, 107 generating wavefield, 377 helicity, 479 generic misfit, 362, 389 helioseismology, 240 geodesic, 477 Helmholtz free energy, 111 geodesic equation, 477 Helmholtz free energy density, 77, 111 geodesy, 214 Hencky strain, 57 geopotential, 124, 212-214 Hessian, 396 ellipsoid, 214 Gauss-Newton approximation, 396 Gibbs relation, 77, 112 Hestenes-Stiefel formula, 398 global diffusivity matrix, 284 heterogeneities, 282 global search method, 393 hexahedral elements, 294, 297, 312 global shape function, 286 Hodge dual, 501 glut rate, 200 Hodge star, 501 gradient, 14, 396, 506 holonomic, 8, 438 deformation, 10 holonomic basis, 478 surface, 37, 213, 345 holonomicity, 438 gradient of a vector field, 14 holonomy, 479 gradient of geopotential, 229 homeomorphism, 466 gravitation Hooke's law, 89, 186, 189, 229 Einstein, 520 failure of, 192 Einstein-Cartan, 486, 520 form version, 89 metric-affine, 486, 520 Hua's identity, 394 Newton, 122 hydrostatic Earth model, 213 gravitational acceleration hydrostatic equilibrium, 213 equilibrium, 211 hydrostatic pressure, 212, 214 gravitational energy, 123 hypermomentum gravitational potential, 122 conservation of, 171 equilibrium, 211 hypermomentum current, 168 gravity, 214, 218 hypocenter, 200 PREM, 215 gravity perturbation, 218 ideal fault, 194 Green deformation tensor, 18, 51 split-node implementation, 332 Green tensor, 198, 232 idealized seismometer, 233 Green's theorem, 524 identity tensor, 18, 448, 449 grid anisotropy, 262, 272, 296, 297 implicit time scheme, 272, 273 grid dispersion, 262, 269, 272, 296, 297 implosion, 203 incompatibility, 133, 142, 152, 160 h-p finite-element method, 296, 298 particle motion, 153 Hamilton's principle, 92, 93 particle rotation, 153 form version, 116, 117 incompatibility tensor, 7, 136 with spin, 117 incompatible motion, 133, Hamiltonian Monte Carlo method, 393 142 handedness, 29 incompressibility, 187 Hausdorff manifold, 424 incompressible material, 47

incremental first Piola-Kirchhoff stress, 220	isotropic fluid, 91, 124
incremental second Piola-Kirchhoff stress,	isotropic symmetry, 187
220	
indices	Jacobian, 425
lowering, 18	Jacobian determinant, 101
raising, 18	Jacobian matrix, 395
indigenous source, 180, 192	generic, 395
inertia density, 109	Jacobian of the motion, 32
inertia-density tensor, 205	
inertial reference frame, 3	k-current, 142
infinite-element method, 322	k-form, 495, 497, 499
coordinate descent approach, 322	k-vector, 500
displacement descent approach, 322	Kalman filtering, 393
pole, 323	Kelvin–Voigt solid, 245
infinitesimal rotation tensor, 186, 204	kinematics, 3, 4
infinitesimal strain tensor, 186	kinematics of defects, 152, 157
injective, 422, 467	kinetic energy, 73, 92
inner product, 141, 386, 444, 453	macroscopic, 73
data space, 387	rotational, 108
model space, 386	thermal, 73
instantaneous phase, 363	kinetic energy density, 205
integrability, 135, 142	Kirchhoff stress, 66, 82, 83, 106
integrability condition, 135	Kirchhoff stress tensor, 66
integral	Kronecker–delta symbol, 11, 432
line, 520	generalized, 458
surface, 521	Kronecker determinants, 458
volume, 522	Kronecker tensor, 18, 448, 449
integral curve, 431	reforecast tensor, 10, 110, 117
integro-differential equation, 222	L-BFGS method, 402
interferometry, 240, 375	Lagrange multiplier method, 353, 375
interior product, 44, 499	Lagrange polynomial, 294, 295
intermediate axis, 202	Lagrangian, 4
internal energy, 73, 92, 109	defects, 167
internal energy three-form, 107	material geometry, 165
internal heating three-form, 109	Lagrangian connection coefficients, 15
internal state variables, 77, 112	Lagrangian coordinates, 3, 6
internal-energy equation, 74	Lagrangian density, 93, 525
intrinsic energy density, 205	defects, 165
intrinsic chergy density, 205	four-form, 117
intrinsic rotation, 203	general relativity, 162
intrinsic spin, 104, 108	three-form, 116
invariant, 53, 58	Lagrangian strain, 55, 56 Laplace equation, 211, 219, 229
inverse problem 343	Lax–Friedrichs method, 267
inverse problem, 343	least-squares solution, 394
inverse problems, 385, 457	-
inversion	left Cauchy–Green tensor, 51, 56
full-waveform, 348	left stretch tensor, 54
source-encoded, 370	Legendre transformation, 77
irreversible process, 111	Leibniz's rule, 40, 472
isentropic process, 79, 82	level surface, 213

level-set method, 405	logarithmic spin tensor, 61
Levi-Civita capacity, 26, 450, 457	logarithmic strain, 57
Levi-Civita density, 26, 450, 457	long-range force, 3
Levi-Civita pseudotensor, 26, 27, 450, 457, 458	loss of conjugacy, 399
Levi-Civita symbol, 26, 450	_
Lie bracket, 8, 144, 437	Maclaurin series, 449
Lie derivative, 16, 21, 22, 487, 489, 510	manifold, 421
autonomous, 22, 491	chart, 421
covariant, 44, 516	coordinates, 421
Euler derivative, 487	differentiable, 421, 427
form, 508	Hausdorff, 424
function, 493	orientable, 424
general tensor, 492	atlas, 425
geometrical interpretation, 490	chart, 425
Levi-Civita tensor, 494	circle, 425
metric tensor, 493	Jacobian, 425
one-form, 491	Klein bottle, 425
vectors, 488	Möbius strip, 425
Lie dragging, 491	tangent space, 425
likelihood, 392	referential, 4, 5
line integrals, 520	Riemannian, 18
line of nodes, 462	spacetime, 485
line search, 398, 406	spatial, 3, 5, 6
bracketing, 407	surface
safeguarded backtracking, 407	orientable, 424
linear inverse problems, 393	map, 422, 465
linear space, 417	between manifolds, 466
external operation, 418	bijection, 465
distributivity, 418	bijective, 423
internal operation, 417	injective, 422, 465
associativity, 417	one-to-one, 422
commutativity, 417	surjective, 465
linear transformation, 417	mapped infinite element, 322
null element, 417	maps between manifolds, 470
opposite element, 418	marginal probability, 392
properties, 417	Markov chain Monte Carlo method, 393
tensor, 417	mass density, 45
vector, 421	referential, 47
vector space, 418	mass flux two-form, 46
zero element, 417	mass matrix, 302
linear transformation, 417, 418	mass three-form, 46
linear space, 417	material angular velocity, 108
linear vector dipole, 196	material defects, 7, 133
compensated, 203	material derivative, 24, 492
linearity, 472	corotational, 25
linearized equations of motion, 221, 223	material frame indifference, 80, 104
local diffusivity matrices, 289	material point, 5
local shape function, 288	material strain, 55
local-to-global map, 291	material velocity, 8, 40, 125
logarithmic corotational material derivative, 61	gradient, 19
- O	g,

Marriell also also are 251	
Maxwell rheology, 251	model space, 261, 343
Maxwell solid, 245	modified covariant derivative, 166
Maxwell time, 252	modified torsion tensor, 164
measurement double-difference, 363	modulus, 243
ŕ	bulk, 187
envelope, 363	relaxed, 244
exponentiated phase, 364	shear, 187
instantaneous phase, 363	unrelaxed, 244
multi-taper, 364	modulus defect, 244
memory variable, 251, 252	moment
memory variables, 309	seismic, 201
Mercator series, 449	moment tensor, 200, 201, 211
mesh	moment-density tensor, 182, 210
cubed sphere, 313	momentum equation, 229
global, 296	monoclinic symmetry, 187
hexahedral, 312	motion, 5, 6, 125, 133
local, 296	compatible, 136
partitioning, 312	incompatible, 133, 142
MeshAssist, 312	Jacobian, 32
Message Passing Interface (MPI), 312	multi-taper, 364
metric, 17	multiscale inversion, 406
metric tensor, 17, 140, 386, 387, 452	Mumford-Shah, 405
covariant derivative, 480	
data space, 387	Nanson's relation, 36
Eulerian components, 17	natural β, 23
inverse, 18, 454	Navier–Stokes equations, 124
Lagrangian components, 17	neutral stability, 227
model space, 386	Newmark time scheme, 303
Riemannian, 453	Newton method, 397
metric-affine gravitation, 134, 486, 520	Newton's law of gravity, 122
metrical energy-momentum current, 168	Newtonian time, 3, 4
metricity, 172	No-Free-Lunch theorems, 393
Metropolis-Hastings algorithm, 393	no-more continuum, 133
micropolar medium, 104, 134, 179	nodal-plane ambiguity, 201–203
misfit	Noether current, 527
generic, 389	Noether current density, 102
misfit function, 348, 388, 389	Noether's theorem, 99, 172
amplitude, 360, 361	noise, 240
differential-traveltime, 360	spatially uncorrelated, 242
encoded, 371	nominal stress, 68
generic, 362	non-uniqueness, 404
traveltime, 355	nonconvexity, 404
misfit kernel, 358	nondegenerate, 453
amplitude, 361	nonholonomic, 8, 438
traveltime, 358	nonmetricity, 134, 146, 164, 486,
waveform, 350	520
mixed covariant derivative, 483	material, 147, 149
model matrix, 393	nonmetricity one-form, 520
model parameter, 261, 343, 387	nonmetricity tensor, 19, 146, 486
selection, 387	norm, 141, 455
model resolution, 407	Frobenius, 449

normal strain two-vector, 62, 63 particle displacement, 37 normal traction two-forms, 70 particle rotation, 114 normal vector, 38, 503 PDE-constrained optimization, 343, 353, normalized source-time function, 204 notation, 4, 139, 142, 309, 386, 427, 444, 449 penalty function, 348 penalty term, 404 compact, 309 semicolon, 350 perfectly matched layer (PML), 308 Voigt, 311 phase speed, 189 piecewise differentiable, 41 objective function, 348, 388, 389 Piola transformation, 67 objective rate, 25 Piola-Kirchhoff stress classical, 68 objective stress rate, 83 ocean-load approximation, 239, 314 classical incremental, 220 Oldroyd rate, 83 first, 66, 67, 79, 95 one-form, 11, 12, 433 second, 66, 67 basis, 434 two-forms, 71, 72 field, 433 Piola-Kirchhoff stress tensor norm, 455 first, 68, 96, 220 strain, 63 second, 68, 220 one-to-one, 422, 467 plane wave, 189 plastic deformation, 78, 79, 111, 113, 115 open set, 422 optimal finite-difference operators, plastic distortion, 153, 161, 181 262 plastic rotation, 153, 161, 181 optimization, 385 plasticity, 78, 79, 113, 115 local, 395 Poincaré's lemma, 505, 527 PDE-constrained, 343, 353, 375 point defects, 19, 133, 486 orientability, 424 point distortion zero-forms, 152 orientable manifold, 424 point force, 199, 232 point source, 201 orientation, 29 oriented, 524 point-defect current, 158, 160 oriented surface, 34, 458 point-defect density, 158, 160, 162 point-defect tensor, 149 origin, 7, 68, 96, 121 origin time, 200 point-source perturbations, 364 orthogonal group, 461 point-spread function, 407 special, 461 Poisson equation, 122, 229 orthogonal transformations, 461 Pola-Ribiere formula, 398 orthogonality, 18, 455 position vector, 7, 37, 68, 96, 121, 122 orthotropic symmetry, 187 postearthquake deformation, 329 outer product, 443 posterior probability, 391 tensor product, 443 potency, 182 potential energy density, 205 P-axis, 202 Powell restart condition, 399 Palatini tensor, 165 preconditioner, 398 Palatini torsion tensor, 485 preconditioning, 403 predictor-corrector time scheme, 292, 303 parallel transport, 475, 476, 488 analytic formulation, 475 pressure hydrostatic, 212, 214 geometrical interpretation, 476 PREM, 215 partial differential equation elliptic, 262 prestress, 87, 212 hyperbolic, 262 principle of material frame indifference, 80 parabolic, 262 prior, 392

	1:1 222
probability	generalized, 232
conditional, 392	reference element, 287, 288
marginal, 392	reference frame
posterior, 391	Euclidean, 56, 68, 96, 121, 127, 220
product	Galilean, 3
cross, 501	inertial, 3
dot, 18, 444	referential coordinates, 4, 5
double-dot, 74, 445, 512	referential manifold, 4, 5
duality, 13, 434	referential mass density, 47
exterior, 498, 512	referential state, 3, 5, 6, 211
inner, 444	referential time, 3
interior, 499	regressor matrix, 393
outer, 443	regularization, 404
tensor, 14	projection, 405
wedge, 496, 498	smoothing, 405
product space, 428	Tikhonov, 404
projection, 405	total variation, 404
pseudoform, 29, 499, 502	relative tensors, 449
pseudoscalar, 458	relativity, 162
pseudospectral method, 275	action, 162
pseudotensor, 448	Galilean, 137
Levi-Civita, 27, 29, 458	relaxation time
pseudotensor capacity, 450	strain, 309
pseudotensor density, 450	stress, 309
pull down operator, 499	representation theorem, 199
pullback, 30, 466, 508, 512, 523	resolution, 407
pushforward, 30, 50, 468, 508	resolution matrix, 394, 408
Pythagorean theorem, 455	reversible process, 79, 82, 111
0.246	Reynolds transport theorem, 39
Q, 246	Eulerian, 39
Q tomography, 362	Lagrangian, 45
quadrature	Ricci curvature, 485
Gauss, 296	Ricci identity, 16, 478
Gauss-Lobatto-Legendre, 299, 326	Ricci scalar, 162, 165, 485
Gauss-Radau, 322, 326	Ricci tensor, 165, 484
quadrilateral element, 294	symmetry, 485
quality factor, 246	Riemann tensor, 17, 478, 484
quasi-hydrostatic approximation, 213, 228, 352	Gaussian curvature, 478
quasi-Newton method, 397	Riemannian manifold, 18
BFGS, 401	differentiation, 482
DFP, 401	Levi-Civita pseudotensor, 458
L-BFGS, 402	metric tensor, 452, 455, 458
quasi-uniform gnomonic projection, 313	Riemannian metric
Dadawa ammovimation 217	definition, 453
Radau's approximation, 217	right Cauchy–Green tensor, 17, 51, 56
radiation pattern, 202	right stretch tensor, 54
random probing, 393	rigidity, 187
rank-1 update, 400	Rodrigues formula, 463, 464
ray density map, 403	root-finding algorithm, 397
Rayleigh–Ritz method, 279, 280	rotation, 121, 448, 460
reciprocity, 198	angle, 463

axis, 463 shear waves, 190 intrinsic, 205 horizontally polarized, 190 particle, 114 vertically polarized, 190 plastic, 161 shear wavespeed, 190 total, 205 Sherman-Morrison formula, 401 rotation tensor, 460 shocks, 321 infinitesimal, 186, 204 short-range force, 3, 65 rotation vector, 204 slip, 200 rotational defects, 133 static, 201 rotational kinetic energy, 108 smooth, 423 rotational seismology, 204 smoothing, 405 rotational seismometer, 205 solid-solid discontinuity, 189 rotational strain, 181, 205 sound wavespeed, 191 source safeguarded backtracking line search, 407 dip-slip, 203 scalar, 442, 445 double-couple, 196, 201 field, 3, 442 explosion, 203 scalar moment, 201 eyeball, 203 Schwartz's theorem, 135 fried-egg, 203 Schwarz integrability condition, 135 implosion, 203 SCOTCH, 296, 312 indigenous, 192 screw dislocation, 148, 177 point, 201 search direction, 397 strike-slip, 203 secant method, 397 thrust, 203 second law of thermodynamics, 76, 110, 111 source encoding, 367 second Piola-Kirchhoff stress, 66, 67, 220 source perturbations, 364 two-forms, 72 source volume, 193 second Piola-Kirchhoff stress tensor, 68, 220 source-encoded inversion, 370 seismic interferometry, 240, 375 source-receiver reciprocity principle, seismic moment, 201 seismometer source-time function, 203 force-balance, 234 normalized, 204 horizontal, 234 space idealized, 233 data, 261, 343 rotational, 205 Euclidean, 220 vertical, 234 model, 261, 343 self-gravitation, 122 spacetime, 421 semicolon notation, 350, 472 spacetime manifold, 485 spatial coordinates, 3, 6 sensitivity kernel anisotropic, 358 spatial manifold, 3, 5, 6 forensic, 358 spatial point, 5 sensitivity kernels spatially uncorrelated noise, 242 ensemble, 375 special orthogonal group, 461 Seth-Hill strain, 57 specific density, 47 SH waves, 190, 224 mass, 47 specific entropy density, 76 shape function, 283 global, 286 specific heat, 75 local, 288 specific heat capcity, 75 sharp #, 23 spectral-element method, 297 shear current, 169 spectral-infinite-element method, 325 shear modulus, 187 spherically symmetric Earth model, 213

spin, 108, 177	stress, 65
spin connection, 484	classical incremental Piola-Kirchhoff,
spin current, 169	220
spin energy density, 205	classical Piola-Kirchhoff, 68
spin tensor, 149, 177	couple, 104
logarithmic, 61	deviatoric, 212, 213
spin zero-form, 159	first Piola-Kirchhoff, 67, 79, 220
split-node fault implementation, 332	incremental first Piola-Kirchhoff, 220
spring, 244–245	incremental second Piola-Kirchhoff,
square-root variable metric method,	220
393	Kirchhoff, 82, 106
stability	nominal, 68
neutral, 227	second Piola-Kirchhoff, 67, 220
stability frequency, 226	stress glut, 180, 192
Stacey condition, 308	couple, 180
staggered grid, 262, 263, 269	stress rate, 83
standard linear solid, 245, 309	Oldroyd, 83
static slip, 201	Truesdell, 83
steepest descent method, 398	stress relaxation time, 309
step length, 397	stress tensor, 65, 206
stiffness matrix, 302	Cauchy, 65
Stokes hypothesis, 91	Kirchhoff, 66
Stokes's theorem, 523, 525	weighted Cauchy, 67
classical, 525	stress-energy tensor, 149, 177
generalized, 41, 523	stress-free boundary, 190, 192, 212
strain, 48, 61, 62	stress-glut density, 195
Almansi, 56	stretch tensor, 54
Biot, 57	left, 54
deviator, 187	right, 54
deviatoric, 187	strong form, 261
Eulerian, 56	strong methods, 261
Hencky, 57	structure coefficients, 8, 141, 144, 145, 438, 439,
Lagrangian, 55, 56	447
logarithmic, 57	summation convention, 10, 429
material, 55	surface, 34, 503
rotational, 181, 205	surface force, 196, 200
Seth–Hill, 57	surface gradient, 37, 213, 345
two-vector version, 61	surface integral, 521
two-vectors, 62	surface moment-density tensor, 196
strain current, 169	surface one-form, 458
strain deviator, 187	surface torque, 104
strain one-form, 63	surface two-forms, 503
strain rate, 59	surjective, 465, 467
strain relaxation time, 309	SV waves, 190, 224
strain tensor, 63	symmetric tensor, 445
Eulerian, 186	symmetry
infinitesimal, 186	cubic, 187
strain two-vector	isotropic, 187
normal, 62, 63	monoclinic, 187
strain two-vectors, 62	orthotropic, 187

transversely isotropic, 187 metric, 17, 140, 452 triclinic, 187 modified torsion, 164 synthetic seismograms, 261 moment, 200, 201, 211 system assembly, 296, 314 moment-density, 210 nonmetricity, 19, 146, 486 T-axis, 202 operations, 443 tangent bundle, 428 Palatini, 165 tangent space, 5, 6, 427 Palatini torsion, 485 Taylor series, 449 point-defect, 149 temperature, 75 prestress, 212 tensor, 441 Ricci, 165, 484 addition, 443 Riemann, 17, 478, 484 adjoint, 456 rotation, 460 alternating, 457 skewsymmetric, 500 anti-Green, 232 spin, 149, 177 anti-symmetric, 445 strain, 63 capacity, 449, 457 stress, 65, 66, 206 Cartan, 164, 485 stress-energy, 149, 177 Cauchy stress, 65 surface moment-density, 196 Cauchy-Green, 50 symmetric, 445 co-Einstein, 166 torsion, 477-479 co-Ricci, 165 trace, 444 contortion, 170, 481, 486 traction, 70 contraction, 444 transformation, 446 couple-moment, 211 transpose, 445, 446 couple-moment-density, 210 two-point, 11, 21 couple-stress, 178, 206 unit source-mechanism, 201 curvature, 17, 477-479 valence, 442 definition, 441 viscosity, 91 deformation, 21, 37, 56 vorticity, 20 deformation gradient, 49 tensor capacity, 27, 449, 457 deformation-rate, 20 covariant derivative, 486 density, 449, 457 weight, 27, 449 determinant, 451 tensor density, 27, 449, 457 disformation, 170, 486 covariant derivative, 486 Doyle-Ericksen, 57 weight, 27, 449 Einstein, 166, 485 tensor field, 442 divergence of, 475 elastic, 229 exponential, 449 tensor product, 14, 443 field, 3, 442 outer product, 443 Green, 198, 232 tensor-valued form, 479, 510 identity, 18, 448 tensors, 14 incompatibility, 7, 136 relative, 449 inertia-density, 205 two-point, 68 intrinsic rotation, 181 test function, 279, 283 inverse, 452 test vector, 190, 236, 280, 297 Kirchhoff stress, 66 tetrad, 447, 483, 484 covariant derivative, 483 Kronecker, 18, 448 Levi-Civita, 457 tetrad formalism, 138 logarithm, 449 thermal conductivity, 75

thermal diffusivity, 75	total torque, 194
thermodynamic mechanical parameter, 111	total variation regularization, 404
thermodynamics, 73, 92	trace, 20, 444
three-form	traction
internal energy, 107	two-forms, 70
internal heating, 109	traction two-forms, 70
volume, 502	traction tensor, 70
Tikhonov regularization, 404	traction two-form
time	normal, 70
comoving, 4	shear, 70
Newtonian, 3, 4	transpose, 386, 445, 446
referential, 3	(1,1) tensor, 446
time derivative	transversely isotropic symmetry, 187
corotational material derivative, 25	trapezoidal time scheme, 292
Euler, 486	traveltime adjoint source, 356
material derivative, 24	traveltime adjoint wavefield, 356
time scheme	traveltime misfit function, 355
centered, 274	traveltime misfit kernel, 358
explicit, 272	traveltime tomography, 355
forward-difference, 266	Trelis, 312
implicit, 273	triclinic symmetry, 187
Lax-Friedrichs, 267	true model, 394
Newmark, 303	true strain, 57
predictor-corrector, 292	Truesdell rate, 83
trapezoidal, 292	twist disclination, 148, 177
time-reversal mirror, 344	two-form
tomography	Cauchy stress, 69
amplitude, 360	curvature, 517, 518
attenuation, 362	first Piola-Kirchhoff stress, 71
differential-traveltime, 360	heat flux, 107
generic, 362	second Piola–Kirchhoff stress, 72
Q, 362	stress, 69
traveltime, 355	surface, 503
waveform, 348	tensor-valued, 479
torque, 194, 196	torsion, 513, 514
surface, 104	traction, 70, 89
total, 194	vector-valued, 479
volume, 104	two-forms, 496
torque two-forms, 109	torque, 109
torsion, 134, 141	two-loop recursion, 402
material, 146, 149	two-point tensor, 11, 21, 68, 71
torsion form, 485	
torsion tensor, 16, 477–479	uncertainty quantification, 408
torsion two-form	unconditional stability, 273
material, 164	unit vector, 455
torsion two-forms, 141, 513, 514	upwind flux, 321, 322
torsion-free connection, 15, 480	valence 206 207 442
total force, 194	valence, 296, 297, 442
total rotation, 205	variable metric method, 399
total rotation tensor, 205	variational approach, 92, 124, 221, 223, 228

	_
variational principle, 92, 124, 221, 223, 228, 525 volume form, 27, 29, 162, 458, 50	2
displacement, 221 properties, 163	
displacement-potential, 223 volume integral, 522	
vector, 8, 427, 428 volume torque, 104	
basis, 429 volume transport, 34	
covariant, 13 vorticity, 19, 108	
dual, 13 vorticity tensor, 20	
field, 431	
length, 455 wave equation	
norm, 455 acoustic, 191	
normal, 38, 503 weak-form, 192	
unit, 455 elastic, 188	
vector field, 431 weak-form, 190	
constancy, 475 fluid, 226	
vector space, 418, 429 waveform adjoint source, 349	
dimension, 419 waveform adjoint wavefield, 350	
basis, 419 waveform inversion, 385, 388	
linear space, 418 waveform misfit kernel, 350	
vector-valued <i>k</i> -form, 511 waveform tomography, 348, 414	
vector-valued form, 479, 510 wavelets, 406	
velocity zero-form, 160 wavenumber, 189	
velocity-stress formulation, 266 wavespeed	
Vielbein, 447 compressional, 189	
Vierbein, 138, 447 shear, 190	
viscoascoustics, 253 sound, 191	
viscoelasticity, 249 wavevector, 189	
viscosity, 91, 252 weak form, 279	
bulk, 91 weak methods, 279	
dynamic, 91 wedge disclination, 148, 177	
viscosity tensor, 91 wedge product, 496, 498	
viscous fluid, 91, 124 exterior product, 498	
Voigt notation, 311 Grassmann product, 498	
Volterra cut-and-weld protocols, 136, 148, 153, weighted Cauchy stress tensor, 67	,
210 Weyl vector, 164	
Volterra representation theorem, 199 Wolfe conditions, 406	
generalized, 233	
volume, 31, 502 Young's theorem, 135	
source, 193	
volume element, 502 Zaremba–Jaumann rate, 25, 59	