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Chapter 1

KINEMATICS

Nature is written in mathematical language.
—GALILEO GALILEIL

Computations must be based on a thorough theoretical framework, and in this chapter, we
build the necessary foundation. We regard the Earth as a continuous distribution of matter,
which can interact both through short-range and long-range forces governed by the laws
of continuum mechanics. The mathematical description of such a continuum involves basic
differential geometry and tensor calculus, which is prerequisite knowledge for this chapter
of the book and reviewed in the appendices.

We develop a theory of continuum mechanics in which all physical quantities—for exam-
ple, mass density, material velocity, and stress—are defined as unique tensors with respect
to an inertial or Galilean reference frame, independent of any coordinate system. Guided by
the theory of general relativity, there can be only one set of coordinate-free tensor equations
that captures the laws of continuum mechanics, which include conservation of mass, lin-
ear momentum, angular momentum, and energy. The natural variables of tensor fields in
continuum mechanics are Newtonian time and space positions in the Galilean frame.

To explore the governing tensor equations, we investigate two primary classes of coor-
dinate systems within a spatial manifold." The first class comprises spatial or Eulerian
coordinates, which remain unaffected by the continuum’s motion. The second class encom-
passes comoving or Lagrangian coordinates, which can be accelerated by the continuum’s
motion. The transformations between these two coordinate representations are governed by
the well-established principles of standard tensor calculus, offering a rigorous mathematical
foundation for our theoretical framework.

To describe deformation of the continuum, we introduce a quiescent referential state of
matter characterized by some referential time, for example, the equilibrium configuration

'For our exploration, we define a manifold as a collection of interconnected “patches” that locally resemble Euclidean
space, specifically R?, and are seamlessly “stitched” together. It is important to note that the manifolds we work with in this
context possess a differentiable structure, enabling us to conduct calculus operations on these manifold spaces, thereby
enriching our understanding and analytical capabilities.
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Chapter 1. Kinematics

of an elastic material at rest. To identify individual elements of the continuum in this ref-
erential state, we introduce referential coordinates in a referential manifold. The Lagrangian
coordinates in the spatial manifold are chosen such that at the referential time, when the
spatial and referential manifold describe the same state of the continuum, they coincide
with the referential coordinates. In other words, the referential coordinates are identical to
the comoving Lagrangian coordinates at the referential time.

In this chapter, we investigate the kinematics of a continuum, and in chapter 2 we explore
its dynamics.

Notation

Throughout this book, we use bold Latin and Greek letters to denote vectors and tensors, for
example, we use v to denote the material velocity and o to denote the Cauchy stress tensor.
We use a dot - to denote contraction between the last index of the first tensor and the first
index of the second tensor (e.g., for the stress tensor o and the material velocity v, o - v), and
a colon : to denote the contraction of two second-order tensors (e.g., for the stress tensor o
and the deformation-rate tensor D, o :D).

We introduce Cartesian spatial, or Eulerian, components of vectors, one-forms, and gen-
eral tensors, which are denoted by Latin letters with lowercase Latin super- and subscripts
(e.g., v/, w;, or o'}). Cartesian Eulerian or spatial coordinates are identified by a lowercase
Latin r with lowercase Latin superscripts, r', Eulerian basis vectors by a bold lowercase e with
lowercase Latin subscripts, e;, and Eulerian basis one-forms by a bold lowercase e with low-
ercase Latin superscripts, €. These coordinates and associated basis vectors and one-forms
are independent of the motion and rigidly attached to an inertial laboratory. The functional
dependence of the spatial components of a tensor field on space and time is denoted by (r, t ),
for example, v/ (r, t ). Partial derivatives with respect to these coordinates are denoted by 9;
and 0y, and such partial derivatives can only act on the Eulerian components of tensor fields.

Comoving, or Lagrangian, components of tensors are denoted by Latin letters with upper-
case Latin super- and subscript (e.g., v/ or o'). Lagrangian coordinates are identified by the
symbol X and uppercase Latin superscripts, X!, Lagrangian basis vectors are denoted by a
bold lowercase e with uppercase Latin subscripts, e;, and Lagrangian basis one-forms are
denoted by a bold lowercase e with uppercase Latin superscripts, e'. The functional depen-
dence of the comoving components of a tensor field on space and time is denoted by (X, T'),
for example, o/;(X, T'). Partial derivatives with respect to these coordinates are denoted by 9;
and Jr, and these partial derivatives can only act on the Lagrangian components of a tensor.
One can think of t as Newtonian time and of T as a “comoving” or “convected” time. The dis-
tinction between the partial derivatives 0; and Oy is important for two reasons: (1) to make
clear which kind of component of a tensor is being differentiated with respect to time, and
(2) to indicate which remaining coordinates are held fixed.?

Scalar quantities—that is, tensors of rank zero—are denoted by Greek or Latin letters,
for example, p for the mass density and q for a physical quantity “q-stuft”. We use lowercase
italicized letters to express the functional dependence of such a quantity in Cartesian Eule-
rian coordinates, for example, p(r,t) and q(r, t). To express the functional dependence of

. / -/
2In general relativity, two four-dimensional coordinate systems may be expressed as {x”,x" } and {x® ,x" }, in which
’
case x* and x° indicate the two different time coordinates; in other words, one would naturally distinguish between the
two time coordinates.
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Figure 1.1: Left: Referential state of the continuum at time t = 0 captured by the referential manifold I3.
A material point M may be identified with referential coordinates {X" }, which define a chart in the
referential manifold. A local vector basis in the tangent space of the referential manifold at M is
denoted by the partial derivatives {Ox:}. For convenience, the referential coordinates are chosen to
be Cartesian, but this is not required. Right: Deformed state of the continuum at time t =T captured
by the spatial manifold S. A spatial point 8, not tied to a specific element of the continuum, may be
identified with the comoving Lagrangian coordinates {X’} of the material particle that happens to
occupy its location at time ¢ = T. Thus, Lagrangian coordinates define an evolving local chart in the
spatial manifold at time t = T. A local non-orthonormal vector basis in the tangent space of the spatial
manifold at 8 at time = T is denoted by the partial derivatives {Ox: }. Importantly, Lagrangian coor-
dinates in the spatial manifold are chosen such that they are identical to the referential coordinates in
the referential manifold at the referential time ¢ = 0, when the referential and spatial manifolds capture
the same state of the continuum. Thus, the Lagrangian coordinates move along with the flow of matter.

such quantities in Lagrangian coordinates, we use uppercase italicized letters, for example,

o(X, T)and Q(X, T). A glossary of the notation is provided at the end of chapter 2.
Occasionally, we will need to explore an issue that has come up in the main text in further

detail. When this occurs, we introduce a “box” in which we delve further into the topic.

1.1 Motion

Before we discuss the notion of deformation of a continuum, we need to introduce the con-
cept of a referential state of the material. In seismology, this is typically the quiescent state of
the Earth before an earthquake, which we identify with time =0 or sometimes = Tj. As
illustrated in figure 1.1 (left), an element of the continuum in the referential state is labeled
by a material point M, which may be identified with a set of Cartesian referential coor-
dinates {X'}. These referential coordinates define a chart in the referential manifold and
remain associated with whichever element of the continuum they identify. The local vector
basis in the tangent space of the referential manifold at material point M is identified with
the partial derivatives O, analogous to the identification of vectors with tangents to curves,
as discussed in appendix C.1.1.

The state of the continuum at a later time t =T is captured by the spatial manifold S,
shown in figure 1.1 (right). A spatial point 8 in the spatial manifold is not tied to a specific
element of the continuum: it simply denotes a location in inertial space. Thus, whereas a
material point M labels a specific particle in the referential manifold at time t =0, a spatial
point 8 labels a location in the inertial spatial manifold not tied to any particular particle or
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Figure 1.2: Left: Referential state of the continuum at time t = 0. A material point M may be identified
with Lagrangian coordinates {X' } in the referential manifold 3. For convenience, in this figure, the
Lagrangian coordinates are chosen to be Cartesian, but this is not required. Right: Deformed state of the
continuum at time ¢ = T. A spatial point § may be identified with Cartesian spatial coordinates or Eule-
rian coordinates {r' } in the inertial spatial manifold S. The motion ' (X, T) definesamap ¢ : B— S,
that is, from the referential manifold 3 to the spatial manifold S, identifying the spatial location r' of
a particular element of the continuum at time ¢ = T. Its inverse &'(r, t ) defines a map & : S — B.

time. Spatial points are identified by a set of Cartesian Eulerian coordinates {r’ }, with an
associated orthonormal Cartesian vector basis (see appendix C.1)

e,»z@,-, (11)

where we introduced the compact notation 9; = 0, .

Alternatively, a spatial point & may also be identified with the Lagrangian coordi-
nates {X'} of whatever material particle happens to occupy location § at time t= T (see,
e.g., Sedov, 1966; Weile et al., 2013). Thus, Lagrangian coordinates define an evolving local
chart in the spatial manifold S. Lagrangian coordinates in the spatial manifold are cho-
sen such that they are identical to the Cartesian referential coordinates in the referential
manifold B at the referential time t =0, when the referential and spatial manifolds capture
the same state of the continuum. In other words, at times ¢ > 0 the referential coordinates
comove or convect with the material to evolve into a set of Lagrangian or convected or comov-
ing coordinates. A local nonorthogonal Lagrangian vector basis in the tangent space of
the spatial manifold S at § at time t= T may be defined in terms of the evolving partial
derivatives Oy, namely,

er=0y, (1.2)

where we introduced the compact notation 0y = Ox1.
The motion of the continuum is captured by the map

ri:(pi(X’ T)a

t=T. (13)

This map, @ :B— S, takes us from Cartesian referential coordinates {X!} assigned in
the referential manifold 5 at time t=0 to Cartesian spatial coordinates or Eulerian
coordinates {r' } in the inertial spatial manifold S at time ¢ = T, as illustrated in figure 1.2.>

Because, unlike Euclidean space, a manifold has no origin, one cannot define “position vectors” r or X. Motion in

Euclidean space is discussed in box 1.1.
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We assume that the motion is invertible (no tearing of the continuum, a topic we explore in
chapter 3), such that
prer) X=d/(r.1),

T—1, (1.4)

as illustrated in figure 1.2. The inverse map, ® : S — B3, takes us from inertial Cartesian spa-
tial coordinates {r’ } assigned in the spatial manifold S at time ¢ = T to Cartesian referential
coordinates { X'} in the referential manifold /3 at time ¢ = 0.

Alternatively, we may regard the motion (1.3) and its inverse (1.4) as a coordinate trans-
formation between Cartesian Eulerian coordinates and evolving curvilinear Lagrangian
coordinates in the spatial manifold, as illustrated in figure 1.4 and discussed in appendix B.3.
It is important to recognize the dual role of the motion (1.3), describing both the location of
a specific material particle in the spatial manifold and a coordinate transformation between
Eulerian and Lagrangian coordinates in the spatial manifold.

In box 1.1, we consider the motion of a particle in Euclidean space with origin O. Parti-
cles in the material are labeled by their position “vector” X at time T'= 0, and the position
“vector” r of particle X at time T > 0 is denoted by r = ¢(X, T'), as illustrated in figure 1.3.
More generally, in a manifold, the motion (1.3) does not define the components of a vector,
rather it is a map between Eulerian and Lagrangian coordinates.

Box 1.1 Motion in Euclidean Space

In this box, we consider motion in Euclidean space. In such a space, the motion ¢(X, T')
may be regarded as a “position vector” relative to an origin O, giving the spatial
position r of the particle originally located at X at a later time T:

r=¢(X,T), (1.5)

as illustrated in figure 1.3. In this expression, bold quantities are interpreted as “position
vectors” Such an approach is only permissible in Euclidean space when an origin O
may be defined and vectors associated with distinct spatial locations may be combined.
Dahlen and Tromp (1998) abbreviate the description further by expressing the position
of particle X at time T'as r(X, T).

In future boxes, we will further explore other aspects of continuum mechanics in
Euclidean space, thereby drawing parallels with the approach used in Dahlen and
Tromp (1998).

1.1.1 Compatibility
A smooth motion satisfies the compatibility conditions
"= (010)— 0;01) ¢
ay (()I/ i0r) (L6)

Equation (1.6) states that partial derivatives of the motion with respect to comoving coordi-
nates commute. For an incompatible motion, the tensor cvy;’ is nonzero and is referred to as the
incompatibility tensor. Such a situation involves material defects in the form of dislocations
and disclinations, as discussed extensively in chapter 3.
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8 Chapter 1. Kinematics

X r=¢(X, T)

@)

Figure 1.3: Motion in Euclidean space with origin O. Particles in the material are labeled by their
referential position “vector” X at time T'= 0, and the position “vector” r of particle X at time 7> 0
is denoted by r = ¢(X, T'). The generalization of Euclidean space is a manifold, which has no origin,
and one cannot define “position vectors.”

Compatibility is related to the Lie bracket (see appendix C.4). The Lie bracket of two
Eulerian or Lagrangian basis vectors is zero

lei, e] =0, [er,e]] =0, (1.7)
due to the commutativity of partial derivatives
0;0; — 0;0; =0, 010) — 0;0;=0. (1.8)

Such a basis is called holonomic. The Lie bracket is related to the autonomous Lie derivative,
discussed in appendix F.3.3, in the sense £¢,e; = [e;, ¢j].

When basis vectors fail to commute, the basis is called nonholonomic or anholonomic. In
that case,

[ehej] :Ti? €k, (19)

or

8,-@—@&27,? O. (1.10)

The parameters Té? are known as structure coefficients. We discuss an example of an anholo-
nomic basis in spherical coordinates in box 1.2.

It is important to note that anholonomicity does not imply incompatibility. The former
is a property of a vector basis, whereas the latter is a property of a motion.

1.2 Vectors: Material Velocity

The temporal derivative of the motion (1.3), that is, the partial derivative of ¢'(X, T)
with respect to time T, holding the Lagrangian coordinates X' fixed, defines the Eulerian
components of the material velocity:

Vi=ory'. (1.11)
The Eulerian components of the material velocity, v/, are a function of the Eulerian vari-

ables {r’,¢}, and the motion is a function of the Lagrangian variables {X’, T}, so the
equality (1.11) should be understood explicitly as
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1.2. Vectors: Material Velocity

Box 1.2 Anholonomicity

Consider the transformation from Cartesian coordinates {x, y, z} to spherical coordi-
nates {r, 0, ¢}. The associated holonomic basis vectors are {0y, 0,, 9.} and {0;, 9y, 0y },
respectively. We have the relationships

x=r sin 6 cos ¢, y=rsinfsin ¢, z=r1 cosf,
with inverse

r=1\/x2+y2+22, 0 = arctan (/%% + 2 /z), ¢ =arctan(y/x).
The spherical basis vectors are related to the Cartesian basis vectors via
e, =0, =sinf cos ¢ Ox +sin O sin ¢ 9, + cos 6 9,
ep=0p=rcostcos¢Ox+rcossingd, —rsinbd,,

es =04 = —rsinfsin ¢ O +r sinf cos ¢ J,.

»q

It is important to note that these basis vectors are not all “unit™ vectors. Specifically,

e =r, eyp=r0, ey =rsinf ¢,

where 1, é, and dA) denote traditional unit vectors in the directions of increasing 7,
6, and ¢, respectively. The basis vectors {e,, eg,es} are holonomic, thanks to the
commutativity of the partial derivatives 0,, 9y, and 0,. However, the unit basis vectors

=9, O0=r"'9),  ={(rsinfh)7'd,,

are anholonomic:

[f'a é]: _ril é7 [f.7q§]: _ril (]37 [é7¢3]: _ril cot@q@.
The main conceptual difference is that a holonomic basis is integrable, whereas an
anholonomic basis is non-integrable.

“See section 1.6 for a discussion on length.

Vi(P(X,T), T)=0r¢'(X,T), (1.12)

so that both sides are evaluated at a particle labeled by {X!, T }. Even though the motion ¢’
itself does not define the components of a vector, its temporal derivatives O7 ¢’ do define the
components of the material velocity vector.

At this point, we have introduced two sets of coordinate systems in the spatial manifold,
namely, Cartesian Eulerian or spatial coordinates {r’ } and Lagrangian or comoving coor-
dinates { X' }, related via the motion (1.3) and its inverse (1.4), as illustrated in figure 1.4. As
discussed extensively in appendix C, vectors, and their generalization in the form of tensors,
should be viewed as geometrical objects independent of any coordinate system. For practi-
cal applications, we choose to express tensors in a basis, and in continuum mechanics, the
two most commonly used bases are the ones we just introduced, namely, those associated
with Eulerian and Lagrangian coordinates. Consequently, as illustrated in figure 1.4, we
may express the material velocity v in the following two equivalent component forms (see
appendix C.1.4):
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10 Chapter 1. Kinematics

Figure 1.4: In continuum mechanics, a spatial point 8 in the spatial manifold S at time t= T may
be identified with either a set of Eulerian coordinates {r’} or a set of Lagrangian coordinates {X" }.
These coordinates induce a set of Eulerian basis vectors {9,:} (shown in solid arrows) or Lagrangian
basis vectors {Jxr} (shown in dashed arrows) in the tangent space at 8. The material velocity v (shown
by the thin arrow) is a geometrical object that lives in the tangent space at § and may be expressed in
either set of basis vectors, as stated mathematically in equation (1.13). The Eulerian coordinates are
chosen to be Cartesian in this example, but this is not required.
V= Vi €;

. (1.13)

=V €.
In these expressions, we introduced the usual Einstein summation convention, in which a
sum must be performed over a repeated upper and lower index, in this case the index i in
the first equality and the index I in the second equality. The Eulerian components of the
material velocity v are defined by (1.11), whereas its Lagrangian components are identified
by the set {v }.

Problem 1.1 By differentiating the inverse motion (1.4) with respect to time T, show
that the Lagrangian components of the material velocity are given in terms of the inverse

motion P' b
4 vi= -9, o (1.14)

As discussed in detail in appendix C.1.4, Eulerian and Lagrangian basis vectors are related
via the transformations . g
e;=F're; and e;=(F )ey, (1.15)

where we have defined the deformation gradient*

“The nomenclature deformation “gradient” is not ideal; in view of definitions (C.14), deformation “matrix” would be
preferable.
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1.3. One-Forms

Fii=01¢, (1.16)

with inverse
(FHY,=0,9. (1.17)

Our nomenclature and notation for the deformation gradient, F'}, are chosen to coincide
with those of Malvern (1969, section 4.5) and Marsden and Hughes (1983, section 1.3).
Unlike these authors, we do not regard the deformation gradient as a tensor, eschewing
the introduction of two-point tensors (see box 1.4 for further discussion). Matrices F';
and (F 1)/, are inverses of one another, in the sense that

Fi] (Fil)lj:(sij and (Fil)IiFi]:(SI], (118)
where ¢'; and 6'; denote the Kronecker-delta symbol (for further details, see appendix D.4):
_ 1 if i=j, 1 if I=J,
5= and &)= (1.19)
0 if i#j, 0 if I#J.
Since the basis vectors transform according to rules (1.15), it follows from equation (1.13)
that the components of the material velocity v transform according to
vi=(F YL, vi=Fi vl (1.20)

Examining equations (1.15) and (1.20), we see that bases transform with the inverses of
matrices used in the transformation of components and vice versa.

1.3 One-Forms

To describe the physics of a continuum, we are going to need more than vectors. To see why
this is the case, consider the differential® of a scalar field q. In Eulerian coordinates, this field
has the functional dependence g(r, t ), so we have®

dq=0igdr'. (1.21)
Alternatively, in Lagrangian coordinates, this field has the functional dependence Q(X, T'),
and we have dq=8,Qdx". (1.22)
Using the chain rule, being mindful of the nature of coordinate “slots,” as discussed in

box 1.3, we have the relationship 01Q=F',0hq, (1.23)

where F'; denotes elements of the deformation gradient (1.16).
Because equations (1.21) and (1.22) both represent the same differential scalar field dq,
the Eulerian and Lagrangian differentials, dr’ and dX’, must be related via

dx'=(F~Hhar, dr' =F dx". (1.24)

SStrictly speaking, the exterior derivative, discussed in appendix G.7.

SWe generally use the notation d to denote the exterior derivative in three dimensions. However, when working in four
dimensions, as in general relativity or to describe the dynamics and kinematics of defects, discussed in chapter 3, we use d
to denote the four-dimensional exterior derivative and d to denote its restriction to three dimensions.
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Box 1.3 Scalars as Tensors of Rank Zero

In this book, scalar fields, such as the mass density, are viewed as geometrical objects
independent of any coordinate system, just like all other tensors. As noted in the intro-
duction to this chapter, to indicate the status of a scalar field as a tensor, we use Greek
or Latin letters. Thus, the value of a scalar field q at location § and time ¢ in the spatial
manifold is written in the coordinate-free form (8, ¢ ). If we introduce a set of Carte-
sian Eulerian coordinates {r’ } in the spatial manifold, then we may express the scalar
field at time ¢ in these coordinates as g(r, t ), with partial derivatives 0;q and 0;q. Next,
if we introduce a complementary set of curvilinear Lagrangian coordinates { X' } in the
spatial manifold, then we may also express the scalar field at time T in these coordinates
as Q(X, T'), with partial derivatives 9;Q and 97 Q. The motion (1.3) enables us to relate
the two descriptions of this scalar field because

q(@i(XaT)’T):Q(X’T)' (1.25)

This result is self-evident, inasmuch as both sides give the value of q recorded by
particle X', which is at point r’ = '(X, T) at time t = T.

Whenever one takes partial derivatives of a tensor field in a specific coordinate
system, one needs to be mindful of the nature of its coordinate and time “slots”” For
example, a scalar field q expressed in Eulerian coordinates, {r’, ¢ }, has slots that accept
only such coordinates, g(r, t ), and one can take only partial derivatives of the field with
respect to these coordinates. For this reason, the partial time derivative of a scalar field q
in Lagrangian coordinates, Or Q, is related to partial derivatives 0;q and 0;q in Cartesian
Eulerian coordinates via

IrQ=0q+ (0r¢') 0.

This relationship may be readily obtained by differentiating equation (1.25) with respect
to time T and using the chain rule.
Similarly, the spatial partial derivatives 9;Q and 0;q are related via

01Q=(01¢") 0q,

where, again, the left- and right-hand sides are evaluated at the location of material
particle X! at time T.

Upon comparing these expressions to the transformation rule for basis vectors (1.15), we
note that the rules appear to be “reversed” This motivates us to introduce two new sets of
basis elements defined in terms of differentials dr’ and dX’, namely,

e =dri, (1.26)

and
el =dx". (1.27)

These basis elements are referred to as one-forms and are discussed in detail in appendix C.2.
The transformations (1.24) may now be rewritten in the forms

el =(F e,  e=Fie. (1.28)
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1.3. One-Forms

These one-form basis transformation rules should be contrasted with the vector basis
transformation rules (1.15).

We conclude that the differential dq should be regarded as a new form of tensor called
a one-form,” discussed in appendix C.2. Such a tensor, say w, may be expressed in either
Eulerian or Lagrangian coordinates as

w=uw;eé
. (1.29)
=wre,
and its components transform according to the rules
wI:OJ,‘Fi], Wi =wr (F_I)Ii. (130)

We note that one-forms have components labeled with subscripts, to clearly distinguish
them from vectors, which have components labeled with superscripts.

1.3.1 Duality Product

As discussed in appendix C.2.1, spatial basis vectors and spatial basis one-forms are duals
of each other; namely, for Eulerian vector basis elements e; and one-form basis elements e/,
we have

(ei, ej>:(5i]-, (131)

and for the Lagrangian bases
(e, e)=0"). (1.32)

Here (-, -) denotes the bilinear® duality product between a one-form, to be placed in the first
slot, and a vector, inserted in the second (see, e.g., Schutz, 1980; Dubrovin et al., 1985).
In the language of differential geometry, we may express the products (1.31) and (1.32)
fancifully as
d?’i(aj):(sij or Bl(dr])zéf, (133)

and

dXI( 8]):(51] or 81(dX])=5]1. (1.34)

These expressions reflect the view discussed in appendix C.2.1 and in the next section that
vectors are linear “machines” with a “slot” that accepts one-forms, whereas one-forms are
linear machines with a slot that accepts vectors (Misner et al., 1973). For a discussion of
linear spaces and linear transformations, the reader is referred to appendix A.

The Eulerian and Lagrangian components of a vector field u may now be defined in terms
of the duality product as, respectively,

u=(e, u), w=(e u). (1.35)

Problem 1.2 Express the vector u in Eulerian or Lagrangian components and use the
duality product (1.31) or (1.32) to verify (1.35).

7In old terminology, one-forms were called covariant vectors, covectors, and dual vectors. However, we do not use these
terms because they contain the word “vector;” which contradicts our understanding of a one-form as a collection of sheets.
8See appendix A for a description of linear spaces.
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Chapter 1. Kinematics

Similarly, the Eulerian and Lagrangian components of a one-form field w may be defined
in terms of the duality product as, respectively,

wi=(w, e), wi=(w, er). (1.36)

1.4 Tensors

Based on the discussion in the previous section, specifically the dualities (1.33) and (1.34),
any vector, u, may be viewed as a linear “machine” with one slot that accepts a one-form, w,
and returns a number: , :

w(w)=vw,=u w. (1.37)
Such a machine is an example of a (1, 0)-tensor: a machine with one one-form slot. Similarly,
a one-form, w, may be viewed as a linear machine with one slot that accepts a vector, u, and
returns a number: ;
wu)=w;u' =wru. (1.38)
A one-form is an example of a (0, 1)-tensor: a machine with one vector slot.

As discussed in appendix D, the generalization of vectors and one-forms is a tensor, T,
which is a multilinear machine with multiple slots that accept either vectors or one-forms.
Specifically, a ( p, q) tensor is a machine with p one-form slots and g vector slots in any order.
For example, the rank-4 tensor r with three vector slots followed by a one-form slot returns

r(u,v,w,w)= rijke uviwkw,= o ul v wXwp (1.39)

when fed three vectors u, v, and w, and one one-form w.
The components of a tensor may be obtained by inserting the appropriate basis vectors
and one-forms, in this instance
¢ ¢ L L
r(ei7ej7ekae ):rijk ) r(eheheKae ):rI]K ) (140)
such that we have
r=rile@e/ v ve
L« (1.41)
=rmgx € Ve ¥e Ker,

where the symbol @ designates a tensor product (see appendix D.2.2). Equation (1.41) illus-
trates how higher-order tensor fields may be expressed in terms of combinations of Eulerian
or Lagrangian basis vectors and basis one-forms.

The transformation of a tensor from spatial to Lagrangian coordinates and vice versa
may be accomplished based on a generalization of the vector and one-form transformation
rules (1.20) and (1.30), for example,

TUKL:Fi]Fj]FkK(F_l)Le Tijké, (142)
and
Tiij:(Fil)Ii (Fil)]j (Fil)KszL TUKL. (143)

In some textbooks, tensors are defined as objects that transform according to these rules.

1.5 Covariant Derivative

In this section, we introduce a tensorial description of the “gradient of a vector field,” such
as the material velocity v. This is accomplished by means of the covariant derivative, which
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1.5. Covariant Derivative 15

is denoted by the symbol V and discussed in detail in appendix E 1. In spatial coordinates,
the covariant derivative is expressed as V;, and in these Cartesian coordinates it is identical
to the partial derivative 0;: ; ;

P i Vvl = o, (1.44)

If the elements V;v/ are to define the spatial components of a tensor, we have
Vv=Vv/ ei®ej. (1.45)

In Lagrangian coordinates the components of this tensor must be given by the tensor
transformation rule discussed in section 1.4, namely,

VIV]:Fi] (Fil)]j Vivj. (146)

Problem 1.3 Show that the Lagrangian components of the material velocity gradient

are given by ©

V! =0’ + T vk, (1.47)

where the Lagrangian connection coefficients are defined by
F%K = (Fil) ]j a[FjK

. (1.48)
= (8] ij) 8181( (,DJ.

Problem 1.4 For a non-Cartesian Eulerian basis, as discussed in appendix F.1.2, show
that the relation between Eulerian and Lagrangian connection coefficients, Ff} and L'l is

I‘gz(F*I)Kkpijpfjrg-k(F*I)Kkale]. (1.49)

We conclude from equation (1.47) that the covariant derivative of the material veloc-
ity in Lagrangian coordinates is 9;v/ augmented by a connection to ensure the covariant
derivative of the vector field is tensorial, that is, independent of the chosen coordinate sys-
tem. We note that, thanks to the compatibility condition (1.6), the Lagrangian connection
coefficients (1.48) exhibit the symmetry,

Iy=T}, (1.50)

which means that the connection is torsion-free, as discussed in appendix F.1.7.

Problem 1.5 For a non-Cartesian Eulerian basis, use relation (1.49) between Eule-
rian and Lagrangian connection coefficients to show that vanishing torsion requires the
symmetry
k _ Tk
Is=T}. (1.51)

We conclude that if the Eulerian connection coefficients are torsion-free, then so are
the Lagrangian connection coefficients. In problem 1.7, we demonstrate that this property
corresponds to a vanishing torsion tensor.
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Chapter 1. Kinematics

Based on this discussion, we may now regard the gradient of the material velocity, Vv,

asa(1,1) tensor, .
(1) Vv:Viv]e’®ej:V1vIel®e], (1.52)

subject to the transformation rules
V,‘Vj:(Fil)IiFj]V[V], VIV]:FiI (Fil)]j V,—vj. (153)

The covariant derivative of higher-rank tensors involves additional terms with connection
coeflicients, as we will see in the next section when we apply the covariant derivative operator
twice to the material velocity.

1.5.1 Evolution of Connection Coefficients

The Lagrangian connection coefficients F§ evolve over time with the flow of matter.

Problem 1.6 To see what form this evolution takes, differentiate the relationship
' Ok ' = 010y, easily obtained from (1.48), with respect to time T, and show, using
the general definition of the covariant derivative of a tensor (E20), that

FiKaTFEZFiKvIV]VK. (154)

We conclude that 0T =V, VK. (1.55)

Although the Lagrangian connection coefficients I'jj do not define a tensor, their time rate
of change Or I'[j does, because the right-hand side of equation (1.55) is the tensor VV'v.”
Equation (1.55) has important consequences. For example, it implies that

or (L —T7) = (ViV;— V,;Vi)vE =0, (1.56)

because the connection is torsion-free, as expressed by equation (1.50). Thus, we find that,
in continuum mechanics, covariant derivatives commute,

V1, V)] =0. (1.57)

Problem 1.7 Show, based on the expression for the general covariant derivative (E.20),
that, more generally for a vector u = u' e}, we have the Ricci identity

(ViV; = V)V =y S o — " Vo, (1.58)

where
=T — T (1.59)

denotes the components of the torsion tensor, and where

=0y — oy + iy D)l — TR, Tt (1.60)

9The rate of change with respect to the convected time T corresponds to the Lie derivative relative to the material velocity,
as discussed in section 1.8.
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denotes the components of the curvature tensor or Riemann tensor. In continuum
mechanics, space has zero torsion, tyX =0, and zero curvature, ry; X =0, which leads to
expression (1.56) and the commutability of covariant derivatives (1.57).

Note that although the Lagrangian connection coefficients I'j; do not define a tensor, their
difference Fﬁ — Fﬁ does. This difference in status is reflected in the placement of the indices
on the connection coeflicients FE (not tensorial) and the elements of the torsion tensor #;X
(tensorial).

1.6 Metric

To introduce a notion of length, let us consider the squared norm of a vector u. In Cartesian
Eulerian coordinates r’, this squared norm is given by

ul|> =u'u’ g;
=)+ W) + (),

where we have used the fact that the Cartesian components of the metric tensor (see
appendix D.10) are defined in terms of the Kronecker-delta symbol:

(1.61)

8ij = ij- (1.62)
In convected Lagrangian coordinates we have
lull® =u'u’ gy, (1.63)

where gj; denotes the Lagrangian components of the metric tensor. Equations (1.61)
and (1.63) measure the length of the same vector, which implies that the Eulerian and
Lagrangian components of the metric tensor,

g=gje e/ =gge@e, (1.64)

are related via
gi=F N F Y g, (1.65)
gy =F'1Fg;. (1.66)

Writing expressions (1.65) and (1.66) out explicitly, being mindful of the functional depen-
dencies, we obtain

gi(r) = F)i(r,t) (F7)i(r,t) gy((r, 1) 1), (1.67)
(X, T)=F' (X, T)F/y(X,T) gi( (X, T)). (1.68)

Here we have used the fact that the Eulerian components of the metric tensor may
depend on the Eulerian spatial coordinates {r’}, but they do not depend on time:
8ij = &ij(r). The Lagrangian components of the metric tensor, on the other hand, depend
both on the Lagrangian coordinates {X’} and time T: g5y = g;y(X, T ). In classical contin-
uum mechanics (see, e.g., Malvern, 1969), the combination of terms on the right-hand side
of equation (1.66) is called the right Cauchy-Green deformation tensor or Green deformation
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Chapter 1. Kinematics

tensor, with components denoted as Cjy = F'; F/; §;;. This tensor is discussed extensively in
section 1.20.2.
The metric tensor is an example of a symmetric (0, 2) tensor:

&i=8i»  SU=8mn (1.69)

or expressed as a tensor equation
g=g (1.70)
A superscript ¢t denotes the transpose of a rank-2 tensor, which is discussed in

appendix D.2.5.
A manifold endowed with a metric is called a Riemannian manifold. As discussed in
appendix D.10, it may be used to define the dot product between two vectors:

(u,w)=g(u,w)=u-w, (1.71)
such that the norm of a vector is obtained by taking the dot product of a vector u with itself:
[l = (u,u) =g(w,u) =u-u. (1.72)

In spatial and comoving components, we have
u~w:uiwjg,-j:u1w]g1], (1.73)

and the component expressions for the squared norm of a vector are given by equa-
tions (1.61) and (1.63). The two vectors are orthogonal to one another if g(u, w) = 0.
The metric tensor has an inverse

g ' =gleve=g"e e, (1.74)

—1

suchthatg-g7'=g¢g

-g =1, or, in components,

gikgkj =6, g% gy =0 (1.75)
Here I denotes the identity tensor or Kronecker tensor (see appendix D.4)
I:5ije,~®ej:51]e1®e], (1.76)

which is defined in terms of the Kronecker-delta symbols (1.19).

Problem 1.8 Show that the identity tensor I transforms as a tensor from Eulerian to
Lagrangian coordinates and vice versa.

Like the metric tensor, the inverse metric tensor is symmetric:

(g )'=g" (1.77)

It is conventional to denote elements of the inverse metric by g7, rather than—more accu-
rately but more cumbersomely—by (g~ !)¥. The metric tensor and its inverse may be used
to “raise” or “lower” indices, for example, w' =g’ w; or D= gjx DX}, or in the dot prod-
uct: u' v/ gy =u' vy = uy v!. An implication is that, in a Riemannian manifold, the nature of
a tensor becomes less important because one can change the character of its “slots” with the
metric tensor.
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1.7. Deformation Rate and Vorticity

1.6.1 Covariant Derivative of the Metric

An important property of the metric tensor is that its covariant derivative vanishes:
Vg=0. (1.78)

This is obvious in Cartesian Eulerian coordinates: V;gjx = V;djx = 0;0jx = 0. In comoving
Lagrangian coordinates, we must therefore have

VIg]K:&g]K—F?ngK—F%(g,M:m (1.79)

where we have used expression (F.20) for the covariant derivative of a general tensor. We
demonstrate in appendix F.1.8 that the implication is that the Lagrangian connection coef-
ficients may be expressed in terms of the Lagrangian components of the metric tensor and
its inverse as I

F]K =3¢ (8KgL, + 8]gKL — 8Lgﬂ<). (1.80)
In classical tensor calculus, the torsion-free connection coefficients F}K are also referred to as

the Christoffel symbols of the second kind and are denoted by { ]L } If the covariant derivative

of the metric vanishes, then so does the covariant derivative of the inverse metric, which may
be confirmed by taking the covariant derivative of the expression g'X gx; = 6';. An important
consequence of the vanishing of the covariant derivative of the metric and its inverse is that
raising and lowering indices commutes with covariant differentiation.

A non-vanishing covariant derivative of the metric tensor is captured by the nonmetricity
tensor, as discussed in appendices F.1.13 and G.9.10. As an example, nonmetricity is used to
capture point defects in crystals, as discussed in chapter 3.

1.7 Deformation Rate and Vorticity
The gradient of the material velocity v is captured by the expression
G =Vy', (1.81)
which defines the Cartesian Eulerian components of a (1, 1) tensor:
G=Giee/ =Vy'e e =(Vv). (1.82)

In the first equality, we used the spatial Eulerian vector and one-form basis elements. In the
second equality, we used the transpose of the covariant derivative of the material velocity,
Vv, which we introduced in section 1.5. The transpose of a (1,1) tensor is discussed in
appendices D.2.5 and D.11. In a nutshell, we have

(G');=¢" G gj=G/, (1.83)

where in the last expression we used the metric to raise and lower the indices. If we think of
a (1,1) tensor as a matrix, then the last equality in expression (1.83) implies exchanging its
rows and columns to obtain its transpose. Taking the transpose a second time returns the
original tensor: (G' ) =G.

We can write the material velocity gradient (1.82) as the sum of a symmetric and an
antisymmetric tensor, as discussed in appendices D.2.4 and D.2.5, namely

G=D+W, (1.84)

where
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20 Chapter 1. Kinematics

D=1(G+G)=G=1[(Vv)'+ Vv (1.85)
is the symmetric deformation-rate tensor,
D=D', (1.86)
and _
W=3(G-G)=G=3[(Vv) - VY| (1.87)
the antisymmetric vorticity tensor,
W= -W. (1.88)

Problem 1.9 Express equations (1.85) and (1.87) in general spatial components, using
the definition of the transpose of a (1,1) tensor (D.22).

Problem 1.10 Show that
tr(D)=V -v and tr(W) =0, (1.89)

where the trace operation, an example of the contraction of a tensor, is defined in
appendix D.2.3.

The action of the vorticity tensor on a vector u may be expressed as
W-u=1(Vxv)xu, (1.90)

involving the dot product between the vorticity tensor W and the vector u, that is W' u/.
We also encounter the cross product “ x ” denoting the “curl” or the cross product of two
vectors; this is an element of classical tensor calculus we will eschew in favor of the more
general Levi-Civita pseudotensor, as discussed in appendices D.7 and D.13. Equation (1.90)
justifies the use of the name “vorticity tensor” for W and shows that V X v is twice the
instantaneous angular velocity of the material in the vicinity of point § at time ¢.

Problem 1.11 Prove expression (1.90) by writing it out in index notation in Cartesian
Eulerian coordinates, using the properties of the alternating tensor (see appendix D.14).

Problem 1.12 By differentiating the deformation gradient (1.16) with respect to

time T, show that . .
OrF'i =G FrL. (1.91)

We conclude from equation (1.91) that the velocity gradient G and the deformation gradient
are related to each other via

Gij=(F ") orF'y. (1.92)
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Problem 1.13 Show that, equivalently,
Gj=—For(F ), (1.93)

The Lagrangian components of the material velocity gradient may be obtained based on the

transformation o ‘
Gy=(F NG F;=(F " orF. (1.94)

In box 1.4, we investigate deformation in Euclidean space.

Box 1.4 Deformation in Euclidean Space

In box 1.1, we expressed the motion in Euclidean space in terms of the “position vector”
form (1.5), namely, r= (X, T'). In this box, we consider deformation in Euclidean
space. The deformation tensor is now defined as the two-point tensor

F=(Vxo), (1.95)

where Vy denotes the gradient with respect to the particle labeled X. If two material
particles currently located at Euclidean positions r and r + dr were initially located at X
and X + d X, then the relative current and initial position vectors dr and d X are related

via the deformation tensor:
dr=F-dX. (1.96)

The velocity gradient G and the deformation tensor are related to each other via
0rF=G-F, (1.97)

which is a tensorial form of equation (1.91).

The suitability of the name “deformation-rate tensor” for D may be appreciated by
considering the rate of change of the Lagrangian components of the metric tensor (1.66).

Problem 1.14 Show that
Orgy=2gx D*;=2Dy. (1.98)

We conclude that the rate of change of the Lagrangian components of the metric ten-
sor equals two times the Lagrangian components of the deformation-rate tensor, thereby
justifying the latter’s name. Expression (1.98) is an example of what is called a Lie derivative,
which we discuss in the next section.
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1.8 Lie Derivative

As discussed in appendix E3, the Lie derivative of a tensor field T relative to the flow of
matter v takes a very simple form in Lagrangian coordinates, namely,

ﬁVT: 6]" TIlmIP]l.,,]q e ®---® €, ®eh R X e]q. (199)
This definition implies that Lie derivatives with respect to the flow of Lagrangian basis

vectors and one-forms vanish:

Loe=0,  Lye'=0. (1.100)

The Eulerian components are less intuitive, as discussed in appendix E.3.

Problem 1.15 The Lagrangian components of the Lie derivative of a scalar q are Ot Q.
Show that its Eulerian components are given in terms of the material velocity v by 0,q +
vl 9;q.

i

Problem 1.16 Show that the Eulerian components of the Lie derivative of a vector u
relative to the material velocity v are determined by

(ﬁvu)i =0t + v/ 8jui —ul (’9jvi.

Problem 1.17 Show that the autonomous Lie derivative, discussed in appendix F.3.3,
of a vector u relative to the material velocity v equals their Lie bracket:

£yu=|[v,ul.

Given the definition of the Lie derivative with respect to the material velocity (1.99), we
observe that equation (1.98) may be expressed in terms of this derivative in the tensor form

L,g=2g-D. (1.101)

It is important to note that raising and lowering indices does not commute with the Lie
derivative, that is, grx Or T # 01 Ty, as a consequence of (1.101). Thus, we should know
the precise nature of the tensor of which we are taking the Lie derivative. For this reason, it
is sometimes useful to distinguish between the three versions of a rank-2 tensor, as explored
in box 1.5.

In section 1.14, we will give an alternative definition of the Lie derivative relative to the
flow of matter in terms of the pullback and pushforward.
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Box 1.5 Distinguishing Rank-2 Tensors

A rank-2 tensor, such as the deformation-rate tensor D, may be expressed as a (2,0),
(1,1), or (0,2) tensor, with components D, D'; = D}, or Dy, respectively. Most of the
time, these distinctions are immaterial because, in a Riemannian manifold, we can raise
and lower indices with the metric tensor and its inverse. However, we encountered the
problem of raising and lowering indices not commuting with the Lie derivative, which
led to a desire to be clear about the nature of the tensor of which we are taking the Lie
derivative. This may be accomplished by borrowing notation from music in the form of
the accidentals “sharp” (§), “natural” (), and “flat” (b) to label (2,0), (1,1), and (0, 2)
versions of a rank-2 tensor. Thus, the deformation-rate tensor D has three versions,
a sharp version D! with elements DV, a natural version D with elements D/ = D/I,
and a flat version D° with elements Dy;. In this notation, equation (1.101) for the Lie
derivative of the metric relative to the flow of matter becomes

L,g=2g-Di=2D". (1.102)

To reduce clutter, we continue to use D, W, and G to denote the natural forms D, W¥,
and G'.

Problem 1.18 Using the notation in box 1.5, show that
Lyg™'=-2D.g7'= —2D* (1.103)

Problem 1.19 Let T denote a (1, 1) tensor with Lie derivative LT relative to the flow
of matter. Show that
(LyT) =L, T'+2D -T'-2T'-D, (1.104)

which illustrates that raising and lowering indices does not commute with taking the Lie

derivative:
(L, T) 4L, T

If we take the transpose of equation (1.104), remembering that for two (1, 1) tensors A and B
we have (A - B)' =B’ A’, we find that

L, T - (£, T =2[T,D], (1.105)
where we have introduced the commutator of two (1, 1) tensors:
[T,D]=T-D-D-T. (1.106)

We conclude that if a (1, 1) tensor commutes with the deformation rate tensor, [T, D] =0,
then (£, T )" = L, T'. We encountered an example of the Lie derivative previously when we
investigated the time evolution of the connection coefficients. Specifically, equation (1.55)
may be expressed in terms of the Lie derivative in the tensor form
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L,J=VVv. (1.107)

1.9 Euler Derivative

In complementary fashion to the Lie derivative discussed in the previous section, the
Euler derivative of a general tensor field T takes a very simple form in Cartesian Eulerian

coordinates: - ) )
dtTEatTll..'lpjl“-jq R ® e, Re'®---®el. (1.108)

In this book, we will not use the commonly used notation 0;T to denote the Euler derivative
of a tensor field T, because we reserve 0; strictly for partial differentiation of tensor field
components expressed in Eulerian coordinates.

In this case, the Lagrangian components of the Euler derivative are less intuitive.

Problem 1.20 The Eulerian components of the Euler derivative of a scalar q are 0,q.
Show that its Lagrangian components are given by 91Q — v/ 9,Q.

Problem 1.21 Show that the Lagrangian components of the Euler derivative of a

t iven b
vector u are given by (dew) = pul — v/ Sl +u’ S . (1.109)

Problem 1.22 Use the fact that the Lagrangian connection coefficients are torsion-free
to demonstrate that the Lagrangian components of the Euler derivative of a vector may

Iso b d
also be expressed as den)i=0r il — IVl Tyl (1.110)
J J

Thus, in tensor notation, for a torsion-free connection, we have the following relationship
between the Euler derivative and the Lie derivative of a vector:

du=Lyu—v-Vu+u-Vy, (1.111)
a result we could have anticipated based on problem 1.16. In particular, for the material

locit
veloetty dv=Lyv. (1.112)

Problem 1.23 Show that
dv=0v"e;=0rv e (1.113)

1.10 Material Derivative

The material derivative or substantial derivative of a general tensor field T is defined in terms
of the Euler derivative, the material velocity v, and the covariant derivative as
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D, T=d,T+v-VT. (1.114)

This derivative combines the local change of a tensor field, d,T, with a term due to advection,
v+ VT. Thus, it captures the rate of change of a tensor field experienced by an observer who
“rides along” with an element of the continuum.

Problem 1.24 Show that for a (0, 0) tensor, that is, a scalar, q, its material derivative
and Lie derivative relative to the motion are equivalent:

Diq=Lyq. (1.115)

Problem 1.25 Show that
Diwv =div+v-Vv
= (O’ +v/ Vjvi)ei (1.116)
=Orv'+v/Vpl)er

It is important to note that the material derivative involves the covariant derivative, and thus
a connection, whereas the Lie Euler derivatives require no connection.

1.11 Corotational Material Derivative

Corotational material derivatives capture the rate of change experienced by an observer who

comoves and corotates with an element of the continuum; we use the notation lo)t to denote a
generic corotational material derivative. Depending on the rate of rotation, these derivatives
carry different names. The most obvious option is to consider a corotation rate determined
by the vorticity tensor (1.87). These derivatives are most commonly used to capture the rate
of change of (1, 1) tensors.

Problem 1.26 Let T be a (1, 1) tensor. Show that for a torsion-free connection
D)0 = /2 AT 4= (@D — - & (1.117)

Using the decomposition (1.84), we see that equation (1.117) implies the identity
DIIT+T- W—-W-T=L,T+D-T—T-D. (1.118)

The terms on the left-hand side of this equation define the Zaremba-Jaumann rate (Zaremba,
1903; Jaumann, 1911) of the (1, 1) tensor T, which is an example of a corotational material
derivative:

DIT=D,T+T-W-W-T. (1.119)

The Zaremba-Jaumann rate is an example of a so-called objective rate, which means that it is
ameasure of a time rate of change that is independent of the frame of reference. In other words,
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Chapter 1. Kinematics

an objective rate is unaffected by rigid translations and rotations of the reference frame. The
material time derivative is not objective, but the Lie derivative is.

For a general tensor T, we define the corotational material derivative due to a generic spin
tensor 2 as

(f)? T)ijmkg... = (DtT)ijme... — Qim ijmkg... — Qjm Timmkg... —

) ) (1.120)
+ T g Q"+ T g Q"+

Note how each contravariant and covariant component is rotated by the spin tensor. The
Zaremba-Jaumann rate of a general tensor is obtained by using the vorticity tensor as the
spin tensor, £2 =W, in equation (1.120).

1.12 Levi-Civita Density and Capacity

Most readers will be familiar with the alternating symbol or Levi-Civita symbol € ijk>10
which is used to express cross products in index notation, for example, u x w has com-
ponents € u/ wk. The indices on the alternating symbol suggest that it is tensorial, and in
this section, we investigate to what extent this is the case.

We begin by defining two different alternating symbols in spatial coordinates with all
lower and all upper indices:

+1 if i,j,k isaneven permutation of 1,2,3,
Eijk = 0 ifany indices are identical , (1.121)
—1 if i,j,k isan odd permutationof 1,2,3,
and!!
+1 if i,j,k isaneven permutation of 1,2,3,
e = 0 if any indices are identical , (1.122)
—1 if ij,k isanoddpermutationof 1,2,3.

A complementary set of alternating symbols in Lagrangian coordinates is written as €
and 7K, and these symbols also take values of +1, 0, or —1.

The introduction of these alternating symbols enables us to define the determinant of the
deformation gradient as

F'y Fy Fly| o
F=lp, 2y py S GBI FE (1.123)
F31 F32 F33

The expression for the determinant given by the second equality in equation (1.123) is more
general than the first equality, which is borrowed from matrix algebra.

!0The reason for using the underline will become clear in a moment.
"'The reason for using the overline will become clear in a moment.
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1.13. Levi-Civita Pseudotensor and Volume Form

Let us transform the symbol € ;. to Lagrangian coordinates as if it were a tensor. We have

Ell]K:FiIFj]FkKEijk- (1.124)

How is the transformation result €’ related to the symbol ¢ ? If we contract equa-
tion (1.124) with the alternating symbol €/X we obtain

e e =" F' FI Fg ey =31 F, (1.125)

where in the second equality we used equation (1.123). We conclude that €’;; must take the
form
E/UK:FEUKa (1.126)

such that equation (1.125) is satisfied. Thus, we conclude from equation (1.124) that the
alternating symbols € ;; and € j are related via

|
gUK:?Fl,FJ,F"KgUk. (1.127)

This transformation rule is modified from the usual tensor transformation rule by the fac-
tor 1/F. Objects which transform according to this modified rule are called tensor capacities
of weight one.

A similar approach shows that the alternating symbols € 7 and & /X

e F (P (F)) (e, (1.128)

are related via

This is the transformation rule for a tensor density of weight one. Tensor densities and
capacities are discussed in detail in appendix D.6.

An important implication of the results in this section is that the cross product between
two vectors, u X w, expressed in terms of the alternating symbol, € u/ wk, defines a (0, 1)
tensor capacity.

1.13 Levi-Civita Pseudotensor and Volume Form

Upon calculating the determinant of the metric tensor in Lagrangian coordinates (1.66)
based on definition (D.58), using the rule det(AB) = det(A) det(B) for the product of two
matrices A and B (see box 1.6), and taking the square root of the result, we find

G=Fg. (1.129)

Here F is the determinant of the deformation gradient given by equation (1.123), and we
defined the Lagrangian and Eulerian square roots of the determinant of the metric as

G= (%EUK 7LMN)1/2

Q11 gM ZKN € ) (1.130)

and "

= (L% gugmgme™) ", (1.131)
respectively. We deduce from (1.129) that the square root of the determinant of the metric g
transforms like a scalar density of weight one.
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Box 1.6 det(A-B)

In this box we demonstrate that det(A -B) =det(A) det(B) for two (1,1) tensors A
and B. Using definition equation (D.58), the determinant of A - B is

det(A-B) = 5 e”X A"p B"; A BY AN BRk € v
According to equation (1.127), we have
Alp AM o ANg €y = det(A) € pQR>

and
EUK BP[ BQ] BRK = det(B) EPQR.

Thus
det(A - B) = 1 det(A) € pg det(B) " = det(A) det(B) ,

as advertised.

Problem 1.27 Show that the determinant of the inverse metric,

1
g==, (1.132)
-8
transforms as a scalar capacity of weight one:
1
==g 1.133
G=-¢g ( )
Problem 1.28 Show that
_ _ =7
e K gpr g grn €M =2G" ' (1.134)

Problem 1.29 Demonstrate Cramers rule for the inverse of the metric tensor:
gV =L Gl elKelMN g o (1.135)

using equation (1.134). Cramer’ rule may be used to solve a system of three simultaneous
linear equations.
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1.13. Levi-Civita Pseudotensor and Volume Form

Problem 1.30 Show that
gog=r) and  GOG=T), (1.136)

The transformation rule (1.129) motivates the introduction of the tensor

e=cpe e e =epre @e/ @ek, (1.137)
where
€k=8ey  and g =G €y (1.138)

Equation (1.137) defines a tensor, since it transforms according to rules (D.26) and (D.27).
Instead of {+1,0, —1}, it takes values of {+g, 0, —g} and {+G, 0, —G}, respectively. How-
ever, a change in the orientation or handedness of the coordinate system changes the sign of
this tensor, which means it is a pseudotensor (Frankel, 2004), as discussed in appendix D.6.

The implication for the “cross product” in three dimensions is that one should use the
pseudotensor € for this purpose, not the alternating symbols €, and €, especially in
curvilinear Lagrangian coordinates.

We identify the Levi-Civita pseudotensor (1.137) with the volume form, a completely
antisymmetric (0, 3) pseudoform. To justify the nomenclature volume form, imagine feeding
the (0, 3)-pseudotensor € three small vectors Au= Au'e;, Av=Av/ e, and Aw= Aw*e,.
The result is the scalar

€(Au, Av, Aw) = e Au' AvI AwF = Au- (Av x Aw). (1.139)

This is, of course, precisely the volume of the parallelepiped spanned by the three vectors
Au, Av, and Aw.

In appendix G.5, we identify a three-dimensional volume with a three-form expressed
using either Eulerian or Lagrangian basis one-forms:

1

€ =3 eijkei/\ej/\ek
=7e€,,, dxt Adx? A dx®
s (1.140)
= % 6]]KCI/\CJ/\CK
=Gep dX' AdXEAdX.
Problem 1.31 Show that
&'eju = Flmm €jke and 8,e;KL = F% €KL - (1.141)
Problem 1.32 Show that
Viejke =0 and VIGIKL =0. (1.142)

It is straightforward to show that the three-vector with Lagrangian and Eulerian ele-
ments €/F = g€ and /K = GeVX, respectively, has similar properties as the volume form.
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(223

Figure 1.5: Top: Let i = i/ & denote a vector in tangent space of the referential manifold 3 at material
location M. The pushforward of u from the referential manifold B to the spatial manifold S with the
motion ¢ is defined as @.u= 4" F'} e;, which defines a vector in tangent space of the spatial man-
ifold S at the current location of the particle 8. Bottom: Conversely, let u = u' ¢; denote a vector in
tangent space of the spatial manifold S at location 8. The pullback of u from the spatial manifold S
to the material manifold B with the motion ¢ is defined as @ u= ' (Ffl)l,- é; = u' é;. If the refer-
ential vector 1 is the pullback of a spatial vector u, that is, @ = @*u, then &’ = u'; in other words, the
referential components of the referential vector equal the Lagrangian components of the spatial vector.

The volume form (1.137) and the metric (1.64) are the two most important entities
capturing the structure of a Riemannian manifold.

1.14 Pullback and Pushforward

To introduce the notions of strain and stress, we need to define an equilibrium state at some
referential time T, for example, the state of the Earth prior to an earthquake. This state is
captured by the referential manifold B introduced in section 1.1 and illustrated in figure 1.1.
Thus, we need to be able to compare tensors in the spatial manifold S at time t= T with
tensors in the referential manifold B at time ¢ =T, and vice versa. This is accomplished
based on “pushforwards” and “pullbacks” associated with the motion ¢, which are concepts
discussed in appendix E.3 and illustrated in figure 1.5.

To clearly distinguish tensors in the referential manifold 5 from tensors in the spatial
manifold S, we use a “°” for their identification, and we use é; and &' to denote referential
basis vectors and one-forms, respectively. For example, the metric tensor in the referential
manifold is denoted by

g=gpe'@e/, (1.143)

where
gy(X) =gy(X, To), (1.144)

and the square root of its determinant is
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1.15. Volumes

o

G(X)=G(X, Tp). (1.145)
We have thus far chosen this to be a Cartesian metric; here, we accommodate the more
general case of a curvilinear referential coordinate system.

As an example, the pushforward of the metric in the referential manifold to the spatial
manifold is defined by s= iy (F), (F ) e el
o8 %U ; ,l ' (1.146)

=gye ®e’,
where in the second equality we expressed the pushforward in Lagrangian coordinates in the
spatial manifold. Because referential coordinates in the referential manifold coincide with
Lagrangian coordinates in the spatial manifold at time ¢ = T, the Lagrangian components
of the pushforward ¢..g are identical to the referential components of the referential metric
tensor, gj;.

Similarly, the pullback of the metric tensor in the spatial manifold to the referential
manifold is defined by . pi o]
o'g=giF'Fe®e

L (1.147)
=gye We'.
In this case, the referential components of the pullback @*g are identical to the Lagrangian
components of the spatial metric tensor, gj;.

In general, the Lagrangian components of the pushforward of a tensor T from the ref-
erential to the spatial manifold, (p*"i‘, are identical to its referential components, and the
referential components of the pullback of a tensor T from the spatial to the referential
manifold, @*T, are identical to its Lagrangian components.

In terms of the inverse map ®: S — B, we note that the pullback ®* is equivalent to
the pushforward ¢, and that the pushforward ®, is equivalent to the pullback ¢*. With
this understanding, we will continue to use the notation ¢, and ¢* for pushforwards and
pullbacks.

Atthe end of section 1.1, we noted the dual role of the motion (1.3), describing both a map
between material points in the referential manifold and the location of that element of the
material in the spatial manifold, and defining a coordinate transformation between Eulerian
and Lagrangian coordinates in the spatial manifold. The pushforward and pullback involve a
subtle third use of the motion, this time to provide a means of “pulling” or “pushing” tensors
between the referential and spatial manifolds.

Finally, we note that the Lie derivative relative to the flow of matter (1.99) may be
expressed in terms of a pullback and a pushforward as

L, T=@,0r@"T. (1.148)

Problem 1.33 Demonstrate equation (1.148) for a (1, 1) tensor.

1.15 Volumes

If we feed the volume form (1.137) three infinitesimal vectors expressed in Eulerian basis
vectors, dr! e}, dr? e,, and dr? es, it returns
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e(dr'e;, drt e, dr’e;) =€(e;, ey, e3) drt dr’ dr’ =ge ,, dr' dr* dr. (1.149)

The Eulerian and Lagrangian components of the infinitesimal vectors are related via r' =
Fi;dX!, such that

Ze s drtdridr’ =ge oy F' P2 FPrdX! dXx! dx®
%g kF’zF’/FdeXIdX]dXK (1.150)
= % gF ey dX" dXx! dx*
=gFe p; dX" dX* dX°,
where we used relationship (1.127). Thus, we find the relationship
gdrt d dr’ = FgdX' dX* dX° = GdX' dX* dX°, (1.151)

where, in the last equality, we used (1.129). This is, of course, precisely what happens in a
change of variables during integration:

gdr=GdX. (1.152)

We may wish to establish the change in volume when an element of the continuum tran-
sitions from the referential manifold to the spatial manifold. In the referential manifold 5,
the volume element is

e=éprel e/ @ek
N (1.153)
=Gepé e/ e,
or, expressed as a three-form,
=2 égre ne/ne
o (1.154)
=Ge s Théne

where G is the square root of the determinant of the referential metric given by (1.145). The
pushforward of the referential volume element is

6 ( 1)11' (Ffl)]j(Ffl)Kkei®ej®ek

= G Gegre' @e/ @e”
K (1.155)
—F'G g€
= ]_1 €
where in the third equality we used equation (1.133), and where in the last equality we have
introduced the Jacobian of the motion (see, e.g., Marsden and Hughes, 1983, Proposition 5.3)

J=GG=FgG. (1.156)
Note that at the referential time, we have

J(X, To) =1. (1.157)

(continued...)
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Euler-Lagrange equation, 93, 94, 526
Eulerian, 4
Eulerian coordinates, 3, 6
Eulerian strain, 56
Eulerian strain tensor, 186
event, 136
event kernel, 358
eversible process, 76, 111
exact form, 505, 507
excess equatorial bulge, 217
explicit time scheme, 272
explosion, 203
exponentiated phase, 364
exterior covariant derivative, 44,
515
exterior derivative, 11, 41, 434,
504
covariant, 515
exterior differential forms,
495
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exterior product, 498, 512
Grassmann product, 498
wedge product, 498

fault
ideal, 194
fault plane, 201
fault slip, 200, 210
fault-plane rotation, 210
feedback force, 234
Finger deformation tensor, 51, 53
finite element, 288
finite-difference method, 262
finite-difference operators, 262
compact, 262
optimal, 262
finite-frequency sensitivity kernel, 344
first law of thermodynamics, 73, 74, 108
first Piola-Kirchhoff stress, 66, 67, 79, 95, 220
two-forms, 71
first Piola-Kirchhoff stress tensor, 68, 96, 220
flattening, 215
flat b, 23
Fletcher-Reeves formula, 398
fluid, 188
isotropic, 91
potential formulation, 227
fluid potential, 191
fluid-solid boundary, 189, 191, 192
fluids, 226, 227
flux, 499, 510
central, 321, 322
upwind, 321, 322
flux scheme, 320
focal sphere, 202
force
body, 196, 200
centrifugal, 121
centripetal, 121
conservative, 122
Coriolis, 121
feedback, 234
long-range, 3
point, 199, 232
short-range, 3, 65
surface, 196, 200
total, 194
force-balance seismometer, 234
form
closed, 505, 527
connection, 512

exact, 505, 507

integration, 520

Lie derivative, 508

operations, 498

stress, 69

tensor-valued, 510

vector-valued, 510
forward problem, 261
forward-difference approximation, 262
four-velocity, 137, 139
Fourier convention

space, 275

time, 241
Fourier transform, 275
Fourier’s law, 75
Fréchet derivative, 343
frame, 447
frames

orthogonal, 456
Frank vector, 136, 153, 161
free slip boundary, 189
frequency

angular, 189

Brunt-Vaisala, 226

stability, 226
Frobenius inner product, 445
Frobenius norm, 445, 449
full-waveform inversion, 348, 385, 388
fundamental theorem of calculus, 523
fundamental theorem of exterior calculus,

524

Gateaux derivative, 343
Galerkin method, 280

discontinuous, 318
Galilean reference frame, 3
Galilean relativity, 137
gas, 188
Gauss quadrature, 296
Gauss’s theorem, 40, 525

2D, 347
Gauss-Lobatto-Legendre points, 298
Gauss-Lobatto-Legendre quadrature, 299
Gauss-Lobatto-Legendre weights, 299
Gauss-Newton approximation, 396
Gauss—Radau quadrature, 322, 326
Gauss-Lobatto-Legendre quadrature, 326
general relativity, 162, 447

action, 162

Einstein—Cartan, 134

metric-affine, 134
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generalized Betti reciprocal relation, 231
generalized Kronecker-delta symbol, 458
generalized source-receiver reciprocity
principle, 232
generalized Stokes’s theorem, 41, 523
generalized trapezoidal time scheme, 292
generalized Volterra representation theorem,
233
generating wavefield, 377
generic misfit, 362, 389
geodesic, 477
geodesic equation, 477
geodesy, 214
geopotential, 124, 212-214
ellipsoid, 214
Gibbs relation, 77, 112
global diffusivity matrix, 284
global search method, 393
global shape function, 286
glut rate, 200
gradient, 14, 396, 506
deformation, 10
surface, 37, 213, 345
gradient of a vector field, 14
gradient of geopotential, 229
gravitation
Einstein, 520
Einstein—Cartan, 486, 520
metric-affine, 486, 520
Newton, 122
gravitational acceleration
equilibrium, 211
gravitational energy, 123
gravitational potential, 122
equilibrium, 211
gravity, 214, 218
PREM, 215
gravity perturbation, 218
Green deformation tensor, 18, 51
Green tensor, 198, 232
Green’s theorem, 524
grid anisotropy, 262, 272, 296, 297
grid dispersion, 262, 269, 272, 296, 297

h-p finite-element method, 296, 298
Hamilton’s principle, 92, 93
form version, 116, 117
with spin, 117
Hamiltonian Monte Carlo method, 393
handedness, 29
Hausdorff manifold, 424

Index

heat, 73
advection, 74
conduction, 74
flux, 74
production, 74
heat equation, 74, 75
steady-state, 282
heat flux, 74-76, 107
helicity, 479
helioseismology, 240
Helmholtz free energy, 111
Helmholtz free energy density, 77, 111
Hencky strain, 57
Hessian, 396
Gauss—-Newton approximation, 396
Hestenes—Stiefel formula, 398
heterogeneities, 282
hexahedral elements, 294, 297, 312
Hodge dual, 501
Hodge star, 501
holonomic, 8, 438
holonomic basis, 478
holonomicity, 438
holonomy, 479
homeomorphism, 466
Hooke’s law, 89, 186, 189, 229
failure of, 192
form version, 89
Hua’s identity, 394
hydrostatic Earth model, 213
hydrostatic equilibrium, 213
hydrostatic pressure, 212, 214
hypermomentum
conservation of, 171
hypermomentum current, 168
hypocenter, 200

ideal fault, 194

split-node implementation, 332
idealized seismometer, 233
identity tensor, 18, 448, 449
implicit time scheme, 272, 273
implosion, 203
incompatibility, 133, 142, 152, 160

particle motion, 153

particle rotation, 153
incompatibility tensor, 7, 136
incompatible motion, 133,

142

incompressibility, 187
incompressible material, 47
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incremental first Piola—Kirchhoff stress, 220
incremental second Piola-Kirchhoff stress,

220

indices

lowering, 18

raising, 18
indigenous source, 180, 192
inertia density, 109
inertia—density tensor, 205
inertial reference frame, 3
infinite-element method, 322

coordinate descent approach, 322

displacement descent approach, 322

pole, 323
infinitesimal rotation tensor, 186, 204
infinitesimal strain tensor, 186
injective, 422, 467
inner product, 141, 386, 444, 453

data space, 387

model space, 386
instantaneous phase, 363
integrability, 135, 142
integrability condition, 135
integral

line, 520

surface, 521

volume, 522
integral curve, 431
integro-differential equation, 222
interferometry, 240, 375
interior product, 44, 499
intermediate axis, 202
internal energy, 73, 92, 109
internal energy three-form, 107
internal heating three-form, 109
internal state variables, 77, 112
internal-energy equation, 74
intrinsic energy density, 205
intrinsic rotation, 205
intrinsic rotation tensor, 181
intrinsic spin, 104, 108
invariant, 53, 58
inverse of rank-2 tensors, 452
inverse problem, 343
inverse problems, 385, 457
inversion

full-waveform, 348

source-encoded, 370
irreversible process, 111
isentropic process, 79, 82

isotropic fluid, 91, 124
isotropic symmetry, 187

Jacobian, 425

Jacobian determinant, 101

Jacobian matrix, 395
generic, 395

Jacobian of the motion, 32

k-current, 142
k-form, 495, 497, 499
k-vector, 500
Kalman filtering, 393
Kelvin-Voigt solid, 245
kinematics, 3, 4
kinematics of defects, 152, 157
kinetic energy, 73, 92
macroscopic, 73
rotational, 108
thermal, 73
kinetic energy density, 205
Kirchhoff stress, 66, 82, 83, 106
Kirchhoff stress tensor, 66
Kronecker-delta symbol, 11, 432
generalized, 458
Kronecker determinants, 458
Kronecker tensor, 18, 448, 449

L-BFGS method, 402
Lagrange multiplier method, 353, 375
Lagrange polynomial, 294, 295
Lagrangian, 4
defects, 167
material geometry, 165
Lagrangian connection coefficients, 15
Lagrangian coordinates, 3, 6
Lagrangian density, 93, 525
defects, 165
four-form, 117
general relativity, 162
three-form, 116
Lagrangian strain, 55, 56
Laplace equation, 211, 219, 229
Lax-Friedrichs method, 267
least-squares solution, 394
left Cauchy-Green tensor, 51, 56
left stretch tensor, 54
Legendre transformation, 77
Leibniz’s rule, 40, 472
level surface, 213
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level-set method, 405
Levi-Civita capacity, 26, 450, 457
Levi-Civita density, 26, 450, 457
Levi-Civita pseudotensor, 26, 27, 450, 457, 458
Levi-Civita symbol, 26, 450
Lie bracket, 8, 144, 437
Lie derivative, 16, 21, 22, 487, 489, 510
autonomous, 22, 491
covariant, 44, 516
Euler derivative, 487
form, 508
function, 493
general tensor, 492
geometrical interpretation, 490
Levi-Civita tensor, 494
metric tensor, 493
one-form, 491
vectors, 488
Lie dragging, 491
likelihood, 392
line integrals, 520
line of nodes, 462
line search, 398, 406
bracketing, 407
safeguarded backtracking , 407
linear inverse problems, 393
linear space, 417
external operation, 418
distributivity, 418
internal operation, 417
associativity, 417
commutativity, 417
linear transformation, 417
null element, 417
opposite element, 418
properties, 417
tensor, 417
vector, 421
vector space, 418
zero element, 417
linear transformation, 417, 418
linear space, 417
linear vector dipole, 196
compensated, 203
linearity, 472
linearized equations of motion, 221, 223
local diffusivity matrices, 289
local shape function, 288
local-to-global map, 291
logarithmic corotational material derivative, 61

Index

logarithmic spin tensor, 61
logarithmic strain, 57
long-range force, 3

loss of conjugacy, 399

Maclaurin series, 449
manifold, 421
chart, 421
coordinates, 421
differentiable, 421, 427
Hausdorff, 424
orientable, 424
atlas, 425
chart, 425
circle, 425
Jacobian, 425
Klein bottle, 425
Mobius strip, 425
tangent space, 425
referential, 4, 5
Riemannian, 18
spacetime, 485
spatial, 3, 5, 6
surface
orientable, 424
map, 422, 465
between manifolds, 466
bijection, 465
bijective, 423
injective, 422, 465
one-to-one, 422
surjective, 465
mapped infinite element, 322
maps between manifolds, 470
marginal probability, 392
Markov chain Monte Carlo method, 393
mass density, 45
referential, 47
mass flux two-form, 46
mass matrix, 302
mass three-form, 46
material angular velocity, 108
material defects, 7, 133
material derivative, 24, 492
corotational, 25
material frame indifference, 80, 104
material point, 5
material strain, 55
material velocity, 8, 40, 125
gradient, 19
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Maxwell rheology, 251
Maxwell solid, 245
Maxwell time, 252
measurement
double-difference, 363
envelope, 363
exponentiated phase, 364
instantaneous phase, 363
multi-taper, 364
memory variable, 251, 252
memory variables, 309
Mercator series, 449
mesh
cubed sphere, 313
global, 296
hexahedral, 312
local, 296
partitioning, 312
MeshAssist, 312
Message Passing Interface (MPI), 312
metric, 17
metric tensor, 17, 140, 386, 387, 452
covariant derivative, 480
data space, 387
Eulerian components, 17
inverse, 18, 454
Lagrangian components, 17
model space, 386
Riemannian, 453
metric-affine gravitation, 134, 486, 520
metrical energy-momentum current, 168
metricity, 172
Metropolis—Hastings algorithm, 393
micropolar medium, 104, 134, 179
misfit
generic, 389
misfit function, 348, 388, 389
amplitude, 360, 361
differential-traveltime, 360
encoded, 371
generic, 362
traveltime, 355
misfit kernel, 358
amplitude, 361
traveltime, 358
waveform, 350
mixed covariant derivative, 483
model matrix, 393
model parameter, 261, 343, 387
selection, 387
model resolution, 407

model space, 261, 343
modified covariant derivative, 166
modified torsion tensor, 164
modulus, 243
bulk, 187
relaxed, 244
shear, 187
unrelaxed, 244
modulus defect, 244
moment
seismic, 201
moment tensor, 200, 201, 211
moment-density tensor, 182, 210
momentum equation, 229
monoclinic symmetry, 187
motion, 5, 6, 125, 133
compatible, 136
incompatible, 133, 142
Jacobian, 32
multi-taper, 364
multiscale inversion, 406
Mumford-Shah, 405

Nanson’s relation, 36
natural j, 23
Navier-Stokes equations, 124
neutral stability, 227
Newmark time scheme, 303
Newton method, 397
Newton’s law of gravity, 122
Newtonian time, 3, 4
No-Free-Lunch theorems, 393
no-more continuum, 133
nodal-plane ambiguity, 201-203
Noether current, 527
Noether current density, 102
Noether’s theorem, 99, 172
noise, 240

spatially uncorrelated, 242
nominal stress, 68
non-uniqueness, 404
nonconvexity, 404
nondegenerate, 453
nonholonomic, 8, 438
nonmetricity, 134, 146, 164, 486,

520

material, 147, 149
nonmetricity one-form, 520
nonmetricity tensor, 19, 146, 486
norm, 141, 455

Frobenius, 449
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normal strain two-vector, 62, 63
normal traction two-forms, 70
normal vector, 38, 503
normalized source-time function, 204
notation, 4, 139, 142, 309, 386, 427, 444, 449
compact, 309
semicolon, 350
Voigt, 311

objective function, 348, 388, 389
objective rate, 25
objective stress rate, 83
ocean-load approximation, 239, 314
Oldroyd rate, 83
one-form, 11, 12, 433

basis, 434

field, 433

norm, 455

strain, 63
one-to-one, 422, 467
open set, 422
optimal finite-difference operators,

262

optimization, 385

local, 395

PDE-constrained, 343, 353, 375
orientability, 424
orientable manifold, 424
orientation, 29
oriented, 524
oriented surface, 34, 458
origin, 7, 68, 96, 121
origin time, 200
orthogonal group, 461

special, 461
orthogonal transformations, 461
orthogonality, 18, 455
orthotropic symmetry, 187
outer product, 443

tensor product, 443

P-axis, 202
Palatini tensor, 165
Palatini torsion tensor, 485
parallel transport, 475, 476, 488
analytic formulation, 475
geometrical interpretation, 476
partial differential equation
elliptic, 262
hyperbolic, 262
parabolic, 262

Index

particle displacement, 37
particle rotation, 114
PDE-constrained optimization, 343, 353,
375

penalty function, 348
penalty term, 404
perfectly matched layer (PML), 308
phase speed, 189
piecewise differentiable, 41
Piola transformation, 67
Piola-Kirchhoff stress

classical, 68

classical incremental, 220

first, 66, 67, 79, 95

second, 66, 67

two-forms, 71, 72
Piola-Kirchhoff stress tensor

first, 68, 96, 220

second, 68, 220
plane wave, 189
plastic deformation, 78,79, 111, 113, 115
plastic distortion, 153, 161, 181
plastic rotation, 153, 161, 181
plasticity, 78, 79, 113, 115
Poincaré’s lemma, 505, 527
point defects, 19, 133, 486
point distortion zero-forms, 152
point force, 199, 232
point source, 201
point-defect current, 158, 160
point-defect density, 158, 160, 162
point-defect tensor, 149
point-source perturbations, 364
point-spread function, 407
Poisson equation, 122, 229
Pola-Ribiere formula, 398
position vector, 7, 37, 68, 96, 121, 122
postearthquake deformation, 329
posterior probability, 391
potency, 182
potential energy density, 205
Powell restart condition, 399
preconditioner, 398
preconditioning, 403
predictor-corrector time scheme, 292, 303
pressure

hydrostatic, 212, 214

PREM, 215
prestress, 87, 212
principle of material frame indifference, 80
prior, 392
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probability

conditional, 392

marginal, 392

posterior, 391
product

cross, 501

dot, 18, 444

double-dot, 74, 445, 512

duality, 13, 434

exterior, 498, 512

inner, 444

interior, 499

outer, 443

tensor, 14

wedge, 496, 498
product space, 428
projection, 405
pseudoform, 29, 499, 502
pseudoscalar, 458
pseudospectral method, 275
pseudotensor, 448

Levi-Civita, 27, 29, 458
pseudotensor capacity, 450
pseudotensor density, 450
pull down operator, 499
pullback, 30, 466, 508, 512, 523
pushforward, 30, 50, 468, 508
Pythagorean theorem, 455

Q, 246
Q tomography, 362
quadrature
Gauss, 296
Gauss-Lobatto-Legendre, 299, 326
Gauss-Radau, 322, 326
quadrilateral element, 294
quality factor, 246
quasi-hydrostatic approximation, 213, 228, 352
quasi-Newton method, 397
BFGS, 401
DFP, 401
L-BFGS, 402
quasi-uniform gnomonic projection, 313

Radau’s approximation, 217
radiation pattern, 202

random probing, 393

rank-1 update, 400

ray density map, 403
Rayleigh-Ritz method, 279, 280
reciprocity, 198

generalized, 232
reference element, 287, 288
reference frame

Euclidean, 56, 68, 96, 121, 127, 220

Galilean, 3

inertial, 3
referential coordinates, 4, 5
referential manifold, 4, 5
referential mass density, 47
referential state, 3, 5, 6, 211
referential time, 3
regressor matrix, 393
regularization, 404

projection, 405

smoothing, 405

Tikhonov, 404

total variation, 404
relative tensors, 449
relativity, 162

action, 162

Galilean, 137
relaxation time

strain, 309

stress, 309
representation theorem, 199
resolution, 407
resolution matrix, 394, 408
reversible process, 79, 82, 111
Reynolds transport theorem, 39

Eulerian, 39

Lagrangian, 45
Ricci curvature, 485
Ricci identity, 16, 478
Ricci scalar, 162, 165, 485
Ricci tensor, 165, 484

symmetry, 485
Riemann tensor, 17, 478, 484

Gaussian curvature, 478
Riemannian manifold, 18

differentiation, 482

Levi-Civita pseudotensor, 458

metric tensor, 452, 455, 458
Riemannian metric

definition, 453
right Cauchy—Green tensor, 17, 51, 56
right stretch tensor, 54
rigidity, 187
Rodrigues formula, 463, 464
root-finding algorithm, 397
rotation, 121, 448, 460

angle, 463
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axis, 463

intrinsic, 205

particle, 114

plastic, 161

total, 205
rotation tensor, 460

infinitesimal, 186, 204
rotation vector, 204
rotational defects, 133
rotational kinetic energy, 108
rotational seismology, 204
rotational seismometer, 205
rotational strain, 181, 205

safeguarded backtracking line search, 407
scalar, 442, 445
field, 3, 442
scalar moment, 201
Schwartz’s theorem, 135
Schwarz integrability condition, 135
SCOTCH, 296, 312
screw dislocation, 148, 177
search direction, 397
secant method, 397
second law of thermodynamics, 76, 110, 111
second Piola—Kirchhoff stress, 66, 67, 220
two-forms, 72
second Piola-Kirchhoft stress tensor, 68, 220
seismic interferometry, 240, 375
seismic moment, 201
seismometer
force-balance, 234
horizontal, 234
idealized, 233
rotational, 205
vertical, 234
self-gravitation, 122
semicolon notation, 350, 472
sensitivity kernel
anisotropic, 358
forensic, 358
sensitivity kernels
ensemble, 375
Seth—Hill strain, 57
SH waves, 190, 224
shape function, 283
global, 286
local, 288
sharp f, 23
shear current, 169
shear modulus, 187

Index

shear waves, 190
horizontally polarized, 190
vertically polarized, 190
shear wavespeed, 190
Sherman—Morrison formula, 401
shocks, 321
short-range force, 3, 65
slip, 200
static, 201
smooth, 423
smoothing, 405
solid-solid discontinuity, 189
sound wavespeed, 191
source
dip-slip, 203
double-couple, 196, 201
explosion, 203
eyeball, 203
fried-egg, 203
implosion, 203
indigenous, 192
point, 201
strike-slip, 203
thrust, 203
source encoding, 367
source perturbations, 364
source volume, 193
source-encoded inversion, 370
source-receiver reciprocity principle,
198
source-time function, 203
normalized, 204
space
data, 261, 343
Euclidean, 220
model, 261, 343
spacetime, 421
spacetime manifold, 485
spatial coordinates, 3, 6
spatial manifold, 3, 5, 6
spatial point, 5
spatially uncorrelated noise, 242
special orthogonal group, 461
specific density, 47
mass, 47
specific entropy density, 76
specific heat, 75
specific heat capcity, 75
spectral-element method, 297
spectral-infinite-element method, 325
spherically symmetric Earth model, 213
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spin, 108, 177
spin connection, 484
spin current, 169
spin energy density, 205
spin tensor, 149, 177
logarithmic, 61
spin zero-form, 159
split-node fault implementation, 332
spring, 244-245
square-root variable metric method,
393
stability
neutral, 227
stability frequency, 226
Stacey condition, 308
staggered grid, 262, 263, 269
standard linear solid, 245, 309
static slip, 201
steepest descent method, 398
step length, 397
stiffness matrix, 302
Stokes hypothesis, 91
Stokes’s theorem, 523, 525
classical, 525
generalized, 41, 523
strain, 48, 61, 62
Almansi, 56
Biot, 57
deviator, 187
deviatoric, 187
Eulerian, 56
Hencky, 57
Lagrangian, 55, 56
logarithmic, 57
material, 55
rotational, 181, 205
Seth-Hill, 57
two-vector version, 61
two-vectors, 62
strain current, 169
strain deviator, 187
strain one-form, 63
strain rate, 59
strain relaxation time, 309
strain tensor, 63
Eulerian, 186
infinitesimal, 186
strain two-vector
normal, 62, 63
strain two-vectors, 62

stress, 65

classical incremental Piola-Kirchhoff,

220
classical Piola-Kirchhoff, 68
couple, 104
deviatoric, 212, 213
first Piola—Kirchhoff, 67, 79, 220

incremental first Piola-Kirchhoff, 220
incremental second Piola—Kirchhoff,

220

Kirchhoff, 82, 106

nominal, 68

second Piola-Kirchhoff, 67, 220
stress glut, 180, 192

couple, 180
stress rate, 83

Oldroyd, 83

Truesdell, 83
stress relaxation time, 309
stress tensor, 65, 206

Cauchy, 65

Kirchhoft, 66

weighted Cauchy, 67
stress-energy tensor, 149, 177
stress-free boundary, 190, 192, 212
stress-glut density, 195
stretch tensor, 54

left, 54

right, 54
strong form, 261
strong methods, 261

structure coefficients, 8, 141, 144, 145, 438, 439,

447

summation convention, 10, 429
surface, 34, 503
surface force, 196, 200
surface gradient, 37, 213, 345
surface integral, 521
surface moment-density tensor, 196
surface one-form, 458
surface torque, 104
surface two-forms, 503
surjective, 465, 467
SV waves, 190, 224
symmetric tensor, 445
symmetry

cubic, 187

isotropic, 187

monoclinic, 187

orthotropic, 187
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transversely isotropic, 187
triclinic, 187
synthetic seismograms, 261
system assembly, 296, 314

T-axis, 202

tangent bundle, 428

tangent space, 5, 6, 427

Taylor series, 449

temperature, 75

tensor, 441
addition, 443
adjoint, 456
alternating, 457
anti-Green, 232
anti-symmetric, 445
capacity, 449, 457
Cartan, 164, 485
Cauchy stress, 65
Cauchy-Green, 50
co-Einstein, 166
co-Ricci, 165
contortion, 170, 481, 486
contraction, 444
couple-moment, 211
couple-moment-density, 210
couple-stress, 178, 206
curvature, 17, 477-479
definition, 441
deformation, 21, 37, 56
deformation gradient, 49
deformation-rate, 20
density, 449, 457
determinant, 451
disformation, 170, 486
Doyle-Ericksen, 57
Einstein, 166, 485
elastic, 229
exponential, 449
field, 3, 442
Green, 198, 232
identity, 18, 448
incompatibility, 7, 136
inertia-density, 205
intrinsic rotation, 181
inverse, 452
Kirchhoff stress, 66
Kronecker, 18, 448
Levi-Civita, 457
logarithm, 449

Index

metric, 17, 140, 452
modified torsion, 164
moment, 200, 201, 211
moment-density, 210
nonmetricity, 19, 146, 486
operations, 443
Palatini, 165
Palatini torsion, 485
point-defect, 149
prestress, 212
Ricci, 165, 484
Riemann, 17, 478, 484
rotation, 460
skewsymmetric, 500
spin, 149, 177
strain, 63
stress, 65, 66, 206
stress-energy, 149, 177
surface moment-density, 196
symmetric, 445
torsion, 477-479
trace, 444
traction, 70
transformation, 446
transpose, 445, 446
two-point, 11, 21
unit source-mechanism, 201
valence, 442
viscosity, 91
vorticity, 20
tensor capacity, 27, 449, 457
covariant derivative, 486
weight, 27, 449
tensor density, 27, 449, 457
covariant derivative, 486
weight, 27, 449
tensor field, 442
divergence of, 475
tensor product, 14, 443
outer product, 443
tensor-valued form, 479, 510
tensors, 14
relative, 449
two-point, 68
test function, 279, 283
test vector, 190, 236, 280, 297
tetrad, 447, 483, 484
covariant derivative, 483
tetrad formalism, 138
thermal conductivity, 75
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thermal diffusivity, 75

thermodynamic mechanical parameter, 111

thermodynamics, 73, 92
three-form
internal energy, 107
internal heating, 109
volume, 502
Tikhonov regularization, 404
time
comoving, 4
Newtonian, 3, 4
referential, 3
time derivative

corotational material derivative, 25

Euler, 486
material derivative, 24
time scheme
centered, 274
explicit, 272
forward-difference, 266
implicit, 273
Lax—Friedrichs, 267
Newmark, 303
predictor-corrector, 292
trapezoidal, 292
time-reversal mirror, 344
tomography
amplitude, 360
attenuation, 362
differential-traveltime, 360
generic, 362
Q, 362
traveltime, 355
waveform, 348
torque, 194, 196
surface, 104
total, 194
volume, 104
torque two-forms, 109
torsion, 134, 141
material, 146, 149
torsion form, 485
torsion tensor, 16, 477-479
torsion two-form
material, 164

torsion two-forms, 141, 513, 514

torsion-free connection, 15, 480
total force, 194

total rotation, 205

total rotation tensor, 205

total torque, 194

total variation regularization, 404

trace, 20, 444
traction
two-forms, 70
traction two-forms, 70
traction tensor, 70
traction two-form
normal, 70
shear, 70
transpose, 386, 445, 446
(1,1) tensor, 446

transversely isotropic symmetry, 187

trapezoidal time scheme, 292
traveltime adjoint source, 356
traveltime adjoint wavefield, 356
traveltime misfit function, 355
traveltime misfit kernel, 358
traveltime tomography, 355
Trelis, 312
triclinic symmetry, 187
true model, 394
true strain, 57
Truesdell rate, 83
twist disclination, 148, 177
two-form
Cauchy stress, 69
curvature, 517, 518

first Piola-Kirchhoff stress, 71

heat flux, 107

second Piola-Kirchhoff stress, 72

stress, 69

surface, 503

tensor-valued, 479

torsion, 513, 514

traction, 70, 89

vector-valued, 479
two-forms, 496

torque, 109
two—loop recursion, 402
two-point tensor, 11, 21, 68, 71

uncertainty quantification, 408
unconditional stability, 273
unit vector, 455

upwind flux, 321, 322

valence, 296, 297, 442
variable metric method, 399

variational approach, 92, 124, 221, 223, 228

For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

variational principle, 92, 124, 221, 223, 228, 525
displacement, 221
displacement-potential, 223

vector, 8,427, 428
basis, 429
covariant, 13
dual, 13
field, 431
length, 455
norm, 455
normal, 38, 503
unit, 455

vector field, 431
constancy, 475

vector space, 418, 429
dimension, 419

basis, 419
linear space, 418

vector-valued k-form, 511

vector-valued form, 479, 510

velocity zero-form, 160

velocity-stress formulation, 266

Vielbein, 447

Vierbein, 138, 447

viscoascoustics, 253

viscoelasticity, 249

viscosity, 91, 252
bulk, 91
dynamic, 91

viscosity tensor, 91

viscous fluid, 91, 124

Voigt notation, 311

Volterra cut-and-weld protocols, 136, 148, 153,
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Volterra representation theorem, 199
generalized, 233

volume, 31, 502
source, 193

volume element, 502
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volume form, 27, 29, 162, 458, 502
properties, 163

volume integral, 522

volume torque, 104

volume transport, 34

vorticity, 19, 108

vorticity tensor, 20

wave equation

acoustic, 191

weak-form, 192
elastic, 188
weak-form, 190

fluid, 226
waveform adjoint source, 349
waveform adjoint wavefield, 350
waveform inversion, 385, 388
waveform misfit kernel, 350
waveform tomography, 348, 414
wavelets, 406
wavenumber, 189
wavespeed

compressional, 189

shear, 190

sound, 191
wavevector, 189
weak form, 279
weak methods, 279
wedge disclination, 148, 177
wedge product, 496, 498

exterior product, 498

Grassmann product, 498
weighted Cauchy stress tensor, 67
Weyl vector, 164
Wolfe conditions, 406

Young’s theorem, 135

Zaremba-Jaumann rate, 25, 59
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