© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

CONTENTS

Prologue $x i$
НСТ
I. Identity Elements 3
2. Dazzling New World 10
3. Gymnastics 19
4. Calculate the Stars 43
5. Nerdish Delights 57
6. The Vow 83
月CT II
7. Religion 103
8. Criteria of Virtue 109
9. Character Assassination 128
io. Snip, Clip, Prune, Lop 171
II. Dotto \& Company 216
I2. Truth Beauty, Beauty Truth 241
HCT III
I3. Mortality Flash 271
14. Optional Probability Fields 282
I5. Lustration 320
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical cmeranswithout prior written permission of the publisher.
16. Take It as Axiomatic 334
I7. Humpty Dumpty's Prerogative 351
Epilogue 375
Appendix A. On Morley's Trisector Theorem 393
Appendix B. The Lexicode Dictionary 394
Appendix C. Surreally 396
Author's Note 403
Acknowledgments 405
A Select Conway Bibliography 409
Bibliography 413
Notes 423
Epigraph and Art Credits 439
Index 441

1.

IDEDIITY ELEMERTS

Who in the world am I? Ah, that's the great puzzle.
-Lewis Carroll

On a late September day in 1956, a skinny 18 -year-old left home with a trunk on his back. John Conway wore his hair long and unkempt like a proto-hippie, and although he generally preferred to go barefoot, on this occasion he wore strappy Jesus sandals. He traveled by steam train from Liverpool southeast to Cambridge. As he passed the 5-hour journey, via Crewe with a connection in Bletchley, the not particularly scenic landscape rolling by in a blur of canals and countryside, something dawned on him: here lay a chance for some much-needed self-invention.

In junior school, one of John's teachers had nicknamed him "Mary," since he was such a delicate creature, a bit effeminate. Being Mary made John's life absolute hell until he moved on to secondary school, at the Holt High School for Boys. When the headmaster, A. G. Russell, called each boy into his office and asked what he planned to do with his life, John said he wanted to "read" mathematics at Cambridge. Mathematics has been studied at Cambridge for a long time, according to the website, which also says that its first notable mathematician was the sixteenth century's Robert Recorde, credited with the invention of the equal sign. After loitering for a while with the reprobates at the back of the classroom, John did well enough on the Cambridge entrance exams to receive a minor scholarship and get his name published in the Liverpool Daily Post. So instead of Mary, he became known as "the Prof." These nicknames resulted in a terribly introverted teenager, painfully aware of himself and his own suffering. Hence, on the train, he did some
meta-thinking. None of his classmates would be joining him at Cambridge. No one would know him. This gave him the audacious idea of transforming himself into a new person: an extrovert! He wondered if he could pull it off. He worried his introversion was too entrenched, but he decided to give it a go. He would be boisterous and witty, he would tell funny stories at parties, he would laugh at himself-that was key.

Roughly speaking, I was going to become the kind of person you see now. It was a free decision.

$\triangle \square \rightarrow$

Right then, telling me that story, Conway was holding forth in the edifying alcove at the math department, toggling between telling tales and fretting about a big lecture he was due to deliver that night on his latest brainchild, the Free Will Theorem. Conceived in collaboration with his Princeton colleague and friend Simon Kochen, the theorem came about through a casual kicking around of ideas over more than a decade. On August 19, 2004, a Thursday, all of a sudden they realized what they'd achieved. Using a motley combination of quantum mechanics, philosophy, and geometry, they had proven a theorem, almost inadvertently. The simplest statement of their Free Will Theorem is as follows: If physicists have free will while performing experiments, then elementary particles possess free will as well. And this, they reckon, probably explains why and how humans have free will in the first place. It isn't a circular argument so much as it's a spiral argument, a self-subsuming argument, spiraling outward bigger and bigger.

Kochen was the expert in this subject; in his youth he'd done some serious dabbling in the realm of quantum mechanics. Conway's job was not to understand.

My contribution was not understanding all the quantum mechanics stuff. And that was an important contribution. It freed us to think about things in very simple terms.

Obviously, Conway brought a certain brainpower to bear. "He's sui generis," says Kochen. Meaning he's reliably unusual in his approach. And as far as Conway's brain proper is concerned, "It's big," Kochen
says. "A lot of people dig deeper and deeper and deeper, use very technical modern machinery. That's not the way John works. He doesn't use too many technical things, not too much apparatus. He works at ground level, the level that he could explain to anyone, using intuition."

> In a fundamental way my job is thinking. You can't see it from the outside. What does the thinking consist of? I think about how to explain whatever I am thinking about to someone. Then I explain it to someone and it doesn't work. So I think about it some more. I tinker with it, with thinking, until I've simplified it. I personally can only understand things after I've thought about them for ages and made them very, very simple.

> Most people just understand enough to work. For example, a mechanic doesn't necessarily understand the physics or engineering of how a car works. I'm not putting down a car mechanic. We need practical people. I'm not sure we need theoretical people. Though I'm not going to campaign for my own abolishment.

Conway and Kochen spent a couple of years refining their theorem, readying it for publication in the journal Foundations of Physics. With Conway as front man, they also began planning a series of public lectures for fall 2006. They booked the McCosh 50 lecture hall, Princeton's largest classroom, with 446 wooden seats-a creaky 105-year-old venue where Einstein delivered a lecture series on relativity in 1921. Princeton University Press signed the book rights and printed posters to advertise the lectures around campus.

But then things went awry. Conway's wife, Diana, left him. Without her, he floundered. He neglected to take his medication. He suffered his first stroke. The lectures were postponed for more than 2 years. Finally, by March 2009, things were for the most part back on track.

The night before the inaugural lecture, Conway kept himself awake coughing till all hours. I came to this knowledge firsthand. Stealing a page from Margaret Mead's playbook, I'd proposed that I set up camp in Conway's guest room as a full-immersion participant observer. He had no problem with my tailing him 24-7. "My amanuensis," he called mefrom the Latin phrase servus a manu, a slave at hand. One could let Conway believe what he wanted to believe. Then again, I fetched cough drops and water in attempts to quell his coughing fits, and I carried
around his plastic shopping bag full of lecture props, including a book on the Roman poet and philosopher Titus Lucretius and a new braided brown leather belt, a handmade example of knot theory, recently mailed by a friend. He planned to press the belt into service that very evening lest his too-big trousers descend before his audience.

$$
\Delta \square \Leftrightarrow
$$

Assuming his position at the lectern that evening, with his coconspirator Kochen sitting in the front row, Conway opened by barking a greeting cum query at his audience:

WHY ARE YOU HERE TONIGHT?!

He presented 2 answers, with considerable fumbling via PowerPoint (creating the slide presentation had been considerably more challenging for him, intellectually, than constructing the theorem).

1) It was predetermined
2) You chose to come

That really is the problem that faces us.

There was, however, a bigger question: Why was Conway himself there? What business of his was free will? A survey of friends and colleagues on this issue brought rejoinders like "As far as I'm concerned, it's a lot of nonsense." Or "I'm sorry, but I don't understand what John is talking about." The consensus being that he was wandering rather far afield, even for his impressively philandering ken.

Conway, of course, had an answer to the question, by way of a story. Some 65 years earlier, his father had gone to considerable trouble to prove to little John that a radio did not get its information, its sound, from the cord that plugged it into the wall, nor from the wall or the floor by any route, as his son was convinced it did.

My dad borrowed a battery-operated radio set—at that time they didn't basically exist, this was Liverpool in wartime—and he suspended the radio by string from a light fitting. . . . Then he said, "Now watch." He snipped
the string. And the radio went on playing music as it fell onto some cushions on the floor-it was in midair and it was still playing music. Well, I didn't understand how that could happen. I still don't understand it, in a sense. We still don't understand how the sun pulls the earth. We don't need an understanding of it. We just accept that it does. The only thing to do is get on with your life. Believe it. Accept it. We don't have to have an explanation for how things happen. They just do.

The radio story was Conway's way of reassuring people that they needn't worry about what they might not understand about the Free Will Theorem. And, he added, almost apologetically:

By the way, we didn't want to prove our theorem. We just wanted to understand what goes on, how the world works. We proved the theorem by accident.

$\Delta \square \rightarrow$

Three axioms make up the guts of the Free Will Theorem. The axioms come from quantum mechanics, which describes the world of the very small, such as elementary particles, and from general relativity, which describes large-scale properties of the universe, such as gravity. But again, the caveat Conway offered, often with throat-clearing asides, was not to worry if you don't understand. He recalled what he once heard the physicist Richard Feynman say about the utter incomprehensibility of quantum mechanics: "If you meet somebody who tells you they understand quantum mechanics, what have you learned? What you've learned is that you've met a liar." Conway has met a few liars. And although he of course doesn't understand quantum mechanics, during the lecture he mentioned the axioms here and there for some ambient scientifica-mood axioms-the postulates in question being "Twin," "Spin," and "Fin." That they rhyme makes them seem at least potentially understandable, in a Lewis Carroll rational nonsense kind of way. From these axioms, and Conway and Kochen's conjuring imaginations, emerged the Free Will Theorem.

> And what does "free will" mean? I'm just using this term, "free will"and many people have said it is a tendentious use of words-to mean that our behavior is not a function of the past.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical 8 |cealans without prior written permission of the publisher.

Precisely how elementary particles demonstrate free will Conway only touched upon in the first lecture. It has to do with an experiment measuring the spin of 2 "Twin" particles, questioning, if you will, the twinned particles about what their spins are. Conway compared this inquisition of the particles to the game Twenty Questions, which he played as a child with his 2 older sisters. John, at the age of about 7 , would think of an object and declare it animal, vegetable, or mineral. His sisters would ask questions about the object, and if they succeeded in guessing what it was in 20 questions or fewer, they won. But being a bumptious boy, John displayed no scruples whatsoever when playing this game.

> If I sensed my sisters were getting too close to the object I'd selected, I would change the object. You had to be quite clever to do that. Because you have to select a new object which answers, say, the 7 questions you've already been asked in the same way as the old object did-and is also unlikely to be the kind of object your sisters will think about.

That, he explained, is kind of what the particles do.

If you ask them this type of "Spin" question, they don't have an answer in mind.

Let's think of that. Let's think of an even cleverer little boy than I was. Very hard to think of a cleverer little boy than I. But think of a cleverer little boy than I was, who never bothers to select an object or an answer in the first place. He just gives the first of so many answers at random and then starts thinking what the object is. Well, that's what the particles do. They don't have answers in mind for each of 33 "Spin" questions that can be asked of them or measured by the experimenters.

Now, a clever enough little boy can answer questions like that on the fly, so to speak, and not be caught out by his sisters. I may say, occasionally I was caught out by my sisters, and there were punishments which I won't bother to describe. But suppose I had a twin brother. In fact, there was a long history of twins in our family. My father was a twin. He had a brother and sister who were twins. I always wished I had a twin brother. And if I had, my sisters would have had a much better chance, because they could insist that my twin and I choose our object together, but then interrogate us separately. If that were the case, we couldn't change the
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher-TITY ELEMENTS
object. If they chose which one of us they're going to ask about the object, and my twin and I had no chance to transmit information to one another and say, "Hey, quick, I'm changing the object to such and such," well, then we couldn't win. The same happens with the twinned particles. They are tested separately but somehow on the fly they always come up with the same answers.

With that, the Free Will Theorem was essentially QED. Well, not quite. That's an easily digestible analog of the proof, a scientific soupçon. We'll get to the heart of the matter in the not too distant future-we'll revisit the Free Will Theorem intermittently throughout our tortuous journey, treating it like a temporal benchmark, the prevailing present. Most memorable for me during the first lecture was that while Conway took care to avoid getting into any technicalities about the scientific forces at play, he confessed how remarkable he found it that anything could be proven at a mathematical level of precision and exactitude about the nebulous concept of free will.

But, you know, that's what we've done. Our proof is unassailable.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

INDEX

Abel Prize, xviii
Adamatzky, Andrew, ed. Game of Life Cellular Automata, 159
Adams, Frank, 68-69, 256, 267
Adler, Stephen, 360
aesthetics, 264-65
Alephs (cardinal numbers), 45-47, 194
Alexander of Aphrodisias, 388
Alexander's dark band, 388
Alexeev, Boris, 327, 328
ALIFE 14, 381
Alliluyeva, Svetlana, 179
American Academy of Arts and Sciences, 305
Amis, Kingsley, 121
Anderson, Philip, 360
anthropic principle, 162
Appel, Kenneth, 231
Archimedean solids, 21-22, 21
Archimedes, xvii, 22, 335
Archimedes palimpsest, 287n
Aristotle, 45
Arnold, Vladimir, 324
artificial intelligence, $111,143,144,157-58$
artificial life, 157, 158-59
Assassin, 351
asymptotic series, 288
AT\&T Bell Labs, 73, 184, 282, 301
Atiyah, Sir Michael, 83, 214, 252, 266
ATLAS (of group theory), 225, 256
character tables in, 260, 261
completed project, 259, 265, 329
Conway's explanation of, 261-65
creation of, 219-20, 221
delays in, 230, 235, 254
error book of, 250-51, 258
guard book of, 226, 250-51
introduction to, 258, 262
in progress, $226-27,228,235,241,247$, 258-59
and simple groups, 258, 288
and symmetry, 262, 263
tenth anniversary celebrations, 258
Automata Studies, 111
automata theory, 147
Axiom of Choice, 46, 92
Axtell, Robert, and Epstein, Growing Artificial Societies, 157
backgammon, 69-70, 70, 99, 114, 227, 254, 287, 357-58
Bacon, Francis, 48
Bailin, David, 30, 32
Bak, Per, How Nature Works: The Science of Self-Organized Criticality, 157
Baker, Alan, 40
Ball, W. W. Rouse, Mathematical Recreations and Essays, 13, 33
bar billiards, 125
Bar-Natan, Itai, 346
Basterfield, John, 32-33
beanstalks, 200, 200, 203
Beaumont, Francis, 111
Beckett, Samuel, 119
Bell Labs:
"Computer Analysis of Sprouts," 73
Conway's lectures in, 282, 301
and Dots and Boxes, 184
Benson, David, 235
Berenson, Bernard, 391
Berlekamp, Elwyn, 165, 184-89
Bernini, Gian Lorenzo, 66
Besicovitch, Abram Samoilovitch, 35-36
Besicovitch's Game, 36, 68, 179
Bevan, Edward, 105
Bhargava, Manjul, 327n
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical mederns ${ }^{\text {With }}$ without prior written permission of the publisher.

Bickford, Neil, 131-32, 166
Bishop, Errett, 211
Black, Sandra, 372, 373
Blum, Lenore, 309n
Borcherds, Richard, 256-58, 325-30
Bourne, Stephen, 113n, 123
Bourne shell, 123
Bouton, C. L., 138
Bowen, Bill, 267
Boyer, Carl B., The Rainbow: From Myth to Mathematics, 386
Brand, Stewart, 159
Breakthrough Prize in Mathematics, xvii, 290n
Brezhnev, Leonid, 84
bridge problems, 184
British Astronomical Society, 47
British Department of Science and Industry Research, 225
British Go Association, 178
British Informatics Olympiad, 118
Bruen, Aiden, 321
Bunyan, John, 36-37, 189
Burgiel, Heidi, 343n
Burnett, Graham, 295-97
Bush, George H. W., 308

Cage, John, 172
cake, envy-free division of, 71
California, Conway's travels in, 221-22
California Institute of Technology, Conway's work at, 220, 222-24
Callahan, Paul, 113n
Cambridge University:
Bishop Shaxton's Solace, 39, 40
Conway's arrival at, 3-4
Conway's departure from, 266-67, 282, 290, 329
Conway's faculty employment in, 57-59, 67, 255, 256-57, 282
Conway's fellowship in, 39
Conway's Ph.D. thesis, 40-42, 54, 56
Conway's return visit to, 224-26
Conway's undergraduate years in, 28-38, 29, 39

Department of Pure Mathematics, 57-58, 267
eccentrics accommodated in, 282
Gonville and Caius College, 20, 38-40, 67
hiring process in, 57-58

Peterhouse College, 59-60
reading mathematics at, 3
Sidney Sussex College, 59, 60-61, 63-67
Cantor, Georg, xvii, 43-47, 53-56
and Alephs, 45-47, 194
conceptual universe of numbers, 55
Contributions to the Founding of the Theory of Transfinite Numbers, 43-44
death of, 196-97
and Omegas, 45, 54-55, 195, 200, 201, 202-4, 202, 203, 205, 206
theory of ordinals, 54, 55, 194, 196
Cantor's Continuum Hypothesis, 46, 53, 83, 92, 209, 210-11, 213
card games, 179
card tricks, 179, 217
Carroll, Lewis, xii, 3, 7, 271
day-of-the-week formula, 228-29, 230
"The Hunting of the Snark," 216, 218
Through the Looking Glass, 362
case splitting, 332
Cassels, Ian, 58, 241, 255
cats, 50, 51, 104
cellular automata, 113, 146-47, 150, 153, 155-59
and Game of Life, xiv, xv, 103, 111, 114, $151,157,159,163-64,165-66$
chance, element in games, xvii, 69
chaos, theories of, 214
Chapman and Hall, 81
charisma, xii
Chekhov, Anton, 310
Chemical Theorem, 78
Chen Jingrun, 42
chess, 114,177
chirality census, 133-34
Chomsky, Noam, 212, 336
Church, Alonzo, 211
Chvátal, Vašek, 177
cicadas, 168-70
Classification Project, 86, 218, 249, 250, 251-52, 383
clonal amoebas, 280-81
Close, Chuck, 261
coding theory, 87-88, 314, 330
Cohen, Paul, 83, 209
COL, 180
Collatz, Lothar, 378
communications technology, 87-88
compatibilism, 361-62

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

complexity sciences, xv, 156-57
computation, evolutionary, 157
computational equivalence, principle of, 156
computer memory, corruption of, 324
computers:
and Game of Life, 103-4, 123, 125, 128, 143-46, 147, 166
games on, 146
problem-solving via, 73
Conder, Marston, 324
conformal field theory, 329, 330, 332
continuum of existence, 359-60
Conway, Agnes (mother), 11, 12, 224
Conway, Alex (son), 253-54, 254, 310
Conway, Annie (daughter), 19-20, 23, 24, 64, 246, 248-49
Conway, Cyril (father), 11-12, 58
Conway, Diana (third wife), 5, 154n, 242-43, 335-36, 345, 365-66
Conway, Eileen Howe (first wife), 39, 63-64, $65,175,244,247$

Conway, Ellie (daughter), 20, 64
Conway, Gareth (son), 12, 19, 24, 50, 51, $130,336,340,366,380,389-90$

Conway, Joan (sister), 10, 11, 12, 23-24, 27, 246
Conway, John Horton, 148
and aging, 273-74, 275, 281, 306, 317, $320,335,355,356,375-76$
archives of, 154-55
and the ATLAS, see ATLAS
awards and honors, xviii, 255, 305-6, 378, 380, 390, 423n
and biography, xviii-xx, xxii-xxiv, 5,12 , $66,128-30,259,261,335-36,338,375$, 391-92
birth and childhood of, 10-11, 12, 23, 24
brain study, xxiii, 132, 316, 366-74
at Cambridge, see Cambridge
caricature of, $v i$, xxiii-xxiv, 66
and Classification Project, 251-52
as combinatorialist, 275
contributions to science, xv-xviii; see also specific topics
and control over numbers, 49
creative imagination of, xii, $4-5,37,43$, $74,105,109,187,255,259,293-96$, 315, 324, 369, 390
day-of-the-week (Doomsday) formula,
$23,24,152,228-30,272,273,370,388$, 390
depressions of, 37, 82, 310-11, 315, 356
eyes of, 374
factorizing big numbers, 317-18
family of, 19-20, 58, 65, 180-81, 220,
221, 246, 267, 311, 335
as fictioneer, 65-66, 89-90, 212
finances of, 311-12
gamesomeness of, xii-xiii, xiv, 59, 68-74, $152,177-83,196,199-200,204,207-$
8; see also specific games
as genius, xi-xii, 38
health problems of, xix, 310-11, 335, 349, 355-56, 366, 373, 376
hyperspace helmet of, 60-63, 61, 369
interest in words, xxii, 34, 98-99, 137, 170, 315-16, 333
and the joys of mathematics, 185,264 , 296, 297, 332, 335
Jugendtraum (dream of youth), 111, 168
laziness doctrine of, 30, 37-38, 42, 58, 67, 69, 74
lectures by, $74-76,81,97,185,255,275$, 281, 283-84, 285-87, 293-96, 299, 316, 320-25, 326-27, 353-55, 356-59, 385
"Let it all hang out" policy, 312, 313
and Life, see Game of Life
manic states of, 317-19, 336
and Mathcamp, 334-38, 345-49
and mating algorithm, 242, 245-46
media stories about, 282-83, 287, 305-6
memorizing pi, 248-49
nomenclature interest of, 233, 292, 343n
offices of, xiii-xiv, xxiii, 58, 186, 273, 308, 380
payment challenges by, 299-302, 381-82 and Penrose tiles, 231-34
personal traits of, xi, xii, xix, 75,158 , $185,187,255-56,283,305,313,366$ 376

Ph.D. theses of, 40-42, 47, 54, 56, 380
at Princeton, see Princeton
publications, see Conway, John Horton, publications of and rainbows, 385-88
research trips, xxii-xxiii, $12-13,16-18$, 19-42, 130-42, 226, 341-45
retirement of, 376-79, 383
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical medaps Without prior written permission of the publisher. 2

Conway, John Horton (cont'd)
self-invention of, 3-4
showmanship of, 185, 255, 283-84, 285, 293-96, 299, 321-22, 324
simplicity sought by, 329, 330, 331-32, 338
suicide attempts of, $37,311-16,320,335$, 341
talkativeness of, xii, xviii, 64, 193, 375
teen years of, $3-4,13,15,16,17,30$
"The Vow" of, 98, 389
tongue gymnastics of, 25-27, 26, 132-33, 217
travels of, 97, 224, 341, 345
white-hot discoveries of, 97-98, 99
and women, 242-47, 307, 325
Conway, John Horton, publications of, 45, 174
"All Games Bright and Beautiful," 182
"All Numbers Great and Small," 182, 209
The Atlas of Finite Groups, 20
The Book of Numbers, 320
"Conway's ZIP Proof," 234n, 292n
"Decoding Techniques for Multi-Dimensional Codes" (Patent No. 4,507,648), 314
"Fibonometry," 377
"A Headache Causing Problem," 90
"n-Dimensional Regular Polytopes," 16
On Numbers and Games (ONAG), 18384, 189, 194, 197, 208, 214, 233, 346
On Quaternions and Octonions, 376
"On the Distribution of Values of Angles Determined by Coplanar Points," 34
"On Unsettleable Arithmetical Problems," 377-79
Regular Algebra and Finite Machines, 81, 367
Sphere Packings, Lattices and Groups (SPLAG), 275, 313, 314
The Symmetries of Things, 343n
The Triangle Book, 302-3, 365, 377
"The Weird and Wonderful Chemistry of Audioactive Decay," 78
Winning Ways for Your Mathematical Plays, 165, 184-89, 347
Conway, Larissa Queen (second wife), 244, 248-49, 253, 254-55, 257, 266, 301, 310, 311, 335, 365, 366
Conway, Molly (great-granddaughter), 27

Conway, Oliver (son), 290, 310
Conway, Rosie (daughter), 23, 58, 64, 180, 246, 366
Conway, Susie (daughter), 19, 64, 180
Conway, Sylvia (sister), birth of, 11
Conway Bead, 131
Conway Constellation, xvi, 97, 177, 326
Conway Error, 250
Conway groups, xvi, 97, 115, 171, 219-20, 221, 237, 287-88, 330
other groups related to, 222-24, 225, 249, 326

Conway's Constant, 80
Conway-Sloane decoding method, 314
Conway's Piano Problem, 69
Conway's Presumption, 145
Cook, Matthew, 153-56
Corderman, Charles, 147
Corderman switch engine, 143, 147
Cortés, Hernan, 174
Cosmological Theorem, 79
Coxeter, H.S.M. (Donald), xviii, 89, 335, 342
brain of, xxiii, 365, 367, 368
and Conway, 33-34, 35, 338
and groups, 89
Mathematical Recreations updated by, 13
Regular Polytopes, 13-14, 15, 16
visit to Cambridge, 34-35
Coxeter group, 330
Cray supercomputer, 301
Crichton, Michael, The Lost World, 156-57
Crick, Francis, 243
Croft, Hallard, 34
Cromwell, Oliver, head of, 65-66
Crosscram, 181
Csicsery, George, 385
cube, primacy of, 343, 344
Curie, Marie, 320
Curtis, Robert, 68, 221, 225-26, 243, 256, 265, 267

Daniel, Yuli, 84
DARPA (Department of Defense Advanced Research Projects Agency), 147
Darwin, Charles, 104, 162, 245
Darwin, Erasmus, 182
Davenport, Harold, 36, 40-42
Dawkins, Richard, Unweaving the Rainbow, 388

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Dead Fly Problem, 382
Dedekind, Richard, 35, 45
"What Are Numbers and What Should They Be?," 194-95
Deligne, Pierre, 239
Demaine, Erik, 130
Dennett, Daniel:
Darwin's Dangerous Idea, 160-61, 162-63
on determinism, 161-62
Descartes, René, 142, 163, 388
determinism, 161-63
and evolution, 162-63
free will vs., 107-8, 279, 351, 357-59, 361
and randomness, 357-59
Diaconis, Persi, xi, 132
Diamond, Jon, 178, 179
Dickens, Charles, 11, 81
Discover, 181, 282
Disraeli, Benjamin, 333
Dixit, Avi, 280
dodecahedron, 330, 342
Domineering, 180-81, 396-401
Doomsday Rule, 228-30, 272, 273, 316, 388
Dots and Boxes, 59, 59, 180, 184, 196, 348
Down (game), 208
Doyle, Peter, 292-93, 295, 299, 310
Dürer, Albrecht, Melancholia, 381
Dyer, Geoff, 81
Dylan, Bob, 168-69
Dyson, Freeman, 249, 252

Edison, Thomas A., 186
Einstein, Albert, xi, 55, 87, 107, 209, 276, 279, 334, 338
archives of, 151
birthday of (Pi Day), 339-40
brain of, xxiii, 132, 365, 367-69
eyes of, 374
and non-Euclidean geometry, 213, 214
in Princeton, xix, 5, 267
Eliot, T. S., xix
elliptic modular functions, 235
Empire State Building, 191, 192, 193
Encyclopaedia Britannica, 258
Eno, Brian, xv
EPR paradox, 276-77
Epstein, Joshua, 157
equal sign, invention of, 3
Erdös, Paul, xvii, 34
Ericsson Inc., 314

Escher, M. C.:
birds morphing into fish, 173
Circle Limit IV (Angels and Devils), 87, 263
"Waterfall", 278
"esoteric," use of word, 137
Essential Whole Earth Catalog, 159
etymological ecstasy, 315-16
Euclid, 13, 15, 264, 342
The Elements, 14, 359
Euclidean geometry, 213
Euclidean space, xviii, 283
Euler, Leonhard, xvii, 86
Eureka, 77-78
Evennett, Peter, 13, 16-18
evolution:
and the brain, 140
and determinism, 162-63
opportunism of, 364
existence, continuum of, 359-60
"exoteric," 138

Fabre, Jean-Henri, 245
Fefferman, Charles, 239
Feiveson, Hal, 280
Fermat, Pierre de, 41
Fermat's Last Theorem, 92, 308-9
Feynman, Richard, 7, 163
What Do You Care What Other People Think?, 152
Fibonacci, Leonardo, 193
Fibonacci numbers, 48, 180, 193, 299-301
"Fibonometry," 377
"meta-Fibonacci" sequences, 303
Subprime Fibs, xiv, $x x-x x i i$
Fibulations, 180
Fields Medal, 83, 239, 286, 325, 327
fifth-powers problem, 41-42
finite groups, 86, 251
First Pythagorean Conference, 137
Fischer, Bernd, 218, 219, 225, 235, 331-32
Fischer-Griess MONSTER group, 238
Fisher, Gwen Laura, 131
FitzGerald, Edward, Rubáiyát of Omar Khayyam, 194, 215
Fitzgerald, F. Scott, 105
Fletcher, John, 111
flexagons, 33, 71, 146
"floccinaucinihilipilification," 98-99
flowers, and Fibonacci numbers, 48-49

© Copyright, Princeton University Press. No part of this book may be

 distributed, posted, or reproduced in any form by digital or mechanical medaps łwithout prior written permission of the publisher.fMRI (functional MRI), 369-73
forcing, 428n
Forney, G. David, 177, 313
FORTRAN, 116
Fortunate numbers, 241
Fortune, Reo, 241
4-color theorem, 231
4 dimensional vision, 60-63, 61, 369
4 -square theorem, 41
Fowler, David, 37
Fox and Geese, 180
FRACTRAN, 116-19, 116, 120, 157
Fraenkel, Mrs. Abraham, 165
Francis, George, 234n, 292n
Franklin, Benjamin, 265
Fredkin, Edward, 163-66
free will:
belief in, 108
and the brain, 363-64
determinism vs., 107-8, 279, 351, 357-59, 361
"illusion" of, 108
meaning of, 7, 106
nebulous concept of, 9
and randomness, 359
uncertainty about, 279
Free Will Day, 359
Free Will Theorem, xxii, 4-9, 104-8, 110, 385
axioms of (Twin, Spin, and Fin), 7, 275, 277, 278-79, 280, 354, 360
critics of, 360-64
and hidden variable theory, 276
and particles, 8-9, 107, 277-78, 278, 359, 362-64
proof of, 279
public lectures on, 5-7, 104-5, 106-8, 274-80, 351, 353-55, 356-59
Freidin, Bernie, 295-96, 297
Frenicle de Bessy, Bernard, 377
Frenkel, Igor, 329, 330
Frost, Robert, 310
Fuller, Buckminster, 344

GAD (computer program), 272-73, 316-18
Galileo Galilei, Starry Messenger, 279
Galois, Évariste, 86
Game of Life:
and Actresses and Bishops, 121
addiction to, 143
as analogue of real life, 105
"beehives" and "blinkers" in, 122
and cellular automata, xiv, xv, 103, 111, $114,151,157,159,163-64,165-66$
citations in literature, 159-61
and complexity, 156-57, 158
and computerization, $\mathrm{xv}, 103-4,123,125$, 128, 143-46, 147, 166
as Conway's best-known invention, xvii, 106, 108
Conway's disciples in, 113n
Conway's disenchantment with, 128-30, 132, 152, 158, 167-68
crossword about, 148
deterministic nature of, 105
and emergent behavior, 156
evolution of, 120, 121-27
at G4G9, 131-32
Gardner's columns about, 128, 144, 14647, 161
and glider gun, $126,128,143,144$
gliders in, 126-27, 126
and Golly, 166
government report on time spent at work on, 147, 166-67
Hashlife, 142
"honey farms" in, 122
"hot button" in, 147
influence of, 156, 158
invention of, xiv-xv, 18, 103-4, 111, 113-
$15,127,176$
and law of genetics, 110-11
Life-forms, 104, 122, 123, 123, 124
"Life Status Page," 166
and methuselahs, 124-25
"Modern Life," 132
"oscillators" in, 122
as planless system, $\mathrm{xv}, 120$
publicity about, 148
public lectures on, 106
and Religion, 104, 167
and "r-pentimento," $124,125,126$
rules of, xiv, 103, 105, 121, 168
and "sexual frustration rule," 121
and "The Sexual Side of Life," 120
simulation of, 166
"Stamp Collection," 166
and surreal numbers, 171, 175-76
as thinking tool, 160
and tiddlywinks, 148

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

universality of, 123-24, 126, 128, 144-46, 147, 153, 155
and "weaker sex rule," 121
Wedge pattern, 142-43
game theory, xiii, xvii
abstract names in, 207-8
analyzing games in reverse, 199-200
beanstalks in, 200, 200, 203
combinatorial, 125, 184-89, 423n
impartial games, 177
Mach principle for, 208
and number theory, 182-83, 400
"partizan," 178, 187
sum of games, 178
and surreal numbers, 172-73, 177-78, 180, 182-86, 199, 203, 401
and temperature theory, 208
unimpartial games, 177-78
Gardner, Martin:
books by, 130
and Conway, xiv, xvi, 72, 109-10, 208, 228-29, 233, 272, 312, 364-65
death of, 365
documentary tribute to, 132-33, 141
fear of traveling, 233
G4Gs, xxiii, 130-42, 149-56, 166, 177, 380
and Game of Life, xiv, $121,122,123,127$, 128, 143-47, 161, 176
and mathematical games, 146
and penny trick, 307
and Penrose tiles, 231-32, 233
and rope tricks, 141
and Scientific American, 33, 71, 146, 172, 176, 232, 232, 257
and Sprouts, 72-73
on surreals, xvi, 172, 208
Gauss, Carl Friedrich, xvii, 45, 86, 370
Gaussian curvature, measurement of, 293
genetics, law of, 110-11
Geometrization Conjecture, 291
geometry:
Euclidean vs. non-Euclidean, 213, 214
lectures on imagination and, 292-95
of numbers, 327 n
triangle, 302-3
Gervais, Ricky, 121
Gilford, Lynn, 18
Gilman, Jane, 298, 299
Glass, Andrew, 81

GLOP, 73
Go, 103, 114, 172, 177-79, 179, 181, 187
Goddard, Peter, 256, 325-26, 330-32
Gödel, Kurt, 83n, 209-10
Incompleteness Theorem, 75, 379
Surprising Assertion of, 210, 212-13
and Tennenbaum, 212
"What Is Cantor's Continuum Problem?," 210-11
Goethe, Johann Wolfgang von, 128
Golay, Marcel, 88, 237
golden ratio, 264, 342, 343
Golly, 166
Gonville and Caius College, 20, 38-40, 67
Goodman-Strauss, Chaim, 145, 343n
Google, Easter eggs, xv
Gorenstein, Daniel, 383
Gosper, Bill, 132, 142-43, 147, 166-67
Graham, Ron, 177
grand antiprism, 22
Green, Lennart, 130-31
Greer, Germaine, 246-47
Griess, Bob, 218, 225, 238, 249-50, 252, 254
Grimond, Joseph, 67
Gross, Benedict, 225
Grothendieck, Alexander, 83
group, coining of term, 86
groups:
exceptional, 88
unification of, 331-32
see also specific groups
group theory, xviii, 68, 91, 115, 183, 264
ATLAS of, see ATLAS
Conway's declining interest in, 329-30
Conway's nested mountains, 326, 326
declining emphasis in mathematics, 226
and kinship behavior, 241-42
and Rubik's Cube, 238-39
and sporadic groups, $88-89,249,252-53$, 255, 330-31
and symmetry, 86-89, 242, 253, 263, 330
Grünbaum, Branko, 343 n
Guay-Paquet, Mathieu, 335, 336, 348-49
Guy, Mike, 20-23, 39-40, 79, 113n, 123, 180, 266
Guy, Richard, 20, 113n, 125-26, 165, 178, 320
and combinatorial game theory, 125, 184-89
and Doomsday Rule, 230

© Copyright, Princeton University Press. No part of this book may be

 distributed, posted, or reproduced in any form by digital or mechanical meaps Xwithout prior written permission of the publisher.Guy, Richard (cont'd)
and Hackenbush, 204
"Mathematical Magus," 182, 186

Hackenbush, 110, 176, 199-200, 199, 203-4
Hadamard, Jacques, An Essay on the Psychol-
ogy of Invention in the Mathematical Field, 368

Haken, Wolfgang, 231
Hales, Thomas, 322n
Hall, Janice, 280-81
Hall, Marshall, 220, 222
Halmos, Paul, 209
Halvorson, Hans, 360-61
Hanke, Jonathan, 327
Hardy, G. H., A Mathematician's Apology, 306
Harada-Norton group, 225
Harris, Sidney, 355
Harrison, George, 12
Hart, George, 131
Hart, Vi, 131
Harvey, Thomas, 367
Hashimoto, Sachi, 346
Hashlife, 142
"Hasty Pudding Cipher," 131
Hawking, Stephen, 27, 57, 238, 248
A Brief History of Time, 164-65
Hawthorne, Nathaniel, 391
Hearst, William Randolph, III, 185
Hebrew calendar lecture, 388-89, 390
Hein, Piet, 22
Held group, 222
Heraclitus, 171
Hess, Dick, Mental Gymnastics, 140
Hesterberg, Adam, 339
hidden variable theory, 276
Higgs boson, 218
Hilbert, David, 46, 292
Hoare, Tony, 214
Hofstadter, Douglas, 302-5
Gödel, Escher, Bach, 303
Hofstadter-Conway-Mallows sequence, 305
holyhedron, 384
Honeywell, 147
Horgan, John, 308
"The Death of Proof," 150, 151
"Hotspur property," 98
humility theorem, 75
hyperdimensional space, 61-63

IBM 360/75 computer, 143-46
Ibsen, Henrik, 189
icosahedron, 86, 262, 263
illusionistic space, 376
Incompleteness Theorem, 75, 379
indeterminism, 361, 364
inert historical facts, 161-62
infinite collections, 50, 54, 83
infinite divergences, 288
infinite groups, 86
infinite numbers, 288
infinitesimal numbers, 204, 210, 213
infinity, 43-47
Cantor's theory of, 53-56, 209
and Omegas, 54-55, 195, 200, 201, 202-4, 203, 205, 206
proceeding into, 54
information theory, 111, 314
Institute for Advanced Study, Princeton, xix, xxiii, 66, 212
integer-shifting games, 146
integral lexicographic code (Lexicode), 134-38
integration, process of, 288
International Congress of Mathematicians:
Berlin (1998), 325-30
Helsinki (1978), 239
Moscow (1966), 83-89
Nice (1970), 239-40
Zurich (1994), 321-24
International Mathematical Olympiad, Belgrade, 77
interwoven triangles, 344

Jacobi, Carl Gustav Jacob, Fundamenta Nova, 235, 237
Janko, Zvonimir, 89, 91
Janko groups, 222, 249-51
Japan Go Association, 187
Jerome, Jerome K., 16
John Conway Appreciation Society, 19, 75, 80-81
Johnson, Samuel, xxiii, 98, 236
Journal of Mundane Behavior, 11

Kant, Immanuel, 361
Kavli Institute for the Physics and Mathematics of the Universe, Japan, 216
Keats, John, 19, 174, 246, 375, 388
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

KenKen, 376
Kepler Conjecture, 322n
Khovanova, Tanya, 120, 365
Kinoshita, Shin'ichi, 32
kinship behavior, 241-42
knot theory, 6, 30-32, 30, 31, 32, 176
reverse knot, 142
rope tricks, 141-42, 336-38
and Thrackle Problem, 381-82
"Knowledge is power," 48, 197
Knuth, Don, 197
The Art of Computer Programming, 171, 175, 176
computerized diary of, 175,214
and Game of Life, 175
and surreal numbers, 171, 172, 174, 175-77, 189-91, 193, 204, 213-14
and TeX typesetting program, 171
Kochen, Simon, 311, 314, 341
and etymological exercise, 315
and Free Will Theorem, 4-5, 6-7, 106, 277-78, 280, 353-54, 356-57, 359-61, 362-64
Kohn, Joe, 106, 274-75, 311, 362
Kolmogorov, Andrey, 83
Kreisel, Georg, 211
Kruskal, Martin, 288-90, 310
"lackadaisically," use of word, 34
Lagrange, Joseph Louis, 41
Landauer, Chris, 223
Laplace, Pierre-Simon, Mécanique Céleste, 106
Lavin, Irving, 66
Leech, John, 88
Leech lattice, 85-89, 91-98, 257, 275
and Conway group, xvi, 222, 237, 330
and the Monster, 330
and symmetry, 94-97, 330
Leonardo da Vinci, 264
Lepowsky, James, 329, 330
Lévi-Strauss, Claude, The Mathematics of Man, 241-42
Levitron, 283
Lexicode Axiom, 136
Lexicode Exercise, 137
Lexicode Non-theorem, 136
Lexicode Theorem, 134-38, 177, 198, 322, 323, 324, 394-95
libido (Jungian sense), 43

Lieberman-Aiden, Erez, 130
Linnett, John Wilfrid, 67
Littlewood, John E., 36
Locke, John, 157
Look-and-Say Sequence, 76-80
Lord, Gordon, 32
Lucas, François, 193
Lucas numbers, 193
Lurie, Jacob, 290n
"lustrum," meaning of, 333
Lyons group, 247-50
MacPherson, Robert, 305
magic, 132, 142
magic squares, $344,377,377,380,381$
Malcolm, Janet, xii
Mallory, George, 265
Mallows, Colin, 301-2, 304
manifolds, paper forms, 295-96
Margolus, Norman, and Toffoli, Cellular Automata Machines, 157
Margulis, Grigory, 239
Mars, colonization of, 111-13
Martin, Nigel, 113n
Marx, Groucho, 204, 297
Mason, A. E. W., 333
Massie, Peter, 234
Mathcamp, xviii, xxiii, 334-38, 345-49, 366
mathemagicians, 130
Mathematica, 149-50
Mathematical Intelligencer, 251, 324
mathematical objects:
as collections (sets), 53
ontology of, 50-53, 198
mathematics:
art and science in, 115
"creative," 293
eccentrics in, 257, 282
fun vs. serious, 133
joys of, 185, 264
and language, 247
logical vs. intuitive thinking in, 368
for math's sake, 335
new algebraic theories in, 326
particular vs. general in, 331-32
and reality, 87
recreational, 13, 33, 231
truth in, 379
unsolvable problems in, 198
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical medaps Without prior written permission of the publisher. $_{\text {w }}$
mathematics education
Conway's teaching skills, 316
"Fantastic Facts," 298
"Geometry and the Imagination," 292-95, 297-99
how to teach, 293, 297, 298
Math for America, 385
Mathieu, Émile, 88
Mathieu group, 88-89, 237, 326, 330
McCarthy, John, 111
McCartney, Paul, 12
McKay, John, 85, 89, 90, 91, 217, 234-35
McLaughlin group, 222
Mead, Margaret, 5, 241
memes, 161, 163
Menna, Lisa, 131
Metropolitan Museum of Art, New York, 381
Meurman, Arne, 329, 330
Miller, Stephen D., 272, 273, 311, 312, 316-18
Minsky, Marvin, 143, 163
MIT:
Artificial Intelligence Project, 143, 144
Simons Lecture Series, 385
Mitchell, Melanie, Complexity: A Guided Tour, 157
Mitchell, Ray, 113n
Mitton, Mark, 141-42
Miyamoto, Tetsuya, 376
modular functions, 235,237
MoMath (National Museum of Mathematics), New York, 376, 385
Monster group:
Baby Monster subgroup, 249, 326
Borcherds's proof of "Moonshine" conjecture, 325-26, 327-30
"character table" of numbers defining, 218-19, 225-26, 260, 261
and Classification Project, 252
and conformal field theory, 329, 330
Conway's tinkering with, $235,254,255$, 325, 329
Frenkel-Lepowsky-Meurman construction, 330
hyperdimensional properties of, 236-38, 325
impossibility of, 225, 234-35, 252, 264
lectures on, xxii, 216-18, 286
and modular functions, 235
Monstrous Moonshine, xvi, 236, 237-38, 325-26, 327-30, 332-33
and numerology, 236-37
proof of existence, 252
remaining questions about, 252, 253, 329, 330, 332-33
and sporadic groups, 249, 252-53, 255, 326
as symmetrical entity, 216, 261, 263, 265, 329
and vertex operator algebras, 329
mood axioms, 7
Moravec, Hans, 177
Mind Children: The Future of Robot and Human Intelligence, 157-58
Morgenstern, Oskar, 149
Morley, Frank, 393
Morley's trisector theorem ("Morley's Miracle"), 52-53, 303, 393
Moscow State University, 83-91
Mount Mansfield, Vermont, 214
mythopoetics, 174
Nagel, Thomas, 160
Napoleon Bonaparte, 106
Nash, John, xvii, 106, 296, 352, 387
Nash embedding theorem, xviii
National Security Agency, 314
Needham, Joseph, 67
nested recursions, 302, 303
Neumann, John von, 43, 122, 149, 272, 370
and cellular automata, 111, 112-13, 163
Electronic Computer Project, 249
and hidden variables, 276
Theory of Self-Reproducing Automata, 113
and 29 -state system, 113, 120
Newton, Isaac, xi, xvii, 43-44, 162, 276
gravitation theory, 107
Principia Mathematica, 44
on rainbows, 388
New York Times, 140, 282, 302
Nietzsche, Friedrich, 90
Nim, 138-39, 177, 180
nimber arithmetic, 138-39
Noether, Emmy, 87
"no-ghost theorem," 325
Norton, Simon, 151, 235-36
and the ATLAS, 226-28, 250-51, 256, 259
and backgammon, 69-70, 254
and Conway's departure, 266
and Game of Life, 113n, 167
and group theory Ph.D., 227

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

and Monstrous Moonshine, xvi, 236, 237, 325, 327
and SNORT, 180
and surreal numbers, 198
and Tribulations, 180
Noth, Chris, 367
number line, 55, 55
number theory, 40-42, 182-83, 224, 400
numerology, 236-37

Oakes, Ryan and Trevor, 376
Oates, Joyce Carol, 305
Obama, Barack, 355
Observer, xvi-xvii
Odom, George, 342-45
Omegas, 54-55, 195, 200, 201, 202-4, 202, 203, 205, 206
One Bit Word Game, 286-87
Online Encyclopedia of Integer Sequences, 131
optional probability fields, 307-8
orbifolds, 291-92, 299
ordinal numbers, 54, 55, 194, 196
Osserman, Robert, 309n
Ottenritter, Edgar von, 376
Overbye, Dennis, 108

Pacioli, Luca, 264
parallax vision, 61-62
parallel universes, 135
Parker, Richard, 79, 226, 235, 250-51, 257, 259, 266
parsing, 78
particle physics, 87
particles:
and free will, $8-9,107,277-78,278,359$, 362-64
and waves, 289
"partisan" game theory, 178, 187
Pascal, Blaise, 241, 377
Paterson, Mike, 72, 90, 113n, 155
Pathria, Dimpy, 311
patterns, repeating, 291-92, 291
PDP7 data processor, 103, 123, 166
Pelletier, Marc, 259
penny trick, 307-8
Penrose, Sir Roger, 141, 163, 230-31, 233-34, 279, 364
"Penrose's Puzzle Pieces," 233
Penrose tiles, 230-34
pentagon, and golden ratio, 342
Perelman, Grigori, xvii
periodic table, memorization of, 382-83
Peterhouse College, 59-60
Peters, A. K., 184
Phutball (Philosopher's Football), 68, 110, 341, 351, 352
phyllotaxis, 48
physics:
differential equations in, 288
digital, 164
group theory in, 226
multiverse theory of, 135
particles and waves in, 87,289
surreal numbers in, 288
symmetry in, 87,226
pi calculator, 166
Picasso, Pablo, 66
Pi Day, 339-40, 340
Pif le Chien, 73
plane crystallographic groups, 291-92, 291
Plato, Timaeus, 226
Platonic fixed points, 162
Platonic solids, 13, 21-22, 242, 264
Platonism, 50-51
Plato's cave, 50
Podolsky, Boris, 276
Poincaré Conjecture, xvii
polycube puzzle, 110
polyhedra, 13-15, 14, 384
polytopes, $13-16,16,21-22,34,63$
Pran, Dith, photo by, 273
Prescott, Paul, 179
Prichard, Michael, 39, 40
Princeton University:
Conway's faculty appointment to, 266-67, 271, 272, 275, 290, 329
Conway's teaching style in, 282-88, 29396, 297, 306
dinner parties in, 287
"How to Stare at a Brick Wall" video in, 283-84, 284, 321
Institute for Advanced Study, xix, xxiii, 66, 212
Math Chat, 306
math department in, 282, 283
media events in, 308-9
problems, unsolvable, 198
"promiscuous," use of word, xxii
"proof of principle" experiment, 30
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical melebris'without prior written permission of the publisher.
proof vs. verification, 327
Propp, James, xii
puzzles, 133, 140, 177, 344
Rubik's Cube, 238-39
Pythagoras, xvii, 137-38
Pythagorean Theorem, xvii, 95, 96

Q-numbers or Q-function, 304
quantum brain, 364
quantum mechanics:
EPR paradox in, 276-77
and free will, 280, 360-61
incomprehensibility of, 7
indeterminacy of, 277, 279
quantum physics, 107
quantum theory, 213, 288
Queens College, New York, 383, 388
Quillen, Daniel, 239

RAF Balloon Command, 10
rainbows, 385-88
randomness, 357-59
Ranicki, Andrew, 243-44
rational numbers, 194-95
real numbers, 194-95, 204, 213-14
Recamán Santos, Bernardo, 131
Recorde, Robert, 3
recursions, 152, 302, 303-5
Rees, Baron Martin, xii, 80-81
Reid, Miles Anthony, 113n, 227-28
Reinhardt, Ad, 172
Renaissance Technologies (RenTec), 383-85
Ribet, Ken, 309n
Riemann, Bernhard, 163
Riemann Hypothesis, xviii, 92
robotics:
and artificial intelligence, 157-58
building our own successors, 158
self-replicating robots, 112, 167
Rokicki, Tom, 131, 166-67
Roneo machine, 232
rope tricks, 141-42, 336-38
Rosen, Nathan, 276
Rota, Gian-Carlo, 274-75, 313
Royal Society of London, xi, 214, 255-56
Rubik's Cube, 238-39
Rubin, Karl, 309n
Rudvalis, Arunas, 222-24
Russell, A. G., 3
Russell, Bertrand, xi, 10, 44, 165

Russell, Lady Frances, 351
Russell, John Scott, 289
Ryba, Alex, 376-77, 379, 383, 390

Santa Fe Institute, 157
Sarnak, Peter, 155n, 283, 306
Schattschneider, Doris, 233
Schneeberger, William, 327
Schiller, Friedrich, 282
Schizoid Scissors, 15
Schleicher, Dierk, 324, 378
Schroeppel, Rich, 131
Schwabe, Caspar, 131
"Science Lives" project, 385
Sciences, The, 305
Scientific American, 33, 71, 146, 172, 176, 232, 232, 308
Scott, Chris, 371, 372
second-time-around argument, 107
self-replicating robots, 112,167
Senechal, Marjorie, 233, 234
set theory, 44, 53, 56, 83n, 209, 379
Shakespeare, William, 375
Shannon, Claude, 186
"A Mathematical Theory of Communication," 87-88
and information theory, 111, 314
Shapiro, Harold, 287
Shields, Brooke, 308
Sidney Sussex College, 59, 60-61, 63-67
Conway's resignation letter to, 66-67
Signal Corps Engineering Laboratories, New Jersey, 88
Sigur, Steve, 302
Simons, Jim, 383, 384-85
simple groups, 238, 258, 288, 331
Simplicity Theorem, 173, 399-400
Simpson, Frederick Arthur "Snipper," 182
simulations, agent-based, xv
sine wave, pattern of mental health, 315
Sinyavsky, Andrei, 84
Sloane, Neil, 131, 275, 301, 312-14
"Slough of Despond," 37
Smale, Stephen, 83
Smith, Cathy, 280
Smith, Derek, 376, 387
SNORT, 180
Snow, C. P., 306
social amoebas, 280-81
Socrates, Aristotle (astrophysicist), 66

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
 INDEX

soliton, theory of, 289
Soma cube, 22-23
Specker, Ernst, 276, 277
speed limit theorem, 143
sphere packing, xiii, xvi, 85-89, 85, 91, 95, 275, 314, 314, 321-24
sporadic groups, $88-89,249,252-53,255$, 330-31

Sprague-Grundy theorem, 139
Sprouts, 71-74, 71, 110
Stanley, Richard, 177
Star (game), 207, 208
stars, 47-49, 99
Steen, Stourton, Mathematical Logic, 59
Stein, Eli, 266, 287
Steiner-Lehmus theorem, 15
Stephen Hawking's Grand Design (TV), xv
Stern-Gerlach apparatus, 277, 278, 357
string theory, 32, 325, 329, 330
Subprime Fibs, xiv, xx-xxii
surreal number line, 206-7, 206
surreal numbers:
application of, xviii, 214, 288
changeover in, 174-75
computability of, 290n
Conway's interest in, xvi, xx, 171-74, 177, 209, 211, 233, 288
Conway's records lost, 175
and Domineering, 181, 396-401
and games, 172-73, 177-78, 180, 182-86, 199, 203, 401
Gardner's columns on, xvi, 172, 208
infinite numbers, 288
Knuth's interest in, 171, 172, 174, 175-77, 189-91, 193, 213-14
Knuth's naming of, 204
and Norton, 198
notation for, 172
rules of, 172-73, 174-75
simplicity of, 289-90
subtheories of, 208
Suzuki group, 222
Svoyi Kosiri "One’s Own Trumps," 36
Swinnerton-Dyer, Peter, xii, 67
Sylver Coinage, 180
symmetry, xix, 13
aesthetics of, 265
applied side, 86-87
and the ATLAS, 262, 263
and brick walls, 283-84, 284
and coding theory, 87-88, 330
and communications technology, 87-88
in Escher's Circle Limit IV (Angels and Devils), 87, 263
and group theory, $86-89,242,253,263$, 330
and Leech lattice, 94-97, 330
and Monster, 216, 261, 263
in physics, 87,226
in sphere packing, 88
supersymmetry, 87
use of word, 86, 241

Tanner, Cecilia, 44
Tao, Terence, xvii
Tarski's Truth Theorem, 136
temperature theory, 208
Templeton Prize, 106
Tennenbaum, Stanley, 210-12
Terasaka, Hidetaka, 32
tetraflexagon theory, 376
tetrahedron, 299
TeX typesetting program, 171
thinking: what it is, 5
Thomas Aquinas, Saint, 45
Thompson, John, 91-94, 115, 220, 235, 236, 267
Thompson, Thomas, From Error Correcting Codes Through Sphere Packing to Simple Groups, 90, 91, 92
Thompson group, 225
Thoreau, Henry David, 109
Thorn, Charles, 325
Thrackle Problem, 381-82
$3 n+1$ problem, 378-79
3-state system, 120
Thurston, Bill, 290-93, 297-99
tic-tac-toe, 177, 344
time reversibility, 352
Titus Lucretius, 6
Toffoli, Tommaso, 157
Tolstoy, Leo, 310
topology, 291
toy problems, 161
trademark infringement, 149
Traffic Jams, 180, 181
Tribulations, 180
Trollope, Anthony, 81
truth, seeking, 112, 379
Tsimerman, Jacob, 351-53
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical Imeapls $x_{\text {without prior written permission of the publisher. }}$

Tumulka, Roderich, 360
Turing, Alan, xi, 111, 155, 157
Turing machine, 111
"turtles all the way down," 165,170
Twain, Mark, 57
29-state rule, 113
Twenty Questions, 8-9

Ulam, Stanislaw, 112, 146, 157
universal constructor, colonizing Mars with, 111-13
universal machines, 111, 115-16
universal theory of everything, 288
universe:
nature of, 163-70
outermost edge of, 208
Unix, 123
Up (game), 207, 208

Varga, Tamás, 239
vegetables, lecturing with, 293
vertex operator algebras, 329
Vinson, Jade, 384-85
visual space, 376
voids, 172
Vout, Colin, 180

Wainwright, Robert, 143-44
Wales, David, 222, 223
wallpaper groups, 291-92, 291
Waring, Edward, 41
"Wasp Logic," 245
waves and particles, 289
Weeks, Jeffrey, 234n, 292n
Weil, André, 241
Weinberg, Steven, 156

Welbourne, Edward, 75, 76
Wenninger, Father Magnus, 342
Weschler, Lawrence, 376
West, Nathanael, 168
Westinghouse Science Talent Search, 290n
Weyl, Hermann, 328
Wheeler, John, 163
Wilde, Oscar, 103
Wiles, Andrew, 308-9, 321, 322, 327n
Wilkinson, H. N. S., 65
Wilson, Robert, 226, 235, 256, 267
WINNIE, 28-30, 29
Witelson, Sandra, brain studies by, 365, 366-74
Witten, Edward, 329
Wittgenstein, Ludwig, 105, 359
Wodehouse, P. G., 254
Wolfram, Stephen, 149-56
A New Kind of Science, 149, 151, 152, 154, 155, 163
and cellular automata, 150, 151, 153, 155-56, 163
and computational equivalence, 156
and Game of Life, 151
and Mathematica, 149-50
and Rule 110, 153-56
Wolfram Research, 152-53
World Game of Sprouts Association, 73

Young, Grace Chisholm, 44
Young, William Henry, 44

Zeeman, Christopher, 37-38, 40, 89
Ziegler Hunts, Julian and Corey, 166
ZIP proof, 234, 292

