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1

Thermodynamics and
Statistical Physics

Our knowledge is always partial. If we study macroscopic systems, some
degrees of freedom remain hidden. For small sets of atoms or subatomic par-
ticles, their quantum nature prevents us from knowing precise values of their
momenta and coordinates simultaneously. We used to believe that we found
the way around the partial knowledge in mechanics, electricity, and mag-
netism, where we have closed sets of equations describing explicitly known degrees
of freedom. In other words, we learned how to restrict our description only
to things that can be considered independent of the unknown within a given
accuracy. For example, planets are large complex bodies, and yet the motion of
their centers of mass in the limit of large distances satisfies closed equations.1

Despite the spectacular successes of electromagnetic theory and celestial
mechanics, we soon realized how illusory was our belief in the closed descrip-
tion, since we needed to feed it with initial or boundary conditions taken from
measurements. Here our knowledge is incomplete because of a finite precision
of measurements. This has dramatic consequences when there is instability,
so small data uncertainty at a given moment leads to large uncertainty in pre-
dicting the future and recovering the past. In a sense, every new decimal in
precision is a new degree of freedom for unstable systems (including our solar
system).

In this chapter, we deal with observablemanifestations of the hidden degrees of
freedom. While we do not know their state, we do know their nature—whether
those degrees of freedom are related to moving particles, spins, bacteria, or

1. The next step—description of a planet rotation—needs to account for many extra
degrees of freedom, for instance, oceanic flows (which slow down rotation by tidal forces).
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2 c h a p t e r 1

market traders. That means, in particular, that we know the symmetries and
conservation laws of the system.

The first two sections present a phenomenological approach called ther-
modynamics. The last two sections serve as a brief introduction into statistical
physics.

1.1 Basics of Thermodynamics

One can teach monkeys to differentiate; integration requires humans.

—gleb kotkin

For at least a few thousand years, people have been burning things to propel
objects. That was put on an industrial scale by the use of steam engines in the
mid- to late 1700s. The Industrial Revolution generated a practical need to
estimate engine efficiency, which triggered a regular scientific inquiry on gen-
eral principles governing the conversion of heat into mechanical work. That
led to the development of the abstract concept of entropy.

A heat engine works by delivering heat from a reservoir with some tem-
perature T1 via some system to another reservoir, with T2, doing some work
in the process. Look under the hood of your car to appreciate the level of
abstraction achieved in that definition. The work W is the difference between
the heat given by the hot reservoir, Q 1, and the heat absorbed by the cold
one, Q 2. What is the maximal fraction of heat we can use for work? Carnot
in 1824 stated that we cannot make Q 2 arbitrarily small: in all processes,
Q 2/T2 ≥Q 1/T1, so that the efficiency is bounded from above:

W
Q 1

= Q 1 −Q 2
Q 1

≤ 1 − T2

T1
. (1.1)T1

W

T2

Q2

Q1

His elaborate arguments are of only historical interest now. Clausius in 1864
called the ratio Q/T entropy (the word starts with en-, like energy, and ends
with -tropos, which means “turn” or “way” in Greek). We now interpret
the Carnot criterion, saying that the entropy decrease of the hot reservoirs,
�S1 =Q 1/T1, must be less than the entropy increase of the cold one,
�S2 =Q 2/T2. Maximal work is achieved for minimal (zero) total entropy
change, �S2 = �S1.
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Just like the path from the Carnot engine to general thermodynamics, we
discover the laws of nature by induction: from particular cases to general
law and from processes to state functions. The latter step requires integra-
tion (to pass, for instance, from the Newton mechanics equations to the
Hamiltonian or from thermodynamic equations of state to thermodynamic
potentials). It is much easier to differentiate than to integrate, so deduction
(or the postulation approach) is usually more pedagogical.2 It also provides a
good vantage point for generalizations and appeals to our brain, which likes
to hypothesize before receiving any data, as we shall see later. In such an
approach, one starts by postulating a variational principle for some function
of the state of the system. Then one deduces from that principle the laws that
govern change when one passes from state to state.

Here we present a deductive description of thermodynamics. Thermody-
namics studies restrictions on the possible macroscopic properties that follow from
the fundamental conservation laws. Therefore, thermodynamics does not pre-
dict numerical values but rather sets inequalities and establishes relations
among different properties.

A traditional way to start building thermodynamics is to identify a con-
served quantity, which can be exchanged but not created. It could be matter,
money, energy, etc. For most physical systems, the basic symmetry is the
invariance of the fundamental laws with respect to time shifts.3 The evolu-
tion of an isolated physical system is usually governed by the Hamiltonian
(the energy written in canonical variables), whose time independence means
energy conservation. In what follows, the conserved quantity of thermody-
namics is called energy and denoted E. We wish to ascribe to the states of the
system the values of E. First, we focus on the states independent of how they
are prepared; such equilibrium states are completely characterized by the static
values of observable variables.

Passing from state to state involves energy change, which generally con-
sists of two parts: the energy change of visible degrees of freedom (which we
call work) and the energy change of hidden degrees of freedom (which we call
heat). To be able to measure energy changes in principle, we need adiabatic

2. In science, we strive to get the whole truth at any price. In teaching, we sell its parts at
affordable prices.

3. Be careful trying to build thermodynamics for biological or social-economic systems,
since generally the laws that govern them are not time invariant. For example, the metabolism
of living beings changes with age, and the number of market regulations generally increases
(as well as the total money mass, albeit not necessarily in our pockets).
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processes, where there is no heat exchange so that all the energy changes are
visible (or no under-the-table payments are made). Ascribing to every state
its energy (up to an additive constant common for all states) hinges on our
ability to relate any two states A and B by an adiabatic process, either A→B
or B→A, which allows us to measure the difference in their energies by the
work W done by the system. Now, if we encounter a process where the energy
change is not equal to the work, we call the difference the heat exchange, δQ :

dE= δQ − δW . (1.2)

This statement is known as the first law of thermodynamics. It is nothing but
a declaration of our belief in energy conservation: if the visible energy bal-
ance does not hold, then the energy of the hidden must change. The energy
is a function of the state, so we use the differential, but we use δ for heat
and work, which aren’t differentials of any function. Heat exchange and work
depend on the path taken from A to B; that is, they refer to particular forms of
energy transfer (not energy content). Before the first law was experimentally
discovered (Mayer 1842, Joule 1845), heat was believed to be a separate fluid
conserved by itself.

The basic problem of thermodynamics is determining the equilibrium state
that eventually results after all internal constraints are removed in a closed
composite system. The problem is solved with the help of the extremum prin-
ciple: There exists a quantity S called entropy, which is a function of the
parameters of the system. The values assumed by the parameters without an
internal constraint maximize the entropy over the manifold of available states
(Clausius 1865).

Thermodynamic limit Traditionally, thermodynamics has dealt with exten-
sive parameters whose value grows linearly with the number of degrees of
freedom. Additive quantities, like the number of particles N, electric charge,
and magnetic moment, are extensive. Energy generally is not additive; that
is, the energy of a composite system is not the sum of the parts because
of an interaction energy: E(N1) + E(N2) �= E(N1 +N2). To treat energy as
an additive variable, we assume short-range forces of interaction acting only
along the boundary and take the thermodynamic limit V → ∞. Then one
can neglect the interaction energy, which scales as a surface V2/3 ∝N2/3, in
comparison with the additive bulk terms, which scale as V ∝N.
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In that limit, thermodynamic entropy is also an extensive variable,4 which
is a homogeneous first-order function of all the extensive parameters:

S(λE, λV , . . .) = λS(E, V , . . .). (1.3)

The function S(E, V , . . .), also called a fundamental relation, is everything
one needs to know to solve the basic problem (and others) in thermo-
dynamics.

Of course, (1.3) does not mean that S(E) is a linear function when other
parameters are fixed:S(λE, V , . . .) �= λS(E, V , . . .). On the contrary, the equi-
librium curve S(E) must be convex to guarantee the stability of a homoge-
neous state. Indeed, imagine that a system breaks spontaneously into two
halves with a bit different energies, E+ � and E− �. For equilibration to
bring back the homogeneous state, its entropy 2S(E) must exceed the sum of
the halves: 2S(E) > S(E+ �) + S(E− �) ≈ 2S(E) + S′′�2. That requires
S′′ < 0 (the argument does not work for systems with long-range interaction
where energy is nonadditive).

The figure shows the restriction imposed by thermodynamics on pos-
sible states: unconstrained equilibrium states are on the curve, while all
other states lie below. Convexity guarantees that one can reach state A either
by maximizing entropy at a given energy or minimizing energy at a given
entropy:

S

A

EPossible states

Let us complement the visual geometric picture by an analytic relation between
the extrema of entropy and energy. We assume the functions S(E, X) and
E(S, X) to be continuous differentiable for any other parameter X. An efficient

4. We shall see later that nonextensive parts of entropy are also important for studying
interaction and correlations between subsystems.
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way to treat partial derivatives of two functions of two variables is to organize
them into a 2 × 2 matrix and use its determinant, called a Jacobian:

∂(u, v)
∂(x, y)

≡ ∂u
∂x

∂v
∂y

− ∂v
∂x

∂u
∂y

.

It changes sign upon any interchange of functions or variables. The partial
derivative is a Jacobian: (

∂u
∂x

)
y
= ∂(u, y)

∂(x, y)
.

Then from (
∂S
∂X

)
E
= ∂(SE)

∂(SX)
= 0

follows
(

∂E
∂X

)
S
= ∂(ES)

∂(XS)
∂(EX)

∂(EX)
=− ∂(ES)

∂(EX)

∂(EX)

∂(SX)
=−

(
∂S
∂X

)
E

(
∂E
∂S

)
X

= 0.

That means that any entropy extremum is also an energy extremum. Differenti-
ating the last relation one more time, we differentiate only the first factor since
it turns into zero at equilibrium:

(
∂2E
∂X2

)
S
=−

(
∂2S
∂X2

)
E

(
∂E
∂S

)
X

.

The equilibrium is an entropy maximum; that is, (∂2S/∂X2)E is negative.
Which type of extremum has energy at equilibrium depends on the sign of
(∂E/∂S)X , which is called temperature; see (1.4) below. When the temper-
ature is positive, as in the figure, the equilibrium is the entropy maximum
at a fixed energy or the energy minimum at a fixed entropy—very much
like a ball can be defined as the figure of either maximal volume V for a
given surface area A or minimal area for a given volume. Such analogies cre-
ate rich connections between thermodynamics and isoperimetric inequalities
of the type Ad ≥ dVd−1V0, where V0 is the volume of the unit ball in d
dimensions.

The temperature could be negative—an example of a two-level system
in section 1.4 shows that S(E) could be nonmonotonic for systems with a
finite phase space. Still, for every interval of a definite derivative sign, say,
(∂E/∂S)X > 0, we can solve S= S(E,V , . . .) uniquely for E(S,V , . . .), which
is an equivalent fundamental relation.
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Experimentally, one usually measures changes, thus finding derivatives. The
partial derivatives of an extensive variable with respect to its arguments (which
are also extensive parameters) are intensive parameters. In thermodynamics,
we have only extensive and intensive variables, because we take the ther-
modynamic limit N →∞, V →∞, keeping N/V finite. For energy, one
writes

∂E
∂S

≡T(S,V ,N) ,
∂E
∂V

≡ −P(S,V ,N)
∂E
∂N

≡ μ(S,V ,N), . . . . (1.4)

These relations are called the equations of state, and they serve as defini-
tions for temperature T, pressure P, and chemical potential μ, correspond-
ing to the respective extensive variables S,V ,N. Our entropy is dimension-
less, so T is assumed to be multiplied by the Boltzmann constant, k= 1.3 ·
10−23J/K, and has the same dimensionality as the energy. From (1.4), we
write

dE(S,V ,N) = δQ − δW =TdS− PdV + μdN. (1.5)

The extensive parameters V ,N describe macroscopic (visible) degrees of
freedom. Entropy is responsible for hidden degrees of freedom (i.e., heat). We
shall see later that entropy is the missing information, which is thus maximal
for hidden degrees of freedom in equilibrium. Temperature is the energetic
price of information.

The derivatives (1.4) are taken at equilibrium, where a definite relation
exists between variables, for instance, E and S. That means that (1.5) is true
only for quasi-static processes, i.e., such that the system is close to equilib-
rium at every point of the process. A process can be considered quasi-static
if its typical time of change is larger than the relaxation times (which can
be estimated for pressure as L/c, where L is system size and c is sound
velocity, and for temperature as L2/κ , where κ is thermal conductivity).
Finite deviations from equilibrium make dS> δQ/T because entropy can
increase without heat transfer. Only recently have we learned how to mea-
sure equilibrium quantities in fast, nonequilibrium processes, as described in
section 4.4.

Let us see how the entropy maximum principle solves the basic problem.
Consider two simple systems separated by a rigid wall that is impermeable to
anything but heat. The whole composite system is closed; that is, E1 + E2 =
const.
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E1 E2

The entropy change under the energy exchange must be nonnegative:

dS= ∂S1

∂E1
dE1 + ∂S2

∂E2
dE2 = dE1

T1
+ dE2

T2
=
(

1
T1

− 1
T2

)
dE1 ≥ 0. (1.6)

For positive temperature, that means energy flows from the hot subsystem to
the cold one:T1 >T2 ⇒ dE1 < 0. We see that our definition (1.4) agrees with
our intuitive notion of temperature. When equilibrium is reached, dS= 0,
which requires T1 =T2. If the fundamental relation is known, then so is
the function T(E,V). Two equations, T(E1,V1) =T(E2,V2) and E1 + E2 =
const, completely determine E1 and E2. In the same way, one can consider
a movable wall and get P1 = P2 in equilibrium. If the wall allows for particle
penetration, we get μ1 = μ2 in equilibrium.

Example 1.1: Consider a system that is characterized solely by its
energy, which can change between zero and Em =Nε. The equa-
tion of state is the energy-temperature relation E= Em/

(
1 + eε/T

)
,

which tends to Em/2 at T� ε and is exponentially small at T ε. In
section 1.3, we identify this with a set of N = Em/ε elements with two
energy levels, 0 and ε. To find the fundamental relation in the entropy
representation, we integrate the equation of state:

1
T

= dS
dE

= 1
ε

ln
Em − E

E
⇒ S(E)=N ln

N
N − E/ε

+ E
ε

ln
N − E/ε

E/ε
.

(1.7)

1.2 Thermodynamic Potentials

Even though it is always possible to eliminate, say, S from E= E(S,V ,N)

and T=T(S,V ,N), getting E= E(T,V ,N), this is not a fundamental rela-
tion and it does not contain all the information. The point is, E= E(T,V ,N)

is a partial differential equation (because T= ∂E/∂S), and even if it could
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be integrated, the result would contain an undetermined function of V ,N.
Still, it is easier to measure temperature than entropy, so it is convenient to
have a complete formalism with an intensive parameter as an operationally
independent variable and an extensive parameter as a derived quantity.

Any functionY(X)defines the curve on theX, Y plane. We want to describe
the same curve by some function of P= ∂Y/∂X. It is not enough to eliminate
X and consider the function Y = Y[X(P)]= Y(P), because such a function
determines the curve Y = Y(X) only up to a shift along X, which changes
neither Y nor P:

Y Y

X X

For example, the function Y(P) = P2/4 corresponds to the whole family
Y = (X +C)2, which solves the differential equation Y = (dY/dX)2/4. To
pick a single function, we need to nail the curve by fixing the shift along X.
For every P, we specify not Y but the position ψ(P), where the straight line
tangent to the curve intercepts the y axis: ψ = Y − PX:

Y

P

ψ

X

Y = ψ + PX

In this way, we consider the curve Y(X) as the envelope of the family of the
tangent lines, each characterized by the slope P and the intercept ψ . The rela-
tion between them, ψ(P) = Y[X(P)]− PX(P), completely defines the curve;
here one substitutes X(P) found from P= dY(X)/dX. The function ψ(P)
is called the Legendre transform of Y(X). From dψ = −PdX −XdP+ dY =
−XdP, one gets −X = dψ/dP—the inverse transform is the same up to a sign:
Y = ψ +XP.
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The transform is possible when for every X there is one P, that is, P(X)

is monotonic and dP/dX = d2Y/dX2 �= 0. A sign-definite second derivative
means that the function is either concave or convex. This is the second time we
have met convexity, which we related above to the stability of a homogeneous
state. Convexity and concavity play an important role in our story.

We can now make the Legendre transform of E(S), which replaces the
entropy by the temperature as an independent variable: F= E−TS is called
free energy. Its differential is as follows: dF(T, V , N, . . .) = −SdT − PdV +
μdN + . . . . The counterpart to (∂E/∂S)VN =T is (∂F/∂T)VN = −S. The
free energy is particularly convenient for describing a system in thermal con-
tact with a heat reservoir because the temperature is fixed, and we have one
variable less to care about. The maximal work that can be done under a con-
stant temperature (equal to that of the reservoir) is minus the differential of
the free energy. Indeed, this is the work done by the system and the thermal
reservoir. Is that work generally larger or smaller than the work done by the
system alone? Let’s see. That work is equal to the change in the total energy:

d(E+ Er) = dE+TrdSr = dE−TrdS= d(E−TrS) = d(E−TS) = dF.

In other words, the free energy, F= E−TS, is that part of the internal energy
that is free to turn into work; the rest of the energy,TS, we must keep to sustain
a constant temperature. The equilibrium state minimizes F—not absolutely,
but over the manifold of states with a temperature equal to that of the reservoir.
Consider, for instance, minimization of F(T, V) = E[S(T, V), V]−TS(T, V)

with respect to volume:(
∂F
∂V

)
T

=
(

∂E
∂V

)
S
+
(

∂E
∂S

−T
)

∂S
∂V

=
(

∂E
∂V

)
S

.

The derivatives turn into zero, andE andF reach extrema simultaneously. Also,
in the point of an extremum, one gets (∂2E/∂V2)S = (∂2F/∂V2)T; i.e., both
E and F have the same type of extremum (minimum in a positive-temperature
equilibrium).

The system can reach the minimum of the free energy by minimizing
energy and maximizing entropy. The former often requires creating some
order in the system—for instance, orienting all spins parallel in a magnet or
arranging all atoms into a regular crystal. On the contrary, increasing entropy
requires disorder. Which of these tendencies wins depends on temperature,
setting their relative importance. In later sections, we shall see repeatedly that
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looking for a minimum of some free energy is a universal approach, from find-
ing an equilibrium state of a physical system to designing the most optimal
algorithm of information processing.

The formal structure of thermodynamics is described in section A.1. Since
the Legendre transform is invertible, all thermodynamic potentials are equiv-
alent and contain the same information. The choice of the potential for a given
physical situation is that of convenience: we usually take what is fixed as a
variable to diminish the number of effective variables.

The next two sections present a brief overview of the classical Boltzmann-
Gibbs statistical approach: We introduce microscopic statistical description
in the phase space and describe two principal ways (microcanonical and
canonical) to derive thermodynamics from statistics.

Example 1.2: Consider a particle in the one-dimensional potential
U(x). The force f one needs to apply to keep the particle in the position
X is apparently f (X) = dU(x)/dx taken at X. Then X(f ) = dV(f )/df ,
where V(f ) is minus the Legendre transform of the potential: V(f ) =
Xf −U.

1.3 Microcanonical Distribution

Let us consider a closed system with fixed energy E. Boltzmann conjectured
that all microstates with the same energy have equal probability (the ergodic
hypothesis). If the number of such states is 	(E), then the microcanonical
probability distribution is as follows:

wa(E)= 1/	(E). (1.8)

To link statistical physics with thermodynamics, one must define the fun-
damental relation, i.e., a thermodynamic potential as a function of respective
variables. For microcanonical distribution, Boltzmann in 1872 introduced
entropy as

S(E)= − ln wa(E)= ln 	(E). (1.9)

This is one of the most important formulas in physics5 (on a par with
f =ma , E=mc2, and E= �ω).

Noninteracting subsystems are statistically independent. That means that
the statistical weight of the composite system is a product—for every state of

5. It is inscribed on Boltzmann’s gravestone.
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one subsystem, we have all the states of another. If the weight is a product, then
the entropy is a sum. For interacting subsystems, this is true only for short-
range forces in the thermodynamic limit N →∞.

Consider two subsystems, 1 and 2, that can exchange energy. Let’s see
how statistics solves the basic problem of thermodynamics (to define equilib-
rium) that we treated in (1.6). Assume that the indeterminacy in the energy
of any subsystem � is much less than the total energyE. Alternatively, we may
presume that the energy could be exchanged by portions �. Then

	(E)=
E/�∑
i=1

	1(Ei)	2(E− Ei). (1.10)

We denote Ē1, Ē2 = E− Ē1 for the values that correspond to the maximal
term in the sum (1.10). To find this maximum, we compute the derivative:

∂	

∂Ei
= ∂	1

∂Ei
	2 + ∂	2

∂Ei
	1 = (	1	2)

(
∂S1

∂E1
− ∂S2

∂E2

)
.

The extremum condition, (∂S1/∂E1)Ē1 = (∂S2/∂E2)Ē2 , corresponds to the
thermal equilibrium where the temperatures of the subsystems are equal. The
equilibrium is thus where the maximum of probability is. It is obvious that

	(Ē1)	(Ē2) ≤ 	(E)≤ 	(Ē1)	(Ē2)E/� ⇒ S(E)

= S1(Ē1) + S2(Ē2) +O(logN),

where the last term is negligible in the thermodynamic limit.
The same definition of entropy as a logarithm of the number of states is

true for any system with a discrete set of states. For example, consider the
set of N particles (spins, neurons), each with two energy levels, 0 and ε. If
the energy of the set is E, then there are L= E/ε upper levels occupied. The
statistical weight is determined by the number of ways one can choose L out
of N; that number is denoted CL

N . This is our first combinatorial computa-
tion. Since we treat indistinguishable objects, let us first compute the number
of permutations of m things. For each of the m first choices, we have m− 1
second choices, m− 2 third choices, etc. That means that the total number
of permutations is m(m− 1)(m− 2) · · · 2 =m!. To compute the number of
ways to choose L out of N, we need to divide the total number of permuta-
tions among N by the total number of permutations among L and N − L:
	(N, L)=CL

N =N!/L!(N − L)!. We can now define the entropy (i.e., find
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the fundamental relation): S(E, N) = ln 	. The entropy is symmetric about
E=Nε/2 and is zero at E= 0, Nε, when either L! = 1 or (N − L)! = 1; that
is, all the particles are in the same state. In the limit, we can use the Stir-
ling formula, limN→∞ ln N! ≈N ln N. At the thermodynamic limit N � 1
and L� 1, it gives S(E, N) ≈N ln[N/(N − L)]+ L ln[(N − L)/L], which
coincides with (1.7). The entropy as a function of energy is shown in the
figure:

S

ENε

T = +0

0

T = ∞ T = –∞

T = –0

The equation of state (temperature-energy relation) is indeed T−1 =
∂S/∂E≈ ε−1 ln[(N − L)/L]. We see that, when E>Nε/2, the population
of the higher level is larger than that of the lower one (inverse population as in
a laser) and the temperature is negative. The negative temperature may hap-
pen only in systems with the upper limit of energy levels and simply means
that, by adding energy beyond some level, we actually decrease the entropy,
i.e., the number of accessible states. The example of a negative temperature is
to help you disengage from the everyday notion of temperature and get used to
the physicist’s idea of temperature as the derivative of energy with respect to
entropy. Yet it is still worth remembering the unique role played by the partic-
ular notion of temperature as mean kinetic energy of the gas molecules in the
inductive development of thermodynamics.

Available (nonequilibrium) states lie below the S(E) plot. The entropy
maximum corresponds to the energy minimum for positive temperatures and
to the energy maximum for negative temperatures. Imagine now that the sys-
tem with a negative temperature is brought into contact with the thermostat
(having a positive temperature). To equilibrate with the thermostat, the sys-
tem needs to acquire a positive temperature. A glance at the figure shows that
our system must move left, that is, give away energy (a laser generates and
emits light). If this is done adiabatically slow along the equilibrium curve, the
system first decreases the temperature further until it passes through minus
infinity right into plus infinity and then down to positive values until it even-
tually reaches the thermostat’s temperature. That is, negative temperatures are
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actually “hotter” than positive. If you put your hand on a negative tempera-
ture system, you feel heat flowing into you. By itself, though, the system is
stable since ∂2S/∂E2 =−N/L(N − L)ε2 < 0 at any temperature. We stress
that there is no volume in S(E,N), which means that we consider only part
of the degrees of freedom. Real particles have kinetic energy unbounded from
above and can correspond only to positive temperatures since negative tem-
perature and infinite energy give an infinite Gibbs factor e−E/T . Assuming
detachment between kinetic and internal (electronic, spin, etc.) degrees of
freedom is possible when their coupling is weak and only for a finite time.

The derivation of the thermodynamic fundamental relationS(E, . . .) in the
microcanonical ensemble is thus via the number of states or phase volume.

Exercise 1.1: Candies and kids.
There are three candies and two systems to distribute them: system 1

contains two boys and system 2 contains three girls. Every boy and girl
can have zero, one, two, or three candies with equal probability. Kids are
distinguishable, but candies aren’t.6 What is the most probable number
of candies in system 1? What is the average number of candies in sys-
tem 1? What are the most probable and average numbers of candies in
system 2?

1.4 Canonical Distribution and Fluctuations

Let us now discuss the statistical description, which corresponds to the ther-
modynamic potential of free energy, F(T). Consider a system exchanging
energy with a thermostat, which can be thought of as consisting of infinitely
many copies of our system—this is the so-called canonical ensemble, char-
acterized by T. Here our system can have any energy, and the question
arises, What is the probability of being in a given microstate a with the
energy E? We derive that probability distribution (called canonical) from
the microcanonical distribution of the whole system. Since all the states of
the thermostat are equally likely to occur, the probability should be directly
proportional to the statistical weight of the thermostat 	0(E0 − E). Here we
assumeE E0, expand (in the exponent!)	0(E0 − E)= exp[S0(E0 − E)]≈

6. Exchanging candies between kids leaves the system in the same state; taking candy from
one kid and giving it to another brings the system to quite a different state.
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exp[S0(E0) − E/T)], and obtain

wa(E)=Z−1 exp(−E/T), (1.11)

Z=
∑
a

exp(−Ea/T). (1.12)

Note that there is no trace of the thermostat left except for the temperature.
The normalization factor Z(T,V ,N) is a sum over all states accessible to the
system and is called the partition function.

One again relates statistics and thermodynamics by defining entropy
(Gibbs 1878). Recall that, for a closed system, Boltzmann defined entropy as
minus the log of probability, S= − lnwa. There all probabilities were equal.
Now we consider a subsystem at a fixed temperature, so that different states
have different probabilities and both energy and entropy fluctuate. What
should be the thermodynamic entropy: mean entropy, −〈lnwa〉, or entropy
at a mean energy, − lnwa(E)? They are the same! Indeed, lnwa is linear in
Ea for the Gibbs distribution, so the entropy at the mean energy is the mean
entropy, and we recover the standard thermodynamic relation. Comparing the
mean entropy,

〈S〉 = −〈lnwa〉 = −
∑

wa lnwa =
∑

wa
(
Ea/T+ lnZ

)
(1.13)

= E/T+ lnZ,

with the thermodynamic relation for it, S= (E− F)/T, we identify

F(T) = −T lnZ(T). (1.14)

The log of the probability of the mean energy is indeed the same as the mean
log of probability:

S(E)= − lnwa(E)= − ln
[

exp(−E/T)

Z

]
= E

T
+ lnZ= E− F

T
. (1.15)

Even though the Gibbs entropy, S= −∑
wa lnwa, is derived here for equi-

librium, this definition can be used for any set of probabilities wa, since it
provides a useful measure of our uncertainty about the system, as we shall see
in the next chapter, where entropy is a key unlocking many doors (and locking
some).

The canonical equilibrium distribution corresponds to the maximum of
the Gibbs entropy, S= −∑

wa lnwa, under the condition of the given mean
energy Ē=∑

waEa: Requiring ∂(S− βĒ)/∂wa = 0, we obtain (1.11). For
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an isolated system with a fixed energy, the entropy maximum corresponds to
a uniform microcanonical distribution.

Are canonical and microcanonical statistical descriptions equivalent? Of course
not. The descriptions are equivalent only when fluctuations are neglected and
consideration is restricted to mean values. That takes place in thermodynamics,
where the distributions produce different fundamental relations between the
mean values: S(E) for microcanonical, F(T) for canonical. These functions are
related by the Legendre transforms. Operationally, how does one check, for
instance, the equivalence of canonical and microcanonical energies? One takes
an isolated system at a given energy E, measures the derivative ∂E/∂S, then
puts it into the thermostat with the temperature equal to ∂E/∂S; the energy
now fluctuates, but the mean energy must be equal to E (as long as the system
is macroscopic and all the interactions are short-range).

As far as fluctuations are concerned, there is a natural hierarchy: micro-
canonical distribution neglects, and canonical distribution accounts for fluc-
tuations in E. The choice of description is dictated only by convenience in
thermodynamics because it treats only mean values. But if we want to describe
the whole statistics of the system in a thermostat, we need to use canonical
distribution, not microcanonical.

Our subsystem is macroscopic itself, so it has many ways to redistribute the
energyE among its degrees of freedom. In other words, it has many microscopic
states corresponding to the same total energy of the subsystem. The probability
for the subsystem to have a given energy is the probability of the state (1.11)
times the number of states, i.e., the statistical weight of the subsystem:

W(E)=	(E)wa(E)=	(E)Z−1 exp(−E/T). (1.16)

The weight 	(E) decreases as E→ 0 and grows as E→ ∞ usually by a power
law, but the exponent exp(−E/T) decays faster than any power. As a result,
W(E) is concentrated in a very narrow peak and the energy fluctuations around
Ē are very small. For example, for an ideal gas, W(E)∝ E3N/2 exp(−E/T).
To conclude, the Gibbs canonical distribution (1.11) tells us that the proba-
bility of a given microstate exponentially decays with the energy of the state,
while (1.16) tells us that the probability of a given energy has a peak.
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