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POLYGONS 1

Polygons are to planar geometry as integers are to numerical mathemat-
ics: a discrete subset of the full universe of possibilities that lends itself to
efficient computations. And triangulations are the prime factorizations of
polygons, alas without the benefit of the fundamental theorem of arith-
metic guaranteeing unique factorization. This chapter introduces poly-
gons (Section 1.1), triangulations (Section 1.2) and their combinatorics
(Section 1.3), applying these concepts to the alluring art gallery theorem
(Section 1.4), a topic at the roots of computational geometry that contin-
ues to remain an active area of research. Here we encounter a surprising
difference between 2D triangulations and 3D tetrahedralizations.

Triangulations are highly constrained decompositions of polygons. Dis-
sections are less constrained partitions, and engender the fascinating
question of which pairs of polygons can be dissected and reassembled
into one another. This so-called scissors congruence (Section 1.5) again
highlights the fundamental difference between 2D and 3D (Section 1.6), a
theme throughout the book.

1.1 THE JORDAN CURVE THEOREM

Computational geometry is fundamentally discrete as opposed to continu-
ous. Computation with curves and smooth surfaces is generally considered
part of another field, often called geometric modeling. The emphasis on
computation leads to a focus on representations of geometric objects that
are simple and easily manipulated. Fundamental building blocks are the
point and the line segment, the portion of a line between two points. From
these are built more complex structures. Among the most important of
these structures are 2D polygons and their 3D generalization, polyhedra.

A polygon1 P is the closed region of the plane bounded by a finite collec-
tion of line segments forming a closed curve that does not intersect itself.
The line segments are called edges and the points where adjacent edges
meet are called vertices. In general, we insist that vertices be true corners
at which there is a bend between the adjacent edges, but in some circum-
stances (such as in Chapter 2) it will be useful to recognize “flat vertices.”
The set of vertices and edges of P is called the boundary of the polygon,

1 Often the term simple polygon is used, to indicate that it is “simply connected.”
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(b) (c) (d)(a)

Figure 1.1. (a) Polygon and (b,c,d) objects that are not polygons.

denoted as ∂P. Figure 1.1(a) shows a polygon with nine edges joined at
nine vertices. Diagrams (b,c,d) show objects that fail to be polygons.

The fundamental Jordan curve theorem, formulated and proved by
Camille Jordan in 1882, states that a closed curve on the plane that does
not self-intersect divides the plane into two distinct regions, the interior
and the exterior of the curve. This result is notorious for being both obvi-
ous and quite difficult to prove in its full generality. But even for polygons,
this statement is not obvious. Interior and exterior regions seem straight-
forward for squares and hexagons, but not necessarily for an example such
as the left-hand drawing in Figure 1.2. Our eyes can quickly master this
example, but for a polygon with thousands if not millions of edges, visual
scanning is unreliable.

There is where the discrete nature of a polygon P, built from a finite
collection of vertices and straight edges, comes to the rescue. Begin by
choosing a fixed direction in the plane that is not parallel to any edge of
P. For any point x on the plane not on ∂P, consider a ray from x in the
chosen direction (where a ray is a half-infinite line). Let x belong to

1. the interior set if the ray intersects ∂P an odd number of times, or
2. the exterior set if this ray intersects ∂P an even number of times.

When the ray passes through a vertex v of ∂P, count it as an intersection
only when the two edges incident to v are on different sides of the ray. In

Figure 1.2. A polygonal boundary along with its interior shaded.
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Figure 1.3. Rays passing through vertices.

other words, the (red) ray going through vertex v in Figure 1.3(a) counts,
but the rays passing through the vertices in (b) and (c) do not. We count
vertices in this manner because small perturbations of the ray preserve
parity: If the ray is slightly moved above or below the vertex of intersec-
tion (the dashed lines in Figure 1.3), part (a) retains the same intersection
count whereas parts (b) and (c) either increase or decrease the count by
2. Regardless, the overall parity (odd or even information) of all intersec-
tions remains the same, and our two sets (interior and exterior) are well
defined.

Exercise 1.1. Show that any two points close enough, but on opposite
sides of an edge of ∂P, will have different parity.

Exercise 1.2. If a line segment does not intersect ∂P, show that all of its
points must belong to the same parity set.

Exercise 1.3. Let x be a point not on ∂P. Extend the definition of counting
intersections to include rays from x parallel to the edges of P. Use this
to show that the parity of the intersections-count for any ray from x
remains the same.

What remains is to ensure that these sets are properly connected regions,
as guaranteed by the following result.

Theorem 1.4 (Polygonal Jordan Curve). The boundary ∂P of a polygon
P partitions the plane into two regions: the bounded interior and the
unbounded exterior.

Sketch of Proof. For any two points x and y not on ∂P, we need to show
there exists a polygonal path (a chain of line segments) from x to y that
does not intersect ∂P if and only if x and y have the same parity. First
consider the forward direction: Assume there exists a polygonal path
between x and y which does not intersect ∂P. Since each line segment
of this path has the same parity (Exercise 1.2), so does the entire path,
ensuring its endpoints x and y are in the same set.

For the converse direction, assume x and y have the same parity and
draw a line segment between them. If this xy segment does not intersect
∂P, then we have found our path. Otherwise, let x′ and y′ be the first and
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Figure 1.4. Walking close to the edges of the polygon.

last intersections of this segment with ∂P, respectively. Moreover, let x′′
be the point obtained by walking from x along xy but stopping just
before reaching x′, and similarly, let y′′ be obtained walking from y, as
shown in Figure 1.4. By Exercise 1.2 and our assumption, x, x′′, y, y′′ all
have the same parity. We now construct our path from x to y by starting
at x, walking to x′′, and traveling very close to but not touching ∂P,
until we eventually arrive near point y′. But after this arduous journey,
on which side of ∂P at y′ does the path arrive: the side containing y′′ or
the other side? By the forward direction of this proof, since our walk
never crossed ∂P, we arrive at a place with the same parity as x. And by
Exercise 1.1, we must be on the side of y′′. Thus, extending this walk
from y′′ to y completes the same-parity path and the proof.

� Exercise 1.5. The proof finds points x′′ and y′′ that are “very close” to ∂P.
Based on the lengths of the edges of P, provide concrete distances that
can bring rigor to this notion of closeness.

Our construction of interior and exterior sets is the basis for an algo-
rithm, a blueprint of instructions on how to calculate what the theorem
ensures exists. In particular, we can computationally decide whether a
given point is in the interior of a polygon, allowing us to verify the shading
found on the right of Figure 1.2. This low-level task is encountered every
time a user clicks inside some region in a computer game, and in numer-
ous other applications. Throughout this book, our emphasis will be on the
geometry that underlies both an algorithm’s structure and its proof.

POLYGON INTERIOR ALGORITHM Point-in-Polygon

Choose a fixed direction in the plane not parallel to any edge of
polygon P. Point x is in the interior (exterior) of P if the ray from x
in the chosen direction intersects ∂P an odd (even) number of times.

Exercise 1.6. The above algorithm sketch does not address the possibility
that x is directly on ∂P. Suggest how to handle this case.
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1.2 DIAGONALS AND TRIANGULATIONS

Algorithms often need to break polygons into pieces for processing. A
natural decomposition of a polygon P into simpler pieces is achieved by
drawing diagonals. A diagonal of a polygon is a line segment connecting
two vertices of P and lying in the interior of P, not touching ∂P except
at its endpoints. Two diagonals are noncrossing if they share no interior
points. Figure 1.5(a) shows a diagonal, and (b,c,d) nondiagonals.

(b) (c) (d)(a)

Figure 1.5. (a) A polygon with a diagonal, (b,c) nondiagonal line segments, and (d)
nondiagonal crossing segments.

Definition. A triangulation of a polygon P is a decomposition of P into
triangles by a maximal set of noncrossing diagonals.

Here, maximal means that no further diagonal may be added to the set
without crossing (sharing an interior point with) one already in the set.
Figure 1.6 shows a polygon with three different triangulations.

Exercise 1.7. Suppose the partition of P induced by a collection of
diagonals D includes a quadrilateral. Argue that D is not maximal.

Triangulations lead to several natural questions: How many triangles
are in each triangulation of a given polygon? How many different trian-
gulations does a specific polygon have? Is it true that every polygon has
even one triangulation? Does every polygon have at least one diagonal?
We start with the last question.

Figure 1.6. A polygon and three possible triangulations.
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Figure 1.7. Finding a diagonal of a polygon via sweeping.

Lemma 1.8. Every polygon with more than three vertices has a diagonal.

Proof. Let v be the lowest vertex of P; if there are several, let v be the
rightmost. Let a and b be the two vertices adjacent to v. If the segment
ab lies in P and does not otherwise touch ∂P, it is a diagonal. Otherwise,
since P has more than three vertices, the closed triangle formed by a,
b, and v contains at least one vertex of P. Let L be a line parallel to
segment ab passing through v. Sweep this line from v, parallel to itself,
upward toward ab; see Figure 1.7. Let x be the first vertex in the closed
triangle abv, different from a, b, or v, that L meets along this sweep.
If L meets several vertices simultaneously, let x be the rightmost. The
(shaded) triangular region of the polygon below line L and above v is
empty of vertices of P. Because vx cannot intersect ∂P except at v and
x, we conclude that vx is a diagonal.

Since we can decompose any polygon (with more than three ver-
tices) into two smaller polygons using a diagonal, induction leads to the
existence of a triangulation.

Theorem 1.9. Every polygon has a triangulation.

Proof. Weprove thisby inductiononthenumberofverticesnof thepolygon
P. If n= 3, then P is a triangle and we are finished. Let n> 3 and assume
the theorem is true for all polygons with fewer than n vertices. Using
Lemma 1.8, find a diagonal cutting P into polygons P1 and P2. Because
both P1 and P2 have fewer vertices than n, P1 and P2 can be triangulated
bythe inductionhypothesis.Bythepolygonal Jordancurve theorem(The-
orem 1.4), the interior of P1 is in the exterior of P2, and so no triangle of
P1 will share an interior point with a triangle of P2. A similar statement
holds for the triangles of P2. Thus P has a triangulation as well.

Exercise 1.10. Prove that every polygonal region with polygonal holes,
such as Figure 1.1(d), admits a triangulation of its interior.
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(b) (c) (d)(a)

Figure 1.8. Polyhedra examples: (a) tetrahedron, (b) pyramid with square base, (c)
cube, and (d) triangular prism.

That every polygon has a triangulation is a fundamental property that
pervades discrete geometry and will be used over and over again in this
book. It is remarkable that this notion does not generalize smoothly to
three dimensions. A polyhedron is the 3D version of a polygon, a 3D
solid bounded by finitely many polygons; Figure 1.8 shows some exam-
ples. Chapter 7 will define polyhedra more precisely and explore them
more thoroughly. Here we rely on intuition.

Just as the simplest polygon is the triangle, the simplest polyhedron
is the tetrahedron: a pyramid with a triangular base. We can general-
ize the 2D notion of polygon triangulation to 3D: A tetrahedralization
of a polyhedron is a partition of its interior into tetrahedra whose
six edges are either polyhedron edges or diagonals of the polyhedron.
Figure 1.9 shows examples of tetrahedralizations of the polyhedra just
illustrated.

Exercise 1.11. Find a tetrahedralization of the cube into five tetrahedra.

Figure 1.9. Tetrahedralizations of the polyhedra from Figure 1.8.
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Figure 1.10. Construction of the Schönhardt polyhedron from a triangular prism,
where (d) is the overhead view.

We proved in Theorem 1.9 that all polygons can be triangulated. Does
the analogous claim hold for polyhedra? That is, can all polyhedra be
tetrahedralized? In 1911, Nels Lennes proved the surprising theorem that
this is not so. We construct an example of a polyhedron, based on the
1928 model by Erich Schönhardt, which cannot be tetrahedralized. Let
A, B, C be vertices of an equilateral triangle (labeled counterclockwise)
in the xy-plane. Extruding this triangle vertically along the z-axis reach-
ing z= 1 traces out a triangular prism, as shown in Figure 1.10(a). Part
(b) shows the prism with the faces partitioned by the diagonal edges
AQ, BR, and CP. Now twist the top PQR triangle π/6 radians in the
(z= 1)-plane, rotating and stretching the diagonal edges. The result is
the Schönhardt polyhedron, shown in (c) and in an overhead view in (d)
of the figure. Schönhardt proved that this is the smallest example of an
untetrahedralizable polyhedron.

Exercise 1.12. Prove that the Schönhardt polyhedron cannot be
tetrahedralized.

UNSOLVED PROBLEM 1 Tetrahedralizable Polyhedra

Find characteristics that determine whether or not a polyhedron is
tetrahedralizable. Even identifying a large natural class of tetrahe-
dralizable nonconvex polyhedra would be interesting.

This is indeed a difficult problem. It was proved by Jim Ruppert and
Raimund Seidel in 1992 that it is NP-complete to determine whether a
polyhedron is tetrahedralizable. “NP-complete” is a technical term from
complexity theory that means, roughly, an intractable algorithmic prob-
lem. (See the Appendix for a more thorough explanation.) It suggests
in this case that there is almost certainly no succinct characterization of
tetrahedralizability.
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1.3 POLYGON COMBINATORICS

We know that every polygon has at least one triangulation. Next we show
that the number of triangles in any triangulation of a fixed polygon is the
same. The proof is essentially the same as that of Theorem 1.9, with more
quantitative detail.

Theorem 1.13. Every triangulation of a polygon P with n vertices has
n− 2 triangles and n− 3 diagonals.

Proof. We prove this by induction on n. When n= 3, the statement is
trivially true. Let n> 3 and assume the statement is true for all poly-
gons with fewer than n vertices. Choose a diagonal d joining vertices
a and b, cutting P into polygons P1 and P2 having n1 and n2 ver-
tices, respectively. Because a and b appear in both P1 and P2, we know
n1 + n2 = n+ 2. The induction hypothesis implies that there are n1 − 2
and n2 − 2 triangles in P1 and P2, respectively. Hence P has

(n1 − 2) + (n2 − 2) = (n1 + n2) − 4 = (n+ 2) − 4 = n − 2

triangles. Similarly, P has (n1 − 3) + (n2 − 3) + 1= n− 3 diagonals,
with the +1 term counting d.

Many proofs and algorithms that involve triangulations need a special
place to initiate induction or start recursion. “Ears” often serve this role.
Three consecutive vertices a, b, c form an ear of a polygon if ac is a diagonal
of the polygon. The vertex b is called the ear tip.

Corollary 1.14. Every polygon with more than three vertices has at least
two ears with nonadjacent tips.

Proof. Consider any triangulation of a polygon P with n> 3 vertices,
which by Theorem 1.13 partitions P into n− 2 triangles. Each tri-
angle covers at most two edges of ∂P. Because there are n edges on
the boundary of P but only n− 2 triangles, by the pigeonhole princi-
ple at least two triangles must contain two edges of P. These are the
ears.

Exercise 1.15. Prove Corollary 1.14 using induction.

Exercise 1.16. Show that the sum of the interior angles of any polygon
with n vertices is π(n− 2).

Exercise 1.17. Using the previous exercise, show that the total turn angle
around the boundary of a polygon is 2π . Here the turn angle at a vertex
v is π minus the internal angle at v.
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Exercise 1.18. Three consecutive vertices a, b, c form a mouth of a poly-
gon if ac is an external diagonal of the polygon, a segment wholly
outside. Formulate and prove a theorem about the existence of mouths.

Exercise 1.19. Let a polygon P with h holes have n total vertices (includ-
ing hole vertices). Find a formula for the number of triangles in any
triangulation of P as a function of n and h.

� Exercise 1.20. Let P be a polygon with vertices (xi, yi) in the plane. Prove
that the area of P is

1
2

∣∣∣ ∑(xiyi−1 − xi−1yi)
∣∣∣.

Although the number of triangles in any triangulation of a polygon is
the same, it is natural to explore the number of different triangulations
of a given polygon. For instance, Figure 1.6 shows a polygon with three
different triangulations.

Exercise 1.21. For each polygon in Figure 1.11, find the number of distinct
triangulations.

Exercise 1.22. For each n> 3, find a polygon with n vertices that has a
unique triangulation.

The number of triangulations of a fixed polygon P has much to do with
the “shape” of the polygon. One crucial measure of shape is the internal
angles at the vertices. A vertex of P is called reflex if its angle is greater
than π , and convex if its angle is less than or equal to π . As mentioned in
Section 1.1, sometimes it is useful to distinguish a flat vertex, whose angle
is exactly π , from a strictly convex vertex, whose angle is strictly less than
π . A polygon P is a convex polygon if all vertices of P are convex. In
general we exclude flat vertices, so unless otherwise indicated, the vertices
of a convex polygon are strictly convex. With this understanding, a convex
polygon has the following special property.

(b) (c) (d)(a)

Figure 1.11. How many distinct triangulations for these polygons?
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Lemma 1.23. A diagonal exists between any two nonadjacent vertices of
a polygon P if and only if P is a convex polygon.

Proof. The proof is in two parts, both established by contradiction. First
assume P is not convex. We need to find two vertices of P that do not
form a diagonal. Because P is not convex, there exists a sequence of
three vertices a, b, c, with b reflex. Then the segment ac lies (at least
partially) exterior to P and so is not a diagonal.

Now assume P is convex but there is a pair of vertices a and b in P
that do not form a diagonal. We identify a reflex vertex of P to establish
the contradiction. Let σ be the shortest path connecting a to b entirely
within P. It cannot be that σ is a straight segment contained inside P, for
then ab is a diagonal. Instead, σ must be a chain of line segments. Each
corner of this polygonal chain turns at a reflex vertex—if it turned at a
convex vertex or at a point interior to P, it would not be the shortest.

Exercise 1.24. For any two points x and y in a polygon P, prove that the
line segment xy lies in P if and only if P is convex.

For a convex polygon P, where every pair of nonadjacent vertices deter-
mines a diagonal, it is possible to count the number of triangulations of
P based solely on the number of vertices. The result is the Catalan num-
ber, named after the 19th-century Belgian mathematician Eugène Catalan,
which uses the binomial coefficient(

n
k

)
:= n!

k!(n− k)!

that counts the different combinations of choosing n distinct objects taken
k at a time, where choosing order does not matter.

Theorem 1.25. The number of triangulations of a convex polygon with
n+ 2 vertices is the Catalan number

Cn = 1
n+ 1

(
2n
n

)
. (1.1)

Proof. Let Pn+2 be a convex polygon with n+ 2 vertices labeled from 1
to n+ 2 counterclockwise. Let Tn+2 be the set of triangulations of Pn+2,
where Tn+2 has tn+2 elements. We wish to show that tn+2 is the Catalan
number Cn.

We proceed by induction on the number of vertices. For the base
case triangle P3, notice that t3 = 1=C1, as desired. Assume the result
ti+2 =Ci holds for all convex polygons up to n+ 1 vertices. Now con-
sider a polygon Pn+2 with n+ 2 vertices. Contract the edge {1, n+ 2}
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of Pn+2 and let φ be the map from set Tn+2 to set Tn+1 given by this
contraction.2

For T an element of Tn+1, what is important to note is the number of
triangulations of Tn+2 that contract to T (i.e., the number of elements
of φ−1(T)) equals the degree of vertex 1 in T. Figure 1.12 shows an
example where (a) five triangulations of the octagon all contract to (b)
the same triangulation T of the heptagon, where the vertex labeled 1
has degree five in T. This is evident since each edge incident to 1 can
expand into a triangle in φ−1(T), shown by the shaded triangles in (a).
So we see that

tn+2 =
∑

T∈Tn+1

degree of vertex 1 of T.

Because this polygon is convex, this is true for all vertices of T.
Therefore we can sum over all of these n+ 1 vertices, obtaining

(n+ 1) · tn+2 =
n+1∑
i=1

∑
T∈Tn+1

degree of vertex i of T

=
∑

T∈Tn+1

n+1∑
i=1

degree of vertex i of T.
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Figure 1.12. The five polygons in (a) all map to the same polygon T in (b) under
contraction of edge {1, 8}.

2 To contract an edge ab is to shrink it to a point c so that c becomes incident to all the edges and
diagonals that were incident to either a or b.
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The right-hand side of this equation asks for the sum of the degrees of
all vertices of T, for each triangulation T in Tn+1. But this sum dou-
ble counts both the number of edges and the number of diagonals of
T. Since T has n+ 1 edges and n− 2 diagonals (by Theorem 1.13),
we have

(n+ 1) · tn+2 =
∑

T∈Tn+1

2((n+ 1) + (n− 2)) = 2(2n− 1) · tn+1.

Solving for tn+2 yields

tn+2 = 2(2n− 1)

n+ 1
· tn+1.

By the induction hypothesis, this becomes

tn+2 = 2(2n− 1)

n+ 1
·Cn−1 = 2(2n− 1)

n+ 1
· 1
n

(
2n− 2
n− 1

)
= Cn ,

completing the proof.

For the octagon in Figure 1.12, the formula shows there are C6 = 132
distinct triangulations. Is it possible to find a closed formula for the number
of triangulations for nonconvex polygons P with n vertices? The answer,
unfortunately, is no, because small changes in the positions of vertices can
lead to vastly different triangulations of the polygon. What we do know
is that convex polygons achieve the maximum number of triangulations.

Theorem 1.26. Let P be a polygon with n+ 2 vertices. The number of
triangulations of P is between 1 and Cn.

Proof. Exercise 1.22 shows there are polygons with exactly one triangu-
lation, demonstrating that the lower bound is realizable. For the upper
bound, let P be any polygon with n+ 2 labeled, ordered vertices, and let
Q be a convex polygon also with n+ 2 vertices, labeled similarly. Each
diagonal of P corresponds to a similarly labeled diagonal of Q, and if
two diagonals do not cross in P, neither do they cross inQ. So every tri-
angulation of P (having n− 1 diagonals by Theorem 1.13) determines a
triangulation of Q (again with n− 1 diagonals). Therefore, P can have
no more triangulations than Q, which by Theorem 1.25 is Cn.

Thus we see that convex polygons yield themost triangulations. Because
convex polygons have no reflex vertices (by definition), there might possi-
bly be a relationship between the number of triangulations and the number
of reflex vertices of a polygon. Sadly, this is not the case. Let P be a poly-
gon with five vertices. By Theorem 1.25, if P has no reflex vertices, it must
have five triangulations. Figure 1.13(a) shows Pwith one reflex vertex and
only one triangulation, whereas parts (b) and (c) show P with two reflex
vertices and two triangulations. So the number of triangulations does not
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(b) (c) (d)(a)

Figure 1.13. Triangulations of polygons with reflex vertices.

necessarily decrease with the number of reflex vertices. In fact, the num-
ber of triangulations does not depend on the number of reflex vertices at
all. Figure 1.13(d) shows a polygon with a unique triangulation with three
reflex vertices. This example can be generalized to polygons with unique
triangulations that contain arbitrarily many reflex vertices.

Exercise 1.27. For each n> 3, find a polygon with n vertices with exactly
two triangulations.

Exercise 1.28. For any n≥ 3, show there is no polygon with n+ 2 vertices
with exactly Cn − 1 triangulations.

UNSOLVED PROBLEM 2 Counting Triangulations

Identify features of polygons P that lead to a closed formula for the
number of triangulations of P in terms of those features.

We learned earlier that properties can be lost in the move from 2D poly-
gons to 3D polyhedra. As we saw, all polygons can be triangulated but not
all polyhedra can be tetrahedralized. Moreover, by Theorem 1.13 above,
we know that every polygon with n vertices must have the same number of
triangles in any of its triangulations. For polyhedra, this is far from true.
In fact, two different tetrahedralizations of the same polyhedron can result
in a different number of tetrahedra! Consider Figure 1.14, which shows
a polyhedron partitioned into (a) two tetrahedra and also into (b) three
tetrahedra.

Even for a polyhedron as simple as the cube, the number of tetrahedra
is not the same for all tetrahedralizations. It turns out that, up to rota-
tion and reflection, there are six different tetrahedralizations of the cube,
one of which was shown earlier in Figure 1.9. Five of the six partition
the cube into six tetrahedra, but one cuts it into only five tetrahedra (see
Exercise 1.11).

Exercise 1.29. Is it possible to partition a cube into six congruent
tetrahedra? Defend your answer.
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(b)

(a)

Figure 1.14. A polyhedron partitioned into (a) two and (b) three tetrahedra.

Exercise 1.30. Find the six different tetrahedralizations of the cube up to
rotation and reflection.

� Exercise 1.31. Classify the set of triangulations of the boundary of the
cube that “induce” tetrahedralizations of the cube, where each such
tetrahedralization matches the triangulation on the cube surface.

Just as the tetrahedron is the 3D version of the 2D triangle, the n-
simplex is its n-dimensional generalization. Similarly, the n-cube is the
n-dimensional analog of the 2D square and the 3D cube.

Exercise 1.32. Provide clear definitions of the n-simplex and the n-cube.

� Exercise 1.33. Show that the n-cube can be triangulated into exactly n!
n-simplices.

UNSOLVED PROBLEM 3 Minimum Triangulations of Cubes

Find the smallest triangulation of the n-cube into n-simplices. It is
known, for example, that the 4-cube (also known as the tesseract)
may be partitioned into sixteen 4-simplices, and this is minimal. But
the minimum number is unknown except for the few small values
of n that have yielded to exhaustive computer searches using linear
programming.
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1.4 THE ART GALLERY THEOREM

A beautiful problem posed by Victor Klee in 1973 engages several of the
concepts we have discussed. Imagine an art gallery whose floor plan is
modeled by a polygon. A guard in the gallery corresponds to a point on
our polygonal floor plan. Guards are posted at fixed locations and can see
in every direction, with a full 360◦ range of visibility. Klee asked: What is
the fewest number of guards needed to protect the gallery? Before tack-
ling this problem, we need to define what it means to “see something”
mathematically.

A point y in polygon P is visible to point x in P if the line segment xy
lies in P. This definition allows the line of sight to have a grazing contact
with the boundary ∂P (unlike the definition for diagonal—see the earlier
Figure 1.5(c)). So xy is nowhere exterior to P. A set of guards covers a
polygon if every point in the polygon is visible to some guard. Figure 1.15
shows three examples of the range of visibility available to single guards
in a polygon.

A natural question is to ask for the minimum number of guards needed
to cover polygons. Of course, this minimum number depends on the “com-
plexity” of the polygon in some way. We choose to measure complexity in
terms of the number of vertices of the polygon. But two polygons with n
vertices can require different numbers of guards to cover them. Thus we
look for a bound that holds for any polygon with n vertices.3

Exercise 1.34. For each polygon in Figure 1.11, find the minimum number
of guards needed to cover it.

Exercise 1.35. Suppose that guards themselves block visibility so that a
line of sight from one guard cannot pass through the position of another.
Are there polygons for which the minimum number of our more pow-
erful guards needed is strictly less than the minimum needed for these
weaker guards?

Figure 1.15. Examples of the range of visibility available to certain placements of
guards.

3 To find the minimum number of guards for a particular polygon turns out to be, in general,
an intractable algorithmic task. This is another instance of an NP-complete problem; see the
Appendix.
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Figure 1.16. Examples of covering guard placements for different polygons.

Let’s start by looking at some examples for small values of n. Figure 1.16
shows examples of covering guard placements for polygons with a small
number of vertices. Clearly, any triangle only needs one guard to cover it.
A little experimentation shows that the first time two guards are needed is
for certain kinds of hexagons.

Exercise 1.36. Prove that any quadrilateral needs only one guard to cover
it. Then prove that any pentagon needs only one guard to cover it.

By Exercise 1.24, convex polygons need only one guard for coverage.
The converse of this statement is not true, however. There are polygons
that need only one guard but which are not convex. These polygons are
called star-shaped polygons, or just star polygons. The set of points that
can see the entire polygon P is called the kernel of P. A guard anywhere in
the kernel then covers P. Star polygons are the only ones with a nonempty
kernel. Figures 1.11(c) and 1.13 show examples.

While correct placement avoids the need for a second guard for quadri-
laterals and pentagons, one can begin to see how reflex vertices will cause
problems inpolygonswith largenumbers of vertices. Because there can exist
only somany reflex angles in a polygon, we can construct a useful example,
based on prongs or tines. Figure 1.17 illustrates the comb-shaped design
made of 5 prongs and 15 vertices. We can see that a comb of n prongs has
3n vertices, and since each prong needs its own guard, then at least �n/3�
guards are needed. Here, the symbols � � indicate the floor function: the
largest integer less than or equal to the enclosed argument.4 Thus we have
a lower bound on Klee’s problem: �n/3� guards are sometimes necessary.

Exercise 1.37. Construct a polygon P and a placement of guards such that
theguards see everypointof ∂Pbutnotall interiorpointsofPare covered.

4 Later we will use its cousin, the ceiling function 	 
, the smallest integer greater than or equal
to the argument.
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Figure 1.17. A comb-shaped example.

UNSOLVED PROBLEM 4 Visibility Graphs

The visibility graph of a polygon P is the graph with a node for each
vertex of P and an arc connecting two nodes when the corresponding
vertices of P can see one another. Find necessary and sufficient con-
ditions that determine when a graph is the visibility graph of some
polygon.

Now that we have a lower bound of �n/3�, the next question is whether
this number always suffices, that is, whether it is also an upper bound for
all polygons. Other than proceeding case by case, how can we attack the
problem from a general framework? The answer lies in triangulating the
polygon. Theorem 1.9 implies that every polygon with n vertices can be
covered with n− 2 guards by placing a guard in each triangle, providing a
crude upper bound. But we have been able to do better than this already for
quadrilaterals and pentagons. By placing guards not in each triangle but at
the vertices, we can possibly cover more triangles by fewer guards. In 1975,
Vašek Chvátal found a proof for the minimum number of guards needed
to cover any polygon with n vertices. His proof is based on induction, with
some delicate case analysis. A few years later, Steve Fisk found a beautiful
inductive proof, which follows below.

Theorem 1.38 (Art Gallery). To cover a polygon with n vertices, �n/3�
vertex guards are needed for some polygons, and are sufficient for all
polygons.

Proof. We have already seen in Figure 1.17 that �n/3� guards are some-
times necessary. We now need to show this number also suffices.
Consider a triangulation of a polygon P. We use induction to prove that
each vertex of P can be assigned one of three colors so that any pair of
vertices connected by an edge of P or a diagonal of the triangulation
must have different colors. Such a triangulation is said to be 3-colored.
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Figure 1.18. Triangulations and colorings of vertices of a polygon with n=18
vertices. In both figures, red is the least frequently used color, occurring five times.

Figure 1.18 shows two examples of triangulations of a polygon along
with colorings of the vertices as described.

A triangle is certainly 3-colored. For n> 3, Corollary 1.14 guarantees
that P has an ear abc, with vertex b as the ear tip. Deleting this tip
produces a polygon P′ with n− 1 vertices. By the induction hypothesis,
the vertices of P′ can be 3-colored. Replacing the tip b, and coloring it
with the color not used by a or c, provides a 3-coloring for P.

Since there are n vertices, by the pigeonhole principle, the least fre-
quently used color appears on at most �n/3� vertices. Place guards at
these vertices. Because every triangle has a vertex of this color, and this
guard covers the triangle, the polygon is completely covered.

Exercise 1.39. For each polygon in Figure 1.19, find a minimal set of
guards that cover it.

Exercise 1.40. Construct a polygon with n= 3k vertices such that plac-
ing a guard at every third vertex counterclockwise fails to protect the
gallery.

The classical art gallery problem as presented has been generalized in
several directions. Some of these generalizations have elegant solutions,
some have difficult solutions, and several remain unsolved problems. For

Figure 1.19. Find a set of minimal guards that cover the polygons.



20 CHAPTER 1. POLYGONS

instance, the shape of the polygons can be restricted (to polygons with
right-angled corners) or enlarged (to include polygons with holes), or the
mobility of the guards can be altered (permitting guards to walk along
edges, or along diagonals).

Exercise 1.41. Why is it not possible to easily extend Fisk’s proof above
to the case of polygons with holes?

Exercise 1.42. Using Exercise 1.19, derive an upper bound on the number
of guards needed to cover a polygon with h holes and n total vertices.
(Obtaining a tight upper bound is extremely difficult, and only recently
settled.)

When all edges of the polygon meet at right angles (an orthogonal poly-
gon), fewer guards are needed, as established by Jeff Kahn, Maria Klawe,
and Daniel Kleitman in 1980. In contrast, covering the exterior rather than
the interior of a polygon requires (in general) more guards.

Theorem 1.43 (Orthogonal Gallery). To cover polygons with n vertices
with only right-angled corners, �n/4� guards are needed for some
polygons, and sufficient for all polygons.

Theorem 1.44 (Fortress). To cover the exterior of polygons with n vertices,
	n/2
 boundary guards are needed for some polygons, and are sufficient
for all polygons.

� Exercise 1.45. Prove the fortress theorem.

Exercise 1.46. For any n> 3, construct a polygon P with n vertices
such that 	n/3
 guards, placed anywhere on the plane, are sometimes
necessary to cover the exterior of P.

UNSOLVED PROBLEM 5 Edge Guards

An edge guard along edge e of polygon P sees a point y in P if there
exists x in e such that x is visible to y. Find the number of edge
guards that suffice to cover a polygon with n vertices. Equivalently,
how many edges, lit as fluorescent light bulbs, suffice to illuminate
the polygon? Godfried Toussaint conjectured that �n/4� edge guards
suffice, except for a few small values of n.

The art gallery theorem shows that placing a guard at every vertex
of the polygon is three times more than needed to cover it. But what
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about for a polyhedron in three dimensions? It seems almost obvious that
guards at every vertex of any polyhedron should cover the interior of the
polyhedron. It is remarkable that this is not so.

The reason the art gallery theorem succeeds in two dimensions is the
fundamental property that all polygons can be triangulated. Indeed, The-
orem 1.9 is not available to us in three dimensions: Not all polyhedra
are tetrahedralizable, as demonstrated earlier in Figure 1.10(c). If our
polyhedron indeed was tetrahedralizable, then every tetrahedron would
have guards in the corners, and all the tetrahedra would then cover the
interior.

Exercise 1.47. Let P be a polyhedron with a tetrahedralization where
all edges and diagonals of the tetrahedralization lie on the bound-
ary of P. Make a conjecture about the number of guards needed to
cover P.

Exercise 1.48. Show that even though the Schönhardt polyhedron
(Figure 1.10) is not tetrahedralizable, it is still covered by guards at every
vertex.

Because not all polyhedra are tetrahedralizable, the “obviousness” of
coverage by guards at vertices is less clear. In 1992, Raimund Seidel,
and William Thurston independently, constructed a polyhedron such that
guards placed at every vertex do not cover the interior. Figure 1.20 illus-
trates a version of the polyhedron, which can be constructed as follows.
Start with a large cube and let ε be a very small positive number. On

(b)(a)

Figure 1.20. (a) The Seidel–Thurston polyhedron with (b) the front three faces
removed to reveal the interior.
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the front side of the cube, create an n× n array of 1× 1 squares, with
a separation of 1+ ε between their rows and columns. Create a tunnel
into the cube at each square that does not quite reach all the way through
to the back face of the cube, but instead stops ε short of that back face.
The result is a deep dent at each square of the front face. Repeat this pro-
cedure for the top face and the right face, staggering the squares so their
respective dents do not intersect. Now imagine standing deep in the inte-
rior, surrounded by dent faces above and below, left and right, fore and
aft. From a sufficiently central point, no vertex can be seen!

Exercise 1.49. Prove the above claim, which implies that guards at
every vertex of the Seidel–Thurston polyhedron do not cover the entire
interior. Notice that this implies the polyhedron is not tetrahedralizable.

Exercise 1.50. Let n be the number of vertices of the Seidel–Thurston
polyhedron. What order of magnitude, as a function of n, is the number
of guards needed to cover the entire interior of the polyhedron? (See
the Appendix for the 	 notation that captures this notion of “order of
magnitude” precisely.)

1.5 SCISSORS CONGRUENCE IN 2D

The crucial tool we have employed so far is the triangulation of a poly-
gon P by its diagonals. The quantities that have interested us have been
combinatorial: the number of edges of P and the number of triangles in a
triangulation of P. Now we loosen the restriction of only cutting P along
diagonals, permitting arbitrary polygonal cuts. A dissection of a polygon
P cuts P into a finite number of smaller polygons. Triangulation can be
viewed as an especially constrained form of dissection. The first three
diagrams in Figure 1.21 show dissections of a square. Part (d) is not a
dissection because one of the partition pieces is not a polygon.

Given a dissection of a polygon P, we can rearrange its smaller polyg-
onal pieces to create a new polygon Q of the same area. Two polygons P
andQ are scissors congruent if P can be dissected into polygons P1, . . . ,Pn

(b) (c) (d)(a)

Figure 1.21. Three dissections (a,b,c) of a square, and (d) one that is not a dissection.
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Figure 1.22. The Greek cross is scissors congruent to a square.

which then can be reassembled by rotations and translations to obtainQ.
Figure 1.22 shows a sequence of steps that dissect the Greek cross and
rearrange the pieces to form a square, detailed by Henry Dudeney in 1917.
However, the idea behind the dissection appears much earlier, in the work
of the Persian mathematician and astronomer Mohammad Abu’l-Wafa
Al-Buzjani in the 10th century.

The delight of dissections is seeing one familiar shape surprisingly trans-
formed to another, revealing that the second shape is somehow hidden
within the first. The novelty and beauty of dissections have attracted puzzle
enthusiasts for centuries. Another dissection of the Greek cross, this time
rearranged to form an equilateral triangle, discovered by Harry Lindgren
in 1961, is shown in Figure 1.23.

Exercise 1.51. Find another dissection of the Greek cross, something quite
different from that of Figure 1.22, that rearranges to form a square.

Exercise 1.52. Find a dissection of two Greek crosses whose combined
pieces form one square.

Exercise 1.53. Show that any triangle can be dissected using at most three
cuts and reassembled to form its mirror image. As usual, rotation and
translation of the pieces are permitted, but not reflection.

Figure 1.23. Lindgren’s dissection of a Greek cross to an equilateral triangle.
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Figure 1.24. Every triangle is scissors congruent with a rectangle.

If we are given two polygons P and Q, how do we know whether they
are scissors congruent? It is obvious that they must have the same area.
What other properties or characteristics must they share? Let’s look at
some special cases.

Lemma 1.54. Every triangle is scissors congruent with some rectangle.

Figure 1.24 illustrates a proof of this lemma. Given any triangle, choose
its longest side as its base, of length b. Make a horizontal cut halfway up
from the base. From the top vertex, make another cut along the perpendic-
ular from the apex. The pieces can then be rearranged to form a rectangle
with half the altitude a of the triangle and the same base b. Note this
dissection could serve as a proof that the area of a triangle is ab/2.

Lemma 1.55. Any two rectangles of the same area are scissors congruent.

Proof. LetR1 be a (w1 × h1)-rectangle and letR2 be a (w2 × h2)-rectangle,
where w1 · h1 =w2 · h2. We may assume that the rectangles are not
identical, so that h1 �= h2. Without loss of generality, assume h2 < h1 ≤
w1 <w2.

We know from w1 <w2 that rectangle R2 is longer than R1. How-
ever, for this construction, we do not want it to be too long. If 2w1 <w2,
then cut R2 in half (with a vertical cut) and stack the two smaller rect-
angles on one another. This stacking will reduce the length of R2 by
half but will double its height. However, because w1 · h1 =w2 · h2, the
height of the stacked rectangles 2h2 will still be less than h1. Repeat

h2

w2

R2

h1

w1

R1R1

Figure 1.25. Two rectangles satisfying h2 < h1 ≤w1 <w2 <2w1.
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x

o y

A1

A2

B2

B1

C C

(b)(a)

Figure 1.26. Any two rectangles of the same area are scissors congruent.

this process of cutting and stacking until we have two rectangles with
h2 < h1 ≤w1 <w2 < 2w1, as shown in Figure 1.25.

After placing R1 and R2 so that their lower-left corners coincide
and they are flush along their left and base sides, draw the diagonal
from x, the top-left corner of R1, to y, the bottom-right corner of R2.
The resulting overlay of lines, as shown in Figure 1.26(a), dissects each
rectangle into a small triangle, a large triangle, and a pentagon. We
claim that these dissections result in congruent pieces, as depicted in
Figure 1.26(b). It is clear the pentagons C are identical. In order to see
that the small triangles A1 and A2 are congruent, first notice that they
are similar to each other as well as similar to the large triangle xoy, as
labeled in Figure 1.26(a). Using w1 · h1 =w2 · h2, the equation

h1 − h2
w2 −w1

= h1
w2

(1.2)

can be seen to hold by cross multiplying. Because A1 is similar to xoy,
whose altitude/base ratio is h1/w2, and the height of A1 is h1 − h2,
Equation (1.2) shows that the base of A1 is w2 −w1. But since the base
length of A2 is w2 −w1, it follows that A1 and A2 are congruent. A
nearly identical argument shows that the large triangles B1 and B2 are
congruent. The theorem then follows.

Exercise 1.56. Let polygon P1 be scissors congruent to polygon P2, and let
polygon P2 be scissors congruent to polygon P3. Show that polygon P1
is scissors congruent to polygon P3. In other words, show that scissors
congruence is transitive. We used this transitive property implicitly in
the proof of Lemma 1.55 above.

Exercise 1.57. Dissect a 2× 1 rectangle into three pieces and rearrange
them to form a 3√4× 3√2 rectangle.

It is immediate that scissors congruence implies equal area, but the
converse is by no means obvious. This fundamental result was proved
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independently by William Wallace, Farkas Bolyai, and Paul Gerwien in
the early 19th century.

Theorem 1.58 (Wallace–Bolyai–Gerwien). Any two polygons of the same
area are scissors congruent.

Proof. Let P and Q be two polygons of the same area α. Using The-
orem 1.9, dissect P into n triangles. By Lemma 1.54, each of these
triangles is scissors congruent to a rectangle, which yields n rectangles.
From Lemma 1.55, these n rectangles are scissors congruent to n other
rectangles with base length 1. Stacking these n rectangles on top of one
another yields a rectangle R with base length 1 and height α. Using the
same method, we see thatQ is scissors congruent withR as well. Since P
is scissors congruent withR, andRwithQ, we know from Exercise 1.56
that P is scissors congruent with Q.

Example 1.59. TheWallace–Bolyai–Gerwien theorem not only proves the
existence of a dissection, it gives an algorithm for constructing a dissec-
tion. Consider the Greek cross of Figure 1.22, say with total area 5/2.
We give a visual sketch of the dissection implied by the proof of the
theorem to show scissors congruence with a square of the same area.
The first step is a triangulation, as shown in Figure 1.27, converting the
cross into 10 triangles, each of area 1/4 and base length 1. Second, each
triangle is dissected to a rectangle of width 1 and height 1/4. Finally,
these are stacked to form a large rectangle of area 5/2.

Now starting from the square of area 5/2, a triangulation yields
two triangles of base length

√
5, as shown in Figure 1.28. Each tri-

angle is then transformed into a
√
5/4× √

5 rectangle. Each rectangle
needs to be transformed into another rectangle of base length 1 (and

Figure 1.27. Cutting the Greek cross into a rectangle of base length 1 using the
Wallace–Bolyai–Gerwien proof. The transformations to the colored triangle are
tracked through the stages.
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Figure 1.28. Cutting the square into a rectangle of base length 1 using theWallace–
Bolyai–Gerwien proof. The last transformation is color coded to show the fit of the
pieces.

height 5/4). Since this rectangle is too long (as described in the proof of
Lemma 1.55), it needs to be cut into two pieces and stacked. Then the
(stacked) rectangle is cut and rearranged to form two rectangles of base
length 1.

Although the Wallace–Bolyai–Gerwien proof is constructive, it is far
from optimal in terms of the number of pieces in the dissection. Indeed,
we saw in Figure 1.22 that a five-piece dissection suffices to transform
the Greek cross to a square.

Exercise 1.60. Following the proof of the Wallace–Bolyai–Gerwien the-
orem, what is the actual number of polygonal pieces that results from
transforming the Greek cross into a square? Assume the total area of
the square is 5/2 and use Figures 1.27 and 1.28 for guidance.

� Exercise 1.61. Show that a square and a circle are not scissors congruent,
even permitting curved cuts.

It is interesting to note that theWallace–Bolyai–Gerwien theorem is true
for polygons not only in the Euclidean plane, but in hyperbolic and elliptic
geometry as well. There are also numerous restricted versions of scissors
decompositions we may consider, such as the following:

UNSOLVED PROBLEM 6 Fair Partitions

For each positive integer n, is it always possible to partition a given
convex polygon into n convex pieces such that each piece has the
same area and the same perimeter? This has been established for
all prime powers n= pk, where p is a prime and k≥ 1 an integer. It
remains open for n= 6 and any other n that is not a prime power.
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1.6 SCISSORS CONGRUENCE IN 3D

From the discussion above, we see that equal area suffices to guarantee
a dissection of one polygon to another. Is this true in higher dimensions?
That is, are any two polyhedra of the same volume scissors congruent?
Carl Friedrich Gauss, arguably the greatest mathematician since antiquity,
asked this question in 1844, about a decade after the Wallace–Bolyai–
Gerwien theorem. Figure 1.29 shows an example of a successful dissection,
a tetrahedron that is scissors congruent to a triangular prism.

In 1896, French engineer Raoul Bricard claimed to have solved the
problem in the negative. Unfortunately, Bricard’s proof was flawed, and
so, in his famous 1900 address to the International Congress of Mathe-
maticians, the renowned mathematician David Hilbert raised this question
again. Within two years, largely based on Bricard’s insight, Hilbert’s stu-
dent Max Dehn provided a solution. In particular, Dehn constructed two
tetrahedra with congruent bases and the same height which are not scissors
congruent. Dehn needed to use powerful algebraic tools to aid his work
(known today as tensor products), eventually leading to the larger theory
of Dehn invariants. Instead of exploring Dehn’s difficult proof, we follow
Bricard’s original proof, now repaired, following ideas of Veniamin Kagan
(1903) and David Benko (2007), and relying on the wonderful exposition
by Martin Aigner and Günter Ziegler (2010).

Unlike polygons, where angles only appear at the vertices, polyhedra
have angles along edges as well. The angle along each edge of a polyhe-
dron, formed by its two adjacent faces, is called the dihedral angle, and
forms a key ingredient.

Definition. The dihedral angle φ at the edge e of a polyhedron shared
between two faces f1 and f2 is π minus the angle between two unit
normal vectors n1 and n2 to f1 and f2, respectively. By convention, the

Figure 1.29. Dissection of a tetrahedron to a triangular prism. This tetrahedron is
given in Figure 1.30(a), the convex hull of opposing vertical and horizontal edges of
a cube. The prism has one-third the height of the tetrahedron.
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(b) (c) (d)(a)

Figure 1.30. Four tetrahedra embedded inside the cube.

normal vectors point to the exterior of the polyhedron, and the dihedral
angle at e is the interior angle. Thus n1 · n2 = − cosφ. So at a flat edge
between two coplanar faces, n1 and n2 coincide, n1 · n2 = 1 and φ = π .

For example, the dihedral angle along each edge of a cube is π/2. For
further examples of dihedral angles, we will use Figure 1.30, which shows
four tetrahedra embedded inside the cube.

Example 1.62. The tetrahedron on the left in Figure 1.31 repeats
Figure 1.30(a) with labels. The dihedral angle along the edges AD, BC,
and BD is π/2, and the edges AB and CD have dihedral angles of π/4.
To find the dihedral angle along edgeAC, we look back at the decompo-
sition of the cube in Figure 1.9 where the cube is tetrahedralized into six
polyhedra, each congruent to the polyhedron on the left in Figure 1.31.
Thus the dihedral angle along AC is π/3.

Example 1.63. The tetrahedron on the right in Figure 1.31 repeats
Figure 1.30(b). The dihedral angle along the edges AD, BD, and CD

A

B D

C

A

DB

C

E

Figure 1.31. Two tetrahedra with congruent bases and the same height. Left tetra-
hedra dihedral angles: π/2 (AD, BC, BD), π/4 (AB, CD), and π/3 (AC). Right
tetrahedra dihedral angles: π/2 (AD, BD, CD) and arctan

√
2 (AB, AC, BC).
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is π/2, because they are sides of the surrounding cube. Due to symme-
try of the polyhedron, the edgesAB,AC, and BC have the same dihedral
angle.We draw the midpointE of edgeBC in order to calculate the dihe-
dral angle AED along BC. If Figure 1.30(b) is a unit cube (with edge
length 1), then the length of DE is 1/

√
2. Because the length of AD is

1, the dihedral angle along BC is arctan
√
2.

Exercise 1.64. Find the dihedral angles of the tetrahedra in Figure 1.30(c)
and (d).

� Exercise 1.65. Find the dihedral angles of the regular dodecahedron, a spe-
cial polyhedron we explore in Chapter 7. Familiarity with trigonometric
identities could help.

When considering scissors congruence, our polyhedra are dissected into
numerous smaller polyhedra. We define the segments of a dissection to be
the 1D subdivisions of all the edges appearing in all the polyhedra. These
segments occur in 3D polyhedra as well as in 2D polygons. For example,
Figure 1.32 shows two polygons that are scissors congruent, along with
their dissections. Notice that P and Q are each decomposed into three
congruent polygonal pieces, with P having seven segments and Q nine
segments.

We can assign variables xi and yj to the segments of P and Q, respec-
tively, and obtain a system of linear equations. For the case of Figure 1.32,
since the triangles Pi and Qi are congruent, the lengths of their segments
yield nine (nonunique) linear equations:

Q1 Q2

Q3

y2
y1

y4

y8y7

y5
y9

y3
y6P1

P2

P3

x4
x2

x3

x7

x1

x6
x5

Figure 1.32. Two scissors congruent polygons with their segments labeled.

(continued...)
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angle
— bisector, 138–140, 144
— deficit, 216
— dihedral, 28–30, 199, 201, 204,

221
— face, 200, 202, 216, 226
— interior, 9, 29, 202
— turn, 9, 172, 173, 218–220,

231, 232, 247
annulus, 180–182
antiprism
— square, 246
any-cut net, 243
Archimedean solids, 203, 204

area
— differential, 215
— minimum, 41
— of polygon, 10, 22, 24, 227
— of triangle, 24, 84
— vector, 84, 85
Aronov, Boris, 241
arrangement
— combinatorial complexity, 129
— of hyperplanes, 129
— of lines, 128–130
— of planes, 132
— of pseudolines, 134
art gallery
— minimal number of guards, 256
— problem, 16, 37, 100, 257
— theorem, 1, 16, 18, 20, 21, 37,

255
associahedron, 79–84, 103–106,

204, 211
— and associativity, 82
— graph, 105
asymptotically optimal, 38, 52,

254
Atiyah–Singer index theorem, 216
Aurenhammer, Franz, 97, 135

ball, maximal, 143
Barvinok, Alexander, 64
bellows conjecture, 228, 250
Benko, David, 28
Bern, Marshall, 106, 150
Betti numbers, 213
big-Oh notation, vii, 46, 112, 253
big-Omega notation, 22, 46, 254
billiards, 36
Birkhoff, George, 191
Birkhoff shortening, 191
Blum, Harry, 137
Body(S), see α-body, xiii
Boltyanskii, Vladimir, 37
Bolyai, Farkas, 26
Bonnet, Pierre, 216
boundary
— hull, 41
— of polygon, 1, 3, 9, 16, 235
— of polyhedron, 199
— shadow, 58, 59, 61–63

— surface with, 207, 213, 214,
218, 219

— surface without, 218, 219
— of Voronoi region, 108, 111
Bricard, Raoul, 28, 32
Brown, Kevin, 122, 135

carpenter’s ruler, 183, 254
cartography, 107
Catalan, Eugène, 11
Catalan number, 11, 37, 71, 79,

81, 83, 84, 106
Cauchy, Augustin-Louis, 170, 221
Cauchy’s arm lemma, 170–173,

197, 222, 225
Cauchy’s rigidity theorem,

220–222, 224, 226, 244, 251
cavity, topological, 205, 213
Čech complex, 168
ceiling function, 17
chain
— 3D locked, 187
— 3D unit, 187
— 4D unlocked, 187
— interlocking, 197
— locked, 183, 186, 198; knitting

needles, 197
— planar convex, 170, 171, 173
— polygonal, 170
— polygonal, open, 173, 183, 188
— reflex, 74
chain folding problem, 178, 179
Chand, Donald, 47
Cheong, Otfried, 106, 135
Chin, Francis, 169
Chou, Kai-Seng, 198
Chow, Bennett, 193, 194
chromatic number, 255
Chvátal, Vašek, 18
circle
— osculating, 192
— tangent, 154, 192
— topological, 177
circumcircle
— empty, 92, 93
— of triangle, 91, 93, 94, 109, 110,

119–121
clustering, 38
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cocircular, 118
cocone algorithm, 148
collision detection, 38
combinatorial complexity, 56
combinatorial structure, 97
configuration
— canonical, 183
— flat, 254
configuration space, 174, 175, 177,

185, 188
— angles, 174–176
— connected, 183, 185
— definition, 173
— of pentagon, 197
— of quadrilateral, 177, 178
— topology, 177
— of triangulations, 183
connected component, 176
Connelly, Robert, 183, 227
Conv(S), see convex hull, xiii
convex combination, 39
convex hull, 38–41
— 3D, 56, 57
— 4D, 57, 124
— applications of, 38, 53, 63
— d-dimensional, 57
— lower, 51, 122, 123, 126, 131,

133
— of polygon, 51
— upper, 51, 122, 126
convex hull algorithm
— 2D; divide and conquer, 53, 54,

56, 61; gift wrapping, 47–49,
59; Graham scan, 49, 50, 58;
incremental, 41, 42, 44–47, 53,
54, 105; triangle splitting, 105

— 3D; divide and conquer, 61,
64, 132; gift wrapping, 59;
incremental, 58, 59, 76, 77

— higher dimensions, 47, 64
convex position, 65, 71, 79, 80,

103, 104
convex, strictly, 10
convexity, 38, 56, 64, 199, 200
Cook, Stephen, 255
Cormen, Thomas, 257
Corpus Hypercubus, 243
Coxeter, H.S.M., 251
Cromwell, Peter, 251
crossing chords, 117, 118
Crust algorithm, 150, 151, 153,

169
— NN-, 153
crystallography, 107
curvature, 216
— discrete, 216, 217
— Gaussian, 214, 215, 218
— geodesic, 218–220
curve

— offset, 146, 147; of parabola,
147

— open, 153
— parallel, 146
— reconstruction, 147, 148, 152,

153
curve shortening, 197
— continuous, 192, 193, 195, 198
— discrete, 193–195
cut locus, 136, 137, 235, 236, 241,

242
Cut(P), see cut locus, xiii

D-form, 250
Dali, Salvadore, 243
— Dali cross, 243
De Loera, Jesús, 106
decision-tree model, 46, 51, 254
deformation retract, 156, 157
degenerate, 64
— polygon, 103
— polyhedron, 203
— position, 45, 49, 88, 110
— triangle, 129
Dehn, Max, 28
Dehn invariant, 28
Dehn–Hadwiger theorem, 37
Del(S), see Delaunay triangulation,

xiii
Delaunay, Boris, 89, 119
Delaunay triangulation, 85, 89, 90,

94–96, 106, 116, 119–124, 131,
135, 151, 152, 210

— empty circle property, 93
— fat edge, 88–93
— flip-graph algorithm, 105
— illegal edge, 88
— legal edge, 88
— locked edge, 89, 90, 93
— thin edge, 88–94, 97, 119, 120
Delaunay triangulation algorithm
— edge flipping, 89, 90, 119
— hull projection, 122, 124
— incremental, 120, 121
Demaine, Erik, 169, 183–185, 198,

251
Descartes, René, 217
Devadoss, Satyan L., 251
Dey, Tamal, 148, 153, 169
de Berg, Mark, 106, 135
diagonal
— existence, 6
— external, 10
— noncrossing, 5, 65, 80
— of polygon, 5–7, 9, 11, 16, 53,

65, 80, 83
— of polyhedron, 22
— of triangulation, 72
diagonalization, 80, 81, 83–85

diameter
— of flip graph, 75, 76, 83, 106
— of graph, 75, 83
— of largest circumcircle, 121
— of point set, 44
Dijkstra, Edsger, 237
Dijkstra’s algorithm, 237, 238
— continuous, 238, 241
Dirichlet tessellation, 107
disk
— bodies, 154
— sector, 161
disk, maximal empty, 136–138,
140, 142, 143

dissection
— existence, 26
— of Greek cross, 23, 26, 27
— hinged, 36
— number of pieces, 27
— of polygon, 22, 23, 28, 37,

243
— of polyhedron, 28
— of prism, 28
— of rectangle, 24, 25
— segment mass, 32
— segment weight, 31
— segments, 30
— of tetrahedron, 28
divide-and-conquer merge, 53, 55,
56, 60–62

dodecahedron, 30, 201, 202, 217
— great, 203, 208
dual
— line, 124
— line, vertical, 124
— plane, 124, 125
— point, 124
duality
— geometric, 124
Dudeney, Henry, 23
Dürer, Albrecht, 231
Dürer’s problem, 231, 233

Edelsbrunner, Herbert, 106, 122,
135, 169

edge
— contraction, 12
— convex, 199, 226
— flip, 72, 88
— guard, 20
— of polygon, 1
— reflex, 199, 200
— of triangulation, 65
elliptic geometry, 27
envelope
— lower, 129
— upper, 129
Eppstein, David, 147, 150, 169
ε-sample, 151, 153
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Erdős, Paul, 37
Erickson, Jeff, 147, 169
Euclid, 91, 109, 110, 201, 221
Euler, Leonhard, 69, 208
Euler characteristic χ , 212–215,

219, 227
Euler’s formula, 56, 69, 70, 77,

102, 112, 156, 197, 205, 208,
210, 211, 213, 214, 220, 221,
251

— proof, 69, 208
exercises, starred, viii
existential theory of the reals, 256
∃R-complete, 256
exponential time, 254

face angle sum, 202
facility location, 107
filtration
— of α-complex, 163, 164, 166
Fisk, Steve, 18, 20
flip graph, 72, 73, 75, 85, 119, 183
— 3D, 78, 79, 105
— animation, 105
— connected, 73, 75, 79, 103, 106,

119
— of convex polygon, 79–81, 83,

85
— and Delaunay triangulation, 90,

94
— diameter, 75
— higher dimensions, 79
— of pseudotriangulation, 103,

104
— shortest path in, 76, 84
floor function, 17, 57
flow
— curve shortening, 192, 193
— discrete, 193–196
— geometric, 192
folding
— perimeter halving, 246–248
— refold, 247–249
fortress theorem, 20
Fortune, Steve, 113, 135
Frederickson, Greg, 37

Gage, Michael, 192
Gauss, Carl Friedrich, 28
Gauss–Bonnet theorem, 214–216,

218, 220, 247
— polyhedral, 217–219
— with boundary, 218, 219
Gelfand, Israel, 84
general net, see net, any-cut, 233
general position, 45
— no 2 points on vertical, 53, 55
— no 3 points collinear, 47, 66, 68,

129, 130

— no 4 points cocircular, 88, 89,
93, 94, 110, 113, 118, 119

— no 4 points coplanar, 77, 78
general unfolding, see unfolding,

233
genus, 197, 206, 207, 211–215,

237
geodesic
— curvature, 218
— segment, 233
geographic information systems

(GIS), 38, 105, 143
Gerwien, Paul, 26
Ghrist, Robert, 169
GIS (geographic information

systems), 38, 105, 143
Glickenstein, David, 193, 194
Gluck, Herman, 227
gradient ascent, 90
Graham scan, 58, 63
graph
— coloring, 255
— diameter, 75
— drawing, 189, 198
— dual, 210
— flip, see flip graph, xiii
— loop, 69
— star, 240
grassfire transformation, 138, 139,

144
Grayson, Matthew, 192
greedy algorithm, 95
Greek cross, 23
Green, Peter, 114
Grünbaum, Branko, 251
guard, 16, 17, 19, 20, 22
— cover, 16–22
— edge, 20
— half-, 100

Haiman, Mark, 81
halfplane
— intersection algorithm, 126, 127
— lower, 126
— upper, 126
Halpern, Dan, 198
Hamilton, Richard, 192
Hanke, Sabine, 76
Harvey, Matthew, 251
heat equation, 191, 197
Hilbert, David, 28, 37
Hoey, Dan, 113
homeomorphism, 205–208
homology, 169, 213
homotopy, 156, 162
— equivalence, 156, 157, 207
— type, 157–159
— type of α-complex, 165
Hong, Se Jun, 53

Hopcroft, John, 178
hyperbolic geometry, 27, 83, 106
hypercube, 15, 204, 243, 244, 250
hyperplane, 131

icosahedron, 201, 202
— truncated, 203, 228, 229
inclusion–exclusion principle, 168
invisible shape, 36

joint
— kinked, 182
— universal, 173
Jonash, Eric, 81
Jordan, Camille, 2
Jordan curve theorem, 2
Joseph, Deborah, 178

Kagan, Veniamin, 28
Kahn, Jeff, 20
Kapala, Sam, 81
Kapranov, Mikhail, 84
Kapur, Sham, 47
Karp, Richard, 255
Kepler, Johannes, 208
kernel, 17, 121, 129
Kettner, Lutz, 64
Klawe, Maria, 20
Klee, Victor, 16
Klein, Rolf, 135
Kleinberg, Jon, 257
Kleitman, Daniel, 20
knitting needles, 170, 185, 186,

197
knot, 206
— 4D, 187
— trefoil, 186
— trivial, 187
Krasser, Hannes, 97

L’Huilier, Simon, 212
Lakatos, Imre, 251
Latin cross, 228, 229, 248
LaValle, Steven, 198
Lawson, Charles, 73, 106
Lee, Carl, 81
Lee, Der-Tsai, 135
Left-of, 48, 63
Legendre, Adrien-Marie, 208
Leiserson, Charles, 257
Leroy P. Steele Prize, 37
Levin, Leonid, 255
lexicographical ordering, 77, 88
Lindgren, Harry, 23
line
— segment, 1
— of support, 43
linear equations, 30
linear programming (LP), 15
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Lipschitz continuity, 154
Lloyd, Errol, 96
local feature size, 150, 151
locus, 136
lower bounds, 38, 46, 51, 52, 254
LP (linear programming), 15

machine learning (ML), 38, 168,
189, 197

machining
— numerically controlled, 143
— pocket, 146
manifold
— 3-, 177
— n-, 177
Maxwell–Cremona correspon-

dence, 250
McCammond, Jon, 106
Med(P), see medial axis, xiii
medial axis, 136–138, 140, 143,

144, 147, 150, 169, 235, 236
— 3D, 168
— algorithm, 140, 142
— of convex polygon, 139–142,

144, 237
— digital, 168
— parabolic arcs, 142, 143
— of polyhedron, 138, 139, 145
— sand, 140
— and Voronoi diagram, 137
Mehra, Rohan, 227
Michael, T. S., 37
midpoint transformation, 190, 191
Millennium Prize, 255
Miller, Ezra, 244
Miltzow, Tillmann, 257
minimum spanning tree (MST), 96
minimum weight triangulation

(MWT), 94–97
Minkowski sum, 168
mirror reflection, 36
Mitchell, Joseph, 238
miter join, 146, 147
ML (machine learning), 38, 168,

189, 197
Monsky’s theorem, 36
morphing, 105, 184, 189
— parallel, 190, 197
motion capture, 97
motion planning, 107, 188, 198,

254
— algorithm, 188
— complexity, 198
— probabilistic roadmap, 188
— sofa, 197
motion, expansive, 184
Mount, David, 239
MST (minimum spanning tree),

96
Mulzer, Wolfgang, 96

MWT (minimum weight
triangulation), 94–97

n-cube, 244
n-orthoplex, 244
Näher, Stefan, 64
nearest neighbor, 134
nearest-neighbor Crust algorithm,

153
net, 228, 229, 231, 233, 241
— any-cut, 243
— of boxes, 248, 250
— common, 248
— of cube, 243
— general, 233, 239, 241, 243
— of hypercube, 243
— of nested prismatoid, 232
— of truncated icosahedron,

228
Nicolson, Norman, 227
NP, nondeterministic polynomial,

254
NP-complete, 8, 16, 96, 178, 254,

255
NP-hard, 96, 254, 255

O( ), see big-Oh notation, xiii
O’Rourke, Joseph, 37, 64, 169,

198, 241, 251
octahedron, 201, 202, 204, 227,

246, 250
— 4D, 244
	( ), see big-Omega notation,

xiii
onion peeling, 63
open problems, see unsolved

problems, xiii
Ottmann, Thomas, 76
output-sensitive algorithm, 48, 57
Overmars, Mark, 106, 135

P, polynomial time, 254
Pak, Igor, 244
Papadimitriou, Christos, 239
parabola
— convex hull lower bound, 51
— directrix, 142
— focus, 142
— in medial axis, 142, 143
— offset curve, 147
— sand, 140, 143
paraboloid, 122–124, 135
partition
— of cube, 14
— by diagonals, 5
— fair, 27
— Jordan curve, 3
— of surface by graph, 212, 213
— into tetrahedra, 7, 15
pattern recognition, 38, 107

perimeter
— equipartition, 27
— gluing, 246
— minimum, 41, 52
persistence, 167, 169
piecewise linear, 86, 145
pigeonhole principle, 9, 19
plane sweep algorithm, 114
Plato, 201
Platonic solids, 34, 199, 201, 202,
204, 236, 250

Poincaré, Henri, 137, 235
Poincaré conjecture, 190, 197, 255
point
— generic, 240–243
— round, 192, 194
polygon, 1
— comb, 17, 18
— ear, 9
— exterior, 20
— with holes, 6, 10, 20, 83
— mirror, 36
— mouth, 10
— orthogonal, 20, 197
— orthogonally convex, 63, 189
— parallel, 189, 197
— point-in-, 4, 36
— reconstruction, 147–149
— regular, 200
— simple, 1, 191, 194, 196, 242
— spherical, 200, 224–226
— star, 17, 121
— star-shaped, 129
polygonization, 63
polyhedral complex, 244
polyhedron
— 1-skeleton, 80, 103, 208, 209
— convex, 199, 200, 221, 226, 231;

source unfolding, 239–243; star
unfolding, 239, 241, 242

— definition, 7, 205, 206, 208
— flattening, 146, 168, 169
— flexible, 227, 250
— medial axis, 138
— megaplex, 37
— net, see net, xiii
— nonconvex, 200, 211, 220, 221,

227
— orthogonal, 145
— regular, 201, 204
— reshaping, 248
— Schönhardt, 8, 21, 36
— Seidel–Thurston, 21, 22
— semiregular, 203, 229, 245
— shaky, 250
— Steffen’s, 227, 228, 250
— straight skeleton, 145
— unfolding; nonoverlap, 228,

233, 242; overlap, 231
— uniform, 203
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polytope
— 4D, 204
— associahedron, 81, 82, 103
— convex, 243, 244
— cross, 204
— regular, 81, 204, 250, 251
— secondary, 84, 106
Preparata, Franco, 52, 53, 64
primal plane, 124, 125
priority queue, 142
prism
— antiprism, 246
— rectangular, 35
— triangular, 78
prismatoid, 232
— nested, 232
prismoid, 233
proof sketch, viii
protein
— folding, 170, 188, 197
— structure, 188
pseudoline, 134
pseudotriangle, 100, 101
pseudotriangulation, 101, 102,

104, 105, 184
— minimal, 102
— pointed, 101–104

quench point, 136, 138

Rambau, Jörg, 106
reachability region, 180, 182
recursion vs. induction, 53
reflex, 11
reflex chain, 71, 100
regular subdivision, 106
rendezvous problem, 195
Riemann–Roch theorem, 216
rigid, infinitesimally, 227
Rivest, Ron, 257
robot arm, 173, 174, 178, 188,

254
— hand, 173
— motion, 170
— reachability, 179–182, 198
— shoulder, 173
robust computation, 64
Rote, Günter, 96, 103, 183
Ruppert, Jim, 8

Saalfeld, Alan, 98
Sabitov, Idzhad, 227
Salzman, Oren, 198
Santos, Francisco, 79, 103,

106
Schirra, Stefan, 64
Schläfli, Ludwig, 203
Schläfli symbol, 203, 205
Schlegel diagram, 204, 209
Schreiber, Yevgeny, 239

Schuierer, Sven, 76
scissors congruent
— 2D, 22–27
— 3D, 28, 34, 37
— transitive, 25
Sedgewick, Robert, 257
segment, line, 1
Seidel, Raimund, 8, 21, 64, 122,

135
set partition problem, 178, 254,

255
Shamos, Michael, 52, 64, 113
shape
— α-complex, 158
— biological, 137
— filtration, 167
— medial axis, 136
— of point set, 136, 154
— of polygon, 136
— topological, 156
Sharir, Micha, 71, 198, 239
Sheffer, Adam, 71
Shewchuck, Jonathan, 105,

106
shortest path
— in flip graph, 76, 84
— in graph, 237
— in polygon, 11, 235
— on polyhedron, 233–236, 239,

242; algorithm, 237, 238
Sibson, Robin, 114
sign alternation, 222, 225, 226
simplex
— 4-, 204
— n-, 15, 204
simply connected, 1
Skel(P), see straight skeleton,

xiii
Sleator, Daniel, 83, 106
Snoeyink, Jack, 169
software
— ArcGIS, 105
— CGAL, 63, 64
— LEDA, 64
— Mathematica, 63
— Matlab, 63, 105
— polymake, 63
space complexity, 253
spanning tree, 96, 208, 209, 237,

242, 243
— minimum (MST), 96, 97
special orthogonal group SO(3),

177
sphere
— 3-, 177
— polyhedral, 206, 210, 218
— topological, 176
Stanley, Richard, 37
star
— graph, 240

— polygon, 17, 121
— of vertex, 74, 75
Stasheff, James, 81
Steffen, Klaus, 227
Stein, Cliff, 257
Steiner, Jakob, 98
Steiner point, 98–100
Steinitz, Ernst, 170, 171
straight skeleton, 143–146, 169
— of polyhedron, 145, 146
Streinu, Ileana, 103
supporting line, 43
surface
— connected, 205
— orientable, 211, 213
— reconstruction, 148, 153, 168,

169
Sydler, Jean-Pierre, 34
Sydler’s theorem, 36

Tamassia, Roberto, 198
tangent
— circle, 154, 192
— line, 43, 44, 47, 53–56, 61
— plane, 61, 122, 131, 218
Tardos, Éva, 257
Tarjan, Robert, 83, 106
terrain, 86, 87, 122
— reconstruction, 86, 87
tesseract, see 4-cube, xiii, 15
tetrahedralization, 1, 7, 14, 15, 21,

36, 76, 77, 79, 105, 106
— of cube, 7, 14, 15
— Delaunay, 124
— impossible, 8, 21, 22
— number of tetrahedra, 77, 78
— space of, 78
tetrahedron, 250
Thales’ theorem, 91, 93
Thiessen polygons, 107
Thurston, William P., 21, 83, 106,

251
tiling, 250
TIN (triangulated irregular

network), 105
topological data analysis, 167
topology, 176
torus, 175, 176, 206, 229
— linked, 167
— n-dimensional, 177
Toussaint, Godfried, 20
traveling salesman problem (TSP),

256
tree
— interdigitating, 210
triangle
— minimum area, 129
— minimum area algorithm,

130
— skinny, 87, 94
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triangulated irregular network
(TIN), 105

triangulation
— 3-coloring, 18
— canonical, 183
— compatible, 97, 98, 100, 105
— of convex polygon, 11, 13
— counting algorithm, 72
— dual, 82, 118, 119, 131
— existence, 5–7
— fatness, 88–90, 119
— greedy, 96
— inducing, 15
— minimum weight (MWT),

94–97
— n-dimensional, 15
— number of, 10, 13, 14, 71
— number of triangles, 9, 10, 69,

71
— Pitteway, 119
— of point set, 65
— of polygon, 1, 5
— of polygon with holes, 6
— space of, 73, 183
— unique, 10, 13, 14, 119
triangulation algorithm
— incremental, 68, 69, 74, 183
— triangle splitting, 66–69
Trossen Robotics, 173
TSP (traveling salesman problem),

256

Uehara, Ryuhei, 250
unfolding
— any-cut, 241
— edge, 229, 231–233, 244
— refold, 247–249
— ridge, 244
— source, 239, 241–244
— star, 239–241, 243, 244
uniform distribution, 47
unsolved problems, viii
— 3D Graham Scan (#8), 58
— 3D Locked Chains (#21), 187
— 3D Unit Chains (#20), 187
— Alexandrov Folding (#26), 247
— Any-Cut Nets (#25), 243
— Compatible Triangulations

(#13), 98

— Compatible Triangulations in
Simple Polygons (#14), 100

— CountingTriangulations (#2), 14
— Discrete Flow (#22), 195
— Dürer’s Problem (#23), 231
— Edge Guards (#5), 20
— Fair Partitions (#6), 27
— Five-Piece Puzzle (#7), 35
— Flip Graph in 3D (#10), 79
— Minimum Triangulations of

Cubes (#3), 15
— Minimum Weight Triangulation

(#12), 97
— Open Curve Reconstruction

(#18), 153
— P = NP (#28), 255
— Pointed Pseudotriangulations

(#15), 104
— Shortest Path in Flip Graph

(#11), 84
— Spaces for Simple Polygons

(#19), 185
— Straight Skeleton (#17), 146
— Tetrahedralizable Polyhedra

(#1), 8
— Triangulation Counting

Algorithm (#9), 71
— Unfold and Refold (#27), 249
— Unfolding Prismatoids (#24),

232
— Visibility Graphs (#4), 18
— Voronoi Diagram of Lines in 3D

(#16), 121
upper bounds, 46, 253
Urrutia, Jorge, 37

van Kreveld, Marc, 106, 135
vertex
— convex, 10
— flat, 1, 10, 45, 202, 203
— of polygon, 1
— reflex, 10, 11, 13, 14, 17, 142,

144, 146
visibility, 16, 20, 38, 43, 46, 59,

68, 242
— of face, 59
— graph, 18
— k-, 36
— x-ray, 36

von Staudt, Karl, 208
Vor(S), see Voronoi diagram, xiii
Voronoi, Georgy, 107, 119
Voronoi diagram, 107, 108, 124,
131, 135, 136, 244

— and arrangements, 135
— combinatorial complexity, 112,

113, 121
— and cut locus, 240, 241
— disconnected, 112
— dual, 116–119, 131, 210
— dynamic, 134
— edge, 108, 111, 133
— farthest point, 132–134
— game, 134
— geometry, 107
— kth-order, 134
— of lines in 3D, 121
— and medial axis, 137
— in nature, 134
— one-dimensional, 116
— of polygon, 146
— region, 107–109, 113, 116,

133
— sand, 134
— uniqueness, 119
— from upper envelope, 131
— vertex, 108–111, 133, 151
Voronoi diagram algorithm, 112,
120

— divide and conquer, 133
— Fortune’s plane sweep, 114,

133, 135
— incremental, 114, 115, 121
Voronoi map, 134

Wallace, William, 26
Wallace–Bolyai–Gerwien theorem,
26, 27, 248

Wang, Cao An, 169
Whitesides, Sue, 178
width
— of point set, 63
wrapping, 250

Zaremba, Stanislaw, 171
Zelevinsky, Andrei, 84
Zhu, Xi-Ping, 198
Ziegler, Günter, 28, 37




