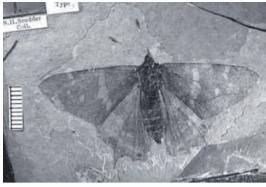
Introduction

CONTENTS

- 62 Papilionidae
- 82 Hedylidae
- 86 Hesperiidae
- 112 Pieridae
- 132 Riodinidae
- 142 Lycaenidae
- 162 Nymphalidae
- 232 Glossary
- 234 Recommended Resources
- 235 Index
- 240 Acknowledgments and Picture Credits

EXTINCTION


In *On the Origin of Species*, Charles Darwin recognized extinction as part of natural selection: "species and groups of species gradually disappear, one after another, first from one spot, then from another, and finally from the world." Indeed, we know that some butterflies have become extinct. Some of these are represented by a handful of fossils or specimens held in museum collections, while others are known only from illustrations.

Three of the many species of butterflies listed as Extinct on the IUCN Red List are *Libythea cinyras* (Nymphalidae), *Lepidochrysops hypopolia*, and *Deloneura immaculata* (both Lycaenidae). One of these, the Mauritius Snout *L. cinyras*, is known from a single specimen collected in Moka, Mauritius, in 1865. Roland Trimen published the description of this butterfly in 1866 and implied

ABOVE The only known specimen of the Mauritius Snout *Libythea cinyras*, in the Natural History Museum, London. The head and abdomen are missing, but its distinctiveness is supported by its unique wing pattern.

that there was another specimen in the "South African Museum," but this specimen has never been located. The single known specimen is held at the Natural History Museum in London. Two African lycaenids were also last recorded in the late 1800s and are considered not to have been rediscovered since, although more research is needed to clarify the identities of these hairstreaks. It is important to emphasize that most tropical butterflies need their status assessed.

Fossil records and amber inclusions of butterflies (i.e., trapped in resin) are limited compared with other fossilized insects, and about

LEFT | Prodryas persephone is a well-preserved fossil of a nymphalid butterfly from the Eocene. The species was described by Samuel Scudder based on this fossil specimen and represents type specimen no. 1 at the Museum of Comparative Zoology (Cambridge, USA).

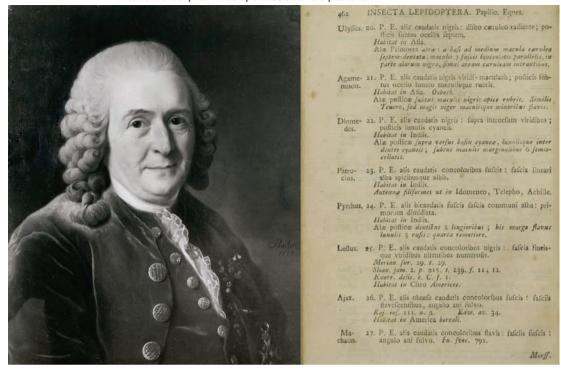
BELOW | Jan Sepp's illustration of an enigmatic skipper *Papilio flavomarginatus*. While it is currently classified in a skipper genus *Salatis*, it is difficult to narrow down its origin and identity without any known specimen.

30 are known. Among these fossils, the nymphalid *Prodryas persephone* from the Eocene Florissant shale beds in Colorado is the best-preserved butterfly fossil. These fossils connect us to ancient life, as well as providing insights into the evolutionary history of butterflies.

In reality, there are many butterflies, especially in the tropics, that we do not know much about and are unidentified. These enigmatic butterflies are known only from illustrations, often accompanying the original description, while the specimens used to prepare the description by the author (type material) have been lost. An example is the Neotropical skipper Papilio flavomarginatus (Hesperiidae), which was named in the mid-1800s by Dutch entomologist Jan Sepp, who described many butterflies from Suriname based on observation and drawings made by a naturalist, H. J. Scheller. Scheller traveled to Suriname in the late 1700s and made life history notes and illustrations by directly observing immatures as well as adults. Sepp later acquired Scheller's field notes and drawings, made modifications, and added text to describe taxa he considered new to science, presumably without having physical specimens. At this point, we do not know of any skipper specimen that matches Scheller or Sepp's drawings. Another enigmatic specimen was described by Johan Christian Fabricius as Hesperia busiris in 1793 based

on a drawing prepared by William Jones. No specimen was known and for more than two centuries this species was classified as a skipper of an unknown origin. Recently, a noctuid moth, presumably from western Africa, described in 1854 was concluded as conspecific with *H. busiris* based on a single known specimen, which might have been used to name both "butterfly" and moth.

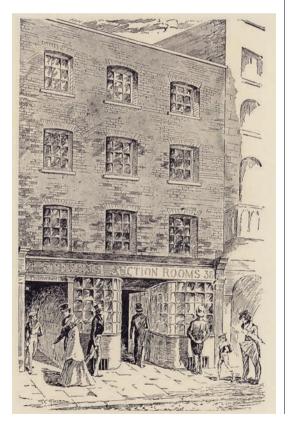
HISTORY OF STUDYING BUTTERFLIES


Humans and butterflies presumably had close interactions when we developed agriculture about 12,000 years ago and transitioned into a more sedentary lifestyle from a nomadic way of life. As we had to grow and produce our own food, identifying and understanding pests and non-pests would have been a critical part of the farming lifestyle. We had to classify beneficial, neutral, and harmful insects to survive. This attempt to classify insects, which undoubtedly included butterflies, can be considered as an embryonic phase of taxonomy (the science of naming and classifying organisms); it is important to emphasize that we have been classifying objects

since the beginning of humanity, and we will continue to classify them until we disappear from this planet. One of the first attempts to systematically classify organisms was made by Aristotle. He divided organisms into groups, one of which, termed *Entoma*, included insects, which he further classified based on the presence or absence of wings and mouthpart characters. A translated version of Aristotle's *Historia Animalium* suggests he examined butterflies (possibly the Cabbage White *Pieris rapae*) and observed the immature stages.

A notable figure in the study of butterflies is Maria Sibylla Merian (see p. 19). She was born in

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.


Germany in the mid-seventeenth century and grew up raising butterflies and moths. She dedicated herself to practicing her watercolor painting skills by meticulously documenting plants and their interactions with butterflies, caterpillars, and other insects. Her commitment and engagement in painting the metamorphosis of caterpillars led her to travel to the then Dutch colony of Suriname. Merian spent two years capturing the lifecycle of tropical butterflies with their host plants (as well as other creatures) through engravings and watercolors, which led to the production of her monumental work Metamorphosis Insectorum Surinamensium. Her attention to detail coupled with her artistic talents means that her work is prized for its aesthetic values as well as its scientific merit. Like the butterflies she painted, Merian and her work sit at the intersection of art and science. Because of its dual nature, her work was

ABOVE Portrait of Carl Linnaeus and a page from the 10th edition of his *Systema Naturae*. It is deemed to have been published on January 1, 1758, which is the arbitrary starting date of zoological nomenclature.

far-reaching and provided evidence of metamorphosis (although she was not the first to document it) at a time when many people believed in spontaneous generation.

Merian's work influenced Carl Linnaeus's *Systema Naturae*, in which binomial nomenclature was adopted (tenth edition, 1758), and where all known butterflies, from swallowtails to skippers, were classified under the generic name *Papilio*. Over 300 species of butterflies were described by Linnaeus, including several misidentified moths, such as *Urania*. Linnaeus' work significantly advanced our understanding of butterflies and other organisms by assigning a binomial to each of them as well as producing order by grouping

them into nested hierarchies (class > order > genus > species). Subsequently, Linnaeus's student Johan Christian Fabricius established the genus Hesperia to accommodate those species known today as skippers. Fabricius was a prolific Danish entomologist known for naming about 10,000 new species of insects, including over 1,600 butterflies and moths. Fabricius further motivated Pierre André Latreille to publish his Précis des caractères génériques des insectes, disposes dans un ordre naturel (Summary of generic characteristics of insects, arranged in a natural order) in 1796 where he introduced the concept of family and tribe. Two butterfly families, Papilionidae and Hesperiidae, are attributed to Latreille and the root for other butterfly families accepted today can be traced back to around this era. Latreille's colleague at the museum in Paris, André Marie Constant Duméril

introduced the term *Rhopalocera* (as *Ropalocéres*) in 1823, which was used to scientifically refer to butterflies by many subsequent authors. *Rhopalocera* means "clubbed antennae," and, in contrast, moths were termed *Heterocera*, meaning "variable antennae," reinforcing the classic distinction between butterflies and moths based on antennae shape. Similarly, the terms *Diurini* and *Nocturini* were also used for butterflies and moths respectively.

The Victorian era saw serious interest from the public in natural history specimens, and exotic tropical bird and butterfly specimens, especially, received special attention and commanded good prices at auction houses. The so-called Stevens Auction Rooms at 38 King St., Covent Garden, in London was where various items such as plants, butterflies, and elephants were sold, including specimens collected by Alfred Russel Wallace and Henry Walter Bates. Their work was financially supported by Samuel Stevens who was partially in charge of the auction room. Here, Agrias claudina godmani (Nymphalidae) from Brazil reached a record price for an insect. Evidently, there was a market that could support Wallace and Bates's expeditions. Similarly, many other naturalists in Europe or America embarked on journeys to tropical rainforests and brought back specimens.

In the second half of the nineteenth and the early twentieth century, there was an explosion of interest in naming and describing new butterfly species, especially from European explorers and naturalists, mostly from the UK or Germany. Our understanding of butterfly species diversity improved significantly during this time. German

LEFT | Stevens Auction Rooms at 38 King Street, London. From Emily Allingham's *A Romance of the Rostrum*, published in 1924.

entomologist Hans Fruhstorfer was one of the most prolific authors, publishing descriptions of new butterfly taxa. Fruhstorfer traveled around the globe and supported himself by selling insect specimens and shells. The Dresden-based insect trading company Staudinger & Bang-Haas also issued catalogs and price lists for butterfly specimens and supported scientific endeavors. Otto Staudinger and Andreas and Otto Bang-Hass (father and son) were all accomplished Lepidoptera taxonomists and influential dealers of their time. Commercial venture and science seem to have been two sides of the same coin during this period. Walter Rothschild wrote in the preface of Emily Allingham's A Romance of the Rostrum (a story about the Stevens Auction Rooms), "I have always felt ... the rooms at 38 King Street ... were among the greatest aids and inducements to the study of Systematic Zoology." Like Stevens, Rothschild funded naturalists, including Albert Stewart Meek, who shot a Queen Alexandra's Birdwing Ornithoptera

ABOVE | Examples of price lists for butterfly specimens sold through the firms Hans Fruhstorfer (left) and Staudinger & Bang-Haas (right). The latter list was compiled and sent specifically to a Boston-based butterfly collector, Andrew Weeks.

alexandrae. The Victorian era was the time when science was not yet institutionalized, so many studies of butterflies were self-funded by naturalists who had a single-minded desire and enthusiasm to better understand butterflies, mainly by amassing specimens.

While the Victorian era cannot be experienced directly, the energy and enthusiasm of early naturalists can be felt through literature and archival records. The history of the study of butterflies has established the achievements of a diverse group of people, who contributed toward our understanding of these beautiful creatures, an understanding based on their innate motivation to explore the natural world.

STUDYING BUTTERFLIES TODAY

One major advancement in our understanding of butterflies has been achieving a certain degree of stability in classification owing to the DNA revolution. Seven families are recognized and their relationships seem well resolved at a higher classification level. The Darwinian era saw many scholars who influenced classification by promoting "tree-thinking" or "evolutionary thinking," such as Ernst Haeckel, building upon the groundwork of Latreille and Fabricius. The late twentieth century saw the foundation of Hennigian phylogenetics, which was followed by the introduction and subsequent rise of molecular techniques and computational power over the past few decades, elucidating the evolutionary history of butterflies. Consequently, we have now arrived at a more natural classification of

Trigonia

Celtis

Lonchocarpus

Inga and Cupania

Hampea

Capparis and Hampea

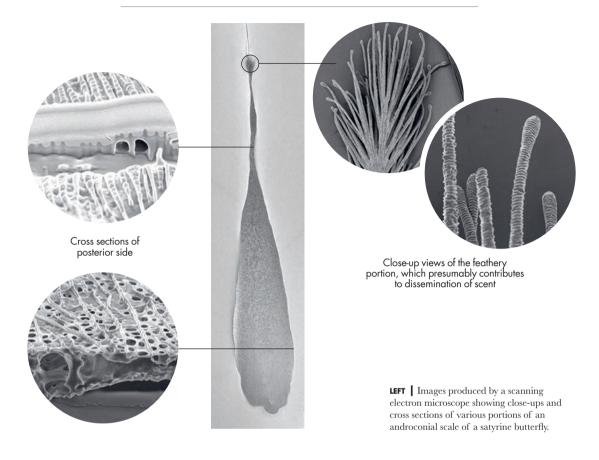
Byttneria

Senna Senna

butterflies, based on relatedness rather than resemblance. The more recent placement of the families Hedylidae and Hesperiidae in butterflies was supported by reconstruction of the phylogeny based on DNA sequence data. At the species level, genetic data have contributed particularly toward the discovery and description of cryptic butterfly species that were previously overlooked by experts.

In 2004, a group of researchers combined DNA data with caterpillar morphology and host plant records at a site in Costa Rica to show that skipper Astraptes fulgerator (Hesperiidae), previously thought to be a single common and variable species ranging from southern USA to northern Argentina is, in fact, a complex of at least ten species just in Costa Rica. DNA data also revealed that two satyrine species from South America, Caeruleuptychia helios and Magneuptychia keltoumae (both Nymphalidae), were in fact the male and female of the same species, morphologically distinctive due to sexual dimorphism. It has even been possible to extract and sequence DNA from museum specimens collected from the 1700s onward, so butterfly specimens housed at natural history museums and in private collections, all around the world, are now highly sought for DNA sequencing analysis. A whole new area of research has developed, termed museomics, meaning genomics dedicated to museum materials.

LEFT Diversity in caterpillar patterns that partly supported "ten species in one" in a study in Costa Rica of the skipper *Astraptes fulgerator* (Hesperiidae). Each name indicates the different plants that the caterpillars feed on.

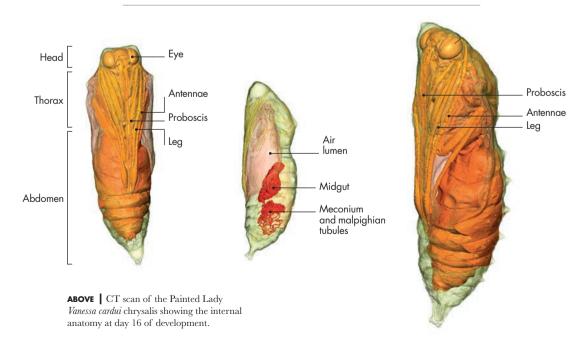

Accumulation of butterfly specimens collected over centuries in natural history museums has allowed innumerable research projects to answer questions related to climate change, macroecology, evolution, and conservation. These existing specimens and their label data are being digitized and databased, and gradually being made accessible to the outside world, which will be used to answer some of society's pressing questions. At the Natural History Museum in London, the details of over 180,000 specimens of British butterflies collected over 200 years have been individually digitized. An international group of researchers used these data to assess the impact of climate change on the body size of British butterflies by investigating the relationship between body size and temperature. Their research suggests that adult butterfly body size increases with temperature during the late stages of larval development, providing insights into how butterflies can respond to climate change.

This type of research using large data sets coupled with international collaboration is typical of butterfly research conducted at academic institutions today. Further, with advancement of various technologies, we are able to look at certain aspects of butterflies in-depth. Scanning electron microscopy (SEM) is used for examining the ultrastructures of butterfly scales (see p. 15). A computed tomography (CT) scanning technique is an imaging procedure that can be used to capture internal structures. Researchers used CT scans to monitor the process of a butterfly pupa developing into an adult butterfly while still alive inside (Maria Sibylla Merian would have loved to have seen that!). With the development of artificial intelligence and machine learning, researchers have been able to systematically study evolutionary patterns in species diversity and compare males with females in some species, including birdwings.

ABOVE These two specimens (upperand undersides) were previously thought to represent two different species until DNA revealed that these are the male (top) and the female (bottom) of the same nymphalid butterfly, *Caeruleuptychia helios*.

ANDROCONIAL SCALE

We live in a world where we rely heavily on the internet for obtaining information and for researching collaboratively. Additionally, many parts of the world can now be reached within a few hours or days. This can be advantageous for butterfly research, but if we care about the butterflies on the planet today we need regulations to prevent chaos. The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) is an intergovernmental agreement to ensure that international wildlife trading does not jeopardize existing populations of threatened species. Four butterfly species are considered endangered and receive the top level of protection under CITES Appendix 1 (swallowtails Papilio chikae, Parides


burchellanus; Homerus Swallowtail Pterourus (Papilio) homerus; and the Queen Alexandra's Birdwing Ornithoptera alexandrae) along with rhinos, elephants, and gorillas. Specimens of these four species collected after July 1, 1975—dead or alive—are prohibited for international trade. Other species of butterflies are listed in CITES but under categories with fewer limitations. This does not mean that people can freely collect and study butterflies that are not listed under CITES. Many countries require collecting permits, even for studying common butterflies, in addition to export permits to take specimens out of their original country. Further, if the study involves DNA analysis, the Nagoya Protocol on Access and Benefit Sharing can come into play. This is an international

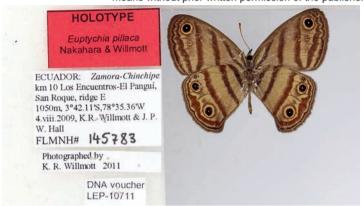
agreement that came into force in 2014 and ensures that the benefits arising from the utilization of genetic resources are shared in a fair and equitable way (known as access and benefit sharing). The rationale behind this agreement is that genetic resources originating from a country must be shared equally with that country, particularly if they are used for commercial purposes.

The study of butterflies, especially natural history and taxonomic work, was undertaken by few museums and societies in Europe in the nineteenth century and relied considerably on the efforts of individual naturalists, such as Bates, Wallace, Rothschild, and Fountaine, to name only a few. However, nowadays it is becoming less simple for nonprofessional entomologists and naturalists to contribute to butterfly research due to the bar being raised and research depending on the use of molecular data and other advanced techniques that are not readily available to

amateur entomologists. While they can continue to enhance current knowledge of butterflies, the limits to the types of work they can undertake and separation from professional entomology has its disadvantages. Modern science, founded on the study of the genome is based largely at institutions, but contributions from amateur naturalists and citizen scientists is crucial for a better understanding of the biology, ecology, and conservation of butterflies. Several online initiatives—including eButterfly and photography platforms such as iFoundButterflies, iNaturalist, Butterfly Catalogs, Butterflies and Moths of North America (BAMONA), and Flickr, and also social media platforms—show that there is a huge enthusiasm for butterflies. Since butterfly diversity is concentrated in tropical countries in the Global South, it is important to encourage and facilitate the inclusion of amateurs and researchers from various backgrounds in butterfly research.

CT SCAN OF PAINTED LADY CHRYSALIS

BUTTERFLY NOMENCLATURE


SCIENTIFIC NAME VERSUS COMMON NAME

A butterfly represented by the scientific name Papilio glaucus is also known by the common English name Eastern Tiger Swallowtail, and both names refer to the same swallowtail, found in the eastern USA. Current taxonomy uses Linnaeus's method of naming species, called binomial nomenclature, whereby each species has a unique combination of two names, consisting of the genus name and the specific epithet. An advantage of this naming system is its inherent clarity—each taxon is known internationally by the same name—which is essential when fostering international communication about relationships among taxa. Hence, we can assume that *Papilio* glaucus is closer to other species in Papilio than to butterflies in other genera.

Common names vary according to language and even locally, which can lead to confusion. Common names can be informative and engaging if understood by the audience, but scientific communication is often between people who do not share the same language, so an accepted scientific name can be more useful. Most tropical butterflies do not have widely accepted common names. Conversely, some species have multiple common names, even in the same language. For instance, the butterfly known as the Mourning Cloak in North America and the Camberwell Beauty in the UK has one scientific name: Nymphalis antiope. Scientific names are meant to overcome this problem. Ideally, every species should be represented by a unique and universally accepted scientific name, although collisions do occur, where two different scientific names have been applied to the same butterfly or two different butterflies have been given the same name. The International Commission on Zoological Nomenclature (ICZN) published a set of rules for treatment and use of names to resolve such nomenclatural issues and many potential causes of confusion. These rules should be

Category	Latin suffix (example)	Latinized suffix common name (example)	English common name
Order	-ptera	Lepidoptera	Butterflies and moths
Superfamily	-oidea	Papilionoidea (papilionoids)	Butterflies
Family	-idae	Papilionidae (papilionids)	Swallowtails, Apollo, and festoons
Subfamily	-inae	Papilioninae (papilionins)	
Tribe	-ini	Papilionini (papilionines)	Swallowtails

Genus and species names form a unique combination, for example, *Papilio alexanor*. For subspecies a third name is added, for example, *Papilio alexanor destelensis*.

LEFT A type specimen usually bears a red label indicating that it serves as the standard for the species.

consulted before a name is selected for an undescribed new butterfly. Authors may name undescribed butterfly species after a characteristic feature of the insect, a place of origin, a person (or people), or in reference to an in-joke; ideally, it should sound euphonious. While not specified by the rule book, it is not recommended that you name a new species after yourself!

SUBSPECIES

Subspecies is the taxonomic rank below species. There are many subspecies recognized for butterflies. The subspecific name is added as a trinomen at the end of a binomen, and typically reflects a geographical variation in species occupying a wide range, although other naming criteria can be applied. Subspecies can be raised to species level and species can be downgraded to subspecies depending on the available scientific evidence. For example, in the Philippines, the Luzon Peacock Swallowtail Papilio chikae chikae is known from Luzon and another subspecies, P. chikae hermeli, from northern Mindoro. Papilio chikae hermeli was originally described as its own species, P. hermeli, but evidence suggests that it is conspecific with P. chikae, but represents a geographic variation. The Large Copper that became extinct in the UK in the 1850s is, in fact,

the nominotypical subspecies *Lycaena dispar dispar* (Lycaenidae), while two other subspecies of *L. dispar* are extant in Europe and Asia.

TYPE SPECIMEN

Every new species described should have an objective standard. The specimen serving as this standard should represent the main characteristics that separate the newly named species from others. The objective standard, which shows these characters, is called the type specimen, and it is designated by the original author(s) or by subsequent designation. Modern descriptions include the designation of a holotype (one specimen), while in the past the concept of a species was typically based on a series of specimens (syntypes). The type specimen is a reference that can be checked if there is doubt about the identity of a species; thus it is important to mention in the paper describing it which institution holds the specimen so other researchers can locate and inspect it. A red or brightly colored label is frequently attached to type specimens to indicate their unique status. As science progresses, the interpretation and the concept of species can change, but the type specimen will remain as long as the specimen exists.

DISCOVERING NEW SPECIES

Discovering a new butterfly species is exciting. There are hundreds of butterflies still waiting to be discovered, described, and named by science. So where will these new butterfly species be found? Remote, unexplored areas mostly in the tropics are certainly good places to find new species. However, new species can be hiding in plain sight. Sometimes we just need to study our local butterfly fauna in-depth. For example, as recently as 2014, a new species, Intricate Satyr

BELOW Intricate Satyr *Hermeuptychia* intricata resting on a leaf. The recent discovery of this species probably represents a proverbial "tip of the iceberg" of cryptic species hiding in plain sight.

Hermeuptychia intricata, was found in the southern USA. Scientists often find new species when sorting out drawers in museum collections, where specimens collected at different times and from many different locations are stored.

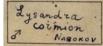
So, what happens when someone thinks they might have found a new butterfly species?

The first step to check is the identity of the butterfly and that it has not been named previously. Typically, this is done by reviewing published literature and, if there is any doubt, checking type specimens and other specimens of related species to assess whether there are wing pattern or other variations. It is important to exclude the possibility of the butterfly representing merely a variation, a form, or an


aberration, of a known species. Discussion with butterfly taxonomists can also be beneficial. To characterize the species, the genitalia should be inspected for both sexes if available and/or the DNA sequenced to find which taxa it is closely related to and which genus it should be placed in.

Once the name has been chosen for the new butterfly, a paper fully describing it must be written and published in an appropriate journal to introduce it to the scientific community and to the world. The article should include figures illustrating notable features, especially the genitalia, as well as the body and wing patterns, habitats, host

plants, and all the other information the authors


have. The paper must be peer-reviewed by fellow specialists to be published in a scientific journal, fulfilling requirements of the ICZN. Once published, the name of the new butterfly species can be used officially to communicate about that butterfly.

BELOW Vladimir Nabokov is known as a novelist and poet, but he also studied butterflies (especially Lycaenidae) at the Museum of Comparative Zoology (Cambridge, USA). As a taxonomist as well as a poet, he expressed his passion for naming new species in a poem "On Discovering a Butterfly".

BUTTERFLIES AND SOCIETY

The first butterflies emerged around 100 mya, while humans have been on the planet for just a few hundred thousand years. The earliest humans would have lived in a very different environment from ours today: closer to nature, sensitive to the changes in seasons, and closer to plants and animals, including butterflies.

Human attitudes to insects might not always be positive, but butterflies often stand apart. Most insects are seen as "creepy crawlies," with little favorable public attention. Insects are often thought of in terms of pest control to protect crops or reduce the transmission of diseases such as malaria. This was not always the case, though; insects in past cultures were revered (e.g., by the Egyptians and Mayans), but with increasingly intensive agriculture and an awareness of their pathogenic associations, they are often considered negatively (though their importance as pollinators is becoming more widely understood). Butterflies are an exception, although some species can be

pests of crops, being among the few insects that bring joy to people, due to their beautiful colors, delicate nature, and elegance.

Among insects, butterflies are one of the more conspicuous and charismatic groups, engaging the public's sympathy and interest. Butterflies attract attention as symbols of sunny days, freedom, and purity, and may also indicate a healthy environment. Some ancient cultures considered them to be the souls of the dead flying to heaven. Their day-flying habit and size make them relatively easy to observe, photograph, and paint, and they can also be bred relatively easily by amateur naturalists. Perhaps for all these reasons, the relationship between humans and butterflies is long and deep, and pervades science, art, and broader culture. Artistic interest emerged

BELOW | Early butterflies (and birds) depicted in an ancient Egyptian wall painting in the Tomb of Nakht, Thebes, Eighteenth Dynasty.

independently in various ancient human cultures. Some of the oldest depictions of butterflies can be seen in geometric designs in Scottish Neolithic stone carvings (c. 3000–5000 BCE). Truly identifiable butterflies appear in Egyptian times, with examples in tomb drawings, amulets, and jewelry from the Old Kingdom period (c. 2686–2181 BCE) onward. The tomb of the high-ranking official Nebamun (1350 BCE), in particular, contains vivid illustrations of butterflies in a hunting scene, providing evidence of the presence of various species at a particular location at this time. They feature in gold ornaments from pre-Columbian cultures of South America too.

In the Renaissance, classical, and modern art periods, butterflies were included in paintings as symbols of beauty, nature, freedom, resurrection, transformation, and life. They are found in many

LEFT Pre-Columbian gold ornament depicting a butterfly, which was used as a nose ornament by Indigenous people, now cast as a pendant by Colombian artist Claudia Amaya.

artworks from these eras, especially where scenes are set in nature. The Dutch Golden Age painter Maria van Oosterwyck went further, using butterflies as the focus of her paintings.

Butterfly motifs are now widespread in art and jewelry and on clothing. They are frequently depicted on stamps, coins, and notes, with endemic or local species often depicted.

Butterflies have also been used as metaphors in literature. In Shakespeare's King Lear, the protagonist reminisces about butterflies. J. R. R. Tolkien describes an interaction with colorful butterflies as they fly in the sun in a treetop in The Hobbit, contrasting them with the lost explorers' experiences in the dark forest below. Alice's Adventures in Wonderland features a talking caterpillar, who later metamorphoses. In a poignant moment in the anti-war classic All Quiet on the Western Front, the butterflies in no-man's land contrast with surrounding desolation. And in One Hundred Years of Solitude, by Gabriel García Márquez, a virtuous character is followed by yellow butterflies wherever he walks. Márquez, who went on to win the Nobel Prize for Literature following this work, hails from Colombia, the world's most biodiverse country for butterflies. In movie adaptations of all these books, and in other feature films such as *Encanto*, *The Butterfly Effect, Papillon, Bambi, Mary Poppins*, and more, butterflies often depict joy, color, and the innocence of nature.

The contemporary artist Damien Hirst has used butterflies in new ways. *In and Out of Love*, exhibited in 1991, featured live butterflies, which emerge from chrysalises, fly, feed, and die within the exhibit. In *I am Become Death*, *Shatterer of Worlds*, Hirst used 3,000 sets of butterfly wings in a kaleidoscopic image that has the appearance of stained glass.

Although most interactions between butterflies and people are positive, there are exceptions. Some caterpillars are pests. For instance, *Pieris rapae* (known as the Cabbage White in North America and Small White in Europe) can decimate crops of cabbage, broccoli, and brussels sprouts. The current rate of destruction of primary forests, where butterflies are most diverse, and increasing intensification of agriculture are now resulting in

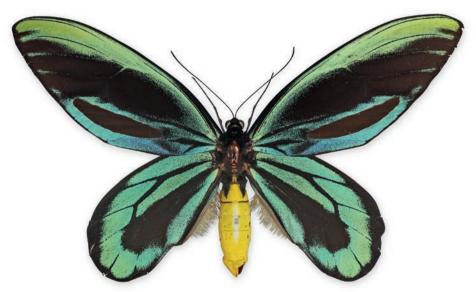
a so-called "Insect Armageddon", with butterflies affected just as badly as other groups. Fortunately, though, butterflies have increasingly become a focus for insect conservation.

The rise of ecotourism has increasingly involved butterflies. With the decline of nature in many areas of human habitation, butterflies can now be brought to the people in butterfly houses, spaces controlled for temperature, light, and humidity, allowing colorful and larger tropical species to be bred in the middle of cities and then to fly around fascinated visitors. Butterfly houses are largely commercial ventures, but as they become more popular in tropical countries, efforts are made to host local species, and so these initiatives are contributing to our knowledge of butterfly life histories, as well as raising awareness of conservation issues and bringing ecotourism income to local communities. Visitors to the Amazon or other tropical regions marvel at the

diversity of butterflies, which are often a focus for photographers. A small but increasing number of butterfly tour operators take clients to see or photograph butterflies or to witness events such as the Monarch migration in Mexico. These initiatives bring increasing work opportunities for local butterfly experts and citizen scientists, and encourage local people to protect their natural resources.

Of all the insects, butterflies have, therefore, gained particularly prominent societal recognition.

BELOW A live butterflies house in the Botanical Gardens in Quindio, Colombia, where the public can connect and engage with nature and its conservation.



BUTTERFLY CLASSIFICATION

The true butterflies, or Papilionoidea, are a superfamily (another formal rank in the taxonomic hierarchy) within the order Lepidoptera, which also includes moths. Traits that all the Lepidoptera share include scaled wings as adults, and the lifecycle of egg, caterpillar (larva), chrysalis (pupa), and adult (imago). Butterflies are a relatively recent grouping, and the monophyly of the superfamily, meaning that they descend from a common ancestor, has been widely accepted. The diurnal butterflies are currently arranged into seven families as listed on pages 10-11. There are 41 subfamilies in total, reflecting the vast array of guilds but also close relationships. Some of these are long-recognized and have always been considered as "butterflies."

Papilionidae (swallowtails) are a striking group of generally large butterflies, often with tail streamers. The Lycaenidae (blues, coppers, and hairstreaks) have an incredible diversity, not only in taxa but also in their lifecycles, which for many taxa are linked to ants (see pp. 159 and 161). Two groups that have been less studied are the Pieridae (whites and yellows) and the metalmarks in the Riodinidae family, a diverse group of small butterflies distributed around the world, though most are tropical.

The most species-diverse group is the Nymphalidae (brush-foots). These include various well-defined groups that are sometimes recognized at family and subfamily level, and sometimes recognized at the tribe level, including the Satyrini (ringlets), Morphini (morphos), and the Brassolini (owls); they also include some of the most familiar butterflies, such as the Peacock, Monarch, and fritillaries. Until recently two groups were excluded.

ABOVE The Papilionidae family includes some of the most spectacular and large butterflies, for example, the Queen Alexandra's Birdwing *Ornithoptera alexandrae*.

Hesperiidae, the skippers, were often considered to be "sisters" to the butterflies and placed alongside them, or alternatively as a subgroup of moths. Molecular studies have shown the skippers to be part of the butterfly phylogeny. Finally, members of the Hedylidae are small and dull colored and were considered moths until

TOP Museums around the world facilitate access to millions of specimens collected over hundreds of years, helping the study of butterfly classification.

ABOVE | Despite the fact that butterfly classification started more than 250 years ago, some remote areas still have species to be discovered. Recently, this new species, the Yariguies Ringlet *Idioneurula donegani*, was found on an isolated mountain in Colombia.

very recently, but are now classified as a small group of butterflies.

The total number of species of butterflies is uncertain as, with new research, technology, and communication tools available, new species are regularly described from the most diverse areas of the planet, especially the tropics. Disagreements among taxonomists and the rapid changes in nomenclature make it almost impossible to provide an accurate figure. There are approximately 20,000 species recognized and certainly some hundreds yet to be named. With the current unprecedented rate of extinctions of species on the planet during the Anthropocene, organizing and naming species has become urgent, in order to understand the relationships among organisms and to become aware of the existence of species that are not yet known but are at risk.

ABOVE The Blue Morpho *Morpho helenor peleides*, a beautiful butterfly found from Mexico south to Argentina.

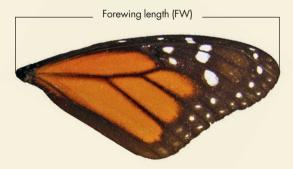
HOW TO USE THIS BOOK AND INTRODUCTION TO TAXON PROFILES

This book provides an overview of the currently recognized families, subfamilies, and tribes of the true butterflies of the superfamily Papilionoidea. The order in which the families are presented is intended to reflect their time on the planet, starting with the most ancient and oldest extant lineages. At subfamily and tribe levels, the arrangements generally follow the same structure, with those placed together being those with the closest relationships. However, some subfamilies and tribes are grouped under one profile, either because they are newly classified and we have less information about them, or for reasons of space. The number of pages devoted to each profile is determined partly by how much or how little is known about the group being described, and partly by the number of species in the group.

The classification and taxonomic arrangement presented here reflects an attempt at an up-to-date consensus, and reflects the most recently published taxonomic works and phylogenies. Most, if not all, of the arrangements are supported by molecular analysis of genetic material (DNA). We have then incorporated our experience gained over decades of studying butterflies in the field and in large museum collections around the world. Advances in detailed morphological and molecular analysis will doubtless continue, bringing further dynamic changes in classifications across the higher taxa. Current technology has accelerated the rate of discovery of new species, and the understanding of the relationships among them; this will inevitably cause changes to the number of species and genera recognized here.

Each profile begins with the current taxonomic status of the group being described; representative English names of the group are given. The main text then gives a summary of the group and how it is made up, an impression of

the numbers within the group, and its main characteristics. Interesting features and key species are picked out, and some information about caterpillars and pupae may be given.

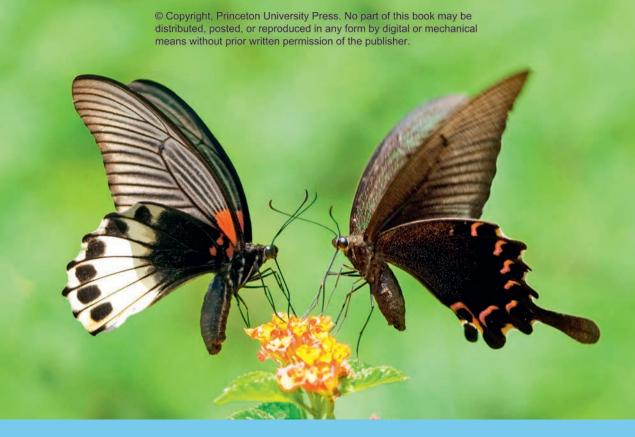

Each information panel begins with a range map, which is generic and provisional; the maps are based largely on distributional records found in the literature and some of the websites listed on page 234, as well as from museum collections. The distribution of each group is also summarized in the information panel.

The genera listed in the information panel are comprehensive for most groups; however, for those groups with the highest diversity, only a few representative genera are listed.

To give an idea of the size of the species in each group, the average forewing lengths (see below) are arranged into three categories: large $(1\frac{1}{2}-4 \text{ in}/40-100 \text{ mm})$, medium $(\frac{3}{4}-1\frac{1}{2}\text{in}/20-39 \text{ mm})$, and small $(<\frac{3}{4} \text{ in}/<20 \text{ mm})$.

The "Host Plant Families" section includes some of the known plant families on which caterpillars of each group feed.

Photos have been chosen to show features typical of each group and give a flavor of the extraordinary diversity of wing patterns that butterflies display.


ABOVE | Forewing length as given in this book is measured as the longest straight-line distance from the wing base to the wingtip.

OPPOSITE A pair of swallowtail butterflies in the genus *Papilio* mating.

PAPILIONIDAE SWALLOWTAILS, APOLLOS, AND FESTOONS

The family Papilionidae includes butterflies that are often large and colorful, and, despite having around 614 species, more than 2,086 subspecies, and 31 genera, it is the least species-diverse group of true butterflies after the moth-like family Hedylidae. Extant species are arranged in three subfamilies: Baroniinae, Parnassiinae, and Papilioninae. Members of a further subfamily, Praepapilioninae, are known only from fossils. Size, color, and habitats vary considerably in this cosmopolitan family, which can be found virtually everywhere from forest to deserts and from mountains to gardens. Extensively studied by scientists, Papilionidae is the best taxonomically documented group of butterflies, and probably of Lepidoptera; the whole family has benefited from being the only one fully assessed for threat in the IUCN Red List. The charismatic appearance of species in this group has encouraged the attention of amateurs and collectors over time, resulting in very large numbers of individuals stored in private and scientific collections around the world. This family is the most ancient group of butterflies, some of which were present on the planet millions of years before humans, even including some species that became extinct long ago. Recent molecular studies suggest that the subfamily Baroniinae is so ancient that it might one day be recognized in a separate family of its own.

ABOVE A female Great Mormon Papilio memnon (right) feeding on nectar from flowers and sharing with another species of swallowtail butterfly.

Adults can be recognized from a combination of characters that can be identified by the amateur: the first (front) pair of legs are large and fully operational in both males and females and have well-developed claws; the antennae are relatively close at the base; and the hindwings often have projections like "tails" with their inner margins containing modified scales in males. However, these wing characters are not universal: they are absent in some species and can also be present in some species in other families. To the specialist eye, the arrangement of the veins, including a transverse nervure in the forewings, is key to distinguishing them from other butterfly groups.

Eggs are spherical and most do not have many patterns on the surface. The first instar caterpillars have long spines and later develop a retractile and bifurcated organ with a gland (osmeterium) that emits foul odors in response to disturbance. The pupa or chrysalis is angular and held upright by the cremaster, supported by tail hooks.

Parasites, natural enemies (predators), microclimate, and availability of the caterpillars' host plants are the primary factors that regulate populations of swallowtails. Practices affecting their host plants, such as destruction, conversion, and reduction of natural habitats because of deforestation, logging, crops, cattle grazing, and urbanization, are the biggest threats to all butterflies. However, iconic species have been instrumental in the development of a conservation culture, from butterfly houses engaging the public and educating them about tropical species and threatened tropical forests, to teaching children to appreciate insects. Some Papilionidae have become flagship or keystone species, envoys of campaigns for the protection of habitats and other less charismatic organisms, raising local, national, regional, and even international awareness. Species in the family Papilionidae have been fundamental study models for understanding evolution, genetics, mimicry, biochemical analyses, and, more recently, climate change.

ABOVE |
A spectacular
Krishna Peacock
Papilio krishna, a
species found in
forests in South
and Southeast
Asia.

THE LIVING FOSSIL BUTTERFLY

ABOVE | The Mexican endemic Baronia brevicornis is an enigmatic butterfly that has long lived on the planet but is currently under threat because of the loss of its habitats.

The most primitive species—and the oldest L extant lineage of the true butterflies—evolved 80-90 mya and has a subfamily of its own. It is represented by a single genus and species, Baronia brevicornis, endemic (not found elsewhere in the planet) to dry forests in Mexico. Two subspecies are currently recognized: the nominate brevicornis, which was described in 1893, and the subspecies

GENERA

Baronia

DISTRIBUTION

Neotropical; endemic to southern Mexico

Local in deciduous scrub forests dominated by acacia-like trees at 1,600-4,500 ft (500-1,400 m) elevations in southern Mexico; seasonally dry tropical biome

Small to medium: up to $1\frac{1}{3}$ in (35 mm)

HOST PLANTS

Thorny bush Vachellia campechiana (Fabaceae) (synonym Acacia cochliacantha)

CONSERVATION

Categorized as Endangered on the IUCN Red List because of the fragmentation of habitats where the butterfly and host plant are found. Mature acacia trees are associated with grazing systems, and some habitats where Baronia brevicornis is found

rufodiscalis, named over a century later. These "living fossils" have a very distinctive appearance among Papilionidae, with dark, tail-less wings and scales colored yellow, orange, and brown. However, there are several forms (polymorphism) in both males and females, with around 25 "forms" named. Females can be larger, paler, and rounder winged than males. Males display strong territorial behavior.

The ecology of this species was unknown for over a hundred years until Mexican researchers pioneered detailed studies of its lifecycle and monitoring of the species populations. Eggs are laid individually, well-separated on the underside of leaves of bushy host plants, hatching after five days. Chalcid wasps can parasitize them. Caterpillars

develop five different instars in one month and build tubular structures from the leaves of the host plant. Apparently, this behavior reduces predation, as does the strongly odored substance secreted from a specialized structure called the osmeterium. The pupa develops underground, emerging as an adult after almost 11 months. Peak rainfall periods and humidity are environmental factors known to determine the emergence of both adult butterfly and the leaves in the host plant. Although adults may be found in various patches of forest, reproduction occurs only in areas with good availability of the host plant, where it comprises at least 70 percent of vegetation cover.

have been degraded by 40 percent due to agriculture, including cattle grazing, and timber extraction. Despite its localized distribution and IUCN status, this species is not listed by CITES. The EDGE program for species that are "evolutionarily distinct and globally endangered" does not include butterflies; however, this iconic species would be a prime candidate for listing

TOP LEFT A male of *Baronia brevicornis* resting on plants. Its antennae are relatively short compared with other butterflies in the family.

TOP RIGHT | Females of *Baronia* brevicornis are distinctive and display different forms and colors.

means without prior written permission of the publisher. PAPILIONIDAE: PARNASSIINAE: PARNASSIINI AND ZERYNTHIINI

PARNASSIANS, APOLLOS, AND FESTOONS

BELOW The striking Spanish Festoon *Zerynthia rumina* can be found in rocky habitats and warm, dry areas in the Iberian Peninsula, southeastern France, and northern Africa.

The Parnassiinae subfamily includes medium-to large-sized butterflies with striking patterns in their wings. They have a remarkable distribution, flying in some of the most remote and highest elevation spots of the planet, such as the Himalayas. There are eight genera, almost 80 species, and over 350 subspecies recognized,

GENIEDA

Archon, Hypermnestra, Parnassius, Allancastria, Sericinus, Zerynthia, Luehdorfia, and Bhutanitis

DISTRIBUTION

Palearctic region in Europe and North Asia; Middle East, North Africa, Southeast Asia, and western North America

HABITATS

In Northern Hemisphere, most species in mountain habitats often at high elevations

and sometimes even up to 16,000 ft (5,000 m). Hypermnestra is found in arid deserts, Luehdorfia in humid forests, and Zerynthia in lowland meadows and mountains

SIZE

Large to very large: $1\frac{3}{4}-4\frac{3}{4}$ in (45-120 mm)

HOST PLANT FAMILIES

Aristolochiaceae (Archon, Allancastria, Sericinus, Zerynthia, Luehdorfia, Bhutanitis),

arranged in two tribes, although some authorities recognize three tribes with the addition of the Luehdorfiini. Butterflies in Parnassiinae have a single anal vein in the hindwings, and the pretarsal claws of males are asymmetrical. Species in the genera *Parnassius* and *Zerynthia* show spectacular geographical variation that can be confusing; in the *Parnassius* genus alone, around 280 subspecies have been described and many more "forms." Members of these genera have been subdivided by some into

Zygophyllaceae (*Hypermnestra*), and Crassulaceae (*Parnassius*)

CONSERVATION

Bhutanitis ludlowi is currently categorized as Endangered on the IUCN Red List and listed in CITES Appendix II, along with other species in the genus: B. lidderdalii, B. thaidina, and B. mansfieldi. Parnassius apollo and many of its subspecies are also CITES listed

TOP The Apollo butterfly *Parnassius apollo* is a good flyer over long distances. It shows variation in the eyespots and marks on its wings that can vary in size and number and also in color between individuals, but also between populations from different regions.

ABOVE Some populations of the Apollo butterfly *Parnassius apollo* occupy small areas, including isolated mountains. The loss of habitat is undoubtedly the biggest threat for the long-term survival of the Apollo butterfly.

innumerable variations and forms, causing taxonomic inflation and confusion.

Researchers using molecular characters have suggested that species in *Parnassius* occurring

in remote areas of Central and Western Asia show morphological evolution, involving processes of loss and reappearance of characters such as red spots in the wings.

Because butterflies are ectotherms, regulating their body temperature using external sources, they are highly sensitive to their environment.

Some species that fly at high elevations and species endemic to mountains have been excellent study organisms for climate

70

INDEX

A
abdomen 14, 21, 22
Abraximorpha davidii 89
Achlyodidini 100–101
Acraea 185
Acraea terpsicore 185
Acraeini 29, 30, 184–185
Actinote 185 Adelpha 174, 176
Adelpha fessonia 174, 175
Adoliadini 174–175
Adonis Blue 160
adult butterflies 23-24, 64
anatomy 14–18
Aegiale hesperiaris 111
African Checkered Gem 144,
145
African Giant Swallowtail 80
African Leaf 202
African Mocker Swallowtail 8, 78, 80
African skipper 110
Afrotropical region 28, 29,
38
Agara perissodora 99
Agatasa 210
Agathymus aryxna 111
Ageroniini 195
Aglais io 164
Agrias (Prepona) 6, 7, 44, 210–211
Agrias amydon 7
agriculture, intensification 37,
54, 57
Alaena 152
Alaena amazoula 152, 153
Allaemona 230
Aloeides 142, 143, 151
Amathusia phidippus 230, 231
Amathusiini 30, 228–231 Amathusidia 230
American Painted Lady 162,
163
American Snout 166, 167
American Zebra Swallowtail
75
Amnosia decora 186–187
Anaeini 210
Anaemorphini 210
Anaeomorpha 210
Anaeomorpha splendida 210 anal veins 17, 69
anatomy 14–18
caterpillars and pupa 21,
22-23
androconia (androconial
scales) 15, 48, 127, 215
Andronymus gander 110
ant(s), caterpillar relationship
22, 34–35

Lycaenidae 34, 35, 143-144, 151, 156, 161 Riodinidae 34, 134, 140 antennae 14, 17-18, 22, 64, 84, 118, 144 hooked tip (skippers) 17, 18, 88, 96 Anthanassa 205 Anthocharidini 130 Anthocharis 20 Anthocharis cardamines 130 Antirrhea 220-221, 222 Antirrhea philoctetes 223 "antlers" 209 Apatura iris 189, 190 Apaturinae 188-191 Apaturopsis 188, 191 Aphnaeinae 144, 150-151 Aphnaeus orcas 150 Apollo 10, 17, 29, 69, 71 Aporia crataegi 127, 128, 129 aposematic butterflies 8, 22, 34, 179 Apostictopterus fuliginosus 93 Apyrrothrix araxes 98 Apyrrothrix arizonae 98 Archonias 126, 127 Arctic Skipperling 105 Argopteron aureum 105 Argvnnini 180-181 Argynnis paphia 180 Ariadne merione 195 Aristotle 42 Arizona Giant-Skipper 111 art, butterflies and 42, 43, 54-55, 54-56, 115 Asamana Arctic 22 Asterocampa 188, 190 Asterocampa celtis 191 Asterope 197 Astraptes fulgerator 46 Atala Hairstreak 34 Atrophaneura 76, 77 Australasian region 28, 30-31 awls 90, 91 Azonaxini 98-99

В

Badamia exclamationis 90, 91 Baltimore Checkerspot 205 Banded Orange 183 Banded Sphinx Moth 42 Barca bicolor 93 Barcinae 92-93 Baronia brevicornis 66-67, 81 Baroniinae 63 Bates, Henry Walter 8, 9, 30, 32, 44, 183 Batesia hypochlora 194, 195 Batesian mimicry 8, 32

beauty of butterflies 6, 7, 54, 71 Befrostiini 138 Behemothia godmanii 140 Bhutanitis ludlowi 69, 70, 71 Bhutan's Glory 70, 71 Bia 225-226, 227 Biblidinae 192-197 Biblidini 194-195 Biblis 194, 195 binomial nomenclature 50 biodiversity 36 biogeography 28-31 bird droppings 24, 33, 77, 90, 96, 109, 131 birdwings (Ornithoptera) 28, 30, 76-77 black spots 29, 181 Black-veined White 127, 128, Blue Begum 211 blue butterflies 10, 18, 58 Blue Morpho, blue morphos 15, 60, 221, 222 Blue Spotted Arab 131 Branded Imperial 157 Brassolini 58, 224-227, 228 Brimstone butterfly 121, 122 Brown Awl 90, 91 brush-foots 11, 58, 163, 200-203 Burara gomata 90, 91 Burara harisa 90 Burnsius orcus 101 butterfly houses 57, 182, 225 Byasa 33 Byblia 194, 195 Byblia ilithyia 194

C

Caerois 221, 222 Caerois chorinaeus 223 Caeruleuptychia helios 46, 47 Caeruleuptychia urania 217 Caligo 35, 224-227 Caligo atreus 225, 226 Caligo telemonius memnon 225, 226 Calinaga 206-207 Calinaga brahma 207 Calinaga formosana 206, 207 Calinaginae 206-207 Callicore 196 Callicore texa 196 Callicorini 196-197 Callistiumini 138-139 Callophrys rubi 158 Calpodes 110

Cabbage White 56, 128

caddisfly 10

Calvcobis 159 Calycopis cecrops 35, 159 Calydnini 139 camouflage 23, 33-34, 71, 131, 230 Carbia consigna 99 Carcharodini 100 Caria castalia 141 Carle, Eric 9 Carterocephalus 104 Carterocephalus palaemon 104, 105 Carterocephalus silvicola 86, 87 Carystoides 111 Catacroptera cloanthe 202, 203 Catabaecilma major 156 Catasticta flisa 126 Catasticta teutila 128 caterpillars 10, 19, 21-22 anatomy 18, 21, 85 camouflage 33, 77, 131, carnivorous 21, 22, 144, 148, 149 feeding 21, 31, 34, 61, 80, 144, 148, 152 as food for humans 99, 128 Hedylidae, horns on head Hesperiidae 88-89 instars (stages) 22, 35 Lycaenidae 144 odor from 34, 64, 67, 223 Papilionidae 64 as pests 56-57, 80, 95, 111, 122, 128, 226 Pieridae 114, 119 poisonous 71, 77, 179 protection by ants 22, 35, 144, 151, 156, 161 Riodinidae 134-135 sclerotized cylinders 146 unpalatable/repulsive taste 9, 71, 77 Catonephele 192, 193 Catopsilia 121 Catopsilia pomona 122 Celaenorrhinini 96-97 Celgenorrhinus 96 Celaenorrhinus leucocera 96 Celaenorrhinus maculosus 88 Cethosia 179, 185 Cethosia biblis 184 Chamunda chamunda 93 Chamundinae 92-93 Charaxes 29, 210 Charaxes castor 209 Charaxes jasius 208 Charaxinae 208-211 checkered-skippers 100, 101

chemical defenses 33, 34–35,	complete metamorphosis 10,	Dismorphia spio 119	European Chequered Skipper
67, 77, 179, 182	12, 19	Dismorphiinae 113, 116–119	104, 105
Chequered Lancer 108, 109	computed tomography (CT)	Dismorphiini 116–119	Eurytides 24, 74, 75
Chequered Skipper 104, 105	scanning 47, 49	distribution of butterflies 12,	Eurytides epidaus 74
Chersonesia 199	Comstock–Needham system	13, 26–27, 28, 61	Eurytides marcellus 75
Chersonesia risa 199	16	diurnal butterflies 10, 18, 58,	Euschemon rafflesia 92, 93
Chestnut Angle 97	conservation 36–39, 57, 65	72	Euschemoninae 92–93
Chilasa 80	Constable 187	diversity of butterflies 12, 13,	Euselasiini 136, 137
Chioides albofasciatus 95	courtship 24, 25	29, 57, 58	Euthalia 175
Choaspes benjaminii 91	crackers 195	DNA data, classification and	Euthalia lubentina 175
Chorinea octavius 134	Cream Flat 96	46, 61	Evenus coronata 158–159
chorion 20	cremaster 23	"dog face" butterflies 122	Evenus felix 158
chrysalis see pupa	Crescent Spotted Flat 93	Doxocopa 188, 190	evolution and origins 8,
Chrysoritis 151	Cressida cressida 76	Doxocopa laurentia 189	12–13, 21, 40, 47, 54, 58
Cigaritis vulcanus 151	Crown Fritillary 181	Dryadula phaetusa 183	Baroniniinae 66
CITES 48, 69	Cruiser 178	Dryas iulia 183	Lycaenidae 158
Cithaerias 213–214, 215	Curetinae 144, 146–147	Duke of Burgundy 136, 137	Nymphalids 165
Cithaerias pireta 165	Curetis 20, 146–147	Dull Firetip 98	Riodinidae 133
citizen scientists 49	Curetis bulis 147	Dusky Evening Brown 213	exhibitions 56
Citrus Swallowtail 80	Curetis regula 146	Dynamine 193–194	extinctions 37, 40–41, 51, 60,
cladogenesis 12	Cymothoe 175, 176	E	104
classification of butterflies	Cymothoini 175–176	-	eyes, compound 14, 18
8–9, 10–11, 16, 42, 46,	Cynthia's Fritillary 204, 205	Eagris denuba 96	eyespots, on wings 35, 69, 95,
58–60, 61	Cyrestinae 198–199	Easter Tiger Swallowtail 50	164, 223, 225, 230
DNA data 46, 61	Cyrestini 198–199	ecotourism 57	F
Linnaeus and 11, 43–44,	Cyrestis 199	ectotherms 70	
50	Cyrestis nivea 198, 199	eggs 19–20, 34	Fabricius, Johan Christian 44,
clearwing-satyrs 165, 215	Cyrestis thyodamas 199	Hesperiidae 88, 90	46
Clearwing Swallowtail 76	D	Lycaenidae 144	Fabricius Angel 134
clearwings 170, 171	-	Papilionidae 64	Falcuna 152
climate change 47, 70–71	daggerwings 199	Pieridae 114, 118–119	False Diadem 177
Clipper 177 Clouded Yellow 120, 121	Dalla semiargentea 105	Riodinidae 134	False Dingy Sailor 176 "false bood" 25, 156, 157
· · · · · · · · · · · · · · · · · · ·	Danainae 20, 35, 170–173	Egyptian paintings 54, 55	"false head" 35, 156, 157
Club Beak 169	Danaini 170, 172–173	Eighty-eight 196	families 50
Clysonymus Longwing 182 Coeliadinae 90, 91	Danaus plexippus (Monarch) 8,	Elymnias hypermnestra 214 Elymniini 214–215	Faunis 230
coevolution 183	19, 21, 25, 164, 173 Dark-branded Bushbrown	Emesidini 139	Faunis canens 229 Featured Skipper 99
Coliadinae 113, 120–123	213	Emesis 139	female butterflies 24
Coliadini 120–123	Darwin, Charles 8, 40, 46	Emperor of India 72, 73	Feniseca 148
Colias 120, 121	decaying substances, as food	Entheini 94–95	Feniseca tarquinius 21, 149
Colias eurytheme 122	27, 159, 193, 195, 197,	Entheus 94	finding butterflies 26–27
collecting butterflies 27,	208, 222	Eooxylides tharis 157	firetip 98, 99
48–49, 63, 71	defensive mechanisms 8,	Epicaliini 193	Flame 183
Colotis danae anae 115	32–35, 71	Epilotini 152–153	Fluminense Swallowtail 31,
Colotis phisadia 131	aposematism 8, 22, 34,	Epiphile orea 197	77
colors 15, 33, 113, 143	179	Epiphilini 197	food for butterflies 26, 27, 217
Comadia redtenbacheri 111	camouflage 23, 33–34, 71,	Erynnini 100–101	decaying substances 27,
Common Blue-Skipper 101	131, 230	Eryphanis zolvizora 225, 226	159, 193, 195, 197, 208,
Common Castor 195	chemical defenses 33,	Erythia thucydides 136, 137	222
Common Ceres Forester 175	34–35, 67, 77, 179, 182	Eubagini 193	Forbestra olivencia 170, 171
Common Dots 153	mimicry 8, 32–33, 71, 80,	Eucheira socialis 128	forelegs 18, 163
Common Evening Brown	98, 230	Eudaminae 94–95	Forest Pierrot 21, 149
214	other strategies 35, 127,	Eudamini 94–95	forewings 14, 16, 61, 213
Common Four Ring 218,	179	Eumaeini 158–159	fossils/fossil records 40–41,
219	Delias 30, 126, 128	Eumaeus atala 34	63, 81, 135, 165, 168,
Common Gem 153	Delias hyparete 127	Eumorpha fasciatus 42	190
Common Imperial Hairstreak	Deloneura immaculata 40, 153	Euphaedra 175	fritillaries 29, 180–181
35	Dercas 121	Euphaedra phaethusa 175	Fruhstorfer, Hans 7, 45
Common Jester 203	Dercas verhuelli 123	Euphydryas cynthia 204, 205	,,
Common Maplet 199	Dianesiini 138–139	Euphydryas phaeton 205	G
common names 50–51	Dichorragia 187	Euploea 32, 33	Gaudy Baron 175
Common Palmfly 214	Dichorragia nesimachus 187	Euremini 120–123	genetic resources: sharing
Common Silverline 151	Dingy Shield-Skipper 106	Euripus 189, 190	48–49
Common Spotted Flat 96	Dircenna klugii 170, 171	European Beak 167, 168, 169	genitalia 18, 53, 190
Common Tinsel 156	Discophora 231	European butterflies,	genome 12, 46, 49, 61
Common Woolly Legs 149	Dismorphia 116, 118, 119	conservation status 38	genus 50, 61

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical

means without prior written permission of the publisher. classification 11, 44, 46, 59, Jungle Queen 228, 229 Ghost butterfly 125 Luehdorfia japonica 71 Junonia 202 Ghost-Skipper 94 85, 87, 89 Luehdorfia spp. 71 Giant Charaxes 209 colors 87, 90 Junonini 202 Luzon Peacock Swallowtail 51 Giant Hopper 93 eggs, caterpillars, pupae 20, Lycaena 154 Giant Scarce Sprite 102, 103 21, 88-89, 110 Lycaena clarki 155 Giant-Skippers 90, 111 wings 86 Kaisar-i-Hind 72, 73 Lycaena dispar 51, 155 Gindanes brebisson 101 Hesperiinae 93, 108-111 Kallima inachus 33, 34 Lycaenidae 10, 11, 17, 18, 20, glasswings 94, 141, 170-171 Hesperioidea 86, 89 Kallimini 202 34, 58, 143-161 Glorious Blue-Skipper 101 Hesperocharis 131 Kallimoides 203 caterpillars 21, 22, 144 Gnophodes chelys 213 Heteropterinae 93, 104-105 Kallimoidini 202 extinct 40 Gold-spotted Sylph 105 Heteropterus morpheus 104, 105 Katreinae 102-103 Lycaeninae 154-155 Golden Birdwing 30 hilltopping 90, 107, 141, 156, Katreus 102 Lymanopoda caeruleata 218 Gomalia 100 Katreus johnstonii 102, 103 Lymanopoda nevada 219 Gonepteryx rhamni 121, 122 hindwings 14 Kite-Swallowtail 24 Lymanopoda samius 12, 13 Graphium macleayanus 75 "charaxes" 208 Koh-i-noor 230 "tails" 64, 72, 73, 74, 75, M Grass Demon 108, 109 Krishna Peacock 65 grassland species 37 78, 94, 134 Macleay's Swallowtail 75 Gray Hairstreak 158 venation 16 Macrosoma 83, 84 Gray Ministreak 159 Hirst, Damien 56 labial palpi 14, 18, 90, 166 Macrosoma (Phellinodes) bahiata Great Mormon 64, 79 history: artistic, of butterflies Lachnocnema bibulus 149 82,83 Ladda 104, 105 Green Hairstreak 158 54 - 55Macrosoma cascaria 84, 85 gregarious behaviour 22, 97, of study of butterflies Lamproptera curius 74, 75 Macrosoma (Phellinodes) lucivittata 134, 191, 201, 203, 226 42 - 45Large Blue 161 83 Holarctic region 29 Large Chequered Skipper Macrosoma semiermis 83, 85 Greta oto 171 Guatemalan Copper 154, 155 holometabolous development 104, 105 Macrosoma tipulata 84, 85 Large Copper 51, 155 Maculinea teleius 35 12, 23 holotype 51 Large Skipper 110 Madagascan Emperor habitats for butterflies 12, Homerus Swallowtail 36, 48 Large Tree Nymph 173 Swallowtail 29 Madagascar 29, 77, 96, 103, 26 - 27honeydew 151, 190 larvae see caterpillars loss 37, 69, 71 Hopper 108 Lasiommata megera 214 136, 168 Hackberry Emperor 191 Latreille, Pierre André 44, 46 hybrid speciation 12, 13, 182 Magneuptychia keltoumae 46 Haeterini 213-214 Lavish Malaza 103 Malayan Assyrian 179 Hypolimnas missipus 200, 202 hair pencil 15, 170, 172 legs 14, 18, 21, 22, 64, 114, Malaza 102-103 ı hairstreaks 10, 34, 58, 163 Malaza fastuosus 103 156-159 Idea, and Idea leuconoe 173 Lemon Emigrant 122 Malazinae 102-103 eggs 19-20, 157, 159 identifying features 18 Lepidoptera 8, 10-11, 50, 58 Maniola iurtina 219 survival strategies 35, Idioneurula donegani 59 Leptalina unicolor 104, 105 Many-spotted Skipperling 105 156-157, 159 "imaginal disks" 23 Leptidea 116 Map butterfly 198–199 Indian Awlking 91 Leptidea sinapis 117, 127 Hamadrvas 195 Marbled White 216 Hamearis lucina 136, 137 Indomalayan region 28, 30 Leptideini 116-119 Marpesia 198, 199 hand nets 27 insect apocalypse 36, 57 Leptinini 29 mating 23-24, 62 Harvester 21, 149 insect reduction 36, 37-38 Leptocircini 72, 74-75 Mauritius Snout 40 Hasora taminatus 88 instars 22, 35 Libythea 166 Meadow Brown 219 head, anatomy 14, 21, 22 International Classification on Libythea ancoata 168 Megathymini 111 Heath Fritillary 204, 205 Zoological Nomenclature Libythea carinenta 168 Melanargia galathea 216 Hedyle 83, 84 (ICZN) 50-51 Libythea celtis 167, 168, 169 Melanis 141 Hedylidae 11, 31, 59, 82-85 internet and online initiatives Libythea cinyras 40, 168 Melanitini 214 classification 11, 46, 83, 84 48, 49 Libythea geoffroyi 166, 169 Melanitis leda 214 wings 17, 85 Intricate Satyr 52 Libythea myrrha 169 Melanocyma faunula 231 Heliconiinae 164, 178-185 Iolaus 156 Libytheana carinenta 166, 167 Melitaea 204 Melitaea athalia 204, 205 Heliconiini 182–183 Iophanus pyrrhias 154, 155 Libytheinae 18, 20, 166-169, Heliconius 8, 9, 12, 24, iridescence 122 Melitaeini 204–205 170 31-32, 182, 183 Issoria 181 lifecycle/stages 9, 10, 19-24, Menelaus Blue Morpho 42 Heliconius clysonimus 182 Ithomiini 170-171 29 Merian, Maria Sibylla 19, Heliconius elevatus 12, 13 Itylos 160 Lime Swallowtail 80 49 - 43Heliconius melpomene 12, 13 IUCN Red List 38-39, 40, Limenitidinae 20, 174-177 Mesosemiini 139 Limenitidini 176 mesothorax 14 Heliconius pardalinus 12, 13 48,63 Helicopini 139 Limenitis populi 27 metalmarks 10, 18, 133-141 Linnaeus, Carl 11, 43-44, 50, metathorax 14 Heliophorus epicles 154 122 Metisella metis 105 Hennigian phylogenetics 46 Jalmenus evagoras 35 Heraclides 34, 80 Japan Butterfly Conservation Liphyrininae 148 Mexican Kite-Swallowtail 74 Hermeuptychia intricata 52 Society 39 Liptenini 152-153 Micropentila adelgitha 153 Hesperia 44 Japanese Emperor 188, 189 literature, butterflies in 8, 9, migrations 57, 90, 109, 164, Japonica lutea 34 Hesperia busiris 41 56, 115 168, 173, 200, 202, 203

Miletinae 144, 148–149

Mimacraeini 152-153

living fossils butterfly 66-67

Lobocla bifasciatus 95

Jezebels 126

Joker 194

Hesperiidae 87-111

antenna 17, 18, 88

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical

Papilio machaon 7, 79

Mimic 200 Mimic Flat 89 mimicry 32-33, 71, 80, 98, 185, 230 Ministrymon azia 159 "The Mirror" 104, 105 models, for studies 115, 117, 183, 219 Monarch butterflies 8, 19, 21, 25, 164, 173 Morphini 58, 220-223, 228 Morpho 220, 221, 223 Morpho cypris 220 Morpho hecuba 221-222 Morpho helenor 221, 222 Morpho menelaus 42 Morpho peleides 60 Morpho polyphemus 221, 222 Moschoneura sp. 119 moth-like butterflies 11, 31, 82-85 Mother-of-Pearl 201, 202, 203 moths, butterflies vs 11, 17 - 18Müllerian mimicry 32-33, 185 museomics 46 museum specimens 40, 46, 47, 49, 52, 59, 125 Mycalesis mineus 213 myrmecophily see ant(s), caterpillar relationship Myscelus 99 Mysoria 88

Nabokov, Vladimir 51, 53 Nagova Protocol on Access and Benefit Sharing 48-49 Narope anartes 226, 227 Natewa Swallowtail 31 Natural History Museum, London 47, 57 natural selection 8, 40 naturalists 8, 30, 41, 44, 45, Nearctic region 28, 29 nectary organ 151 Nemeobiinae 133, 136-137 Nemeobiini 136 Neotropical region 13, 26, 28, 31, 38, 41, 46, 49 Neptini 176 Neptis 174, 176 Neptis pseudovikasi 176 Nessaea aglaura 193 Netrocorynini 96-97 Nettle-tree Butterfly 167, 168, 169 new species: discovery 52-53, 59, 61 naming 50-51, 53 Ninja 186-187 nocturnal butterflies 84

means without prior written permission of the publisher. nomenclature 50-51, 60 Papilio lowi 79 Norse Grayling 22 Northern Chequered Skipper 86, 87 Nymphalidae 6, 11, 15, 18, 58, 163-231 camouflage 33 eggs, caterpillars, pupae 20, 21, 23 Nymphalinae 200-205 Nymphalini 202 Nymphidiini 140 0

Ochlodes sylvanus 110

Oakleaf 33, 34

Odontoptilum angulata 97 Oeneis 20 Oeneis norna 22 Oileidini 94-95 Old World Swallowtail 7 ommatidia 18 online initiatives, studying butterflies 49 Opoptera aorsa 226, 227 Opsiphanes cassina 226 Orange Awlet 90 Orange-backed Freak 207 Orange Hairstreak 34 Orange-tip 130 Orcus Checkered-Skipper 101 Oriental Map butterfly 199 Ornipholidotos 152, 153 Ornithoptera 28, 30, 76, 77 Ornithoptera alexandrae 30, 45, 48, 58, 77 Ornithoptera croesus 77 osmeterium 34, 64, 67 Ourocnemis renaldus 135 overwintering 20, 22 Owl (Caligo atreus) 225, 226 owls (Caligo) 35, 225 Oxylini 156

Oxynetrini 98-99

Paches loxus 101 Painted Jezebel 127 Painted Lady 28, 164, 202, 203 paintings of butterflies 42, 43, 54 - 56Pale Green Awlet 90, 91 Palearctic region 28, 29 Pallini 210 Palm King 230, 231 Papilio 11, 43, 78-79, 80 Papilio antimachus 80 Papilio dardanus 8, 78, 80 Papilio demodocus 80 Papilio demoleus 80 "Papilio ecclipsis" (hoax butterfly) 122 Papilio flavomarginatus 41 Papilio krishna 65

Papilio memnon 64, 79 Papilio morondavana 29 Papilio natewa 31 Papilio zelicaon 80 Papilionidae 10, 11, 17, 20, 44, 50, 58, 62-81 Papilioninae 20, 50, 63, 72-80 Papilionini 50, 72, 78–80 Papilionoidea 10-11, 50, 58, 61,89 Pardopsis punctatissima 181 Pareronia 131 Parides 28, 76, 77 Parides ascanius 31, 77 Parnassiinae 17, 63, 68-71 Parnassius 29, 69, 70 Parnassius apollo 69, 71 Parthenini 177 Parthenos 177 Parthenos sylvia 177 Passovini 98-99 Patia cordillera 118 patrolling 24, 102 Peacock 164 Peacock Royal 157 Pentilini 152-153 Perisama 197 Perisama humboldtii 197 Peru, species diversity 26 Phanus marshalli 94 Phellinodes spp. 82, 83 Phengaris arion 161 pheromones 15, 24 Philaethria dido 183 Phocidini 94-95 photography, butterfly 27, 57 photonic crystals 72 photoreceptors 18 Pieridae 10, 11, 17, 30, 58, 113-131 eggs and caterpillars 20, 21, 114 Pierinae 113, 126-129 small tribes 130-131 Pierini 126-129 Pieris rapae 56, 128 Pinacopteryx eriphia 131 Pinacopteryx eriphia tritogenia 112, 113 Pirate 202, 203 Piruna aea 105 plant families, for caterpillars 21, 26-27, 31, 61, 80, 89 Plastingia naga 109 Platylesches neba 108 Polka Dot 181 Polygonia 202 Polyommatini 144, 160-161 Polyommatus bellargus 160 Popinjay 187 Poplar Admiral 27 Poritia hewitsoni 153 Poritiinae 144, 152-153

Poritiini 152-153 Praepapilio spp. 81 Praepapilioninae 63, 81 Precis octavia 201, 202 Prepona (Agrias) 6, 7, 44, 210-211 Prepona (Agrias) claudina 210, 211 Preponini 210 proboscis (tongue) 14, 34, 110 Prodryas persephone 41 prolegs 21 Prothoe franck 211 Prothoini 210 prothorax 14 Protogoniomorpha parhassus 201, 202, 203 Pseudacraea 177 Pseudacraea lucretia 177 Pseudacraeini 177 Pseudergolinae 186–187 Pseudergolis 187 Pseudergolis wedah 187 Pseudohaetera hypaesia 213, 214 Pseudoneptini 177 Pseudopontia 124-125 Pseudopontia australis 125 Pseudopontia paradoxa 125 Pseudopontiinae 113, 124 - 125Pterourus 80 Pterourus (Papilio) homerus 36, 48 publishing, journal 53 puddling 10, 23-24, 75, 114, 123, 190, 207, 210 Punchinello 132, 133 pupa(e) 19, 22-23 camouflage 23, 33 development 22-23, 47 Hesperiidae 89, 90 Papilionidae 64 Pieridae 114 Purple and Gold Flitter 110 Purple Emperor 189, 190 Purple Sapphires 154 Pyrginae 100-101 Pyrgus 100 Pyrrhiades lucagus 91 Pyrrhopyge papius 99 Pyrrhopyginae 98-99 Pyrrhopygini 98–99 Pythonides jovianus 88

Q

Quadrus cerialis 101 Queen Alexandra's Birdwing 30, 45, 48, 58, 77

Red-banded Hairstreak 35, 159 Red Lacewing 184 Red Pierrot 161 Red Underwing Skipper 101 Regent Skipper 92, 93 research, butterfly 46-49

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical

means without prior written permission of the publisher. society and butterflies 54–57 Tawny Coster 185 White Dragontail 74, 75 Rhopalocera 44 Spanish Festoon 68, 71 taxonomy 42, 53, 58-60 White Morpho 221, 222 Riodinidae 10, 11, 17, 18, 31, 34, 58, 133-141 species 50 names 50-51 White-spotted Agrias 7 species diversity/richness 13, Teinopalpini 72, 73 White-striped Longtail 95 eggs, caterpillars 22, 26, 72, 120-121, 126 Teinopalpus 72, 73 whites 10, 58, 113, 116, 134-135 species number 8, 26, 30-31, Teinopalpus imperialis 72, 73 126-129 small tribes 138-139 60, 63, 86, 113, 133, Telegonus fulgerator 95 wing case 22 Riodininae 133, 138-141 Riodinini 141 Telipna semirufa 153 wing patterns 12 Tellervini 170, 172-173 "species pump", Andes as wings 14, 29, 61, 64 Rodinia calphurnia 140 Tellervo 173 coupling mechanism 84, Rothschild, Walter 31, 45 Tequila Giant-Skipper 111 92-93 Speyeria coronis 181 S Spialia 100 Teracolini 131 eyespots 35, 69, 95, 164, Salamis spp. 202 Spialia sertorius 101 Terinos clarissa 179 223, 225, 230 spiracle 22 territorial behavior 24, 210, scales on 14-15, 48, 72, 94 Saribia spp. 136 Saribia tepahi 136, 137 Splendid Ochre 106 211 transparent 135, 171, 215 Sarota 138 Split-banded Owl-Butterfly thanatosis 35 venation 15-17 Sasakia 190 226 Theclinae 35, 144, 151, wingspan 30 Sasakia charonda 188, 189 Stalachtis 140 156-161 Wood White 117, 127 Satyrinae 17, 22, 33, 35, 164, Staudinger & Bang-Haas 45 Theope 134, 140 X 212-231 stemmata 18, 21 Thisbe ucubis 140 Stevens, Samuel 44 thorax 14, 21, 22 Xanthotaenia 228 Satyrini (ringlets) 58, Tigerwing 170, 171 Stevens Auction Rooms, 212-215, 216-219 Xenovena and X. murrayae 17 London 44, 45 scales 14-15, 48, 72, 94 Tisiphone abeona 217 Y Stibochiona 187 Toxidia peron 106 androconial 15, 48, 127, 215 Stibochiona nicea 187 Trapezites symmomus 106 Yariguies Ringlet 59 Stichophthalma 228 Trapezitinae 93, 106-107 Yellow Zulu 152, 153 scanning electron microscopy Stichophthalma mathilda 229 traps, butterfly 27 yellows 10, 58, 113, 114, (SEM) 47, 48 Straight Line Map-wing tribes 50, 61 Scarce Bamboo 183 120-123 199 Trichoptera 10, 11 Ypthima huebneri 218, 219 Scarce Large Blue 35 Scarlet Tip 115 stressors, insect reduction Trogonoptera 76 Troides and T. aeacus 30, 76 Z 37-38, 65, 71, 151 Scheller, H. J. 41 Troidini 72, 76-77 Zebra White 112, 113 scientific names 50-51 Strymon melinus 158 seasonal dimorphism 201, studies of butterflies 59 Turquoise Emperor 189 Zelotaea grosnyi 140 202 current 46-49 Two-tailed Pasha 208 Zemeros flegyas 132, 133 sensilla 118 historical 42-45 type specimens 51 Zerene 122 subfamilies 50, 58, 61 Zeritis neriene 144, 145 Sephisa daimio 191 Zerynthia 69 subspecies 51 Sepp, Jan 41 Sertaniini 139 Sulphur butterfly 120 Udaspes folus 108, 109 Zerynthia rumina 68, 71 Sunset Morpho 221-222 Zetherini 228 sexual dimorphism: ultraviolet reflection 122, 125, Hesperidiidae 94, 97, 109 superfamily 50, 58 Zeuxidia 230 Lycaenidae 143, 144, 152, survival strategies see Urania 10, 11, 43 Zeuxidia amethystus 229 159 defensive mechanisms Zoniini 98-99 Swallowtail 7, 79 Zographetus satwa 110 Nymphalidae 48, 175, 176, swallowtails 10, 11, 33-34, Vagrans egista 179 zoogeographical regions 178, 193, 199, 200, 214 Papilionidae 75, 77 50, 58, 65, 72-73 Vagrantini 179 28 - 31Pieridae 113, 118, 120, 128 caterpillars and pupa 21, van Oosterwyck, Maria 55, Riodinidae 134, 137, 140, 23,64 patrolling 24 Vanessa cardui 28, 164, 202, silk threads: pupa 23, 85, 88, wing venation 17, 64 203 114, 127, 169, 205 Sword-grass Brown 217 Vanessa virginiensis 162, 163 Silky Owl and silky owls 230 symbolism 54 Vanessulini 202 Symbrenthia lilaea 203 veins, wings 15-17 Silver-stripped Skipper 104, Symmachia titiana 139 Victorini 202 105 Symmachiini 139 Vindula 179 Silver-washed Fritillary 180 Simiskina phalia 144, 145 Synargis phylleus 140 Vindula erota 178 vision 18 sizes of butterflies 47, 61 skippers 11, 18, 21, 22, 38, W Tabby butterfly 187 44, 59, 86, 87–89 Wall 214 Taenaris and T. macrops 230 antennae 17, 18, 88, 96 Tagiadinae 96-97 Wallace, Alfred Russel 8, 30, camouflage 34 Tagiadini 96-97 44 classification 46, 87, 89 Wallace's Golden Birdwing 77 Tailed Sulphur 123 DNA data 46 Tajuria cippus 157 Wanderers 131 metallic blue 95 Talicada nyseus 161 Western Blue Policeman 91 wings 87, 88 Small White (Cabbage White) Taraka 148 Western Telipna 153 Taraka hamada 21, 149 White-banded Awl 88 56, 128