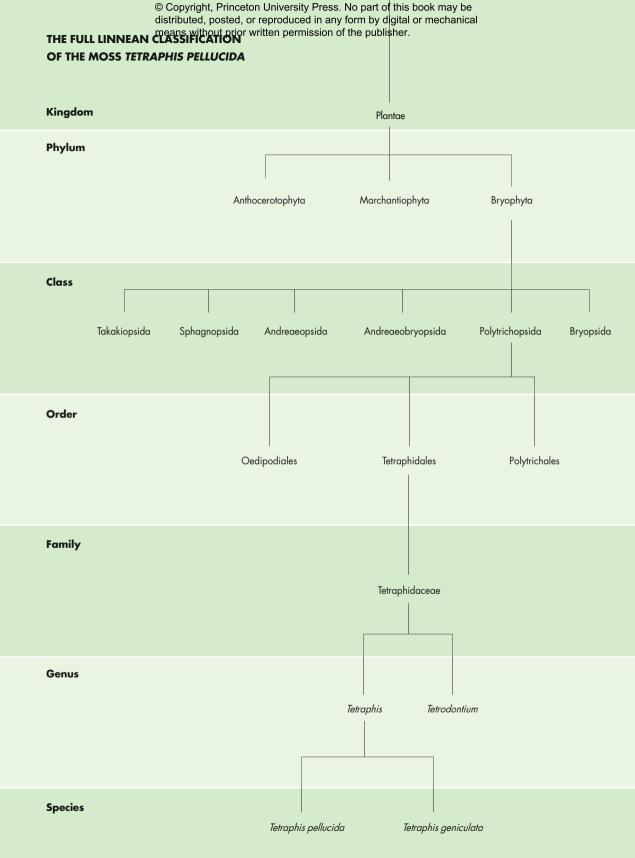
6 Introduction

CONTENTS

- 44 Anthocerotophyta: the hornworts
- Marchantiophyta:the liverworts
- Bryophyta: the mosses
- 232 Glossary
- 235 Further Reading
- 236 Index
- 240 Picture Credits and Acknowledgments

family, though they could still show a lot of diversity between genera.

Genus


Generally speaking, bryophytes should be identifiable to genus level with a few morphological characters. Genera should also reflect a grouping with a shared ancestry, and this has led to something of a shake-up in larger genera that have been found to be derived from more than one ancestral group.

Species

At the most basic level, a species represents the groupings a person would recognize when separating out different types of plants based on their shared characters. It is an extremely important level of classification, as it is a concept most people have some familiarity with and is used extensively in conservation metrics and targets.

BELOW | *Tetraphis pellucida* is a common moss of temperate northern hemisphere.

SELECTED GENERA

At the time of writing, the diversity of bryophytes is classified into 73 orders, 1,344 genera, and over 15,000 species. The classification used here is based on the latest research from the international community of bryologists and represents a phenomenal amount of research culminating over many decades.

Every order of bryophytes across the hornworts, liverworts, and mosses is represented in this section by at least one genus and the more diverse orders by two or three genera. An exception is made for the Hypnales, where six genus profiles have been included since this order of mosses has the most genera of any bryophyte order.

For those orders that include only one genus, the decision was easy! Where genera had to be selected from a range of potential candidates, the following criteria were considered. Some genera are so charismatic that they simply had to be included. For example, *Schistostega*—a moss that glows in the dark, no less—was essential to feature in the Dicranales along with other examples of this order. An attempt was made to include the most species-diverse and globally widespread genera—such as *Bazzania*, *Herbertus*, and *Plagiochila*—within

the liverwort order of the Lepidoziales. Particularly striking and beautiful genera were included to illustrate the orders where possible—such as *Dawsonia*, the world's tallest moss. The 100 genera chosen here aim to illustrate the rich structural and evolutionary diversity of bryophytes from around the world.

Notes on the profiles

Each genus profile includes an information panel highlighting key features as well as a small distribution map.

The estimated number of species described for each genus is based on a wonderful online resource provided by the Missouri Botanical Garden based on their immense nomenclatural database Tropicos. It is worth noting, of course, that the number of species names accepted across the scientific literature may not tally with the actual number of "real" species. These figures are constantly changing as new findings are published.

BELOW LEFT The liverwort *Bazzania trilobata* has a dichotomously branched or Y-shaped leaf pattern.

BELOW RIGHT The moss *Ptilium crista-castrensis* has pinnate or feather-like branching.

Linear—long and narrow with pointed tip

Lanceolate—wider at the base and tapering to a point

Ovate—eggshaped with a pointed tip

Lingulate tongue-shaped with parallel sides

Spathulate wider above the middle than below

The maps serve to include the global range of the plants and are based on the available scientific literature. One of the challenges here is that a genus may be described in print as occurring across Africa, Southeast Asia, and Australia, but when it comes to imprinting this description on a map, some important details are missing! While every effort was made to ensure accuracy at this scale, the maps represent the level of information available at the time of writing.

TAXONOMIC TERMINOLOGY

All natural-history enthusiasts employ a certain amount of jargon for their areas of special interest and bryologists are no different!

Taxonomic jargon is kept to a minimum in this book but some scientific terms are necessary.

Some of the terms that occur repeatedly through these pages are explained in more detail below.

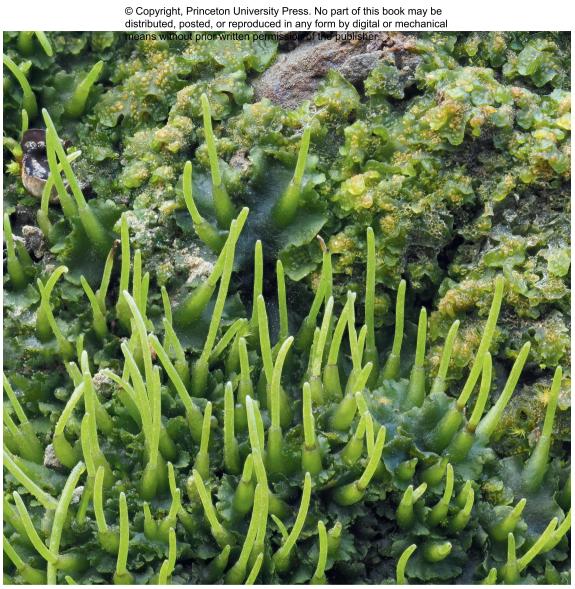
Leaf shape

There are a number of commonly used terms to describe the shape of bryophyte leaves, and the most frequently used of these are illustrated above.

Branching patterns

Bryophytes can show a variety of branching patterns (see opposite), which are informative taxonomic characters

Sexual condition


Whether plants produce male or female sexual organs—or both—is an important taxonomic characteristic. If the male and female sex organs are produced on different plants, they are called dioicous; if they are produced on the same plant, they are called monoicous. Monoicous plants can further be divided into those that produce the sex organs on different branches (autoicous) and those that produce the sex organs together in the same cluster (synoicous).

Bryophytes that grow on other plants

Many species of bryophytes grow directly on other plants, and these are called epiphytes. They are using the trees and shrubs simply as a convenient structure to perch themselves on. Those species that grow specifically on leaves are called epiphyllous.

Parasitic and symbiotic relationships

Many liverworts have symbiotic associations with fungi, which means both partners gain something from the relationship. Only the liverwort *Aneura mirabilis* is known to have a parasitic relationship, in this case with a fungus, from where it sources its carbon.

ORDERS AND FEATURE	D GENERA			
	Order	Family	Genus	
	Leiosporocerotales –	Leiosporocerotaceae –	Leiosporoceros	p.4
Hornworts	Anthocerotales –	Anthocerotaceae	Anthoceros	p.4
	Notothyladales –	Notothyladaceae —	Notothylas	p.5
			Phaeoceros	p.5
	Phymatocerotales —	— Phymatocerotaceae —	— Phymatoceros	p.5
	Dendrocerotales —	— Dendrocerotaceae –	— Dendroceros	p.5

OPPOSITE The hornwort *Phaeoceros laevis*, showing female plants with horn-like sporophytes and male plants with yellow antheridia.

ANTHOCEROTOPHYTA: THE HORNWORTS

The hornworts have a number of unique aspects to their biology. Most have a symbiotic association with cyanobacteria; their large solitary chloroplasts have similarities to those of the algae, and the narrow, elongate "horns" of the spore-producing structures are immediately recognizable. In fact, they are so distinct from any other land plant lineage and yet so sparse in distinct taxa compared to other groups that some scientists suggest they may have been more diverse in the past.

Hornworts are the least taxonomically diverse of the three bryophyte groups, with an estimated 200 to 250 species classified within 5 orders and 14 genera. The first two decades of the twenty-first century have been an exciting time for hornwort research, with major new insights into their structures, evolutionary relationships, and classification.

The Leiosporocerotales are considered particularly distinct and a sister group to all other hornworts. The characters used to define the different orders of hornworts mainly rely on a combination of DNA sequence data to reveal past evolutionary relationships and on microscopic anatomical features such as details of the spores and features of the chloroplasts.

means without prior written permission of the publisher.
ANTHOCEROTOPHYTA: LEIOSPOROCEROTALES: LEIOSPOROCEROTACEAE

LEIOSPOROCEROS

BELOW A spectacular colony of *Leiosporoceros* showing the elongated branches of the thallus and abundant sporophytes.

The species *Leiosporoceros dussii* is considered so unique among hornworts that it warrants its own order and is considered a sister group to all other hornworts because it is both morphologically and genetically distinct.

The plants form elongate rosettes and the projecting cells on the surface give the plant a velvety feel. Most striking are the long blue lines drawn

DISTRIBUTION

Mexico, Central America (Costa Rica, Panama), northern Andes, Lesser Antilles

ETYMOLOGY

Greek leios = "smooth" + kéras = "horn," referring to the smooth unornamented spores

NUMBER OF SPECIES

1 accepted species

APPEARANCE

Robust, fleshy thallus forming rosette, branches ¾ in (2 cm) in diameter. Cells 1–2 chloroplasts, no pyrenoid. Mature sporophytes 1½ in (4 cm) long.
Pseudoelaters long, thick-walled. Antheridia up to 70 per chamber. Cyanobacterial Nostoc colonies visible as blue strands

HABITAT

On rocks or sandy soils, usually near water bodies

BELOW Perhaps the most striking feature of *Leiosporoceros* are the blue strands of the cyanobacteria colonies.

ABOVE | The distinctive spores of *Leiosporoceros* are slightly elongated and have a single linear scar.

along the thallus. These are *Nostoc* colonies oriented longitudinally inside the thallus in mucilage-filled canals. This linear arrangement of the colonies running parallel to the main axis of the thallus is not only unique among the hornworts but is unknown in any other land plant. These colonies initiate when *Nostoc* enters the thallus and establishes behind the cell at the growing tip of the thallus. As the thallus then elongates, so does the *Nostoc* colony within an advancing canal of mucilage.

Leiosporoceros also has distinctive spores that are nearly smooth, transparent, and slightly elongated. When spores are being formed they are initially attached to each other in groups of four. When these are formed in a tetrahedral arrangement they leave a trilete (Y-shaped) scar on each spore from where they

were initially joined with three other spores. If they originated in a tetragonal formation then each of the four initial spores would have been in contact with only two of their neighbors, and the resulting scar is called monolete (linear-shaped). Most hornworts have spores with a trilete mark except for *Leiosporoceros*, which have the monolete mark, demonstrating a clear divergence in early development processes.

means without prior written permission of the publisher. ANTHOCEROTOPHYTA: ANTHOCEROTALES: ANTHOCEROTACEAE

ANTHOCEROS

The Anthocerotales includes just the two genera: the widespread *Anthoceros* and the tropical *Folioceros*. *Anthoceros* was the first hornwort genus ever to have been described and features in Linnaeus's landmark publication *Species Plantarum* in 1753. It is also the most species-rich hornwort genus, with over 60 species recognized.

Although some well-known species of *Anthoceros* can be distinguished by features seen with a hand lens, some species of *Anthoceros* from tropical regions

can only be identified by examining minute characteristics of the dark-brown spores. Other features needed to identify this order include the details of the male reproductive structures, where there are numerous antheridia in each chamber, contrasting with most other hornwort orders that only have one or two antheridia in each chamber.

Anthoceros agrestis is increasingly being used as the model system for the study of hornwort biology, plant and cyanobacteria interactions, biochemistry, and detailed genomic information. It is a plant that copes very well as a laboratory rat due to its small size and easy propagation. Its genome has been sequenced and is providing insights into the innovations for early land plant evolution. There is also future potential to explore genetic engineering by transferring useful hornwort traits into crop plants to increase yields, such as efficient

mechanisms for photosynthesis using pyrenoids or the symbiosis with cyanobacteria.

These detailed studies into the mechanics of hornwort biology have the potential to dramatically impact various fields and support food security in the face of increasing pressures on agriculture.

LEFT Colonies of the cyanobacterium *Nostoc* are visible as dark spots on the surface of the hornwort thallus.

DISTRIBUTION

Globally widespread, temperate, tropical

ETYMOLOGY

Greek ánthos = "flower" + kéras = "horn," referring to the horn-shaped sporophytes

NUMBER OF SPECIES

67 accepted species

APPEARANCE

Dark-green rosettes, frilly margins, no

midrib. Sporophytes 3/s-2 in (1-5 cm) tall. Dark-brown spores, trilete mark, bumps on surface. Cells 1-4 chloroplasts with/without pyrenoid. Antheridia 4-45 per chamber. Thallus with mucilage-containing cavities. Nostoc scattered across thallus surface visible as black dots

HABITAT

Pioneer of open environments on disturbed ground such as arable fields, banks, and path sides

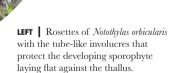
LEFT Anthoceros punctatus is a widespread species that typically forms small rosettes with frilly margins.

BELOW | Anthoceros fusiformis can be distinguished by the upright flaps of thallus tissue, as can be seen in the lower part of this image.

means without prior written permission of the publisher. ANTHOCEROTOPHYTA: NOTOTHYLADALES: NOTOTHYLADACEAE

NOTOTHYLAS

Totothyladales is an order particularly notable for the heterogeneity of its four genera. Within the order, *Notothylas* is distinguished by a number of features, but most apparent is the length of the sporophytes, which are the shortest of all the hornworts.


The remaining features are very variable even within the genus. A particularly unusual variation is the spore color, which is usually consistent within hornwort genera but here can vary from yellow to dark brown or black. In an attempt to bring some order to this rather chaotic grouping, taxonomists have previously proposed various subsections to divide up the genus, though analysis of DNA sequence data does not support these divisions.

Notothylas is defined as monophyletic, meaning the taxonomic grouping includes

a single common ancestor plus all of its descendants, albeit one with a wide range of defining characteristics.

Despite its lack of conformity,

Notothylas is an easy genus to
recognize due to its short, stumpy
sporophyte "horns" lying almost flat
on the thallus surface. It is widely
distributed in tropical to temperate
regions, with its highest diversity
across the Indian subcontinent.

DISTRIBUTION

A pantropical and northern-temperate genus

ETYMOLOGY

Greek nôto = "dorsal" + thylakos = "pouch," referring to position of sporophyte on dorsal surface of thallus and protective structures enclosing the developing sporophyte

NUMBER OF SPECIES

26 accepted species

APPEARANCE

Small rosettes $\frac{3}{16}$ – $1\frac{1}{4}$ in (0.5–3 cm) in diameter. Cells contain 1–3 chloroplasts. Sporophytes enclosed within the involucre. Spores with trilete (Y-shaped) mark, pseudoelaters without spiral band. Antheridia 2–6 per chamber. Globose Nostoc colonies across thallus, visible as black dots

HABITAT

Disturbed soil in open habitats

means without prior written permission of the publisher. ANTHOCEROTOPHYTA: NOTOTHYLADALES: NOTOTHYLADACEAE

PHAEOCEROS

Phaeoceros looks strikingly different from Notothylas. These larger plants are ³/₄–1 ¹/₄ in (2–3 cm) in diameter and can be rather robust and fleshy. The sporophytes grow long and upright, sometimes reaching heights of 3 ¹/₂ in (9 cm), though they are usually more modest.

Despite being classified in a different order, *Phaeoceros* can look very similar to *Anthoceros* in the Anthocerotales and the two genera can be easily confused when they grow together in similar habitats. *Phaeoceros* can be distinguished in the field by its yellow spores in contrast to the blackish spores of *Anthoceros*. On a more microscopic level *Phaeoceros* lacks the numerous large mucilage-containing cavities characteristic of *Anthoceros*.

Phaeoceros has a worldwide distribution, with highest species diversity in the tropics, where examining details of the spores may be needed to identify species.

ABOVE | *Phaeoceros minutus* on bare soil of the Western Cape, South Africa.

DISTRIBUTION

Worldwide

ETYMOLOGY

Greek phaeo = "dark colored" + kéras = "horn," although genus described with yellow spores

NUMBER OF SPECIES

35 accepted species

APPEARANCE

Dark green with thallus forming rosettes $\frac{3}{4}-1\frac{1}{4}$ in (2–3 cm) diameter. Cells contain 1–2 chloroplasts. Sporophytes 1–4 up to $3\frac{1}{2}$ in (9 cm) tall. Spores with spinose to bumpy ornamentation. Antheridia 2–4 per chamber

HABITAT

On soil in open environments

means without prior written permission of the publisher.
ANTHOCEROTOPHYTA: PHYMATOCEROTALES: PHYMATOCEROTACEAE

PHYMATOCEROS

BELOW | Phymatoceros bulbiculosus, showing the upright green sporophytes emerging from the tube-like involucres.

OPPOSITE This *Phymatoceros phymatodes* colony is growing surrounded by the liverwort *Solenostoma rubrum* on soil in British Columbia. Canada

Phymatoceros was only established in 2005
when subtle yet significant differences in
a species previously described as Anthoceros bulbiculosus
were considered to be sufficiently different from
all other hornwort genera to justify creating a new
genus. Since then, two additional species have been
assigned to this genus, with one species, Phymatoceros
binsarensis, described in 2023 based on plants

discovered in India, extending the distribution of this genus from the Americas, Europe, and Africa eastward into Asia. Further analysis of hornwort classification

> has found this small genus to be so different from other hornworts that it is placed in its own order, the Phymatocerotales. Two of

> > these species had previously been placed in *Phaeoceros*.

Rather than forming the typical rosette of most hornworts, *Phymatoceros* grows in a more linear fashion, with a narrow parallel-sided branching thallus. Another striking feature is the prolific long, stalked tubers in the upper region of the thallus. There are one to two chloroplasts per cell, but in contrast to most other

DISTRIBUTION

Widespread in Mediterranean Europe and Africa, India, and North and South America

ETYMOLOGY

Greek phỹma = "tumor" or "growth" + kéras = "horn," in reference to the prolific number of tubers produced

NUMBER OF SPECIES

3 accepted species

APPEARANCE

Narrow linear thalli up to % in (14 mm) long. Cells 1–2 chloroplasts with or without a pyrenoid, depending on species. Spores brown-black, bumps/dimples distinguish species. Pseudoelaters short, thin-walled. Antheridia 1 or 2–5 per chamber. Globose *Nostoc* communities on thallus

HABITAT

A colonizer of bare soil in open environments

hornworts, not all species in *Phymatocens* possess a pyrenoid. These species are dioicous, meaning that male and female reproductive organs are produced on separate plants. The female plants are slightly smaller than the males and produce a short robust sporophyte. Although united by their molecular data and some morphological similarities, the three

species placed in this order are morphologically quite divergent from each other, and summarizing diagnostic features for the genus is challenging. means without prior written permission of the publisher. ANTHOCEROTOPHYTA: DENDROCEROTALES: DENDROCEROTACEAE

DENDROCEROS

BELOW Under the microscope these green *Dendroceros* spores can be seen to be multicellular, intermixed with the long, spiraled pseudoelaters.

The Dendrocerotales differ from the other hornwort orders in their choice of habitat as they have specialized to grow on living plants as epiphytes rather than as colonizers of bare soil. They may even grow on the surface of leaves in areas with high humidity. The Dendrocerotales are predominately tropical, and *Dendroceros* is one of four genera recognized in the order. *Dendroceros* is

easily recognized by the crisped thallus that is differentiated into a central thickened midrib and lateral wings that may be perforated with holes.

The spores, which are so heavily relied upon in hornwort taxonomy, are particularly interesting in *Dendroceros* since they exhibit endosporic germination, which means the spore cell starts dividing within the cell wall before a protonemal filament emerges, resulting in multicellular spores.

For a plant that grows in rather precarious habitats prone to desiccation, such as on the surface of a tropical tree leaf, it is easy to see the advantage of getting an early start and reaching

DISTRIBUTION

Widespread across tropical and extending into subtemperate regions

TYMOLOGY

Latin dendro = "trees" + kéras = "horn," referring to the epiphytic habit of these plants

NUMBER OF SPECIES

Around 39 accepted species

APPEARANCE

Yellow-green. Solid thallus ½6–3½6 in (2–5 mm) wide, midrib, lateral wings. Cells 1 large chloroplast. Mature sporophytes ½8–2 in (1–5 cm) tall. Pseudoelaters narrow, spiraled. Spores colorless, yellow, pale green. Antheridia 1–2 per chamber. Nostoc on thallus appear as black dots

HARITAT

Twigs, branches, living leaves in humid temperate/tropical forests

maturity to reproduce as soon as possible. The spores of the Dendrocerotales are colorless or yellow-green, which is typical of the tropical species associated with this order, where the spores are short lived. Darker spores typical of other hornwort orders have thicker walls and are filled with lipids, which means they are more desiccation tolerant and longer lived.

BELOW | *Dendroceros borbonicus* growing as an epiphyte on a tree in the tropical forest of Réunion Island.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. PHYLOGENETIC TREE OF LIVERWORT ORDERS AND FEATURED GENERA Order **Family** Genus Calobryales Haplomitrium Haplomitriaceae p.58 Treubiales Treubiaceae Treubia p.60 Blasiales Blasiaceae Blasia p.62 Neohodgsoniales Neohodgsoniaceae Neohodgsonia p.64 Liverworts Sphaerocarpales Sphaerocarpos Sphaerocarpaceae p.66 Marchantiales Aytoniaceae Asterella p.68 Conocephalaceae Conocephalum p.69 Lunularia Lunulariales Lunulariaceae p.70 Pelliales Pellia Pelliaceae p.72 Fossombroniales Petalophyllaceae Petalophyllum p.74 **Pallaviciniales** Pallaviciniaceae Pallavicinia p.76 Pleuroziales Pleuroziaceae Pleurozia p.78 Metzgeriales Metzgeriaceae Metzgeria p.80 Aneuraceae Aneura p.81 **Ptilidiales** Ptilidiaceae Ptilidium p.82 **Porellales** Porellaceae Porella p.84 Radulales Radulaceae Radula p.86 Frullaniales Frullaniaceae Frullania p.88 Jubulales Jubulaceae Jubula p.90 Lejeuneales Lejeunea p.92 Lejeuneaceae Colura p.94 Personnielales Schistochilaceae Schistochila p.96 Myliales Myliaceae Mylia p.98 Lophoziales Scapaniaceae Scapania p.100 Adelanthaceae Syzygiella p.102 Jungermanniales Southbyaceae Gongylanthus p.103 Solenostomataceae Solenostoma p.104 Lepidoziales Lepidoziaceae Bazzania p.106 Herbertaceae Herbertus p.108 Plagiochilaceae Plagiochila p.110

MARCHANTIOPHYTA: THE LIVERWORTS

The liverworts are morphologically an extremely diverse group, with a vegetative body plan varying from green thalloid plates to leafy shoots and a variety of complex leaf structures. The shared ancestry of the Marchantiophyta only really becomes apparent when the plants produce sporophytes and the uniform features of the setae and capsules become apparent.

There are around 7,000 known species of liverworts, which are recognized in 23 orders and 363 genera. The evolutionary relationships within the liverworts have been a puzzle to decipher. Some lineages have lost features and have become more structurally simple than their ancestors, and leaf-like structures have actually evolved more than once within the liverwort dynasty. But DNA sequencing has helped reach a more stable classification reflective of the relationships and origins of these plants.

Although the liverworts have ancient origins, some of the most species-diverse orders—such as the Lejeuneales and Lepidoziales—evolved more recently in parallel with the rise of the angiosperms and the tropical forests. These groups were able to diversify rapidly into these new habitats and are a significant part of forest epiphyte communities to this day.

means without prior written permission of the publisher. MARCHANTIOPHYTA: CALOBRYALES: HAPLOMITRIACEAE

HAPLOMITRIUM

alobryales is a very ancient order that diverged early in the evolutionary history of the liverworts. *Haplomitrium* is the only living representative of this order, giving it a special significance in the study of early land plants.

The green leaves are positioned in three rows up the stems, giving a spiraled appearance. These small leafy shoots look very simple, but that overlooks some rather advanced adaptations at a cellular level. Some species have a central strand in the stem made up of long narrow cells that act as an internal water-conducting system. The lower part of the plant consists of a unique thick colorless rhizome, the branches of which bury themselves in the substrate. Symbiotic associations with fungi are common across the liverworts.

BELOW A single plant of *Haplomitrium hookeri*, showing the pale rhizome from which the leafy shoots arise.

OPPOSITE | Typically found on damp ground, such as lake margins, these tiny green plants require careful searching on hands and knees to find.

DISTRIBUTION

North and South America, Europe, Asia, Africa, Australia, Pacific Islands

ETYMOLOGY

Greek haplóos = "simple" + mitrium = "little cap," referring to the calyptra that functions as a protective sleeve for the sporophyte

NUMBER OF SPECIES

7 accepted species

APPEARANCE

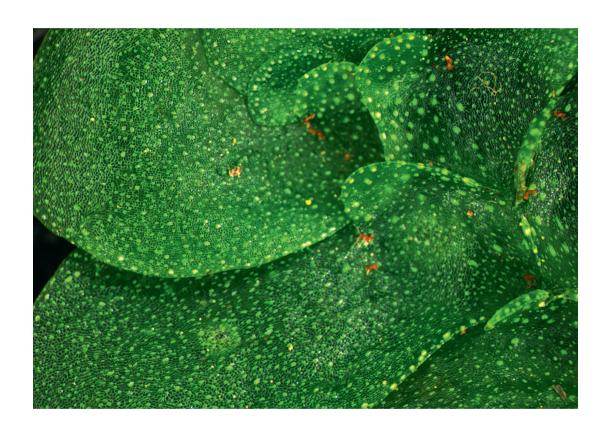
Up to ¾ in (2 cm) tall, 2¾ in (6 cm) for some species. Leafy shoots, rounded leaves, pale root-like rhizome. Capsules cylindrical. Antheridia at shoot tips, ball-like, often orange, in leafy splash cups

HABITAT

Mostly soil or gravel in humid habitats but also wood or rocks

and these underground branches are colonized by fungi. These are being studied to provide insights into how the earliest land plants may have adapted to terrestrial habitats with the help of fungal partners.

The sporophyte is also unique and surrounded by a fleshy calyptra while developing. The capsules are cylindrical, which is also striking as almost all other liverwort capsules are round. The setae are unusually thick and can extend up to 1 \(^{1}\)4 in (3 cm).


The greatest species diversity for the genus is in the southern hemisphere. Although only seven species are accepted, these show high levels of genetic diversity, and it is likely more species will be recognized with future study.

TREUBIA

BELOW A close-up view of the lobule of a Treubia lacunosa plant; the yellow dots are the large oil bodies.

he Treubiales represent an ancient group that, along with the Calobryales, diverged very early on in the evolution of the liverworts. The liverworts broadly fit into two structural groups: the thalloid liverworts, which form flat green mats without stems or leaves, and the leafy liverworts,

DISTRIBUTION

Only found in the southern hemisphere—Chile, Southeast Asia, Australasia, and South Pacific islands

ETYMOLOGY

After Melchior Treub (1851-1910), a Dutch botanist

NUMBER OF SPECIES

7 accepted species

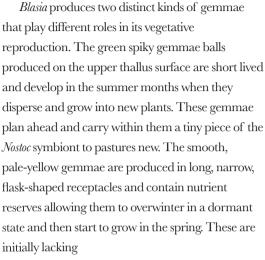
APPEARANCE

Thallus fleshy, brittle, bright green with yellow dots of oil body cells on the surface, branches up to 4 in (10 cm) long and 5% in (1.5 cm) wide with 2 rows of leafy lobes along the axis. Leaf cells dimorphic. Dioicous. Sporophytes arising from shoot tips. Asexual reproduction by gemmae

which have stems and leaf-like structures. The Treubiales is a particularly fascinating order from an evolutionary perspective because the structural complexity of these plants appears intermediate between these leafy and thallose forms. The result is a thalloid plant's innovation for a version of leaves!

Treubia has a unique leafy growth form for what is essentially a thalloid body plan. The thallus has a thick central axis with two rows of leaf-like lobes and smaller dorsal lobes along the upper surface. The leaves have two kinds of cells, some containing a large oil body scattered among other cells containing chloroplasts. The upper surface of the thallus is covered in a layer of mucilage produced from specialist mucilage-secreting cells. Sporophytes are positioned at the end of the thallus branches and have an unusually large seta.

There are two extant genera within the Treubiales: *Treubia* and *Apotreubia*. *Treubia* is a remarkable genus in terms of its unique morphology and evolutionary significance. It is distributed across the southern hemisphere, reflecting a time when the southern continents were united in the ancient supercontinent of Gondwana.


ABOVE The structure of *Treubia tasmanica* illustrates how these plants are intermediate between leafy and thalloid liverwort forms.

HABITAT

Growing over soil or rotting logs in humid sites, tropical forests

BLASIA

The Blasiales have a series of features that . make them unique among the liverworts. Symbiotic relationships with cyanobacteria are common among the hornworts but in liverworts are restricted to the Blasiales, where the scattered dark spots of Nostoc colonies can be seen on the surface following a single line on each side of the thallus.

a Nostoc symbiont, which needs to be acquired later. Sometimes both types of gemmae are produced on the same plant. All the sporophyte-bearing gametophyte thalli die off in the fall and the green

sporophyte stays protected among the dead thallus throughout the winter, maturing and producing its spores in the following spring.

Blasia shares some features with the more complex thalloid liverworts. Its short, linear branches with lobed and ruffled margins have two rows of scales on the underside and are similar to those in Marchantiales. However, the thallus of Blasia is not internally differentiated with air chambers and pores.

DISTRIBUTION

Circumpolar boreo-temperate — Europe, Russia, Himalaya, China, Japan, North America

ETYMOLOGY

After Blasius Biagi (c. 1670-1735), a Benedictine monk and botanist

NUMBER OF SPECIES


Only 1 species

APPEARANCE

Thallus branches to 1 in (2.5 cm) long with midrib and lobed margins. Dioicous. Antheridia arranged in two rows embedded in thallus surface. Sporophytes at tips of thallus lobes, large seta, capsule with elaters. Two kinds of gemmae produced. Nostoc colonies visible as dark spots on surface

Areas of disturbed soil such as roadside banks, on moist gravel or sand

OPPOSITE The *Nostoc* colonies on this *Blasia* are visible as dark-green dots on the thallus surface.

RIGHT One of *Blasia*'s smooth gemmae balls produced at the end of a long receptacle.

BELOW | Blasia pusilla showing both the spiky green gemmae on the thallus surface and also two rows of rounded bumps housing the male antheridia.

means without prior written permission of the publisher. CALLOCMARCHANTIOPHYTA: NEOHODGSONIALES: NEOHODGSONIACEAE

NEOHODGSONIA

The Neohodgsoniales is one of several orders of complex thalloid liverworts that are broadly defined as having a differentiated thallus with an upper layer with pores and air chambers and a lower layer of solid tissue. Rhizoids are abundant on the underside of the thallus and may occur in two forms: those that attach the plant to its growing surface and those that can form a capillary conducting system for water retention. The underside of the thallus may have rows of flap-like scales that also have a role in water conduction. Many of these complex thalloid liverworts produce unique, elaborate structures to house the sex organs, which resemble small umbrellas and are formed from the vegetative thallus.

The Neohodgsoniales contains just one species, Neohodgsonia mirabilis. It differs wildly from any other thalloid liverworts in having a uniquely branched carpocephalum—the umbrella-like structure that bears the female sex organs. It is also unusual in possessing gemmae cups on its surface, a feature found in a few other liverworts such as the common Marchantia. Genetic sequence data has confirmed the uniqueness of this species and its status as the sole representative of this order.

Neohodgsonia lacks the detailed distribution data needed to accurately assess its conservation status,

DISTRIBUTION

New Zealand, Tristan da Cunha, Gough Island

ETYMOLOGY


Originally described as *Hodgsonia* after Eliza Amy Hodgson (1888–1983), New Zealand bryologist

NUMBER OF SPECIES

1 known species

APPEARANCE

Thallus dark green with lighter green specks, branches ½-¾s in (8–10 mm) wide, underside with 2 rows of scales. Cells with single large oil bodies. Monoicous. Antheridia and archegonia in separate stalked structures with disc-shaped lobed receptacles. Gemmae cups with frilly margins on thallus surface with discoid gemmae

LEFT The rare *Neohodgsonia mirabilis* photographed in woodland in New Zealand.

but it is certainly a rare species known to occur only in New Zealand and the remote Tristan da Cunha islands. Its disjunct distribution is intriguing. In New Zealand it is known to require moist conditions of montane forests since it is not drought tolerant.

OPPOSITE The round gemmae cups on the thallus surface, similar to those found in *Marchantia*, are visible in this photo.

RIGHT | The unique branching of the carpocephalum can be seen here.

HABITAT

Usually growing over forest soil in areas of high rainfall

means without prior written permission of the publisher.
MARCHANTIOPHYTA: SPHAEROCARPALES: SPHAEROCARPACEAE

SPHAEROCARPOS

BELOW | Sphaerocarpos europaeus belongs to a very distinctive group of thalloid liverworts found on disturbed bare soils.

The Sphaerocarpales are sometimes referred to as the "bottle" liverworts in reference to the inflated bottle-shaped protective structures—involucres—that surround the sex organs. They form a very distinctive group of complex thalloid liverworts and are adapted to living in disturbed temporary habitats where they are short lived, completing their life cycle within a year.

Sphaerocarpos has a worldwide distribution, though its range is not continuous and it is usually quite rare.

Sphaerocarpos forms tiny palegreen rosettes with lobed thalli.

The dense cluster of balloon-like involucres are extremely distinctive once you get close enough to see them. Sphaerocarpos plants are sexually dimorphic, with female plants much larger than the males, sometimes even growing over the male plants.

The male antheridia are in the

surface of the thallus while the female archegonia are in rounded to cylindrical structures. These plants do not raise their capsules

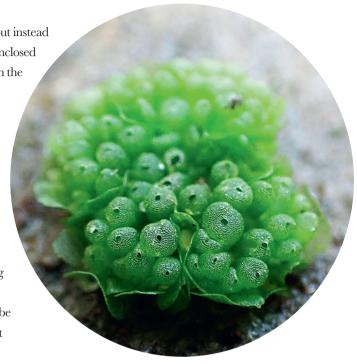
flask-shaped "bottles" on the upper

DISTRIBUTION

Pacific North America, South America, Europe, South Africa, southeastern Australia

ETYMOLOGY

Greek sphaîra = "sphere" + karpos = "fruit," referring to the involucres enclosing the capsules


NUMBER OF SPECIES

10 accepted species

APPEARANCE

Tiny pale-green rosettes with foliose lobes. Dioicous. Male plants only around $\frac{3}{16}$ in (5 mm) in diameter, antheridia in perigonial involucres on thallus surface. Female plants much larger around $\frac{3}{4}$ in (2 cm) in diameter, sporophyte enclosed in flask-shaped structure

up on setae like most other liverworts but instead the sporophyte is hidden, completely enclosed within the leafy "bottle" produced from the gametophyte thallus. The capsules do not have lids that open to release the spores; instead, the spores are released when the capsule wall disintegrates. Another anatomical feature of the sporophyte that sets this order apart from other liverworts is the absence of elaters in the capsule, which when present would help to disperse the spore mass. Dispersing spores over long distances is clearly not a priority for Sphaerocarpos, and this life strategy may be reflected in the ephemeral habitats that it occupies.

ABOVE RIGHT A close-up view of *Sphaerocarpos texanus* showing the balloon-like structures that contain the reproductive organs.

RIGHT | Sphaerocarpos stipitatus, pictured here in the West Coast National Park, Western Cape, is known only from South Africa and Chile.

HABITAT

On damp soil of disturbed and temporary habitats such as agricultural fields or gardens

means without prior written permission of the publisher. MARCHANTIOPHYTA: MARCHANTIALES: AYTONIACEAE

ASTERELLA

archantiales is a large order containing over 25 genera of complex thalloid liverworts. They have pores on the thallus surface that are surrounded by differentiated cells and an internal thallus structure with air chambers, photosynthesizing cells, and storage tissue. They

also have archegoniophores that are tall stalks with a disc-shaped receptacle at the top housing the reduced sporophytes.

Asterella forms dense mats or scattered branches, bright green above and dark wine red to black underneath. Many species of liverworts are highly aromatic, and Asterella species can have a characteristic smell of rotten fish.

The archegoniophores in *Asterella* are unique among the complex thalloids. The receptacles are rounded with four or more lobes

and each lobe houses a single reduced sporophyte surrounded by a protective sheath or involucre. When the spores are mature this sheath splits into ribbons allowing the spores to disperse. The tattered ribbons are usually conspicuous white or lilac and are a characteristic sight identifying the genus before getting

close enough to test for a fishy whiff.

LEFT The white sheaths surrounding the sporophytes can be seen in this specimen of *Asterella saccata* hanging down below the green receptacles.

DISTRIBUTION

Worldwide extending from the Arctic, temperate to tropical regions; the Americas, Europe, Africa, Asia, Australasia, and Oceania

ETYMOLOGY

Greek astér = "star," referring to the star-like appearance of the female receptacle

NUMBER OF SPECIES

53 accepted species

APPEARANCE

Thallus green to purple, branches up to 3/s in (9 mm) wide, underside of thallus with large, often purple scales in 2 rows. Monoicous or dioicous. Antheridia on thallus. Archegoniophores with a conspicuous fringe surrounding each reduced sporophyte

HABITAT

Usually growing on soil, sometimes rock

means without prior written permission of the publisher.
MARCHANTIOPHYTA: MARCHANTIALES: CONOCEPHALACEAE

CONOCEPHALUM

Conocephalum is another example of the complex thalloid liverworts in the Marchantiales with air chambers within the thallus. Looking at the surface of the plants, the borders between the air chambers are clearly outlined with a roughly hexagonal line, giving most species a snakeskin pattern. The openings to the air chambers are via pores that are raised up from the surface like mini volcances.

The archegoniophores elongate very rapidly and the stalks holding up the female receptacle can sometimes reach up to 2^{3} /4 in (7 cm) high, which is huge for a bryophyte! The female receptacles are conical and a distinctive feature of the genus. Like many of the Marchantiales genera, *Conocephalum* produces aromatic compounds and some species have a strong smell of turpentine when crushed.

These liverworts can form large mats and are commonly encountered in the right kind of damp habitat across the northern hemisphere. Common names are not often applied to bryophytes, yet *Conocephalum* is such a large and easily recognized plant that in English-speaking regions it has acquired two aliases: Great Scented Liverwort and Snakeskin Liverwort.

ABOVE | The clear outline of the air chambers with their central pore gives a distinctive pattern to the surface of this *Conocephalum salebrosum*.

DISTRIBUTION

Predominantly in temperate to boreal regions of the northern hemisphere, spanning North America, Europe, and eastern Asia

ETYMOLOGY

Greek konos = "cone" + kephalos = "head," alluding to the conical-shaped receptacles

NUMBER OF SPECIES

5 accepted species

APPEARANCE

Large, branched thallus up to 8 in (20 cm) long, surface with raised pores with conspicuous border to air chambers. Dioicous. Archegoniophores produced at ends of thallus branches with long stalks and conical receptacles

HABITAT

Damp areas in woodland, such as near water courses, growing over soil or rocks

LUNULARIA

OPPOSITE | Lunularia with its characteristic crescent-shaped gemmae cups housing the tiny green propagules.

BELOW | *Lunularia* is a rather weedy species commonly found around gardens and nurseries where its delightful gemmae cups are always worth a closer look.

The single species representing the Lunulariales, *Lunularia cruciata*, was formerly placed in Marchantiales. However, research into its evolutionary history based largely on DNA sequencing has shown that Lunularia is the only living representative of a lineage of plants that diverged from the rest of the complex thalloids early on in their history.

DISTRIBUTION

Worldwide

ETYMOLOGY

Latin *lunula* = "little moon," referring to the crescent-shaped gemma cups

NUMBER OF SPECIES

Only 1 species

APPEARANCE

Thallus bright green, branches up to 2 in (5 cm) long, upper surface with pores, borders to air chambers faintly seen on surface forming reticulate pattern, underside of thallus with 2 rows of scales. Dioicous. Usually sterile. Asexual reproduction by discoid gemmae in lunate gemmae cups on thallus surface

Commonly found in human-made habitats such as gardens or in damp areas near water

INDEX

Page numbers in <i>italics</i> refer	Bruchia 180	Cyclodictyon 220
to illustration captions.	bryophytes 7	C. laetevirens 220, 220, 221
	anatomy 14–21	C. vallis-gratiae 221
A	bryophyte diversity 38-43	Ü
Amphidium 166–7	bryophytes and people 30-2	D
A. lapponicum 166	bryophytes in the Anthropocene	Dalton, James 217
A. mougeotii 167	34–7	Daltonia 216–17
anatomy 14	distributions and habitats 22-9	D. splachnoides 217, 217
hornworts 14-16	evolution 8-10	Dawsonia 42, 128, 128
liverworts 16-19	life cycle 12–13	D. superba 114, 128
mosses 19–21	what are bryophytes? 8	Dendroceros 54–5
Andreaea 120–1	Bryoxiphium 154–5	D. borbonicus 55
A. blyttii 121	B. madeirense 154, 155	Dicranum 30, 168
A. rupestris 120	B. norvegicum 154-5, 155	D. montanum 168
Andreaeobryum macrosporum	Bryum 196-7	Didymodon 185
122–3	B. argenteum 196, 197	Dillenius, Johann 32, 84, 222–3
Aneura 81	B. pseudotriquetrum 28	Diphyscium 132–3
A. mirabilis 43, 81, 81, 96	Bucklandiella 158	
Anthoceros 30, 48, 51	Buxbaumia 130-1, 132, 136	D. foliosum 132, 133
A. agrestis 15, 48	B. aphylla 131	D. mucronifolium 133
A. bulbiculosus 52	B. viridis 131, 131	Discelium nudum 136–7 Distichium 146
A. fusiformis 49		
A. punctatus 49	C	D. capillaceum 146, 147
Anthropocene 34–7	Calymperes 169	distributions 22–3
Aphanorhegma 140	C. tenerum 169	Ditrichum 148, 150
Apotreubia 61	Calymperites burmensis 11	Drepanocladus 226
aquatic environments 28	Campylopus 159	D. angustifolius 227
Asterella 68	C. flexuosus 159	D. lycopodioides 227
A. saccata 68	C. introflexus 23, 159	D. sendtneri 226
Aulacomnium 208–9	Catoscopium nigritum 144-5	Drummondia 153
A. androgynum 208, 208, 209	Ceratodon 182–3	E
A. turgidum 208–9, 209	C. amazonum 183	
	C. conicus 183	Encalypta 138–9
В	C. purpureus 182, 183	E. ciliata 138
Barbula 184–5	Chatsubomi moss 104, 105	E. rhaptocarpa 138
B. unguiculata 184, 185	classification 38-40	Ephemeropsis tjibodensis 12
Bartram, Edwin B. 195	selected genera 42–3	Erpodium 178–9
Bartram, John 194-5	taxonomic terminology 43	E. cubense 178
Bartramia 194–5	Tetraphis pellucida 41	E. domingense 178, 179
B. halleriana 194	Codriophorus 158	Eustichia 164
B. ithyphylla 195	Colura 94	E. africana 165
B. pomiformis 195	C. calyptrifolia 94, 95	E. longirostris 164, 164–5
Bazzania 42, 42, 106	C. tenuicornis 95	evolution 8–10
B. denudata 107	Conocephalum 69	_
B. pearsonii 107	C. conicum 22, 23	F
B. tricrenata 107	C. salebrosum 69	Fissidens 154, 170, 176
B. trilobata 106	Cryptochila 102	F. gymnandrus 171
Blasia 62–3	Cryptothallus 81	F. osmundoides 170
B. pusilla 63	Ctenidium molluscum 149	F. ovatus 171
Borrer, William 220	cultural associations and uses 30, 32	F. parkii 170

Flexitrichum 148–9	Notothylas 50	Conocephalum 69
F. flexicaule 148–9, 149	Phaeoceros 51	Frullania 88–9
F. gracile 148–9, 149	phylogenetic tree 44	Gongylanthus 103
Folioceros 48	Phymatoceros 52–3	Haplomitrium 58-9
Fontinalis 228–9	reproductive structures 15–16	Herbetus 108–9
F. antipyretica 228, 229, 229	spore-producing structures 16	is it a liverwort? 14
F. neomexicana 229	vegetative gametophyte 14-15	Jubula 90–1
fossil record 10–11	humans 30–3	Lejeunea 92–3
Frullania 88, 90-1	Anthropocene 34–7	Lunularia 70–1
F. fragilifolia 89	human-made environments 24-5	Metzgeria 80
F. franciscana 89	Hutchins, Ellen 91	Mylia 98–9
F. kackineneis 11	Нурпит 222-3	Neohodgsonia 64–5
F. tamarisci 19, 89	H. cupressiforme 222	Pallavicinia 76–7
	H. cupressiforme var. lacunosum 223	Pellia 72–3
G	H. uncinulatum 222	Petalophyllum 74–5
George III 195	Hypopterygium 214	phylogenetic tree 56
Gigaspermum 134–5	H. didictyon 215	Plagiochila 110–11
G. repens 134, 135	H. flavolimbatum 214	Pleurozia 78–9
Glyphomitrium 174–5	H. tamarisci 214, 215	Porella 84–5
G. daviesii 174, 175	_	Ptilidium 82–3
Gongylanthus 103	J	Radula 86–7
G. ericetorum 103	Jamesoniella 102	reproductive structures 19
Grimmia 156–7	Japanese moss gardens	Scapania 100-1
G. montana 157	30, 30, 104, 105	Schistochila 96–7
G. orbicularis 157	Jubula 90–1	Solenostoma 104-5
G. sessitana 157	J. hutchinsiae 90, 91	Sphaerocarpos 66-7
	Jungermannia 105	spore-producing structures 19
н	J. hutchinsiae 91	Syzygiella 102
habitats 24–9		Treubia 60–1
Haplomitrium 58-9	K	vegetative gametophyte 16-19
H. hookeri 58	Kimmerer, Robin Wall 127	Lunularia cruciata 70-1
harsh environments 26-7	_	
Hedwig, Johannes 32	L	M
Hedwigia 188	Leiomitrium plicatum 203, 203	Macromitrium 202
H. emodica 188	Leiosporoceros dussii 46-7	M. microstomum 202
H. stellata 9, 189	Lejeunea 92–3, 103	Marchantia 64
Herbertus 42, 108	L. cavifolia 92	Meesia hexasticha 6
H. borealis 109	L. flava 93	Metzgeria 80, 217
H. stramineus 109	Leucobryum 160	M. pubescens 80, 80
Hooker, James Dalton 217, 219	L. acutifolium 160	Micheli, Pier Antonio 30
Hooker, William Jackson	L. glaucum 160	Mielichhoferia elongata 25, 25
91, 216–17, 219	life cycle 12–13	mosses 6–7, 113
Hookeria 218–19	Linnaean classification 38-43	Amphidium 166–7
H. acutifolia 218, 219	Linnaeus, Carl 32, 38, 48, 229	Andreaea 120–1
H. lucens 218, 218, 219	liverworts 6-7, 57	Andreaeobryum 122–3
hornworts 6–7, 45	Aneura 81	Aulacomnium 208–9
Anthoceros 48–9	Asterella 68	Barbula 184–5
Dendroceros 54-5	Bazzania 106-7	Bartramia 194–5
is it a hornwort? 14	Blasia 62–3	Bryoxiphium 154–5
Leiosporoceros 46–7	Colura 94–5	Bryum 196-7

D 1 : 190 1	C(1 01 110 10	D 10 74 74
Buxbaumia 130–1	Sphagnum 81, 118–19	P. ralfsii 74, 74
Calymperes 169	Spiridens 211	Phaeoceros 51, 52
Campylopus 159	Splachnum 190–1	P. laevis 45
Catoscopium 144–5	spore-producing structures 21	P. minutus 51
Ceratodon 182–3	Syntrichia 186–7	Philonotis gracillima 113
Cyclodictyon 220–1	Takakia 116–17	Phymatoceros 52–3
Daltonia 216–17	Tetraphis 126–7	P. binsarensis 52
Dawsonia 128	Timmia 142–3	P. bulbiculosus 52
Dicranum 168	Trematodon 180–1	P. phymatodes 52
Diphyscium 132–3	vegetative gametophyte 19–21	Physcomitrella 140
Discelium 136–7	Zygodon 200–1	Physcomitrium 140–1
Distichium 146–7	Mueller, Ferdinand von 135	P. patens 140, 140, 141, 141
Drepanocladus 226–7	Mylia 98	Plagiochila 42, 110
Encalypta 138–9	M. anomala 98, 98, 99	P. appalachiana 111
Erpodium 178–9	M. taylorii 98, 99	P. beddomei 110
Eustichia 164–5	M. verrucosa 98	P. exigua 12
Fissidens 170–1	M. vietnamica 98	P. heterophylla 110
Flexitrichum 148–9	Myurium hochstetteri 24, 224–5	P. semidecurrens 111
Fontinalis 228–9		Pleurophascum 162-3
Gigaspermum 134–5	N	P. grandiglobum 162, 163
Glyphomitrium 174–5	Neohodgsonia mirabilis 64–5	P. occidentale 163
Grimmia 156-7	Niphotrichum 158	P. ovalifolium 162
Hedwigia 188–9	Nostoc colonies	Pleurozia 78-9, 94
Hookeria 218–19	14, 46, 47, 48, 50, 52, 54, 62, 63	P. gigantea 78
Нурпит 222-3	Noteroclada 72	P. purpurea 78, 107
Hypopterygium 214–15	Notothylas 50, 51	Polytrichum 22, 30, 129, 142
is it a moss? 14	N. orbicularis 50	P. juniperinum 129
Leiomitrium 203	_	Porella 84–5
Leucobryum 160–1	0	P. arboris-vitae 84, 85
Macromitrium 202	Oedipodium griffithianum 124–5	P. canariensis 84
Myurium 224–5	Orthodontium 204–5	P. cordeana 85
Oedipodium 124–5	O. gracile 204–5	P. platyphylla 85
Orthodontium 204–5	O. lignicola 204–5	protection 37
Orthostichella 231	O. lineare 204, 204, 205	Protofrullania cornigera 11
Paludella 192–3	O. pellucens 205	Pseudoditrichum mirabile 150–1
phylogenetic tree 114	Orthostichella 231	Ptilidium 42, 82–3
Physcomitrium 140–1	O. versicolor 231	P. californicum 83
Pleurophascum 162–3	Orthotrichum 12, 24–5	P. ciliare 82, 83
Polytrichum 129		P. pulcherrimum 83
Pseudoditrichum 150–1	P	Ptychomnion 212
Ptychomnion 212–13	Pallavicinia 76–7	P. aciculare 212, 213
Pyrrhobryum 206–7	P. lyellii 76, 77	Pyrrhobryum 206–7
Racomitrium 158	Paludella 192–3	P. dozyanum 206
Racopilum 210	P. squarrosa 192, 193	1. dolyanan 200
reproductive structures 21	Park, Mungo 170	R
Rhodobryum 198–9	Pellia 72–3	Racomitrium 158
Schistostega 172–3	P. endiviifolia 73	R. lanuginosum 158, 158
Scouleria 152–3	Petalophyllum 74–5	Racopilum 210
Sematophyllum 230	P. americanum 74	R. capense 210
Sorapilla 176–7	P. preissi 75, 75	Radula 86–7
50rapiuu 170 7	1. press 13, 13	1

R. ankefinensis 87 Spiridens 211 R. aquilegia 86 S. muelleri 211 R. comblanata 21, 86 S. reinwardtii 211, 211 R. obtusiloba 87 Splachnum 190 rainforests 26 S. ampullaceum 190 Ralfs, John 220 S. luteum 190, 191 S. rubrum 37, 190, 191 reproduction 12-13 Rhodobryum 198-9 S. vasculosum 191 R. giganteum 198 Spruce, Richard 176, 177 R. ontariense 198, 198-9, 199 status 34 R. roseum 199 Syntrichia 186-7 Riccardiothallus devonicus 10 S. caninervis 186, 187 Riccia fluitans 28 S. montana 187 S. ruralis var. ruralis 187 S Syrrhopodon 169 Scapania 100-1 Syzygiella 102 S. americana 100 S. colorata 102 S. bolanderi 101 Т S. gymnostomophila 101 S. undulata 101 Takakia 116 Schistochila 96 T. ceratophylla 117 S. aligera 97 T. lepidozioides 116, 117 S. appendiculata 97 tankmos 159 S. balfouriana 97 taxonomy 38-43 Schistostega 42, 172-3 Tayloria octoblepharum 190 S. pennata 172, 173 Tetraphis 126-7 Schlotheimia ferruginea 6 T. pellucida 40, 41, 127 scientific study 30-2 Tetraplodon mnioides 190 Scopelophila cataractae 25 threats 34-7 Scouleria 152-3 Timmia 142-3 S. aquatica 153 T. austriaca 142, 143 T. bavarica 143 S. marginata 152 Sematophyllum 230 T. megapolitana 143 S. dregei 230 T. norvegica 143 Solenostoma 104-5 Trematodon 180 S. gracillimum 105 T. ambiguus 180 S. rubrum 52 T. longicollis 181 S. vulcanicola 104, 105 T. perssoniorum 180 Sorapilla 176-7 T. pillansii 181 S. papuana 176-7, 176-7 Treubia 60-1 T. lacunosa 60 S. sprucei 176 Sphaerocarpos 66-7 T. tasmanica 61 S. stipitatus 67 Trianthema 135 S. texanus 67 Tridontium 153 Sphagnum 4, 7, 32, 81, 98, 118–19, 119 Turner, Dawson 91 Sphagnum bogs 28-9, 30, 34-5, 37 S. lindbergii 119 S. russowii 119 S. subnitens 119

S. warnstoffii 119

٧

vegetative reproduction 12 Venturiella 178

Z

Zygodon 200

Z. catarinoi 200

Z. conoideus 201

Z. rupestris 38

Z. viridissimus 200