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1
Fashion

1.1. MATHEMATICAL ELEGANCE AS A DRIVING FORCE

As mentioned in the preface, the issues discussed in this book were developed from
three lectures given, by invitation of the Princeton University Press, at Princeton
University in October 2003. My nervousness, with these lectures, in addressing
such a knowledgeable audience as the Princeton scientific community, was per-
haps at its greatest when it came to the topic of fashion, because the illustrative
area that I had elected to discuss, namely string theory and some of its various
descendants, had been developed to its heights in Princeton probably more than
anywhere else in the world. Moreover, that subject is a distinctly technical one,
and I cannot claim competence over many of its important ingredients, my famil-
iarity with these technicalities being somewhat limited, particularly in view of
my status as an outsider. Yet, it seemed to me, I should not allow myself to be too
daunted by this shortcoming, for if only the insiders are considered competent
to make critical comments about the subject, then the criticisms are likely to be
limited to relatively technical issues, some of the broader aspects of criticism
being, no doubt, significantly neglected.

Since these lectures were given, there have been three highly critical accounts
of string theory: Not Even Wrong by Peter Woit, The Trouble with Physics by Lee
Smolin, and Farewell to Reality: How Fairytale Physics Betrays the Search for
Scientific Truth by Jim Baggott. Certainly, Woit and Smolin have had more direct
experience than I have of the string-theory community and its over-fashionable
status. My own criticisms of string theory in The Road to Reality, in chapter 31 and
parts of chapter 34, have also appeared in the meantime (predating these three
works), but my own critical remarks were perhaps somewhat more favourably
disposed towards a physical role for string theory than were these others. Most
of my comments will indeed be of a general nature, and are relatively insensitive
to issues of great technicality.
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Let me first make what surely ought to be a general (and perhaps obvious)
point. We take note of the fact that the hugely impressive progress that physi-
cal theory has indeed made over several centuries has depended upon extremely
precise and sophisticated mathematical schemes. It is evident, therefore, that any
further significant progress must again depend crucially upon some distinctive
mathematical framework. In order that any proposed new physical theory can
improve upon what has been achieved up until now, making precise and unam-
biguous predictions that go beyond what had been possible before, it must also
be based on some clear-cut mathematical scheme. Moreover, one would think,
to be a proper mathematical theory it surely ought to make mathematical sense
– which means, in effect, that it ought to be mathematically consistent. From a
self-inconsistent scheme, one could, in principle, deduce any answer one pleased.

Yet, self-consistency is actually a rather strong criterion and it turns out that
not many proposals for physical theories – even among the very successful ones
of the past – are in fact fully self-consistent. Often some strong elements of
physical judgement must be invoked in order that the theory can be appropri-
ately applied in an unambiguous way. Experiments are, of course, also central to
physical theory, and the testing of a theory by experiment is very different from
checking it for logical consistency. Both are important, but in practice one often
finds that physicists do not care so much about achieving full mathematical self-
consistency if the theory appears to fit the physical facts. This has been the case,
to some considerable degree, even with the extraordinarily successful theory of
quantum mechanics, as we shall be seeing in chapter 2 (and §1.3). The very first
work in that subject, namely Max Planck’s epoch-making proposal to explain the
frequency spectrum of electromagnetic radiation in equilibrium with matter at a
fixed temperature (the black-body spectrum; see §§2.2 and 2.11) required some-
thing of a hybrid picture which was not really fully self-consistent [Pais 2005].
Nor can it be said that the old quantum theory of the atom, as brilliantly proposed
by Niels Bohr in 1913, was a fully self-consistent scheme. In the subsequent
developments of quantum theory, a mathematical edifice of great sophistication
has been constructed, in which a desire for mathematical consistency had been a
powerful driving force. Yet, there remain issues of consistency that are still not
properly addressed in current theory, as we shall see later, particularly in §2.13.
But it is the experimental support, over a vast range of different kinds of phys-
ical phenomena, which is quantum theory’s bedrock. Physicists tend not to be
over-worried by detailed matters of mathematical or ontological inconsistency
if the theory, when applied with appropriate judgement and careful calculation,
continues to provide answers that are in excellent agreement with the results of
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observation – often with extraordinary precision – through delicate and precise
experiment.

The situation with string theory is completely different from this. Here there
appear to be no results whatever that provide it with experimental support. It
is often argued that this is not surprising, since string theory, as it is now for-
mulated as largely a quantum gravity theory, is fundamentally concerned with
what is called the Planck scale of very tiny distances (or at least close to such
distances), some 10−15 or 10−16 times smaller (10−16 meaning, of course, down
by a factor of a tenth of a thousandth of a millionth of a millionth) and hence
with energies some 1015 or 1016 times larger than those that are accessible to
current experimentation. (It should be noted that, according to basic principles of
relativity, a small distance is essentially equivalent to a small time, via the speed
of light, and, according to basic principles of quantum mechanics, a small time
is essentially equivalent to a large energy, via Planck’s constant; see §§2.2 and
2.11.) One must certainly face the evident fact that, powerful as our present-day
particle accelerators may be, their currently foreseeable achievable energies fall
enormously short of those that appear to have direct relevance to theories such as
modern string theory that attempt to apply the principles of quantum mechanics to
gravitational phenomena. Yet this situation can hardly be regarded as satisfactory
for a physical theory, as experimental support is the ultimate criterion whereby it
stands or falls.

Of course, it might be the case that we are entering a new phase of basic
research into fundamental physics, where requirements of mathematical con-
sistency become paramount, and in those situations where such requirements
(together with a coherence with previously established principles) prove insuffi-
cient, additional criteria of mathematical elegance and simplicity must be invoked.
While it may seem unscientific to appeal to such aesthetic desiderata in a fully
objective search for the physical principles underlying the workings of the uni-
verse, it is remarkable how fruitful – indeed essential – such aesthetic judgements
seem to have frequently proved to be. We have come across many examples in
physics where beautiful mathematical ideas have turned out to underlie fundamen-
tal advances in understanding. The great theoretical physicist Paul Dirac [1963]
was very explicit about the importance of aesthetic judgement in his discovery of
the equation for the electron, and also in his prediction of anti-particles. Certainly,
the Dirac equation has turned out to be absolutely fundamental to basic physics,
and the aesthetic appeal of this equation is very widely appreciated. This is also
the case with the idea of anti-particles, which resulted from Dirac’s deep analysis
of his own equation for the electron.
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However, this role of aesthetic judgement is a very difficult issue to be objective
about. It is often the case that some physicist might think that a particular scheme is
very beautiful whereas another might emphatically not share that view! Elements
of fashion can often assume unreasonable proportions when it comes to aesthetic
judgements – in the world of theoretical physics, just as in the case of art or the
design of clothing.

It should be made clear that the question of aesthetic judgment in physics is
more subtle than just what is often referred to as Occam’s razor – the removal
of unnecessary complication. Indeed, a judgement as to which of two opposing
theories is actually the “simpler”, and perhaps therefore more elegant, need by no
means be a straightforward matter. For example, is Einstein’s general relativity a
simple theory or not? Is it simpler or more complicated than Newton’s theory of
gravity? Or is Einstein’s theory simpler or more complicated than a theory, put
forward in 1894 by Aspeth Hall (some 21 years before Einstein proposed his gen-
eral theory of relativity), which is just like Newton’s but where the inverse square
law of gravitation is replaced by one in which the gravitational force between
a mass M and a mass m is GmMr−2.00000016, rather than Newton’s GmMr−2.
Hall’s theory was proposed in order to explain the observed slight deviation from
the predictions of Newton’s theory with regard to the advance of the perihelion
of the planet Mercury that had been known since about 1843. (The perihelion is
the closest point to the Sun that a planet reaches while tracing its orbit [Rose-
veare 1982].) This theory also gave a very slightly better agreement with Venus’s
motion than did Newton’s. In a certain sense, Hall’s theory is only marginally
more complicated than Newton’s, although it depends on how much additional
“complication” one considers to be involved in replacing the nice simple number
“2” by “2.00000016”. Undoubtedly, there is a loss of mathematical elegance in
this replacement, but as noted above, a strong element of subjectivity comes into
such judgements. Perhaps more to the point is that there are certain elegant math-
ematical properties that follow from the inverse square law (basically, expressing
a conservation of “flux lines” of gravitational force, which would not be exactly
true in Hall’s theory). But again, one might consider this an aesthetic matter whose
physical significance should not be overrated.

But what about Einstein’s general relativity? There is certainly an enormous
increase in the difficulty of applying Einstein’s theory to specific physical systems,
beyond the difficulty of applying Newton’s theory (or even Hall’s), when it comes
to examining the implications of this theory in detail. The equations, when written
out explicitly, are immensely more complicated in Einstein’s theory, and they are
difficult even to write down in full detail. Moreover, they are immensely harder
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to solve, and there are many nonlinearities in Einstein’s theory which do not
appear in Newton’s (these tending to invalidate the simple flux-law arguments
that must already be abandoned in Hall’s theory). (See §§A.4 and A.11 for the
meaning of linearity, and for its special role in quantum mechanics see §2.4.)
Even more serious is the fact that the physical interpretation of Einstein’s theory
depends upon eliminating spurious coordinate effects that arise from the making
of particular choices of coordinates, such choices being supposed to have no
physical relevance in Einstein’s theory. In practical terms, there is no doubt that
Einstein’s theory is usually immensely more difficult to handle than is Newton’s
(or even Hall’s) gravitational theory.

Yet, there is still an important sense in which Einstein’s theory is actually a very
simple one – even possibly simpler (or more “natural”) than Newton’s. Einstein’s
theory depends upon the mathematical theory of Riemannian (or, more strictly, as
we shall be seeing in §1.7, pseudo-Riemannian) geometry, of arbitrarily curved
4-manifolds (see also §A.5). This is not an altogether easy body of mathematical
technique to master, for we need to understand what a tensor is and what the
purpose of such quantities is, and how to construct the particular tensor object
R, called the Riemann curvature tensor, from the metric tensor g which defines
the geometry. Then by means of a contraction and a trace-reversal we find how
to construct the Einstein tensor G. Nevertheless, the general geometrical ideas
behind the formalism are reasonably simple to grasp, and once the ingredients
of this type of curved geometry are indeed understood, one finds that there is
a very restricted family of possible (or plausible) equations that can be written
down, which are consistent with the proposed general physical and geometrical
requirements. Among these possibilities, the very simplest gives us Einstein’s
famous field equation G = 8πγ T of general relativity (where T is the mass–
energy tensor of matter and γ is Newton’s gravitational constant – given according
to Newton’s particular definition, so that even the “8π” is not really a complication,
but merely a matter of how we wish to define γ ).

There is just one minor, and still very simple, modification of the Einstein
field equation that can be made, which leaves the essential requirements of the
scheme intact, namely the inclusion of a constant number Λ, referred to as the
cosmological constant (which Einstein introduced in 1917 for reasons that he later
discarded) so that Einstein’s equations with Λ now become G = 8πγ T + Λg.
The quantity Λ is now frequently referred to as dark energy, presumably to allow
for a possibility of generalizing Einstein’s theory so that Λ might vary. There are,
however, strong mathematical constraints obstructing such considerations, and in
§§3.1, 3.7, 3.8, and 4.3, where Λ will be playing a significant role for us, I shall
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restrict attention to situations where Λ is indeed non-varying. The cosmological
constant will have considerable relevance in chapter 3 (and also §1.15). Indeed,
relatively recent observations point strongly to the actual physical presence of Λ

having a tiny (apparently constant) positive value. This evidence for Λ > 0 – or
possibly for some more general form of “dark energy” – is now very impressive,
and has been growing since the initial observations of Perlmutter et al. [1999],
Riess et al. [1998], and their collaborators, leading to the award of the 2011 Nobel
Prize in physics to Saul Perlmutter, Brian P. Schmidt, and Adam G. Riess. This
Λ > 0 has immediate relevance only to the very distant cosmological scales, and
observations concerning celestial motions at a more local scale can be adequately
treated according to Einstein’s original and simpler G = 8πγ T. This equation is
now found to have an unprecedented precision in modelling the behaviour, under
gravity, of celestial bodies, the observed Λ value having no significant impact on
such local dynamics.

Historically of most importance, in this regard, is the double-neutron-star sys-
tem PSR1913+16, one component of which is a pulsar, sending very precisely
timed electromagnetic signals that are received at the Earth. The motion of each
star about the other, being very cleanly a purely gravitational effect, is modelled
by general relativity to an extraordinary precision that can be argued to be of about
one part in 1014 overall, accumulated over a period of about 40 years. The period
40 years is roughly 109 seconds, so a precision of one in 1014 means an agree-
ment between observation and theory to about 10−5 (one hundred thousandth) of
a second over that period – which is, very remarkably, indeed just what is found.
More recently, other systems [Kramer et al. 2006] involving one or even a pair
of pulsars, have the potential to increase this precision considerably, when the
systems have been observed for a comparable length of time as has PSR19+16.

To call this figure of 1014 a measure of the observed precision of general
relativity is open to some question, however. Indeed, the particular masses and
orbital parameters have to be calculated from the observed motions, rather than
being numbers coming from theory or independent observation. Moreover, much
of this extraordinary precision is already in Newton’s gravitational theory.

Yet, we are concerned here with gravitational theory overall, and Einstein’s
theory incorporates the deductions from Newton’s theory (giving Kepler’s ellip-
tical orbits, etc.) as a first approximation, but provides various corrections to the
Keplerian orbits (including the perihelion advance), and finally a loss of energy
from the system which is precisely in accord with a remarkable prediction from
general relativity: that such a massive system in accelerated motion should lose
energy through the emission of gravitational waves – ripples in space-time which
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are the gravitational analogues of electromagnetic waves (i.e. light) that electri-
cally charged bodies emit when they are involved in accelerated motion. As a
striking further confirmation of the existence and precise form of such gravita-
tional radiation is the announcement [Abbott et al. 2016] of their direct detection
by the LIGO gravitational wave detector, which also provides excellent direct
evidence of another of the predictions of general relativity: the existence of black
holes, which we shall be coming to in §3.2, and discussed also in later parts of
chapter 3, and in §4.3.

It should be emphasized that this precision goes enormously beyond – by an
additional factor of about 108 (i.e. one hundred million) or more – that which was
observationally available to Einstein when he first formulated his gravitational
theory. The observed precision in Newton’s gravitational theory could itself be
argued to be around one part in 107. Accordingly, the “1 part in 1014” precision
of general relativity was already “out there” in nature, before Einstein formulated
his own theory. Yet that additional precision (by a factor of around one hundred
million), being unknown to Einstein, can have played no role whatever in his
formulating his theory. Thus this new mathematical model of nature was not a
man-made construction invented merely in an attempt to find the best theory to
fit the facts; the mathematical scheme was, in a clear sense, already there in the
works of nature herself. This mathematical simplicity, or elegance, or however
one should describe it, is a genuine part of nature’s ways, and it is not simply that
our minds are attuned to being impressed by such mathematical beauty.

On the other hand, when we try deliberately to use the criterion of mathematical
beauty in formulating our theories, we are easily led astray. General relativity is
certainly a very beautiful theory, but how does one judge the elegance of physical
theories generally? Different people have very different aesthetic judgements. It
is not necessarily obvious that one person’s view as to what is elegant will be
the same as somebody else’s, or whether one person’s aesthetic judgement will
be superior or inferior to another’s, in formulating a successful physical theory.
Moreover, the inherent beauty in a theory is often not obvious at first, and may
be revealed only later when the depths of its mathematical structure become
apparent through later technical developments. Newtonian dynamics is a case in
point. Much of the undoubted beauty in Newton’s framework was revealed only
much later, through the magnificent works of such great mathematicians as Euler,
Lagrange, Laplace, and Hamilton (as the terms Euler–Lagrange equations, the
Laplacian operator, Lagrangians, and Hamiltonians – which are key ingredients
of modern physical theory – bear witness). The role of Newton’s Third Law, for
example, which asserts that every action has an equal and opposite reaction, finds
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a central place in the Lagrangian formulation of modern physics. It would not
surprise me to find that the beauty that is frequently asserted to be present in
successful modern theories is often to some extent post hoc. The very success
of a physical theory, both observational and mathematical, may contribute sig-
nificantly to the aesthetic qualities that it is later perceived to possess. It would
follow from all this that judgements of the merits of some proposed physical
theory through its claimed aesthetic qualities are likely to be problematic or at
least ambiguous. It is unquestionably more reliable to form one’s judgements of
a new theory on the basis of its agreement with current observation and on its
predictive power.

Yet, with regard to experimental support, often the crucial experiments are
not available, such as with the utterly prohibitive high energies that single parti-
cles might have to attain – absurdly in excess of those available in current particle
accelerators (see §1.10) – that are often argued to be required in any proper obser-
vational test of any quantum-gravity theory. More modest experimental proposals
may also be unavailable, due perhaps to the expense of the experiments or their
intrinsic difficulty. Even with very successful experiments, it is quite often the
case that the experimenters collect enormous amounts of data, and the problem
is of a quite different kind, namely the matter of digging out some key piece of
information from that morass of data. This kind of thing is certainly true in particle
physics, where powerful accelerators and particle colliders now produce masses
of information, and it is now also becoming true in cosmology, where modern
observations of the cosmic microwave background (CMB) produce very large
amounts of data (see §§3.4, 3.9, and 4.3). Much of this data is considered not to
be especially informative, as it simply confirms what is already known, as gleaned
from earlier experiments. A great deal of statistical processing is needed in order
to extract some tiny residual – which is the new feature that the experimental-
ists are looking for – which might confirm or refute some suggested theoretical
proposal.

A point that should be made here is that this statistical processing is likely
to be very specific to current theory, geared to finding out what slight additional
effect that theory might predict. It is very possible that some radically different set
of ideas, departing significantly from what is currently fashionable, may remain
untested even though some definitive answer might actually lie hidden in the
existing data, being unrevealed because the statistical procedures that physicists
have adopted are too directly tuned to current theory. We shall be seeing what
appears to be a striking example of this in §4.3. Even when it is clear how definitive
information might be statistically extracted from an existing morass of reliable
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data, the inordinate amount of computer time that this can require may sometimes
constitute a huge barrier to the actual carrying out of the analysis, particularly
when more fashionable pursuits may be in direct competition.

Even more to the point is the fact that the experiments themselves are usually
enormously expensive and their specific design is likely to be geared to the testing
of theories which are within the framework of conventional ideas. Any theoretical
scheme which departs too radically from the general consensus may find it hard for
sufficient funds to be provided to enable it to be properly tested. A very expensive
experimental apparatus, after all, requires many committees of established experts
to approve its construction, and such experts are likely to be those who have played
their parts in developing the current perspectives.

In relation to this issue we may consider the Large Hadron Collider (LHC) in
Geneva, Switzerland, whose construction was completed in 2008. It has a 27 km
(17 mile) tunnel running under two countries (France and Switzerland), initially
coming into action in 2010. It is now credited with finding the hitherto elusive
Higgs particle, of great importance in particle physics, particularly in relation to
its role in assigning mass to weakly interacting particles. The 2013 Nobel Prize
in physics was awarded to Peter Higgs and François Englert for their part in the
ground-breaking work of predicting the existence and properties of this particle.

This is undoubtedly a magnificent achievement, and I have no wish to underrate
its undoubted importance. Nevertheless, the LHC appears to provide a case in
point. The way in which the very high-energy encounters between particles are
analysed requires the presence of extremely expensive detectors, which have
been geared to glean information in relation to prevailing particle-physics theory.
It may not be at all easy to obtain information of relevance to unconventional ideas
concerning the underlying nature of fundamental particles and their interactions.
In general, proposals which depart drastically from a prevailing perspective may
well find it much harder to have a chance of being adequately funded, and also
may find great difficulty in being tested at all, by definitive experiments.

A further important factor is that graduate students, when in search of a problem
to work on for a doctorate degree, tend to be highly constrained with regard to
appropriate topics of research. Research students working in unfashionable areas,
even if leading to successful doctoral degrees, may well find extreme difficulty
in obtaining academic jobs afterwards, no matter how talented, knowledgeable,
or original they may be. Jobs are limited and research funding hard to come by.
Research supervisors are, more likely than not, interested mainly in developing
ideas that they themselves had been involved in promoting, and these are likely
to be in areas that are already fashionable. Moreover, a supervisor interested
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in developing an idea that is outside the mainstream may well be reluctant to
encourage a potential student to work in such an area, owing to the disadvantage
that it may be to the student when it comes to competing, subsequently, in a highly
competitive job market where those with an expertise in fashionable areas will
have a distinct advantage.

The same issues arise when it comes to the funding of research projects. Pro-
posals in fashionable areas are far more likely to receive approval (see also §1.12).
Again, the proposals will be judged by acknowledged experts, and those are over-
whelmingly likely to be working in areas that are already fashionable, and to
which they themselves may well have been significant contributors. Projects that
deviate too much from the currently accepted norms, even if well thought through
and highly original, are very likely to be left without support. Moreover, this is
not just a matter of limitations on the funds available, as the influence of fashion
appears to be particularly relevant in the United States, where the availability of
funds for scientific research remains relatively high.

It must be said, of course, that most unfashionable areas of research will be
considerably less likely to develop into successful theories than any of those that
are already fashionable.A radical new perspective will in the vast majority of cases
have little chance of developing into a viable proposal. Needless to say, as with
Einstein’s general relativity, any such radical perspective must already agree with
what has been previously experimentally established, and if not, then an expensive
experimental test may well not be needed for the rejection of inappropriate ideas.
But for theoretical proposals that are in agreement with all previously performed
experiments, and where there is no current prospect for experimental confirmation
or refutation – perhaps for reasons such as those just described – it seems that we
must fall back on mathematical consistency, general applicability, and aesthetic
criteria when we form our judgements of the plausibility and relevance of some
proposed physical theory. It is in such circumstances that the role of fashion may
begin to attain excessive proportions, so we must be very careful not to allow the
fashionable nature of some particular theory to cloud our judgements as to its
actual physical plausibility.

1.2. SOME FASHIONABLE PHYSICS OF THE PAST

This is particularly important for theories which purport to be probing the very
foundations of physical reality, such as modern-day string theory, and we must
be very wary of assigning too much plausibility to such a theory on account of
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Figure 1-1: The five elements of Ancient Greece: fire (tetrahedron), air (octahe-
dron), water (icosahedron), earth (cube), and aether (dodecahedron).

its fashionable status. Before addressing present-day physical ideas, however, it
will be instructive to mention some fashionable scientific theories of the past that
we do not take seriously today. There are large numbers of them and I am sure
that a good many readers will have little knowledge of most, for the sufficient
reason that if we do not now take these theories seriously, we are fairly unlikely
to learn about them – unless, of course, we are good historians of science; but
most physicists are not. At least let me mention a few of the better-known ones.

In particular, there is the ancient Greek theory that the Platonic solids are to be
associated with what they regarded as the basic elements of material substance, as
represented in figure 1-1. Here, fire is represented as the regular tetrahedron, air
as the octahedron, water as the icosahedron, and earth as the cube, and where, in
addition, the celestial aether (or firmament, or quintessence) was later introduced,
of which it was supposed that celestial bodies were composed, and was taken to
be represented as the regular dodecahedron. The ancient Greeks appear to have
formulated this sort of view – or at least many did – and I suppose it could well
have qualified as a fashionable theory of the time.

Initially, they just had the four elements of fire, air, water, and earth, and
this collection of primitive entities seemed to accord well with the four perfectly
regular polyhedral shapes that were known at the time, but when the dodecahedron
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was later discovered, the theory needed to be extended to accommodate this
additional polyhedron!Accordingly, the celestial substance which composed such
supposedly perfect bodies as the Sun, the Moon and planets, and the crystal
spheres to which they were supposedly attached was brought into the polyhedral
scheme – this substance appearing, to the Greeks, to satisfy very different laws
from the ones found on Earth, having a seemingly eternal motion, rather than
the universal tendency of familiar substances to slow down and stop. Perhaps
there is some lesson here about the way in which even modern sophisticated
theories, having been initially presented in a supposedly definitive form, may
then become significantly altered and their original doctrines stretched to lengths
not previously conceived, in the face of new theoretical or observational evidence.
As I understand it, the view that the ancient Greeks held was that somehow the
laws governing the motions of stars, planets, Moon, and Sun were indeed quite
different from the laws that governed things on Earth. It took Galileo, with his
understanding of the relativity of motion, and then Newton, with his theory of
universal gravitation – strongly influenced also by Kepler’s understanding of
planetary orbiting – to appreciate that the same laws actually apply to celestial
bodies as to those on Earth.

When I first became acquainted with these ancient Greek ideas, they struck
me as sheer romantic fantasy, with no mathematical (let alone physical) rationale.
But more recently I learned that there is a bit more of a theory underlying these
ideas than I had initially imagined. Some of these polyhedral shapes can be cut
up into pieces, and then suitably recombined to make others (as, for example,
two cubes can be cut to make two tetrahedra and an octahedron). This might be
related to physical behaviour and used as a geometrical model for the basis of
transitions which can occur between these different elements. At least here was a
bold and imaginative guess as to the nature of material substance, which was not
really an unreasonable suggestion at a time when so little had been established as
to the actual nature and behaviour of physical material. Here was an early attempt
to find a basis for real materials in terms of an elegant mathematical structure –
very much in the spirit of what theoretical physicists are still striving to do today
– in which theoretical consequences of the model could be tested against actual
physical behaviour. Aesthetic criteria were clearly also at work here, and the ideas
certainly seem to have appealed to Plato. But, needless to say, the details of the
ideas cannot have stood the tests of time too well – otherwise we should surely
not have abandoned such a mathematically attractive proposal!

Let us consider a few other things. The Ptolemaic model of planetary motion
– in which the Earth was taken to be fixed, located at the centre of the cosmos
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– was extremely successful, and remained unchallenged for many centuries. The
motions of Sun, Moon, and planets were to be understood in terms of epicy-
cles, according to which planetary movements could be explained in terms of the
superposition of uniform circular motions upon one another. Though the scheme
had to be rather complicated, in order to get good agreement with observation, it
was not altogether lacking in mathematical elegance, and it was able to provide a
reasonably predictive theory of the future motions of planets. It should be men-
tioned that epicycles do have a genuine rationale, when one considers external
motions relative to a stationary Earth. The motions that we actually directly see
from the Earth’s perspective involve the composition of the Earth’s rotation (so
there is a perceived circular motion of the heavens about the Earth’s polar axis),
which must be composed with the general apparent motions of the Sun, Moon,
and planets that are roughly constrained to the ecliptic plane, which appears to
us as a fairly closely circular motion about a different axis. For good geomet-
rical reasons, we already perceive something of the general nature of epicycles
– circular motions upon other circular motions – so it was not so unreasonable
to suppose that this idea might be extended more generally in the more detailed
motions of the planets.

Moreover, epicycles themselves provide some interesting geometry, and
Ptolemy was himself a fine geometer. In his astronomical work, he employed
an elegant and powerful geometrical theorem that he possibly discovered, as it
now bears his name. (This theorem asserts that the condition for four points in
a plane A, B, C, D to lie on a circle – taken in that cyclic order – is that the
distances between them satisfy AB · CD + BC · DA = AC · BD.) This was the
accepted theory of planetary motion for around fourteen centuries, until it was
superseded, and eventually completely overturned, through the wonderful work
of Copernicus, Galileo, Kepler, and Newton, and it is now regarded as thoroughly
incorrect! It must certainly be described as a fashionable theory, however, and
it was an extraordinarily successful one, for around fourteen centuries (from the
mid second to the mid sixteenth), fairly closely accounting for all observations of
planetary motion (when appropriate improvements were introduced from time to
time), up until the more precise measurements of Tycho Brahe towards the end
of the sixteenth century.

Another famous theory that we do not now believe, though it was very fashion-
able for over a century between 1667 (when it was put forward by Joshua Becher)
and 1778 (when effectively disproved by Antoine Lavoisier), was the phlogiston
theory of combustion. According to this theory, any inflammable substance con-
tained an element called phlogiston, and the process of burning involved that
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substance giving up its phlogiston into the atmosphere. The phlogiston theory
accounted for most of the facts about burning that were known at the time, such
as the fact that when burning took place in a reasonably small sealed container,
it would tend to stop before all of the inflammable material was used up, this
being explained by the air in the container becoming saturated with phlogiston
and unable to absorb any more. Ironically, it was Lavoisier who was responsible
for another fashionable but false theory, namely that heat is a material substance,
which he referred to as caloric. That theory was disproved in 1798 by Count
Rumford (Sir Benjamin Thompson).

In each of these two main examples, the success of the theory may be under-
stood by its close relation to the more satisfactory scheme which superseded it.
In the case of Ptolemaic dynamics, we can transform to the more satisfactory
heliocentric picture of Copernicus by a simple geometric transformation. This
involves referring motions to the Sun as centre, rather than the Earth. At first,
when everything was described in terms of epicycles, this made little difference –
except that the heliocentric picture looked much more systematic, with the more
rapid planetary motions being those for planets that were closer to the Sun [Gin-
gerich 2004; Sobel 2011] – and there was a basic equivalence between the two
schemes at this stage. But, when Kepler found his three laws of elliptic planetary
motion, the situation changed completely, since a geocentric description of this
kind of motion made no good geometrical sense. Kepler’s laws provided the key
that opened the way to the extraordinarily precise and broad-ranging Newtonian
picture of universal gravity. Nevertheless, we might not today regard the geo-
centric perspective as quite so outrageous as would have been the case in the
nineteenth century, in the light of the general covariance principle of Einstein’s
general relativity (see §§1.7, A.5, and 2.13), which allows us to adopt massively
inconvenient coordinate descriptions (like a geocentric one in which the Earth’s
coordinates do not change with time) as nevertheless legitimate. Likewise, the
phlogiston theory could be made to correspond closely to the modern perspec-
tive on combustion in which the burning of some material is normally taken to
involve the taking up of oxygen from the atmosphere, where phlogiston would
simply be regarded as “negative oxygen”. This provides us with a fairly con-
sistent translation between the phlogiston picture and the now conventional one.
But when detailed mass measurements by Lavoisier demonstrated that phlogiston
would have to have negative mass, the picture began to lose support. Nevertheless,
“negative oxygen” is not such an absurd concept from the perspective of mod-
ern particle physics, where every type particle in nature (including a composite
one) is supposed to have an anti-particle – an “anti-oxygen atom” is therefore
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completely in accord with modern theory. It would not, however, have a negative
mass!

Sometimes theories that have been out of fashion for some while can come
back into consideration in view of later developments. A case in point is an idea
that Lord Kelvin (William Thompson) put forward in about 1867, in which atoms
(the elementary particles of his day) were to be regarded as being composed of
tiny knot-like structures. This idea attracted some considerable attention at the
time, and the mathematician J. G. Tait began a systematic study of knots on the
basis of this. But the theory did not lead to any clear-cut correspondence with
the actual physical behaviour of atoms, so it became largely forgotten. However,
more recently, ideas of this general kind have begun to find favour again, partly in
view of their connection with string-theoretic notions. The mathematical theory of
knots has also encountered a revival, since around 1984, starting with the work of
Vaughan Jones, whose seminal ideas had their roots in theoretical considerations
within quantum field theory [Jones 1985; Skyrme 1961]. The methods of string
theory were subsequently employed by Edward Witten [1989] to obtain a kind
of quantum field theory (called a topological quantum field theory) which, in a
certain sense, encompasses these new developments in the mathematical theory
of knots.

As a revival of a far more ancient idea for the nature of the large-scale uni-
verse, I might mention – though not entirely seriously – a curious coincidence that
occurred at about the time that I was presenting my Princeton lecture on which
this particular chapter is based (on 17 October 2003). In that talk, I referred
to the ancient Greek idea that the aether was to be associated with the regular
dodecahedron. Unbeknown to me, at that time, there were newspaper reports of a
proposal, due to Luminet et al. [2003], that the 3-dimensional spatial geometry of
the cosmos might actually have a somewhat complicated topology, arising from
the identification (with a twist) of opposite faces of a (solid) regular dodecahe-
dron. Thus, in a sense, the Platonic idea of a dodecahedral cosmos was also being
revived in modern times!

The ambitious idea of a theory of everything, intended to encompass all phys-
ical processes, including a description of all the particles of nature and their
physical interactions, has been commonly mooted in recent years, especially in
connection with string theory. The idea would be to have a complete theory of
physical behaviour, based on some notion of primitive particles and/or fields, act-
ing according to some forces or other dynamical principles precisely governing
the motions of all constituent elements. This may also be regarded as a revival of
an old idea, as we shall see in a moment.
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Just as Einstein was producing the final form of his general theory of relativity,
towards the end of 1915, the mathematician David Hilbert put forward his own
method of deriving the field equations of Einstein’s theory,1 using what is known
as a variational principle. (This very general type of procedure makes use of the
Euler–Lagrange equations, obtained from a Lagrangian, this being a powerful
notion, referred to by name in §1.1; see, for example, Penrose [2004, chapter 20];
henceforth this book will be referred to as “TRtR”.) Einstein, in his own more
direct approach, formulated his equations explicitly in a form which showed
how the gravitational field (as described in terms of space-time curvature) would
behave, as influenced by its “source”, namely the total mass/energy densities of
all the particles, or matter fields, etc., collected together in the form of the energy
tensor T (referred to in §1.1).

Einstein gave no specific prescription for the detailed equations governing
how these matter fields were to behave, these being supposed to be taken from
some other theory specific to the particular matter fields under consideration.
In particular, one such matter field would be the electromagnetic field, whose
description would be given according to the wonderful equations of the great
Scottish mathematical physicist James Clerk Maxwell in 1864, which fully unified
electric and magnetic fields, thereby explaining the nature of light and much of
the nature of the forces governing the internal constitution of ordinary materials.
This was to be considered matter in this context, and to play its appropriate part in
T. In addition, other types of field, and all sorts of other kinds of particles could
also be involved, being governed by whatever equations as might turn out to be
appropriate, would also count as matter and contribute to T. The details of this
were not important to Einstein’s theory, and were left unspecified.

On the other hand, in his own proposal Hilbert was attempting to be more
all-embracing. For he put forward what we might now refer to as a theory of
everything. The gravitational field was to be described in just the same way as
in Einstein’s proposal, but rather than leaving the source term T unspecified, as
Einstein had done, Hilbert proposed that this source term should be that of a very
specific theory that was fashionable at the time, known as Mie’s theory [Mie 1908,
1912a,b, 1913]. This involved a nonlinear modification of Maxwell’s electromag-
netic theory, and it had been proposed by Gustav Mie as a scheme intended to
incorporate all aspects of matter. Accordingly, Hilbert’s all-embracing proposal
was supposed to be a complete theory of matter (including electromagnetism) as
well as gravity. The strong and weak forces of particle physics were not under-
stood at the time, but Hilbert’s proposal could indeed have been viewed as what

1 On the controversial issue of who was first, see Corry et al.’s [1997] commentary.
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we now frequently refer to as a theory of everything. Yet, I think it likely that
not a great many physicists today will have even heard of the once fashionable
Mie’s theory, let alone the fact that it was explicitly part of Hilbert’s theory-of-
everything version of general relativity. That theory plays no part in the modern
understanding of matter. Perhaps there is a lesson of caution here for theoreticians
of today, intent on proposing their own theories of everything.

1.3. PARTICLE-PHYSICS BACKGROUND TO STRING THEORY

One such theoretical proposal is string theory, and many theoretical physicists
today do indeed still regard this proposal as providing a definite route to such a
theory of everything. String theory originated with some ideas which, when I first
heard about them in around 1970 (from Leonard Susskind), I found to be strikingly
attractive and of a distinctive compelling nature. But before describing these ideas,
I should put them in the appropriate context. We should try to understand why
replacing the notion of a point particle by a little loop or curve in space, as was
indeed the original idea of string theory, should have any promise as the basis for
a physical picture of reality.

In fact there were more reasons than one for the attraction of this idea. Iron-
ically, one of the most specific reasons – having to do with the observational
physics of the interactions between hadrons – seems to have become completely
left behind by the more modern developments in string theory, and I’m not sure
that it has any status in the subject at all now, beyond a historical one. But I ought
to discuss it, nevertheless (as I shall, more particularly, in §1.6), as well as some
of the other elements of the background of fundamental particle physics which
motivated the underlying principles of string theory.

First let me say what a hadron is. We recall that an ordinary atom consists of a
positively charged nucleus, and negatively charged electrons orbiting around it.
The nucleus is composed of protons and neutrons – collectively called nucleons
(N) – where each proton has a positive electric charge of one unit (the unit of charge
being chosen so that the electron’s charge is the negative of one unit) and where
each neutron has zero electric charge.The attractive electric force between positive
and negative charges is what holds the negatively charged electrons in their orbits
around the positively charged nucleus. But if electric forces were the only ones
of relevance, then the nucleus itself (apart from that of hydrogen, which has just
a single proton) would explode into various constituents, because the protons, all
having charges of the same sign, would repel one another.Accordingly, there must
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be another, stronger, force which holds the nucleus together, and this is what is
called the strong (nuclear) force. There is, in addition, something called the weak
(nuclear) force, which has particular relevance in relation to nuclear decay, but
this is not the major component in the forces between nucleons. I shall be saying
something about the weak force later.

Not all particles are directly affected by the strong force – for example, electrons
are not – but those which are so affected are the comparatively massive particles
called hadrons (from the Greek hadros, meaning bulky). Accordingly, protons
and neutrons are examples of hadrons, but there are many other kinds of hadron
now known to exist. Among these others are the cousins of protons and neutrons
called baryons (from barys, meaning heavy), which in addition to neutrons and
protons themselves include the lambda (�), sigma (�), xi (�), delta (�), and
omega (	), most of which come in different versions with different values for
the electric charge, and also in a sequence of excited (more rapidly spinning)
versions. All these other particles are more massive than the proton and neutron.
The reason that we do not find these more exotic particles as parts of ordinary
atoms is that they are highly unstable and rapidly decay, ultimately into protons
or neutrons, giving up their excessive mass in the form of energy (in accordance
with Einstein’s famous E = mc2). The proton, in turn, has the mass of about
1836 electrons, and the neutron of around 1839 electrons. Intermediate between
the baryons and electrons is another class of hadrons, called mesons, the most
familiar ones being the pion (μ) and the kayon (K). Each of these comes in a
charged version (μ+ and μ−, each with a mass of about 273 electrons; K+ and
K̄
−

, each with a mass of about 966 electrons) and an uncharged version (μ0

has a mass of about 264 electrons; K0 and K̄0, each with a mass of about 974
electrons). The practice here is to use a bar over the particle symbol to denote the
anti-particle; we note, however, that the anti-pions are again pions, whereas an
anti-kayon differs from a kayon. Again, these particles have many cousins and
excited (more highly spinning) versions.

You can begin to see that all this is very complicated – a far cry from the heady
days of the early twentieth century when the proton, neutron, and electron (and
one or two massless ones such as the photon, the particle of light) had seemed
to represent, more or less, the sum total of it all. As the years rolled by, things
got more and more complicated, until eventually a unified picture of it all –
called the standard model of particle physics – took shape [Zee 2010; Thomson
2013] between about 1970 and 1973. According to this scheme, all hadrons are
composed of quarks and/or the anti-particles of quarks, known as anti-quarks.
Each baryon is now taken to be composed of three quarks, and each (ordinary)
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meson, of a quark and an anti-quark. The quarks come in six different flavours,
referred to (rather oddly and unimaginatively) as up, down, charm, strange, top,
and bottom, and they have the respective electric charges 2

3 , − 1
3 , 2

3 , − 1
3 , 2

3 , − 1
3 .

The fractional charge values seem, at first, to be distinctly odd, but for the observed
free particles (such as baryons and mesons), the total electric charge always has
a value that is an integer.

The standard model not only systematizes the seeming menagerie of the basic
particles of nature, it also provides a good description of the main forces that
influence them. Both the strong and the weak force are described in terms of an
elegant mathematical procedure – referred to as gauge theory – that makes cru-
cial use of the notion of a bundle, for which a brief description is given in §A.7,
and to which I shall return, particularly in §1.8. The base space M of the bundle
(for which notion, see §A.7) is space-time and, in the case of the strong force
(which is the more mathematically transparent case), the fibre F is described in
terms of a notion referred to as colour, which is assigned to the individual quarks
(there being three basic alternative colours available to each quark). The theory of
strong-interaction physics is referred to, accordingly, as quantum chromodynam-
ics (QCD). I do not want to go into a proper discussion of QCD here because it is
difficult to describe properly without using more mathematics than I can provide
here [see Tsou and Chan 1993; Zee 2003]. Moreover, it is not “fashionable” in the
sense that I mean to use the term here, because the ideas, while sounding exotic
and strange, actually work extraordinarily well, not only forming a consistent
and tightly knitted mathematical formalism, but finding excellent confirmation in
experimental results. The QCD scheme would be studied in any physics research
department concerned in a serious way with the theory of strong interactions,
but it is not simply fashionable, in the sense intended here, because it is widely
studied for very good scientific reasons!

For all its virtues, however, there are also powerful scientific reasons for striv-
ing to go beyond the standard model. One of these is that there are some thirty
or so numbers in the standard model, for which its theory provides no expla-
nation whatever. These include things like quark and lepton masses, quantities
referred to as fermion mixing parameters (such as the Cabibbo angle), the Wein-
berg angle, the theta angle, gauge couplings, and parameters connected with the
Higgs mechanism. Related to this issue is another serious drawback, which had
already been very much present in other schemes that were around before the
emergence of the standard model, and which is only partly resolved by it. This is
the disturbing issue of the infinities (which are nonsensical answers arising from
divergent expressions, like those exhibited in §A.10) that arise in quantum field
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theory (QFT) – QFT being the form of quantum mechanics that is central not just
to QCD and other aspects of the standard model, but to all modern approaches to
particle physics, and also to many other aspects of basic physics.

I shall have to say a good deal more about quantum mechanics, generally,
in chapter 2. For the moment, let us restrict attention to one very specific but
fundamental feature of quantum mechanics, which may be regarded as a root of
the problem of the infinities in QFT, and we shall also see how the conventional
method of dealing with these infinities precludes any complete answer to the issue
of deriving the thirty or so unexplained numbers in the standard model. String
theory is largely driven by an ingenious proposal to circumvent the infinities of
QFT, as we shall be seeing in §1.6. It therefore appears to offer some hope of
providing a route to resolving the mystery of the unexplained numbers.

1.4. THE SUPERPOSITION PRINCIPLE IN QFT

A foundation stone of quantum mechanics is the superposition principle, which
is a feature common to all of quantum theory, not just QFT. In particular, it will
be central to the critical discussions of chapter 2. In the present chapter, in order
to provide some insight into the source of the problem of the infinities of QFT, I
shall need to introduce this principle briefly here, though my main discussion of
quantum mechanics will take place in chapter 2 (see, in particular, §§2.5 and 2.7).

To bring out the role of the superposition principle in QFT, let us consider situ-
ations of the following kind. Suppose that we have some physical process leading
to a particular observed outcome. We shall suppose that this outcome could have
arisen via some intermediate action �, but there is also another possible interme-
diate action � which could also have resulted in essentially the same observed
outcome. Then, according to the superposition principle, we must consider that,
in an appropriate sense, both � and � could well have taken place concurrently as
the intermediate action! This, of course, is very non-intuitive, since at an ordinary
macroscopic scale we do not find distinct alternative possibilities taking place
at once. Yet, for submicroscopic events, where we do not have the possibility of
directly observing whether one intermediate activity has occurred as opposed to
another, then we must allow that both could have occurred together, in what is
referred to as a quantum superposition.

The archetypal example of this sort of thing occurs with the famous two-slit
experiment, often used in introductions to quantum mechanics. Here we consider
a situation where a beam of quantum particles (say, electrons or photons) is
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Figure 1-2: The two-slit experiment. Electrons are aimed at a screen through a
narrowly separated pair of slits (a). If just one slit is open (b), (c), then a ran-
dom-looking pattern of impacts is registered at the screen, scattered about the
direct route through the slit.However, if both slits are open (d), the pattern acquires
a banded appearance, where some places (e.g. P) cannot now be reached by the
particle, although they could have been if just one slit were open; moreover, at
other places (e.g. Q) there is four times the intensity of reception than for a single
slit.

directed at a screen, where the beam must pass through a pair of close parallel
slits on its way from source to screen (figure 1-2(a)). In the situation that is being
considered, upon reaching the screen each particle makes a distinctive dark mark
at an individual location at the screen, indicative of the particle’s actual particulate
nature. But after many such particles have passed through, an interference pattern
of light and dark bands is built up, the dark bands occurring where many particles
reach the screen and the light bands, where relatively few reach it (figure 1-2(d)).
A standard careful analysis2 of the situation leads one to conclude that each
individual quantum particle must, in some sense, pass through both slits at once,
in the manner of a strange kind of superposition of the two alternative possible
routes that it might take.

The reasoning behind such an odd conclusion comes from the fact that if either
one of the slits is covered up, while the other remains open (figure 1-2(b),(c)),
we get no bands, but just a fairly uniform illumination which is darkest at the
centre. When both slits are open, however, there are lighter regions at the screen

2 This is what may be regarded as the conventional analysis of the situation. As might be expected,
for such a strange-seeming conclusion, there are various other ways of interpreting what happens in this
intermediate stage of the particle’s existence. The most noteworthy alternative perspective is that of the
de Broglie–Bohm theory according to which the particle itself always goes either through one slit or through
the other, but there is also an accompanying “carrier wave” which guides the particle and which must itself
“feel out” the two alternatives which the particle might have adopted [see Bohm and Hiley 1993]. I briefly
discuss this viewpoint in §2.12.



22 Chapter 1

situated between darker bands, these lighter regions occurring at places which are
perfectly dark when just one of the slits is open. Somehow, when both routes are
available to the particle, those lighter places become inhibited, whereas the dark
places are enhanced. If each particle simply either did what it could do when only
one of the slits is open or what it could do when only the other is open, then the
effects of the routes would just add together, and we wouldn’t get these strange
interference stripes. This happens only because both of the possible routes are
available to the particle, both these alternatives being felt out by the particle to
give the ultimate effect. In some sense these routings coexist for the particle when
it is between source and screen.

This, of course, is very much at odds with our experience of the behaviour of
macroscopic bodies. For example, if two rooms are connected to each other by
two different doors, and if a cat is observed to have started in one room and is later
observed to be in the other room, then we would normally infer that it had passed
through one door or through the other door, not that it could, in some strange way,
have passed through both doors at the same time. But with an object of the size
of a cat, it would be possible, without disturbing its actions significantly, to make
continual measurements of its location and thereby ascertain which of the two
doors it actually passed through. If we were successful in doing this for a single
quantum particle in the two-slit experiment described above, we would have to
disturb its behaviour to a degree that would result in the interference pattern at
the screen being destroyed. The wave-like behaviour of an individual quantum
particle that gives rise to the interference bands of light and dark at the screen
depends upon our not being able to ascertain which of the two slits it actually
went through, thereby allowing for the possibility of this puzzling intermediate
superposed state of the particle.

In this two-slit experiment, we can see the extreme strangeness of the behaviour
of single quantum particles most particularly by concentrating our attention at a
point P of the screen at the middle of a gap between the dark bands, where we
find that the particle is simply unable to reach P when both slits are open to it,
whereas if only one of the slits is open, the particle could quite readily reach P via
the open slit. When both slits are open, the two possibilities that are available to
the particle in order to reach P have somehow cancelled each other; yet, at another
place on the screen, say Q, where the interference pattern is at its darkest, we find
that instead of cancelling, the two possible routes seem to reinforce each other
so that when both slits are open, the likelihood of the particle reaching Q is four
times as great as it would have been if just one of the two slits were open, not just
twice, as would have been the case with an ordinary classical object, rather than a
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quantum particle. See figure 1-2(d). These strange features are a consequence of
what is known as the Born rule, which relates the intensities in the superpositions
to actual probabilities of occurrence, as we shall come to shortly.

The word classical, incidentally, when used in the context of physical theo-
ries, models, or situations, simply means non-quantum. In particular, Einstein’s
general theory of relativity is a classical theory, in spite of its having been intro-
duced after many of the seminal ideas of quantum theory (such as the Bohr
atom) had come about. Most particularly, classical systems are not subject to the
curious superpositions of alternative possibilities that we have just encountered
above, and which indeed characterizes quantum behaviour, as I come to briefly
next.

I shall delay my full discussion of the basis of our present understanding of
quantum physics until chapter 2 (see, in particular, §2.3 onwards). For the moment,
I recommend that we simply accept the strange mathematical rule whereby mod-
ern quantum mechanics describes such intermediate states. The rule turns out to
be extraordinarily accurate. But what is this strange rule? The quantum formalism
asserts that such a superposed intermediate state, when there are just two alter-
native intermediate possibilities � and �, is to be expressed mathematically as
some kind of a sum � +� of the two possibilities or, more generally, as a linear
combination (see §§A.4 and A.5),

w� + z�,

where w and z are complex numbers (the numbers involving i = √−1, as
described in §A.9), not both being zero! Moreover, we shall be forced to con-
sider that such complex superpositions of states have to be allowed to persist in
a quantum system, right up until the time that the system is actually observed, at
which point the superposition of alternatives must be replaced by a probability
mixture of the alternatives. This is indeed strange, but in §§2.5–2.7 and 2.9 we
shall be seeing how to use these complex numbers – sometimes referred to as
amplitudes – and how they tie in, in remarkable ways, with probabilities, and also
with the time evolution of physical systems at the quantum level (Schrödinger’s
equation); they also relate, fundamentally, to the subtle behaviour of the spin of
a quantum particle, and even to the 3-dimensionality of ordinary physical space!
Although the precise connections between these amplitudes and probabilities (the
Born rule) will not be addressed fully in this chapter (since for this we need the
notions of orthogonality and normalization for the � and �, which are best left
until §2.8), the gist of the Born rule is as follows.
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A measurement, geared to ascertaining whether a system is in state
� or in state �, when presented with the superposed state w�+ z�,
finds:

ratio of probability of � to probability of � = ratio of |w|2 to |z|2.
We note (see §§A.9 and A.10) that the squared modulus |z|2 of a complex number
z is the sum of the squares of its real and imaginary parts, this being the squared
distance of z from the origin in the Wessel plane (figure A-42 in §A.10). It may
also be remarked that the fact that probabilities arise from squares of the moduli
of these amplitudes accounts for the fourfold increase in intensity, as noted earlier,
where contributions reinforce each other in the two-slit experiment (see also the
end of §2.6).

We must be careful to appreciate that this notion of plus, in these superpositions,
is quite different from the ordinary notion of and (despite a common modern use
of plus in ordinary conversation simply to mean and), or even with or. What is
meant here is that, in some sense, the two possibilities are actually to be thought of
as being added together in some abstract mathematical way. Thus, in the case of
the two-slit experiment, where � and � represent two distinct transient locations
of a single particle, then � + � does not represent two particles, one in each
location (which would be “one particle in the � position and one particle in the
� position” – implying two particles in total), nor must we think of the two as
just being ordinary alternatives, one or the other of which actually happened,
but where we don’t know which. We must indeed think of just a single particle
somehow occupying both locations at once, superposed according to this strange
quantum-mechanical “plus” operation. Of course this looks extremely odd, and
the physicists of the early twentieth century would not have been driven to consider
such a thing without having some very good reasons to do so.We shall be exploring
some of these reasons in chapter 2, but for now I am just asking that the reader
simply accept that this formalism indeed works.

It is important to appreciate that, according to standard quantum mechanics,
this superposition procedure is taken to be universal and, accordingly, applies
also if there are more than just two alternatives for the intermediate state. For
example, if there are three alternative possibilities, �, �, and �, then we have to
consider triple superpositions like w�+z�+u� (where w, z, and u are complex
numbers, not all of which are zero). Correspondingly, if there were four alternative
intermediate states, we would need to consider quadruple superpositions and so
on. Quantum mechanics demands this, and there is excellent experimental support
for such behaviour at the submicroscopic level of quantum activity. Strange it
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is, indeed, but it makes good consistent mathematics. This is, so far, just the
mathematics of a vector space, with complex-number scalars, as considered in
§§A.3, A.4, A.9, and A.10, and we shall be seeing more of the ubiquitous role
of quantum superpositions in §2.3 onwards. However, matters are considerably
worse in QFT, because we frequently have to consider situations in which there
are infinitely many intermediate possibilities. Accordingly, we are led to having
to consider infinite sums of alternatives, and then the issue looms large of the
possibility that such an infinite sum might provide us with series whose sum may
actually diverge to infinity (in the sort of way exhibited in §§A.10 and A.11).

1.5. THE POWER OF FEYNMAN DIAGRAMS

Let us try to understand in a bit more detail how such divergences actually come
about. In particle physics, what we have to consider are situations in which several
particles come together to make other particles, where some of them may split
apart to make still others, and where pairs of these might join together again,
etc., etc., so that they may well be involved in very complicated processes of
this kind. The types of situation that particle physicists are frequently concerned
with involve some given collection of particles coming together – often at relative
speeds close to that of light – and this combination of collisions and separations
results in some other collection of particles emerging from it all. The total process
would involve a vast quantum superposition of all the possible different kinds of
intermediate processes which might take part and are consistent with the given
input and output. An example of such a complicated process is illustrated in the
Feynman diagram of figure 1-3.

We do not go far wrong if we think of a Feynman diagram as a space-time
diagram of the particular collection of particle processes involved. I like to rep-
resent time as proceeding upwards along the page, being someone who works
in relativity theory as opposed to being a professional particle physicist or QFT
expert; the professionals usually have time progressing from left to right. Feyn-
man diagrams (or Feynman graphs) are named after the outstanding American
physicist Richard Phillips Feynman. Some very basic diagrams of this kind are
shown in figure 1-4. Here, figure 1-4(a) shows the splitting of a particle into two
and figure 1-4(b) shows the combining of two to make a third.

In figure 1-4(c), we see the exchange of a particle (say a photon, the quantum of
electromagnetic field or light, indicated by the wiggly line) between two particles.
The use of the term exchange for this process, though common among particle
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Figure 1-3: A Feynman diagram (drawn with upward time direction) is a schematic
space-time picture (with a clear-cut mathematical interpretation) of a particle pro-
cess often involving creation, annihilation, and exchanges of intermediate parti-
cles. Wavy lines indicate photons. Triangular arrows here denote electric charge
(positive if the arrow points upwards and negative if downwards).

(a) (b) (c)  

Figure 1-4: Elementary Feynman diagrams: (a) a particle splits into two; (b) two
particles combine to make another particle; (c) two oppositely charged particles
(e.g. an electron and a positron) “exchange” a photon.

physicists, is perhaps a bit odd here, since a single photon simply passes from one
external particle to the other – albeit in a way that (deliberately) does not make
clear which particle is the emitter and which the receiver. The photon involved in
such an exchange is usually what is called virtual and its speed is not constrained
to be consistent with the requirements of relativity. The usual colloquial use of
the term exchange might apply more appropriately to the situations depicted in
figure 1-5(b), though such processes as shown in figure 1-5 tend to be referred to
as the exchange of two photons.

We may think of the general Feynman diagram to be composed of many basic
ingredients of this general kind, pieced together in all sorts of combinations. How-
ever, the superposition principle tells us not to think of what actually happens in
some such particle collision process as being represented by just one such Feyn-
man diagram, because there are many alternatives, and the actual physical process
is represented as some complicated linear superposition of many different such



Fashion 27

(a) (b)  

Figure 1-5: Two-photon exchanges.

Feynman diagrams. The magnitude of the contribution to the total superposition
from such a diagram – essentially a complex number such as the w or z that we
encountered in §1.4 – is what we need to calculate from any particular Feynman
diagram, these numbers being called complex amplitudes (see §§1.4 and 2.5).

We must bear in mind, however, that the mere arrangement of the connections
in the diagram does not tell us the whole story. We also need to know the values
of the energies and momenta of all the particles involved. For all the external
particles (both incoming and outgoing), we may take these values to be already
assigned, but the energies and momenta of the intermediate – or internal – parti-
cles could generally take many different values, consistent with a constraint that
energy and momentum have to add up appropriately at each vertex, where the
momentum of an ordinary particle is its velocity multiplied by its mass; see §§A.4
and A.6. (Momentum has the important property that it is conserved, so that in
any collision process encountered by particles, the total of the momenta going
in – added together in the sense of vector addition – must be equal to the total
momentum coming out.) Thus, complicated as our superpositions may appear to
be, merely from the elaboration of the succession of increasingly complicated
diagrams appearing in the superposition, things are really much more compli-
cated than this, because of the generally infinite numbers of different possible
values that the energies and momenta might take for the internal particles in each
diagram (consistent with the given external values).

Thus, even with a single Feynman diagram, with given input and output, we
may expect to have to add together an infinite number of such processes. (Tech-
nically, this adding together would take the form of a continuous integral, rather
than a discrete sum (see §§A.7, A.11, and figure A-44), but the distinctions are
not important for us here.) This kind of thing happens with Feynman diagrams
containing a closed loop, such as occurs in the two examples of figure 1-5. With a
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Figure 1-6: A tree diagram, i.e. containing no closed loops.

tree diagram, such as those of figure 1-4 and figure 1-6, where there are no closed
loops, the values of the internal energies and momenta turn out to be simply
fixed by the external values. But these tree diagrams do not probe the genuinely
quantum nature of particle processes; for this we actually need to bring in the
closed loops. And the trouble with the closed loops is that there is no limit to the
energy-momentum that can, in effect, circulate around the loop, and adding all
these up provides us with a divergence.

Let us look at this a little more closely. One of the simplest situations where
a closed loop occurs is that shown in figure 1-5(a) in which two particles are
exchanged. The trouble arises because although at each vertex in the diagram
the values of the energy and of the three components of momentum must add
up properly (i.e. the sum in equals the sum out), this does not result in enough
equations to fix the internal values of these quantities. (For each of the four
components of the energy-momentum, separately, there are three independent
equations since each of the four vertices provides a conservation equation, but
one is redundant, merely re-expressing the overall conservation for the entire
process – yet there are four independent unknowns per component, one from
each internal line, so there are not enough equations to fix the unknowns, and
the redundancy must be summed over.) There is always the freedom to add (or
subtract) the same energy-momentum quantity all the way around the loop in the
middle. We need to add all these infinitely many possibilities together, involving
potentially higher and higher values for the energy-momentum, and this is what
leads to the potential divergence.

Thus, we see that the direct application of the quantum rules is indeed likely to
give us a divergence.Yet, this does not necessarily mean that the “correct” answer
to that quantum field theoretic calculation is actually ∞. It would be useful to
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keep in mind the divergent series shown in §A.10, where a finite answer can
sometimes be assigned the series despite the fact that simply adding the terms
up leads to the answer “∞”. Although the situation with QFT is not exactly like
this, there are some distinct similarities. There are many calculational devices that
QFT experts have developed over the years in order to circumvent these infinite
answers. Just as with the examples of §A.10, if we are clever about it, we may be
able to unearth a “true” finite answer that we do not get simply by “adding up the
terms”. Accordingly, QFT experts are frequently able to squeeze finite answers
out of the wildly divergent expressions that they are presented with, although
many of the procedures that are adopted are far less straightforward than simply
the method of analytic continuation, referred to in §A.10. (See also §3.8 for some
of the curious pitfalls that even the “straightforward” procedures can lead into.)

One key point about the root cause of many of these divergences – those
referred to as ultraviolet divergences – should be made note of here. The trouble
basically arises because, with a closed loop, there is no limit to the scale of
energy and momentum that can circulate around it, and the divergence arises
from contributions of higher and higher energy (and momentum) having to be
added up. Now, according to quantum mechanics, very large values of energy are
associated with very tiny times. Basically this comes from Max Planck’s famous
formula E = hν, where E is the energy, ν is the frequency, and h is Planck’s
constant, so high values of energy correspond to large frequencies and therefore
to tiny time intervals between one beat and the next. In the same way, very large
values of the momentum correspond to very tiny distances. If we imagine that
something strange happens to space-time at very tiny times and distances (as,
indeed, most physicists would be inclined to agree would be an implication of
quantum-gravity considerations), there might be some kind of effective “cut-off”,
at the high end of the scale, to the allowed energy-momentum values.Accordingly,
some future theory of space-time structure, in which drastic alterations occur at
very tiny times or distances, might actually render finite the currently divergent
QFT calculations that arise from closed loops in Feynman diagrams. These times
and distances would have to be far tinier than those which are relevant to ordinary
particle-physics processes, and are frequently taken to be something of the order
of those quantities of relevance to quantum-gravity theory, namely the Planck
time of some 10−43 s or the Planck length of around 10−35 m (referred to in
§1.1), these values being something like 10−20 of the usual small quantities of
direct relevance to particle processes.

It should be mentioned here that there are also divergences in QFT referred to
as infrared divergences. These occur at the other end of the scale, where energies
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Figure 1-7: Infrared divergences occur when there are indefinitely large numbers
of “soft” photons emitted.

and momenta are extremely tiny, so that we are concerned with extraordinarily
large times and distances. The problems here are not to do with closed loops, but
with Feynman diagrams like those of figure 1-7 in which an unlimited number of
soft photons (i.e. photons of very tiny energy) might be emitted in a process, and
adding all these together again produces a divergence. Infrared divergences tend
to be regarded by QFT experts as less serious than the ultraviolet divergences, and
there are various ways of sweeping them under the carpet (at least temporarily).
However, in recent years their importance is perhaps beginning to be faced up to
more seriously. For my own discussions here, I shall not pay too much attention
to the infrared problems and concentrate instead on how the problem of the
ultraviolet divergences – resulting from the closed loops in the Feynman diagrams
– is tackled in standard QFT, and how the ideas of string theory appear to offer
hope of providing a resolution of this conundrum.

Of particular note, in this connection, is the standard QFT procedure of renor-
malization. Let us try to glimpse how this operates. According to various direct
QFT calculations we get an infinite scale factor between what would be called
the bare charge of a particle (such as an electron) and the dressed charge, the
latter being what would be actually measured in experiments. This comes about
because of contributions due to processes like that shown in the Feynman dia-
gram of figure 1-8, which serve to damp down the measured value of the charge.
The trouble is that the contribution from figure 1-8 (and many another like it) is
“infinity”. (It has closed loops.) Accordingly, we find that the bare charge would
have to have been infinite in order that we can find a finite value for the observed
(dressed) charge. The underlying philosophy of the renormalization procedure is
to accept that QFT might not be completely right at very tiny distances, which
is where the divergences appear, and some unknown modification of the theory
might supply the necessary cut-off that leads to finite answers. The procedure thus
involves our giving up on attempting to calculate nature’s actual answer for these
scale factors (for charge and for other things like mass, etc.), where we instead
collect together all such infinite scale factors that QFT burdens us with, and we

(continued...)
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