CONTENTS

Preface to the 2024 Edition xi

Introduction: Miracles and Wonder 1

I EVERYTHING IS REGULATED 13
1 The Wisdom of the Body 15
2 The Economy of Nature 30

II THE LOGIC OF LIFE 47
3 General Rules of Regulation 51
4 Fat, Feedback, and a Miracle Fungus 73
5 Stuck Accelerators and Broken Brakes 89

III THE SERENGETI RULES 107
6 Some Animals Are More Equal than Others 111
7 Serengeti Logic 129
8 Another Kind of Cancer 155
9 Take 60 Million Walleye and Call Us in 10 Years 169
10 Resurrection 183

Afterword: Rules to Live By 202

Acknowledgments 215
Notes 217
Bibliography 239
Index 253
A Conversation with Sean B. Carroll 265
INTRODUCTION

MIRACLES AND WONDER

The corrugated gravel road known officially as Tanzania Route B144 provides a bone-jarring, teeth-rattling, bladder-testing connection between two of the great wonders of Africa.

At its eastern end stand the massive green slopes of Ngorogoro Crater, a giant, more than ten-mile-wide caldera formed by the collapse of one of the many extinct volcanoes of the Great Rift Valley, and home to more than 25,000 large mammals. To the west lie the vast plains of the Serengeti, our destination on this cloudless, postcard-perfect day.

The route in between is a stark contrast to the lush Ngorogoro highlands. There is no visible source of water; the Maasai herders and boys we pass in their bright red shuka graze their livestock on whatever brown stubble they can find. But as we bounce our way through the first simply marked gate to Serengeti National Park, the landscape changes.

The Maasai vanish, and the nearly barren tracts they use are replaced by straw-colored grasslands, and instead of cattle and goats, sleek black-striped Thomson gazelles look up to see who or what is kicking up dust all over their breakfast.

The anticipation in our Land Cruiser rises. Where there are gazelles, there may be other creatures lurking in the tall grass. We pop open the top of the vehicle, stand up, and with the African rhythms of Paul Simon’s *Graceland* playing in my head, I start to scan back
and forth. This is my first visit to what the Maasai call “Serengit” for “endless plains.” Joining me on my pilgrimage to this legendary wildlife sanctuary is my family:

pilgrims with families and we are going to Graceland . . .

At first, I am a bit concerned. Where is all the wildlife? Yes, it is the dry season, but things look really dry. Can this place live up to its reputation?

The continuous grass plain is broken only occasionally by small rocky hills, or kopjes. From their granite boulders, animals (or tourists) can scan around for miles. There are also gray or red termite mounds projecting up to a few feet over the tops of the grass. One’s eye is naturally drawn to these shapes.

“What is that over there?” asks a voice in the vehicle.

A couple of us grab our binoculars and zero in on a lone mound a couple of hundred yards away.

“Lion!”

A golden lioness is standing on top, staring out over the surrounding grass.

OK, so they are here, I murmur to myself. But this is the famous Serengeti?

It is going to be really hard to spot things in this tall dry grass. I am the only biologist in my clan, I can’t expect anyone else to want to do this for days on end.

As we drive on, some streaks of green grass appear, with a few iconic flat-topped acacia trees sprinkled about. A creek bed meanders through the green patches, and it has plenty of water. We go over a small rise, round a bend, and skid to a stop—zebra and wildebeest block the road and fill the entire view.

It is a sea of stripes. Perhaps 2,000 or more animals have gathered near a large waterhole, raising a ruckus. The zebras’ calls are something between a bark and a laugh: “kwa-ha, kwa-ha,” while the wildebeest seem to just mutter “huh?” These herds are stragglers from the greatest animal migration on the planet, when as many 1 million wildebeest, 200,000 zebras, and tens of thousands of other animals follow the rains north to greener grazing grounds.
Coming next to the waterhole from over the small rise on our left—the Dawn Patrol—a parade of elephants with several youngsters scurrying to keep up. The herds part to make way.

From that point on, the Serengeti offers an unending canvas containing mammals of many sizes, shapes, and colors: small gray wart-hogs with tails standing straight up like our radio antenna; not two or three but at least nine species of antelope—the tiny dik-dik, the massive eland, impala, topi, waterbuck, hartebeest, Thomson’s and the larger Grant’s gazelles, and the ubiquitous wildebeest; black-backed jackals; towering Masai giraffe; and yes, all three big cats on this first day, including several more lions, a leopard dozing in a tree, and a cheetah posing just feet from the road.

Although I have seen many pictures and movies, nothing prepared me for, nor spoiled the thrill of, encountering this stunning scenery for the first time.

A strange, but very pleasant feeling sweeps over me as I gaze across a wide green valley, with multitudes of creatures and acacia stretching as far as I can see, and the sun beginning to set behind the silhouettes of the surrounding foothills. Although it is the first time I have ever been to Tanzania, I feel at home.

And indeed, this is home. For across the Rift Valley of East Africa lay buried the bones of my and your ancestors, and those of our ancestors’ ancestors. Sandwiched between Ngorogoro Crater and the Serengeti lies Olduvai Gorge, a thirty-mile-long twisting maze of badlands. It was in its eroding hillsides (just three miles off of the current B144) that, after decades of searching, Mary and Louis Leakey (and their sons) unearthed not one, not two, but three different species of hominids that had lived in East Africa 1.5 to 1.8 million years ago. Thirty miles to the south at Laetoli, Mary and her team later discovered 3.6-million-year-old footprints made by our small-brained but upright-walking ancestor Australopithecus afarensis.

Those hard-earned hominid bones were precious needles in a haystack of other animal fossils that tell us that, although the specific actors have changed, the drama we can still see today—of fleet herds of grazing animals trying to stay out of the reach of a number of wily predators—has been playing for thousands of millennia. Hoards of
ancient stone tools found around Olduvai and butchery marks on those bones also tell us how our ancestors were not merely spectators but very much a part of the action.

Human life has changed immensely over the millennia, but never so much or so quickly as in the past century. For almost the entire 200,000-year existence of our species, *Homo sapiens*, biology controlled us. We gathered fruits, nuts, and plants; hunted and fished for the animals that were available; and like the wildebeest or zebra, we moved on when resources ran low. Even after the advent of farming and civilization, and the development of cities, we were still very vulnerable to the whims of the weather, and to famine and epidemics.

But in just the past hundred years or so, we have turned the tables and taken control of biology. Smallpox, a virus that killed as many as 300 million people in the first part of the twentieth century (far more than in all wars combined) has not merely been tamed but has been eradicated from the planet. Tuberculosis, caused by a bacterium that infected 70–90 percent of all urban residents in the nineteenth century and killed perhaps one in seven Americans, has nearly vanished from the developed world. More than two dozen other vaccines now prevent diseases that once infected, crippled, or killed millions, including polio, measles, and pertussis. Deadly diseases that did not exist in the nineteenth century, such as HIV/AIDS, have been stopped in their tracks by designer drugs.

Food production has been as radically transformed as medicine. While a Roman farmer would have recognized the implements on an American farm in 1900—the plow, hoe, harrow, and rake—he would not be able to fathom the revolution that subsequently transpired. In the course of just one hundred years, an average yield of corn more than quadrupled from about 32 to 145 bushels per acre. Similar gains occurred for wheat, rice, peanuts, potatoes, and other crops. Driven by biology, with the advent of new crop varieties, new livestock breeds, insecticides, herbicides, antibiotics, hormones, fertilizers, and mechanization, the same amount of farmland now feeds a population that is four times larger, but that is accomplished by less
than 2 percent of the national labor force compared to more than 40 percent a century ago.

The combined effects of the past century’s advances in medicine and agriculture on human biology are enormous: the human population exploded from fewer than 2 billion to more than 7 billion people today. While it took 200,000 years for the human population to reach 1 billion (in 1804), we are now adding another billion people every twelve to fourteen years. And, whereas American men and women born in 1900 had a life expectancy of about forty-six and forty-eight years, respectively, those born in 2000 have expectancies of about seventy-four and eighty years. Compared to rates of change in nature, those greater than 50 percent increases in such a short timespan are astounding.

As Paul Simon put it so catchily, these are the days of miracles.

RULES AND REGULATIONS

Our mastery, our control over plants, animals, and the human body, comes from a still-expanding understanding about the control of life at the molecular level. And the most critical thing we have learned about human life at the molecular level is that everything is regulated. What I mean by that sweeping statement is:

- every kind of molecule in the body—from enzymes and hormones to lipids, salts, and other chemicals—is maintained in a specific range; in the blood, for example, some molecules are 10 billion times more abundant than other substances.
- every cell type in the body—red cells, white cells, skin cells, gut cells, and more than 200 other kinds of cell—is produced and maintained in certain numbers; and
- every process in the body—from cell multiplication to sugar metabolism, ovulation to sleep—is governed by a specific substance or set of substances.

Diseases, it turns out, are mostly abnormalities of regulation, where too little or too much of something is made. For example, when the pancreas produces too little insulin, the result is diabetes, or when the bloodstream contains too much “bad” cholesterol, the result can be
atherosclerosis and heart attacks. And when cells escape the controls that normally limit their multiplication and number, cancer may form.

To intervene in a disease, we need to know the “rules” of regulation. The task for molecular biologists (a general term I will use for anyone studying life at the molecular level) is to figure out—to borrow some sports terms—the players (molecules) involved in regulating a process and the rules that govern their play. Over the past fifty years or so, we have been learning the rules that govern the body’s levels of many different hormones, blood sugar, cholesterol, neurochemicals, stomach acid, histamine, blood pressure, immunity to pathogens, the multiplication of various cell types, and much more. The Nobel Prizes in Physiology or Medicine have been dominated by the many discoverers of the players and rules of regulation.

Pharmacy shelves are now stocked with the practical fruit of this knowledge. Armed with a molecular understanding of regulation, a plethora of medicines has been developed to restore levels of critical molecules or cell types back to normal, healthy ranges. Indeed, the majority of the top fifty pharmaceutical products in the world (which altogether accounted for $187 billion in sales in 2013) owe their existence directly to the revolution in molecular biology.

The tribe of molecular biologists, my tribe, is justifiably proud of their collective contributions to the quantity and quality of human life. And dramatic advances in deciphering information from human genomes are ushering in a new wave of medical breakthroughs by enabling the design of more specific and potent drugs. The revolution in understanding the rules that regulate our biology will continue. One aim of this book is to look back at how that revolution unfolded and to gaze ahead to where it is now heading.

But the molecular realm is not the only domain of life with rules, nor the only branch of biology to have undergone a transformation over the past half-century. Biology’s quest is to understand the rules that regulate life on every scale. A parallel, but less conspicuous, revolution has been unfolding as a different tribe of biologists has discovered rules that govern nature on much larger scales. And these rules may have as much or more to do with our future welfare than all the molecular rules we may ever discover.
THE SERENGETI RULES

This second revolution began to flower when a few biologists began asking some simple, seemingly naïve questions: Why is the planet green? Why don’t the animals eat all the food? And what happens when certain animals are removed from a place? These questions led to the discovery that, just as there are molecular rules that regulate the numbers of different kinds of molecules and cells in the body, there are ecological rules that regulate the numbers and kinds of animals and plants in a given place.

I will call these ecological rules the “Serengeti Rules,” because that is one place where they have been well documented through valiant, long-term studies, and because they determine, for example, how many lions or elephants live on an African savannah. They also help us understand, for example, what happens when lions disappear from their ranges.

But these rules apply much more widely than to the Serengeti, as they have been observed at work around the world and shown to operate in oceans and lakes, as well as on land. (I could just as easily call these the “Lake Erie Rules,” but that just seems to lack a sense of majesty). These rules are both surprising and profound: surprising because they explain connections among creatures that are not obvious; profound because these rules determine nature’s ability to produce the animals, plants, trees, and clean air and water on which we depend.

However, in contrast to the considerable care and expense we undertake in applying the molecular rules of human biology to medicine, we have done a very poor job in considering and applying these Serengeti Rules in human affairs. Before any drug is approved for human use, it must go through a series of rigorous clinical tests of its efficacy and safety. In addition to measuring a drug’s ability to treat a medical condition, these studies monitor whether a drug may cause problematic side effects by interfering with other substances in the body or the regulation of other processes. The criteria for approval pose a high barrier; about 85 percent of candidate medicines fail clinical testing. That high rejection rate reflects, in part, a low tolerance on the part of doctors, patients, companies, and regulatory agencies for side effects that often accompany drugs.
INTRODUCTION

But for most of the twentieth century and across much of the planet, humans have hunted, fished, farmed, forested, and burned whatever and settled wherever we pleased, with no or very little understanding or consideration of the side effects of altering the populations of various species or disturbing their habitats. As our population boomed to 7 billion, the side effects of our success are making disturbing headlines.

For example, the number of lions in the world has plummeted from about 450,000 just fifty years ago to 30,000 today. The King of the Beasts that once roamed all of Africa as well as the Indian subcontinent has disappeared from twenty-six countries. Tanzania now holds 40 percent of all of Africa’s lions, with one of their largest remaining strongholds in the Serengeti.

There are similar stories in the oceans. Sharks have prowled the seas for more than 400 million years, but in just the past fifty years, populations of many species around the world have plunged by 90–99 percent. Now, 26 percent of all sharks, including the great hammerhead and whale shark, are at risk of extinction.

Some might say, “So what? We win, they lose. That is how nature works.” But that it is not how nature works. Just as human health suffers when the level of some critical component is too low or too high, we now understand from the Serengeti Rules how and why entire ecosystems can get “sick” when the populations of certain members are too low or too high.

There is mounting evidence that global ecosystems are sick, or at least very tired. One measure that ecologists have developed is the total ecological footprint of human activity from growing crops for food and materials, grazing animals, harvesting timber, fishing, infrastructure for housing and power, and burning fuels. Those figures can then be compared with the total production capacity of the planet. The result is one of the most simple but telling graphs I have encountered in the scientific literature (see Figure 2).

Fifty years ago, when the human population was about 3 billion, we were using about 70 percent of the Earth’s annual capacity each year. That broke 100 percent by 1980 and stands at about 150 percent now, meaning that we need one and one-half Earths to regenerate
what we use in a year. As the authors of this now annual study note, we have a total of just one Earth available.

We have taken control of biology, but not of ourselves.

RULES TO LIVE BY

As biased it sounds, coming from a biologist, the impact of biology over the past century demonstrates that among all the natural sciences, biology is central to human affairs. There can be no doubt that in facing the challenges of providing food, medicine, water, energy, shelter, and livelihoods to a growing population, biology has a central role to play for the foreseeable future.
Every ecologically knowledgeable biologist I know is deeply concerned about the declining health of the planet and its ability to continue to provide what we need, let alone to support other creatures. Wouldn’t it be terribly ironic if, while we race toward and discover more cures to all sorts of molecular and microscopic threats to human life, we continue to just sail on blissfully or willfully ignorant of the state of our common home and the greater threat from disregarding how life works on the larger scale? No doubt most passengers on the Titanic were also more concerned about the dinner menu than the speed and latitude at which they were steaming.

So, for our own sake, let’s know all the rules, not just those that pertain to our bodies. Only through wider understanding and application of these ecological rules will we control and have a chance to reverse the side effects we are causing across the globe.

But my goals in this book are to offer much more than some rules, however practical and urgent they are. These rules are the hard-earned rewards of the long and still ongoing quest to understand how life works. One of my aims here is to bring that quest to life, as well as the pleasures that come from discovery. My premise is that science is far more enjoyable, understandable, and memorable when we follow scientists all over the world and into the lab, and share their struggles and triumphs. This book is composed entirely of the stories of people who tackled great mysteries and challenges, and accomplished extraordinary things.

As for what they discovered, there is more to gain here than just better operators’ manuals for bodies or ecosystems. One of the beliefs that many people have about biology (no doubt the fault of biologists and biology exams) is that understanding life requires command of enormous numbers of facts. Life appears to present, as one biologist put it, “a near infinitude of particulars which have to be sorted out case by case.” Another of my aims here is to show that is not the case.

When we ponder the workings of the human body or the scene I encountered on the Serengeti, the details would seem overwhelming, the parts too numerous, and their interactions too complex. The power of the small number of general rules that I will describe is their ability to reduce complex phenomena to a simpler logic of life.
That logic explains, for example, how our cells or bodies “know” to increase or decrease the production of some substance. The same logic explains why a population of elephants on the savanna is increasing or decreasing. So, even though the specific molecular and ecological rules differ, the overall logic is remarkably similar. I believe that understanding this logic greatly enhances one’s appreciation for how life works at different levels: from molecules to humans, elephants to ecosystems.

What I hope everyone will find here, then, is fresh insight and inspiration: insight into the wonders of life at different scales; inspiration from the stories of exceptional people who tackled great mysteries and had these brilliant insights, and a few whose extraordinary efforts have changed our world for the better.

After five days in the Serengeti, we have seen all of the species of large mammals except one. As we drive back out through the straw-colored grasslands, as if on cue, a novel silhouette appears on the horizon with a prominent telltale horn—a black rhino. With just thirty-one rhinos remaining in the entire Serengeti, it is a rare and thrilling sight. But knowing that there was once more than 1,000 of the animals here, it is also a sober reminder of the challenges ahead. Although, thanks to knowing the molecular rules of human erections, we now have at least five different inexpensive pills that can do the job, rhino horns are still being poached for use as very expensive aphrodisiacs in the Orient.

These are the days of miracle and wonder,
And don’t cry baby, don’t cry
Don’t cry
INDEX

Page numbers followed by “f” indicate figures and images.

β-galactosidase, 60–63, 61f, 64
3-hydroxy-3-methylglutaryl coenzyme A reductase: cholesterol synthesis and, 78–81; discovery of statins and, 81–87; search for fungal inhibitor of, 82–84

Abelson leukemia virus, 98
abl gene, 97, 98–100, 99f, 102–104
acidity, 23–24, 25
ACTH (adrenocorticotropic hormone), 17
acute myeloid leukemia, 92–93
acute promyelocytic leukemia, 95
Addis, James, 171–177
adrenal glands, 19–21, 27
adrenalin, 17, 19–21
adrenocorticotropic hormone, 17
Africa View (Huxley), 132
Agricultural Revolution, 4–5
AIDS, 4
algae: blooms as ecological imbal-
ance, 155–158, 157f, 163, 165; green world hypothesis and, 116, 118f, 119; lake productivity and, 171–172, 173f; minnows, bass and, 123–125
Alligator Harbor Marine Laboratory, 114–115
allostery, 69–71, 70f
Amchitka Island, 121–122
amino acid synthesis, 67–68
amygdala, 17
anemone, 119
Animal Ecology (Elton), 43, 46
Animal Farm (Orwell), 127
antelope, 182
ants, 125
Arctic animals, 37–39, 37f, 39f, 41
arctic foxes, 41
armadillos, 125
army ants, 125
Asia, rice production and, 158–161, 164
aspen, 180–182, 181f
Aspergillus terreus, 84
atherosclerosis, 5–6, 76
Aucanquilcha, Mount, 73
Auckland, New Zealand, 120
Australopithecus afarensis, 3
Babbitt, Bruce, 177, 178f
baboons, 161–162, 164, 165f
bacteria: enzyme regulation and, 56–57, 60–63, 61f; growth and replication of, 54–58, 56f, 58f
Bangladesh, 208
Bard, Philip, 21
barium salts, 18
barnacles, 118–119
barrens, 121, 124f
bass, 123–125, 171–172, 173f
Baumann, Oscar, 136
bay scallops, 162–163, 164
bcr gene, 98–100, 99f, 102
Bear Island, 32–39, 39f
Beattie, Mollie, 177, 178f
beavers, 181
Beschta, Robert, 181
“Better Living Through Ecology,” 203
bicarbonate ions, 23–24
Bilheimer, David, 86
Binney, George, 40
biosynthetic pathways, negative feedback and, 67–68
bipedal posture, 139
Birds of Massachusetts (Forbush), 113
Bishop, J. Michael, 96–97
bismuth salts, 18
Blixen, Karen, 132
blood disorders, 92–93. See also leukemia
blood pH, 23–24, 25
blood pressure, shock and, 23–24
blood sugar, insulin and, 27
blooms, algal, 155–158, 157f, 163, 165
body size: food chain structure and, 44–45, 115; mode of regulation and, 146; vulnerability to predators and, 144–147, 145f
brachiopods, 114
Brashares, Justin, 144
Brown, Michael, 77–81, 85–88, 88f
brown planthopper, 159–161, 160f, 164
buffalo: density-dependent regulation of, 148f; factors controlling population size in Serengeti, 134–138, 137f, 148f, 150; Gorongosa Restoration Project and, 190–191, 191f
Burkitt’s lymphoma, 95
c- abl gene, 98–100, 99f, 102–104
Cain, Arthur, 130
Canadian lynx, 42, 42f
Canadian rabbits, 41–42, 42f
cancer: as abnormality of regulation, 6; c- abl gene, bcr gene and, 99f; chromosomes, leukemia and, 92–95, 94f; negative regulation and, 72; rational design of drugs for, 102–104; targeting genes causing, 104–105; viruses and, 93, 95–97. See also ecological cancers; leukemia
Candau, Marcelino, 205
Cannon, Walter: emotions, digestion and, 18–21; fight-or-flight response and, 17–18; homeostasis and, 25–29; shock and, 21–25; World War I and, 26f
carbon energy sources, 55–58, 56f
Carpenter, Stephen, 171–177
Carr, Greg, 187–192, 193, 194f, 198, 211
Carr Foundation, 187–190
carrying capacity, 199–200
cascading effects. See trophic cascades
cats, 19–21
cattle plague. See rinderpest
Caughley, Graeme, 166
cell growth, regulation of, 49
Centers for Disease Control, 206
Charcot, Jean-Baptiste, 51, 54
Chissano, Joaquim, 188
chitons, 119
cholesterol: discovery of link to heart disease, 75–77; feedback regulation and synthesis of, 49, 77–81;
HDL and, 79, 81; LDL and, 79–81, 85–87
cholesterolemia, 77–78, 86
chromosomes: blood disorders and, 92–93; Down syndrome and, 92; E. coli, 65; human number 9, 98–100, 99f; human number 13, 100; human number 22 (Philadelphia chromosome), 93, 98–100, 99f; leukemia and, 92–95, 98–100, 99f; retinoblastoma and, 100–102; translocation of, 93
chronic myelogenous leukemia, 93–95, 94f, 98, 102–104
Ciba-Geigy pharmaceutical company, 102–103
cisco, 176
citrinin, 82
civil wars, 186–187, 187f, 208
Clean Water Act, 156
clinical trials, 7
CML (chronic myelogenous leukemia), 93–95, 94f, 98, 102–104
calorizations, power of, 209–210
coffee, shade-grown, 196–197
collectivization of agriculture, 138
Collett, Robert, 40–41
communities, food chains as currency of, 43–46
Community Education Center (Vila Gorongosa), 196
“Community Structure, Population Control, and Competition” (HSS), 116
compactin, 82–84, 85–86
competition, population size and, 143–144, 150
complexity, reducing, 10–11
constitutive enzyme production, 64
consumers, 115–116, 117f. See also herbivores; predators
Convention on International Trade in Endangered Species (CITES), 210
Corbett, Jim, 113
corticotropic releasing factor, 17
cortisol, 17, 77
cownose rays, 162–163, 164
cyotes, 182
Crawshay’s zebras, 191–192
CRF (corticotropic releasing factor), 17
crocodiles, 192–193
c-src gene, 97
Daphnia galeata, 176
Daphnia pulicaria, 176
Darwin, Charles, 31–32, 43 decomposers, food chain and, 115–116, 117f
de la Paz, Daniel, 19
density-dependent regulation, 147–150, 198–199
Department of Natural Resources, 171
diabetes, 5
diet, cholesterol, heart attacks and, 75–77
digestion, 18–21, 49
diseases: as abnormalities of regulation, 5–6; buffalo and, 135–138; eradication of, 205–209, 212. See also specific diseases
DNR (See Department of Natural Resources), 171
dogs, 19–21
dominant mutations, 100
dos Santos, Carlos, 188
double-growth curves, 56–57, 56f, 58f
double-negative regulatory logic: cholesterol regulation and, 85; discovery of, 62–63, 66; overview of, 68f; 153; tumor suppressors and, 100–102
doubling times, 31
Down syndrome, 92
drought, 149
Dr. Seuss, 156
INDEX

Druker, Brian, 102–104
Dubos, René, 205

East African Veterinary Research Organization, 136
ecological cancers: algal blooms as, 155–158, 163, 165; baboons in Ghana as, 161–162, 164, 165f; broken regulatory rules causing, 163–165, 165f, 166f; brown plant hoppers in rice as, 159–161; cownose rays, scallops and, 162–163, 164; human actions and, 166–167
ecological footprint, total, 8–9, 9f
ecological rules: overview of, 7–9, 9f.
See also Serengeti Rules
economy of nature, 43
EIS (Environmental Impact Statements), 179
elephants: body size, population size and, 30–32, 147–150; Escherichia coli and, 71–72; Gorongosa Restoration Project and, 192; in Tarangire National Park, 15–17, 16f
elephant seals, northern, 199
elk, 178–182
Elton, Charles: importance of food to animal communities and, 43–46; population fluctuations and, 40–43; pyramids of numbers and, 45; size relationships, food chains and, 44–45, 115; Spitsbergen Expeditions and, 32–41, 33f, 37f
Elton, Robert, 130
emotions, digestion and, 18–21
Encyclical Letters, 203–204, 210
Endangered Species Act, 178, 210
Endo, Akira, 81–84, 85–86, 87–88
Environmental Impact Statements, 179
enzyme regulation: allostery and, 69–71, 70f; double-growth curves and, 56–57; feedback and, 67–69; inducers and, 60–63, 61f; repressors and, 63–67; rules of, 68
epinephrine, 21
eradication programs, 205–209, 212
ergosterol, 82
Erie, Lake, 155–158, 157f, 163, 165
Escherichia coli: chromosome of, 65; induction of enzyme production in, 61, 61f; regulation of population size of, 65, 71–72
Essay on the Principle of Populations (Malthus), 31
Estes, Jim, 121–122, 126
estrogen, 77
Ethiopia, 208
Everest, Mount, 40
exponential growth phase of bacteria, 56, 56f
familial hypercholesterolemia, 77–78, 86
Farmers’ Field Schools, 211
Federal Aid in Sport Fish Restoration Act, 172
feedback regulation: allostery and, 69–71, 70f; in animal populations, 147–150, 148f; cholesterol and, 77–81; negative, 67–68; overview of, 67–69, 68f, 153
FFI (Forces Françaises de l’Intérieur), 58, 59f
FH (familial hypercholesterolemia), 77–78, 86
fight-or-flight response, 17
Finch-Hatton, Denis, 132
fingerlings, 175
fires, wildebeest and, 140, 141f, 142f
fir trees, 125
fishing, 170–177
Fleming, Alexander, 81
floodplains, 194
Florey, Howard, 40, 92
fluctuations in population sizes, 42–43
Foege, Bill, 206–207, 209, 211
food as currency, 43–46
food chains: Arctic, 38–39, 39f; as connections in communities, 43–46; ecological cancers and, 163–165; size relationships and, 44–45, 115; trophic levels and, 115–117, 117f
food cycles (food webs), 39, 39f
food production, transformation of, 4–5
food supply: ecological cancers and, 163; migration and, 150–152; population size and, 45; regulation of population size by, 146–147, 150
Forbush, Edward, 113
Forces Françaises de l’Intérieur, 58, 59f
foxes, arctic, 41
Francis (Pope), 203–204, 210, 211
Francs-Tireurs et Partisans (FTP), 57–58, 59f
French Resistance, 57–58, 59f
fry, 175
fungi, cholesterol synthesis and, 81–84
Gandhi, Indira, 207
gastropods, 115
gazelles, Thomson, 143, 151
Gear, Fraser, 200
genetic research, mutations and, 63–67
gene transfer, 65
Ghana, 161–162, 164, 165f
Ghana Wildlife Division, 162
giraffes, 140, 141f, 146
Gleevec, 102
global, local vs., 211
Goldstein, Joe, 77–81, 85–88, 88f
Gorongosa National Park: in 1960s, 184f; in 1970s, 183–186; civil war and, 186–187, 187f; employment and, 195–197; location of, 185f; reintroducing wildlife into, 188–192; results of reintroducing wildlife into, 190–195, 197–201, 201f
Gorongosa Restoration Project (GRP), 190–197
Grand Teton National Park, 182
grasses, wildebeest and, 142–143
grasshoppers, 143
Great East African Rift, 183
Great Lakes Water Agreement, 156
Great Rift Valley, 1–3
Greenland, 51–54
Green Revolution, 158, 164
Green World Hypothesis, 115–116, 117f, 118
growth curves, 56–58, 56f, 58f
growth limitations, 31–32
Grundy, Scott, 86
Grzimek, Bernard and Michael, 133, 147
Hairston, Nelson Sr., 115–117. See also HSS hypothesis
HDL (high-density lipoprotein), 79, 81
health clinics, 195–196
heart disease, 75–77
Henderson, Donald A., 208, 210
herbivores: food chain and, 115–116, 117f; Gorongosa National Park and, 199; regulation of, 145–146. See also specific herbivores
Hilborn, Ray, 149
hippopotamus, 192
HIV/AIDS, 4
Hofmeyr, Markus, 189, 190
homeostasis, 25–29
hopperburn, 159
hormones, fight-or-flight response and, 17
House on Fire (Foege), 209
HSS hypothesis, 115–116, 117f, 118
Hudson Bay, 41–43, 42f
humpback whales, 199
Huxley, Julian, 33, 43, 132
hyenas, 151, 199
hypercholesterolemia, familial, 77–78, 86
hypothalamus, 17, 21
IHAE (International High Altitude Expedition), 73, 75
implementation, as local, 211
India, smallpox and, 207
individuals, importance of, 212
Indonesia, 159, 164, 211
inducers, 61–63, 61f, 65–66, 70f
insecticides, 159–161, 164, 211
insulin, blood sugar and, 27
International High Altitude Expedition, 73, 75
Irvine, Sandy, 40
Isle Royale, 125
isoleucine, 67, 69
ivory trade, 147
Jacob, François, 49, 65–67, 71
Jacobson, Leon, 92
Japan Prize, 104
Jourdain, F.C.R, 34, 35
juvenile mortality, 135–136
kelp, 120–123, 124f
Keys, Ancel, 73–77, 74f
keystone species: importance of, 126;
rinderpest virus as, 137–138; sea otters as, 120–123; starfish as, 111–115, 118–120; trophic cascades and, 123–127
“kick it and see” ecology, 118, 120
killer whales, 126
kinases, 98–99, 101, 102
Kitchell, James, 171–177
K-rations, 75
Kruger National Park, 190

lactose, 60–63, 61f, 64
Lago Guri, 125
lag phase of bacterial growth, 56
largemouth bass, 171–172, 173f
Larsen, Eric, 180
LDL (low-density lipoprotein), 79–81, 85–87
LDL receptors, 80–81, 85
leaf-cutter ants, 125
Leakey, Louis, 3
Leakey, Mary, 3, 139
lemmings, 41–43, 46
leopards, 164, 165f, 199
Leopold, Aldo, 180
leukemia: acute myeloid, 92–93; acute promyelocytic, 95; chromosomal changes in, 93–95, 94f; chronic myelogenous, 93–95, 94f, 98, 102–104; as disease of regulation, 100
life, understanding of, 9–11
limnology, 170
limpets, 119
Limpopo, 189, 190
Linnaeus, Carl, 43
lions: baboons and, 164, 165f; declining numbers of, 8; in Gorongosa National Park, 199–201, 201f; predation, migration and, 151; wildebeest and, 140, 141f
Liu, Dennis, 192
local vs., global vs., 211
logic of life, 49–50
Longfellow, Henry Wadsworth, 169–170
Longstaff, Tom, 34, 36–37
The Lorax (Seuss), 156
lovastatin, 84, 85–87
Lwoff, André, 54, 56–57, 60
Lydon, Nick, 102–104
lynx, Canadian, 42, 42f
Maalin, Ali Maow, 212–213
Madison, Wisconsin, 168f, 169–170
Mallory, George, 40
Malthus, Thomas, 31–32, 147
Man-eaters of Kumoan (Corbett), 113
Marine Mammal Protection Act, 210
Martin, Steve, 96
Matter, Alex, 102–103
Matthews, Bryan, 73, 75
McNaughton, Sam, 143
Mduma, Simon, 144, 149
megaherbivores, 145–146
Mendota, Lake, 168f, 169–171, 172–177, 182
Merck pharmaceutical company, 84–87
mesopredators, 182
Microcystis algae, 156, 157f, 163, 165
migration, 150–152
minnows, 123–125, 171–172, 173f
ML-236B, 82. See also compactin
molecular biology, 6, 54
molecular rules, overview of, 5–6
Mole National Park, 161–162
Monod, Jacques: allostery and, 69–71, 70f; bacterial growth and replication and, 54–58, 56f, 58f; enzyme regulation and, 56–57, 60–63, 61f; Pourquoi-Pas? expedition and, 51–54; repressors and, 63–67; Roy Vagelos and, 84
moose, 125
Morgan, Thomas Hunt, 53
Mozambique, 186–187, 187f. See also Gorongosa National Park
Mozambique Resistance Movement, 186, 197
Muagura, Pedro, 197
Mukkaw Bay, 111–115, 118–119, 121
mussels, 119, 120
mutations, genetic research and, 63–67
myc gene, 97

negative regulation: density-dependent regulation as form of, 147–150, 198–199; overview of, 68f, 153; predation as, 164–165, 166f; starfish, mussels and, 119; wildebeest, rinderpest virus and, 140–143, 141f, 142f
Ngorogoro Crater, 1–3
Nielsen, Mark, 192
Nieuwe Meer, Lake, 158
Nigeria, 206–207
Nile crocodiles, 192–193
Nobel Prizes: for discovery of allostery, 71; for discovery of penicillin, 40, 92; for discovery of virus causing cancer in chickens, 93, 96; for understanding of cholesterol regulation, 78, 87
norepinephrine, 17
Norges Pattedyr (Collett), 40–41
North East Land, 39–43
northern elephant seals, 199
Norton-Griffiths, Mike, 138–140
Novartis, 103–104
Nuttall Ornithological Club, 113
ochre starfish, 111–115, 112f, 118–120
Olduvai Gorge, 3–4
olive baboons, 161–162, 164, 165f
Olympic Peninsula, 111–115, 118–119
oncogenes: cancer and, 98–100, 99f, 105; discovery of, 96–97; as drug targets, 102–104; leukemia and, 98–100; retinoblastoma and, 100–102
“One Care for Our Common Home” (Pope Francis), 203–204, 210
optimism, 211
orcas, 126
Order of the Bath, 25
oribi, 145, 145f
Orwell, George, 127
otters, sea, 120–123, 124f, 126, 199

necessity, sufficiency and, 182
negative feedback, 67–68
Out of Africa (film), 132
Oxford University Expeditions to Spitsbergen, 32–43, 33f

Paine, Robert: on future, 203; image of, 128f; sea otters as keystone species and, 120–123; starfish as keystone species and, 111–115, 118–120; Tatoosh Island and, 119–120, 121, 127

Palmisano, John, 122
pancreas, 27
parasites, population size and, 45
Pardee, Arthur, 65
Pasteur Institute, 54, 58, 60
pathogens, 45, 137–138
Paul Lake, 171–172, 173f
penicillin, 40, 81, 82, 92
Penicillium citrinum, 82–84
Penicillium fungus, 81
“Periodic Fluctuations in Numbers of Animals” (Elton), 42–43
peristalsis, 18–21
Pershing, John J., 25
pesticides, 159–161, 164, 211
pests, rice production and, 158–161, 160f, 164
Peter Lake, 171–172, 173f
Peterson, Charles “Pete,” 163
Philadelphia chromosome (22), 93, 98–100, 99f
phosphate fertilizers, 163
phosphate groups, protein regulation and, 98–99, 101
phosphorylation, 101
phytoplankton, 171–172, 173f
pigeon pea, 197
Pingo, Mike, 192, 198
Pisaster ochraceus (ochre starfish), 111–115, 112f, 118–120
plankton, 53, 171–172, 173f, 176
planthopper, brown, 159–161, 160f, 164
Plowright, Walter, 136
poaching, 146, 195, 197
political will, social will and, 210
pollution, water supply and, 155–158
population growth: buffalo and, 134–138; fluctuations in, 42f; human, 5; wildebeest and, 136–138, 137f, 148f, 149
population size: competition and, 143–144, 150; density-dependent regulation of, 147–150, 148f; factors limiting, 45; fluctuations in, 41–43; migration and, 150–152; pesticide use in rice production and, 159–161, 164; predators and, 45, 150
positive regulation, overview of, 68f, 153
Pourquoi-Pas? (ship), 51–54, 52f
Power, Mary, 123–125
predator-prey relationships: body size and, 144–147, 145f; food chain and, 115–120, 117f; trophic cascades and, 123–127. See also keystone species
predators: ecological cancers and, 164–165, 166f; food chain and, 115–116, 117f; lake productivity and, 171–177; migration and, 151; population size and, 45, 150; reintroducing in Gorongosa National Park, 190–192
Presidential Medal of Freedom, 89
producers, food chain and, 115–116, 117f
pronghorn antelope, 182
protein kinases, 98–99, 101, 102
proteins, structural vs.regulatory, 66–67
proto-oncogenes, 97
pyramids of numbers, 45
Pythium ultimum, 82
rabbits, Canadian, 41–42, 42f
ras gene, 97
rational drug design, 102–104
rays, cownose, 162–163, 164
Rb gene, 101
“Reasons for Optimism in the Care of the Sick” (Cannon), 28
recessive mutations, 100
reductase enzyme: cholesterol synthesis and, 78–81; discovery of statins and, 81–87; search for fungal inhibitor of, 82–84
regulation, overview of, 5–6, 153
regulatory proteins, 66–67
Reid, Robin, 133
RENAMO (Mozambique Resistance Movement), 186, 197
repressors, 63–65, 66, 70f
resilience of nature, 198–199
retinoblastoma, 100–102
rhinos, 11
rice production, 158–161, 164
rinderpest, 135–138, 137f, 208
rings of vaccination, 206–207
Ripple, William, 180
Rous, Peyton, 93, 95
Rous sarcoma virus, 96
Rowley, Donald, 91, 92
Rowley, Janet Davison, 89–95, 90f, 104–105
RSV (Rous sarcoma virus), 96
safari industry, 188–189
Sandoz pharmaceutical company, 103
Sandy, Tom, 156
Sankyo pharmaceutical company, 81–84
Saxonia (troopship), 22
scallop, 162–163, 164
Schaller, George, 134
school construction, 196
seals, northern elephant, 199
sea otters, 120–123, 124f, 126, 199
sea urchins, 120–123, 124f
Segnit, R. W., 37
serendipity, 75
Serengeti National Park: buffalo and, 134–138, 137f; history of, 130–133; visit to, 1–4; wildebeest, rinderpest and, 130f, 136–138, 137f; wildlife of, 132–134
Serengeti Rules: 1. importance of keystone species, 126; 2. indirect effects in trophic cascades, 127; 3. competition of species for common resources, 144; 4. body size influences mode of regulation, 146; 5. density-dependent factors regulate some species, 150, 198–199; 6. migration increases population size, 152; general rules of regulation and, 153
Seuss, Dr., 156
“Seven Countries” heart disease study, 75–76
Shai Hills Resource Reserve, 162
sharks, 8, 164, 166f
Shemya Island, 122
shock, 21–25
simvastatin, 87
Sinclair, Tony: buffalo and, 134–138; contributions of, 152f, 153; density-dependent regulation and, 147–150, 148f; personal history of, 129–131; wildebeest and, 136–144, 141f
size. See body size; population size
Skolnick, Edward, 86–87
Slobodkin, Lawrence, 115–117. See also HSS hypothesis
smallpox eradication, 4, 205–208, 209, 212
Smith, Fred, 113–117. See also HSS hypothesis
social will, political will and, 210
Somalia, 208, 212
Spector, Deborah, 97
spiders, 164, 166f
Spitsbergen Expeditions, 32–43, 33f
splanchnic nerve, 19
sponges, 119
src gene, 96–97
Stalmans, Marc, 198, 199–200
starfish, 111–115, 112f, 118–120
statins, 83–87
stationary phase of bacterial growth, 56
steroid hormones, 76–77
sterols, 76
Stichaster australis starfish, 120
structural proteins, 66–67
substrates, 69
sufficiency, necessity and, 182
sugars, 55, 56, 56f, 58f. See also specific sugars
suicidal lemmings, 46
Summerhayes, Vincent, 33f, 34–35
suppressors, 100–102, 105
sympathetic nervous system, 18–21, 20f
Szlard, Leo, 65
Taihu, Lake, 158
Tanganyika Territory, 129, 132–133
Tanzania, 138–139. See also Serengeti National Park
Tatoosh Island, 119–120, 121, 127
trophic cascades: ecological cancers and, 164–165, 166f; examples of, 123–126; lake productivity and, 171–177, 173f; mediation of strong indirect effects by species in, 127; sea otters, urchins, kelp and, 122–123, 124f; wildebeest and, 140–143, 141f, 142f; wolves, elk, and aspen, 180–182
trophic levels, food chains and, 115–117, 117f
tryptophan, 67
tuberculosis, 4
Tuesday Lake, 171–172, 173f
tumor suppressors, 100–102, 105
tyrosine kinases, 98–99
Ullmann, Agnes, 69
urchins, 120–123, 124f
vaccinations, 205–208, 209, 212
Vadas, Robert, 121
Vagelos, Roy, 84, 86, 87
vagus nerves, 19, 27
Varmus, Harold, 96–97
varying hares, 41–42, 42f
Vasella, Daniel, 103
viruses: cancer and, 93, 95–97; repres- sors and, 66–67; smallpox eradication and, 205–208, 209, 212. See also specific viruses
v-src gene, 97
walleye, 170–171, 172, 174–177
water supply, 155–158
whales, 126, 199
White, Stewart Edward, 131–132
WHO (World Health Organization), 205
wildebeest: density-dependent regulation of, 148f, 149; Gorongosa Restoration Project and, 192; migration and, 130f, 150–152;
population size, rinderpest virus and, 136–138, 137f
willow trees, 177–182, 181f
Winnipeg, Lake, 158
wisdom of the body, Cannon and, 25–27
The Wisdom of the Body (Cannon), 27
wolf spiders, 164
wolves, 125, 177–182, 181f
World Health Organization, 205
World Heritage Sites, 132

World War I, 21–25
World War II, 40, 55, 57–58
X-rays, 17–18
Yellowstone Wolf Restoration Project, 177–182, 178f
zebras, 151, 191–192
Zocor, 87
zooplankton, 171–172, 173f