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1 The Fast-Track Introduction to Calculus 2

Chapter Preview. Calculus is a new way of thinking about mathematics. And Cal- ng
culus 2 builds on that new perspective in new ways. This chapter introduces you to

the calculus mindset, the core concepts of Calculus 2, and the sorts of problems these
innovations help solve. The focus throughout is on the ideas behind Calculus 2 (the big

picture of Calculus 2); the subsequent chapters discuss the math of Calculus 2. After

reading this chapter, you'll have an intuitive understanding of Calculus 2 that'll ground

your subsequent studies of the subject. Alright, let's start the adventure!

1.1 First Things First: What Is Calculus?

In Calculus Simplified [2] I gave this two-part answer to that question:

Calculus is a mindset—a dynamics mindset. Contentwise, -'Q‘-
calculus is the mathematics of infinitesimal change.

This frame on calculus applies as much to Calculus 2 as to Calculus 1 (and any
mathematics that also uses calculus). So, let’s unpack that answer, now in the
specific context of Calculus 2.

Calculus as a Way of Thinking

The mathematics that precedes calculus—often called “precalculus;,” which in-
cludes algebra and geometry—largely focuses on static problems: problems lacking
change. By contrast, change is central to calculus—calculus is about dynamics.
Example:

e Precalculus question: Find the pattern in the sequence of numbers
1,1,2,3,5,8,13,21, ...

e Calculus question: Does the ratio of consecutive numbers in the sequence above
approach a specific number?

The sequence of numbers above is the famous Fibonacci sequence. In this se-
quence, the nth number (let’s denote that F,) is the sum of the two preceding
numbers (F,_; and F,_»), starting with F; =1 and F, = 1. That’s the precalcu-
lus answer to the precalculus question—a (static) formula. But the calculus answer
to the calculus question reveals something magical and enlightening:

Fn+1 =1+\£N1618
2 . e

lim =

n—oo Fy

the golden ratio (figure 1.1(a)). Translation: The ratio of consecutive Fibonacci
numbers tends to ¢ (“phi”) as we get further into the sequence. “Tends” and “fur-
ther into” here convey the dynamics of this calculus answer. And what about the
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Figure 1.1: (a) The ratios of consecutive Fibonacci numbers F,t1/F, (black) approach
the golden ratio ¢ as n increases. (b) Close-up of an Aeonium succulent by Max Ronnersjo
showing spiral phyllotaxis, where successive leaves grow at approximately the “golden an-
gle” 2m/ ©?. Retrieved from Wikipedia Commons. (c) The black hole at the center of Messier
87, a galaxy in the constellation of Virgo. By the European Southern Observatory; retrieved
from Wikipedia Commons.

magical and enlightening aspects I alluded to? Well, it turns out that the golden ra-
tio is hidden in many of Nature’s patterns. It's encoded in the spiral arrangements of
leaves on plant stems (figure 1.1(b)), in the proportions of components in human
hearts and brains, and in theoretical models of black hole physics (figure 1.1(c))
[3]. Takeaway: Calculus is hidden in Nature, in you.

This statics versus dynamics distinction between precalculus and calculus runs
even deeper—change is the mindset of calculus. The subject trains you to approach
a problem from a dynamics (versus statics) perspective. We saw this in Calcu-
lus 1 when we studied differentiation and interpreted derivatives as instantaneous
rates of change. And we saw it again when we studied integration and accumula-
tion functions. (Appendixes C-D review Calculus 1, in case youd like a refresher.)
This dynamics mindset carries over into Calculus 2. Let me illustrate this—and the
continuing role of “infinitesimal change” in calculus—via Zeno’s paradox.

The Continuing Role of Infinitesimals in Calculus 2

Zeno of Elea (ca. 490-430 BC) was a Greek philosopher who devised a set of para-
doxes arguing that motion is not possible. (Clearly, Zeno did not have a calculus
mindset.) One such paradox—the Dichotomy Paradox—can be stated as follows:

To travel a certain distance you must first traverse half of it.

Figure 1.2 illustrates this. Therein Zeno is trying to walk a distance of 2 feet. But
because of Zeno's mindset, with his first step he only walks half the distance: 1 foot
(figure (b)). He then walks half of the remaining distance in his second step (0.5
foot) and reaches the 1.5-foot mark (figure (c)). After Zeno has taken n steps, the
distance d,, he’s traveled is given by

1
2n71 :

11
dn=1+-+-+- 1.1
n=1t o4+t (1.1)

As Zeno continues his walk, the total distance walked d,, always gets closer to 2 yet
never reaches 2 (because Zeno’ steps always traverse half the remaining distance).
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1.2: Limits: (Still) The Foundation of Calculus

If we checked back in with Zeno after he’s taken an infinite number of steps, how-
ever, his total distance traveled d would be . .. drum roll please . . . infinitesimally
close to 2—as close to 2 as you can imagine but not equal to 2.
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Figure 1.2: Zeno trying to walk a distance of 2 feet by traversing half the remaining distance
with each step.

This example illustrates the dynamics mindset of calculus. We discussed Zeno
walking; we thought about the change in the distance he traveled; we visualized the
situation with a figure that conveyed movement. (Calculus is full of action verbs!)
But the example also challenges us. What seems intuitively clear to us is that after
an infinite number of steps Zeno would’ve covered a distance equal to

1 1 1

1+5+Z+--~+2n—_1+~--:2. (1.2)
That is, the infinite sum of the distances Zeno covers with each step should equal
2. But how can we add up an infinite number of numbers? And how/why does
the particular infinite sum above “yield” 22 (Those are the challenges.) To tackle
these new calculus questions requires new calculus concepts and methods that
leverage their inherently dynamic nature. Luckily, one of the pillars of Calculus
1 provides a stable foundation on which to build these new concepts and methods:
limits.

1.2 Limits: (Still) The Foundation of Calculus

Let’s return to equation (1.1). It turns out that we can express the sum therein much

more compactly as
1 1

(We'll learn how to do this in chapter 4.) With the help of the Limit Laws from
Calculus 1,* it follows that

lim d,= lim (2 — 2) =2— lim i =2. (1.4)
n—00 n—00 2

This is Calculus 2’s answer to the mystery of (1.2). It expresses the intuitive idea that

the 2-foot mark is the limiting value of the total distance Zeno’s traversing. Equation

(1.4), therefore, is a statement about the dynamics of Zenos walk, in contrast to

(1.1), which is a statement about the static snapshots of how far Zeno has traveled
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* These are reviewed
in appendix C.

3



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

4 The Fast-Track Introduction to Calculus 2

after n steps. Moreover, (1.4) reminds us that d,, is always approaching 2 yet never
arrives at 2. Indeed, as you may recall from Calculus 1:

Limits approach indefinitely (and thus never arrive).

n“_n:oo Yn We'll learn much more about infinite sums in
chapter 4. For now, the Zeno example is sufficient
to illustrate one key idea: Limits are also the foun-
dation of Calculus 2. The Calculus 1 mansion was

Finite quantity Y, Limiting value Y, built on limits, and so will be the Calculus 2 man-
(Nota calculus concept) (Calculus concept) sion. And the workflow we'll use for building new
Figure 1.3: The Calculus 2 Calculus 2 concepts from limits will be similar to

workflow. the one introduced in Calculus Simplified [2]: Start

with a finite quantity Y, that depends on an integer

n, and then let n tend to infinity (i.e., take the limit as n — oo) to arrive at a calcu-

_‘O’_ lus result (see figure 1.3). Working through this process—like we just did with the

< Zeno example—for various quantities Y;, of real-world and mathematical interest
is part of what doing Calculus 2 is all about.

1.3 The Three Difficult Questions That Drove the
Development of Calculus 2

Calculus 2 developed out of a need to answer the following three Big Questions.

1. The Geometry Question: Can we calculate the length of any curve, area of any
surface, and volume of any solid? The ancient Greeks (and other ancient civi-
lizations) could calculate lengths, areas, and volumes for polyhedra and some
curvy shapes (e.g., spheres), but that was about it. For example, for thousands
of years mathematicians struggled to calculate the surface areas and volumes
of objects as simple as the flower vase shown in figure 1.4(a). They could paint
them and fill them with water but not know beforehand how much paint or
water theyd need.

2. The Infinite Sum Question: Does an infinite sum have a sum, and if so, what's
the sum? For centuries mathematicians have used clever geometric arguments
to tackle infinite sums. For example, adding up all the areas inside the square
in figure 1.4(b) shows that

S U . (1.5)
2 4 8 16 - ’

Notice that if we multiply this equation by 2 we get (1.2), yielding a second (this
time geometric) verification of that sum. But does a general infinite sum, like
the one shown in the cloud in figure 1.4(b), have a sum? And if so, how can we
calculate that sum? Tough questions.

3. The Approximation Question: Without knowing the exact value of a function,
can we accurately approximate it? Before calculators and computers, accurately
approximating quantities like the ones shown in figure 1.4(c) was a difficult
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Figure 1.4: The three sets of Big Questions that drove Calculus 2’s development.

problem. And though today’s technology makes that easy, the algorithms that
technology uses to produce those accurate approximations trace back to the
early work on this third Big Question. For example, how can we accurately
approximate quantities like v/1.05, or the other quantities under the cloud in
figure 1.4(c), without using a calculator?

I hope these descriptions impart the mystery and difficulty involved in trying
to answer these Big Questions. Indeed, the resolution of these questions took millen-
nia. But it won't take that long for you. By the time you’re done reading the next
three pages you'll have developed an intuitive understanding of how to resolve each
of those questions. That understanding is grounded in my earlier answer to the
question, What is calculus? A dynamics mindset. Let’s see how.

First, note that nothing about figure 1.4 says “dynamics.” Every image is a static
depiction of something (e.g., a volume). Yet in the real world we fill beakers with
liquids to measure volume and add up numbers to obtain a sum. (There are those
action verbs again.) We've turned on our calculus (dynamics) mindset. The next
step is to look for the Y, we'll need so we can apply the Calculus 2 workflow (figure
1.3). To illustrate this process, let’s calculus three of the questions in figure 1.4—
yep, I'm encouraging you to think of calculus as a verb—and search for the finite
quantities Y, that, in the limit as n — 0o, yield the desired quantities (e.g., volume).
Figure 1.5 illustrates the results. Let me give you a tour of that figure now.

e Row I: The length of the curve in the third column—called the arc length of
that curve—is realized as the infinite limit (second column) of the total length
sp of n line segments (the gray ones in the figure) created by choosing suitable
points on the curve (first column). Thus, here Y, =s,,.

e Row 2: The infinite sum of a set of numbers (third column) is realized as the infi-
nite limit (second column) of the sum of the first N of them, Sy (first column).!
Thus, here Yy = Sn.

e Row 3: The value f(x) of a function for x-values near x =0 (third column) is
realized as the infinite limit (second column) of polynomials T}, (x) of increasing
degree n (first column). So, here Y, = T, (x).

!'This is exactly what we did in the Zeno example in equation (1.4).

For general queries, contact info@press.princeton.edu
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Limit Calculus
Finite Approximation Process Result
Approximate curve length by sum S, of n line segment lengths: Arc length

/\\/ /\./ / \/ nll)r'r;c Sn

n=1 n=2 n=3
Sum of first 2 terms: a;+a, =S, Infinite series
Sum of first 3 terms: a,+0,+0; =53 lim S, gty e
N N—oo
Sum of first N terms: ay+ay+---+ay =Sy
Approximate f(x) with a polynomial T,,(x) of degree n: Taylor series
lim T,(x)
n—oo
' ' ' £ = lim T,)
n=1 n=2 n=3 X) = lim T, (x;

n—o

Figure 1.5: The Calculus 2 workflow (figure 1.3) applied to the three Big Questions.

We'll learn how to calculate arc length in chapter 3. The result will be a defi-
nite integral that in many cases will require advanced integration methods. We'll
learn those at the end of chapter 2. At the beginning of that chapter we’ll learn
how to approximate definite integrals, which comes in handy when we can't eval-
uate them exactly. In chapter 4 we'll then revisit the last two rows of figure 1.5.
The infinite sum of numbers in the second row of the figure is called an infinite
series, and through our attempts to approximate the sums of certain infinite series
we'll end up circling back to the third row of the figure. We'll call the polynomials
Ty (x) illustrated therein (the gray curves) Taylor polynomials. And by observ-
ing that as n increases they approximate f{x) better, we'll build up to the climax of
the chapter: the remarkable result that sometimes the limit as n — oo of the Taylor
polynomial T, (x) is f(x). Translation: Some functions can be represented as “infinite
degree” polynomials! (We'll call these Taylor series.)

I don’t expect you to understand everything I've just described. My intent was
instead to provide you with a roadmap of the main stops and a preview of the
highlights of our upcoming calculus adventure. I also hope that the preceding
discussion helps you appreciate this book’s approach to Calculus 2. Figure 1.5 orig-
inated from switching to a dynamics mindset to tackle our three Big Questions.
We then applied the Calculus 2 workflow to realize each of the calculus objects
in the third column of the figure as infinite limits of appropriate Y;s. Takeaway: In
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scanning figure 1.5 from column to column (left to right) you're following the Calculus
2 workflow.

This completes my big-picture overview of Calculus 2. We've by no means re-
solved the Big Questions illustrated in figure 1.4, but we've created a roadmap for
tackling those Big Questions. What’s left now is to apply the Calculus 2 workflow
to our Big Questions to develop the mathematics of Calculus 2. That’s what we’ll
do in the rest of the book. See you in the next chapter!
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Riemann zeta function, 174; relation to sums of p-series,
174 (see also infinite series)

Rule of 70, 151

Rules of Exponents, 181

Rules of Logarithms, 184

sequence(s)

—applied to music, 150; defined via a recurrence
relation, 88; definition of, 87; definition of
convergence/divergence of, 93; defined via a
functional relationship, 88; finding a formula for the
terms of, 89; graphical approach to, 92-94; laws
for, 95

—special types: alternating, 90; arithmetic, 89; defined
via recurrence relation, 88; geometric type, 90, 96,
152

series. See infinite series

shell method: about noncoordinate axes, 85-86;
comparison with the washer method, 67; about the
x-axis, 65; about the y-axis, 64

sigma notation, 97; summation formulas expressed in,
38

Substitution Rule (u-substitution): as the “anti-Chain
Rule,” 204; formula for, 204

surface area (of a surface of revolution), 70;
formula for the lateral portion of, 72; of a frustum,
71,76

Taylor polynomials, 122-29

Taylor series: applied to evaluating limits, 144-45;
convergence of, 140-41; definition of, 136; as the
limit of a Taylor polynomial, 129, 137

Taylor’s Theorem: applied to estimating the maximum
error in a Taylor approximation, 127-29; derivation
of, 173; statement of, 127

three Big Questions that drove Calculus 2’s
development: Approximation Question, 4-5, 73,
120-22, 129, 136, 142, 145, 169; Geometry Question,
4-5, 46, 52, 67, 70, 73, 146; Infinite Sum Question,
4-5,9,73, 96, 120, 136, 144-45, 169

Trapezoidal Rule, 18

trigonometric functions, 183-84

trigonometric integrals, 25-27; guidelines for,
41-43

trigonometric substitution, 27-30; guidelines
for, 29

Trigonometry (review), 182
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volumes: formulas for various shapes, 181; of solids with washer method: comparison with the disk method, 63;
known cross sections parallel to x-axis, 56; of solids about noncoordinate axes, 82-85; about the x-axis,
with known cross sections perpendicular to x-axis, 61; about the y-axis, 62
52-53. See also disk method; shell method; washer
method Zeno’s Dichotomy Paradox, 2-4, 5nl, 88, 95, 98, 104
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