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1

Nothing in Biology Makes 
Sense . . .  Anymore

Evolutionary biologists have described many remarkable adaptations, but few 
as curious as the capacity of woodrats from the Mojave Desert in California 
to feed on creosote bushes.1 The bushes themselves are impressive, being able 
to survive for years without  water and to flourish by coating themselves with 
a highly toxic resin that deters almost all herbivores.2 Despite this, Mojave 
Desert woodrats feed almost exclusively on creosote, maintaining healthy 
bodies while consuming quantities of toxin sufficient to kill most other ani-
mals.3 This unusual fare allows the woodrats to exploit a novel dietary niche, 
largely  free from competition (figure 1).

What makes the woodrats particularly fascinating is that their ability to 
 process the creosote relies completely on the detoxifying capability of the 
bacteria within their guts.4 When researchers treated the woodrats with anti-
biotics that wiped out that bacterial community, the woodrats dramatically 
lost body mass and began to deteriorate on the creosote diet.5 Conversely, 
when woodrats that  don’t consume creosote bushes, and would normally be 
poisoned by it,  were inoculated with the microbiota of Mojave woodrats, they 
thrived on creosote.6  Here the microbiome— the collective noun for the array 
of tiny symbionts, including bacteria, archaea, protists, fungi, and viruses, that 
reside in organisms’ bodies—is passed down through the generations by be-
havioral means, with each cohort acquiring the detoxifying microbes by con-
suming soil and feces. Experiments found that feeding feces to creosote- naïve 
woodrats is effective at transmitting the detoxifying bacteria.7 Mojave wood-
rats have exploited this dietary niche for hundreds of years through the stable 
inheritance of bacteria acquired from the external environment.8
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figure 1. Mojave Desert woodrats feed on a toxic diet, thanks to bacteria that 
they reliably inherit by consuming soil and feces in their environment.

Cross to the other side of Amer i ca, and just off the east coast a population 
of humpback  whales in the Gulf of Maine has also opened up a new dietary 
niche.  These  whales prey on sand lance—an eel- shaped fish that forms large 
shoals— through an innovative method known as “lobtail feeding”.9 This in-
volves a  whale thumping the  water surface with its tail, which shocks the fish 
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below into tightening their school, and then the  whale spirals around the 
school releasing air from its blowhole, which traps the fish in a net of  bubbles, 
before it fi nally lunges up from beneath with its mouth gaping to feast on cor-
ralled fish.10 The be hav ior was first observed in a single individual in 1980 and 
has subsequently spread to many hundreds of  whales in the region. Detailed 
recording and analy sis of the diffusion of this be hav ior has established that 
lobtail feeding is a learned trait, which individuals acquire through copying, 
and which has spread among close associates in a social network.11 Young 
 whales acquire this highly productive feeding method from older individuals, 
with the skill passed from one generation to the next as a cultural tradition.

Moving away from the wilds to an Emory University laboratory, researchers 
in 2014  were astonished by some laboratory mice that mysteriously exhibited 
a fear experimenters had trained into their grandparents.12 That is not sup-
posed to happen! For over a  century, generations of students have been taught 
that the inheritance of acquired characteristics is a biological impossibility.13 
A mouse should not be born with knowledge that its ancestors learned during 
their lifetimes as this clearly violates Weismann’s barrier. The “barrier,” pro-
posed in 1892 by German evolutionary biologist August Weismann, captures 
the hypothesis that the cell lineages that produce sperm and eggs are separated 
from the rest of the body early in development, and hence that  whatever hap-
pens to the body cannot be inherited. Famously, Weismann severed the tails 
of mice, observed no reduction in tail length among their offspring, and de-
clared Lamarckian inheritance refuted.14

Of course, Weismann was unaware of epige ne tic inheritance. The DNA in 
the nuclei of cells is not naked but clothed in a variety of chemically attached 
molecules that affect the level of expression of nearby genes.15 “Methylation” 
refers to the addition of a methyl chemical group to one of the DNA nucleo-
tide bases.16 When methyl groups are added to DNA they can suppress the 
activity of a gene, while their removal can lead to that gene’s expression. The 
Emory University researchers showed that when mice  were conditioned to 
be frightened of a par tic u lar smell, their offspring, and their offspring’s off-
spring, retained this fear. That is  because the odor entrainment had modified 
the Olfr151 gene, which encodes the olfactory receptor specific for this odor, 
by removing a methyl group from it. Remarkably, this demethylation of the 
Olfr151 gene was also seen in the sperm of  these mice, and indeed their off-
spring’s sperm.17 The inheritance of such methylation patterns across genera-
tions is now well established in plants and some animals.18 What is still unclear 
is how events in the mouse’s central  nervous system triggered demethylation 
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in their sperm, but one empirically demonstrated pathway involves the 
 transfer of noncoding RNAs to the sex cells,19 which has also been found to 
underlie the epige ne tic inheritance of learned information in nematode 
worms.20

 These three examples, in diff er ent ways, defy the classical view of heredity 
as mediated solely by gene transmission, and challenge our understanding of 
how evolution works. Generations of desert woodrats are reliant on other species’ 
genes to exploit a novel foraging niche, and their trait of feeding on a toxic food 
is stable only  because of resources reliably extracted from their ecological en-
vironment. The ability to exploit detoxifying enzymes confers a clear fitness 
advantage, and in the case of the woodrats  there is evidence that natu ral se lection 
has acted on this heritable phenotypic variation.21 The example is so dramatic 
that it may come as a surprise that  these rodents are broadly representative of 
many organisms that are equally dependent on their live-in microorganisms 
to carry out essential functions.22 Corals rely on microalgae for energy produc-
tion, legumes require bacteria for nitrogen fixation, and cows  couldn’t eat grass 
without the microbial community inside their rumen.23 Symbiotic microor-
ganisms can be passed from one generation to the next along diverse nonge ne tic 
pathways, including inside eggs, seeds, and embryos and through suckling, 
eating  others’ feces, or consuming regurgitated foods.24 Even when symbionts 
are acquired from the external environment rather than from parents, they can 
still be surprisingly reliably transmitted, as the woodrat example illustrates.25 
Transgenerational microbial transmission is now recognized as a common, 
perhaps universal, component of animal inheritance.26

The humpback  whales are passing foraging information that appears to en-
hance their biological fitness across the generations through cultural transmis-
sion, in de pen dently of inherited ge ne tic variation. Biologists have long been 
aware of cultural inheritance, but have tended to regard it as a special case, 
germane only to  humans. This belief is no longer tenable. In the last fifty years, 
vast evidence for “culture” has emerged through scientific investigations of a 
broad array of animals, both in their natu ral environments and in the experi-
mental laboratory. Numerous species transmit learned knowledge through 
imitation and other forms of social learning, including dietary information, 
feeding techniques, predator recognition and avoidance methods, songs and 
calls, learned migratory pathways, and mate and breeding- site choices.27  There 
are now— quite literally— thousands of scientific reports of learned be hav iors 
spreading through natu ral animal populations by  these means.28 Familiar ex-
amples include common chimpanzees fishing for termites with sticks, birds 
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drinking from milk  bottles, and birds and  whales transmitting songs.29 Animal 
culture does more than contribute to inheritance, however. It allows groups 
of animals to adjust their be hav ior to match their environment. In the case of 
the humpback  whales, the “adaptations” needed to hunt locally abundant prey 
did not arise through ge ne tic mutation and natu ral se lection, but via behav-
ioral innovations spread through cultural transmission. Recent analy sis sug-
gests that lobtail feeding is a local refinement of the more widespread  bubble 
net feeding, which is similar to lobtail feeding but  doesn’t involve the initial 
tail slap that stuns the fish. Intriguingly, other humpback populations in the 
northeast Pacific have refined  bubble net feeding in a diff er ent way, creating a 
new cooperative strategy where groups of  whales coordinate their  bubble net 
foraging. In this North Pacific culture, individual  whales take on distinctive 
roles, with some  whales releasing  bubbles,  others making feeding calls, and all 
or most members of the group feeding (figure 2).30 In some species— humans 
included— culture has become the principal means by which the animal 
adapts to its environment, giving rise to a new form of adaptability.31 What is 
more, the spread of cultural knowledge is driving ge ne tic evolution.32 For in-
stance, killer  whale populations have socially learned specializations for par-
tic u lar prey (e.g., fish, dolphins, pinnipeds), and  these specializations favored 
population- specific morphologies and digestive physiologies, known as eco-
types, among which reproductively isolated groups emerged.33  Here, culturally 
learned dietary traditions have initiated and modified the natu ral se lection of 
genes associated with morphologies and physiologies that match the  whales’ 
learned habits, imposing a direction on ge ne tic evolution.34

And the frightened mice represent a “ripping up of the rule books” concern-
ing how biology works and what can and cannot be inherited, as the field of 
epigenet ics reveals hitherto inconceivable mechanisms and phenomena that 
defy time- honored understanding. Epigenet ics is a rapidly developing field of 
science, and a bewildering variety of mechanisms for the regulation of gene 
expression have been identified.35 While historically it was widely accepted 
that Weismann’s barrier prevented environmentally induced changes from 
altering the germline (i.e., eggs and sperm), in recent years the immutability 
of Weismann’s barrier has been undermined by experimental research dem-
onstrating that epige ne tic changes can be inherited in a wide variety of organ-
isms.36  There is clear evidence that epige ne tic changes can strongly affect the 
fitness of individuals, can be subject to natu ral se lection, and can facilitate 
ge ne tic adaptation. Experiments in yeast, for instance, show that the natu ral 
se lection of epige ne tic changes can help populations to acquire a ge ne tic 
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 resistance to toxins, and when experimentally deprived of this capability, 
populations often go extinct.37

Neither inherited microbiomes nor animal cultures nor epige ne tic inheri-
tance is rare in nature, as this book  will make clear. A veritable cornucopia of 
resources other than genes are now known to be passed down the generations, 
including components of both egg and sperm, hormones, symbionts, epige-
ne tic changes, antibodies, ecological resources, and learned knowledge.38 For 
a  century, “soft inheritance”— the view that heredity can be changed by life-
time experiences— was regarded as disreputable.39 The doyen of evolutionary 
biology, Ernst Mayr, asserted that “the greatest contribution of the young sci-
ence of ge ne tics [was] to show that soft inheritance does not exist.”40  Today, 
soft inheritance seems to be everywhere.

Nor is it solely biologists’ understanding of heredity that is being chal-
lenged. In recent years, science has revealed that  there is so much exchange of 
ge ne tic material across lineages that Darwin’s “tree of life” now resembles a 
tangled network.41 What we thought  were individual organisms have turned 
out to be communities, which is just one of several reasons why the developing 
organism can no longer be parsed tidily into separate “genotype” and “pheno-
type” components, with the former exerting exclusive control over the latter.42 
The familiar suggestion that genes contain “instructions” is being reassessed, 
as the information to build bodies is distributed across numerous inherited 
resources and reconstructed during development.43 Novel insights and find-
ings like the above are pouring out of biological laboratories at a rate that 
leaves many researchers reeling. The challenge is to make sense of it all!

The  founders of the modern evolutionary synthesis laid  great emphasis on the 
distinction between the lifetime of an individual organism from conception 
to death (its “development”) and the biological history of the species (its “evo-
lution”).44 Rightly or wrongly, the view became prevalent that the pro cesses 
and mechanisms under lying evolution could safely be studied without knowl-
edge of the pro cesses and mechanisms responsible for development.45 For 
almost a  century developmental biology and evolutionary biology  were 
mostly separate fields.46 Repeated attempts  were made to bring  these disci-
plines back together, but never with more than partial success.47

Now,  after  decades of waxing and waning, enthusiasm for developmental 
insights is waxing again in the evolutionary community. Invigorated by ad-
vances in experimental and theoretical methods, science is shedding new light 
on the developmental origins of phenotypic variation, evolutionary innovation, 
adaptation, speciation, and macroevolutionary patterns. This is not without 
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controversy. The evidence that the mechanisms of cellular, molecular, and de-
velopmental biology might facilitate the generation, se lection, and inheritance 
of adaptive phenotypic variation has been accompanied by a lively debate.48 
The authors of this book have, in vari ous ways, been active participants in this 
discussion, an experience that has taught us much, and honed our perspective. 
We are convinced that the differences of opinion extend beyond the issue of 
how best to incorporate new biological knowledge, and also relate to how the 
history of the field is understood, as well as to philosophical issues concerning 
the scientific  process.49 Part of the controversy also arises from assumptions, 
often unstated, about how developmental pro cesses generate phenotypic 
variation. That the pioneers of our perspective— notably Conrad Waddington, 
Richard Lewontin, and Mary Jane West- Eberhard— each emphasized in their 
writings that developmental pro cesses are constructive, open- ended, and con-
tingent, and above all not “genet ically programmed,” we suggest is no coinci-
dence. Accordingly, we devote considerable attention to explaining key aspects 
of developmental biology, while trying to avoid too much technical detail.

Much of the debate over the role that developmental pro cesses play in evo-
lution relates to how researchers regard the subpro cesses that underly natu ral 
se lection. Harvard evolutionary biologist Richard Lewontin identified three 
such subpro cesses: (1)  there must be variation in characteristics among individu-
als in a population (phenotypic variation), (2) some variants must leave more 
descendants than  others (differential fitness), and (3) offspring must resemble 
their parents more than they resemble unrelated individuals (heredity).50 
However, the historically dominant view that natu ral se lection is the sole cause 
of adaptive evolution is tied to the additional, less- apparent assumption that 
the three subpro cesses are effectively autonomous: they feed into one another, 
but do not modify one another’s operation.51

Cases like the desert woodrats or the killer  whales raise the possibility that 
developmental mechanisms do more than simply generate variation: they also 
modify the pro cesses that contribute to differential fitness (e.g., when be hav ior 
learned from nonrelatives affects survival) and to heredity (e.g., when symbi-
otic bacteria are passed on to descendants via the ecological environment). In 
such instances, the three subpro cesses under lying evolution by natu ral se-
lection become intertwined, and understanding natu ral se lection becomes 
more challenging. Current controversies concerning extrage ne tic inheritance 
(a.k.a. nonge ne tic inheritance),52  whether developmental mechanisms con-
strain or facilitate evolution (i.e., developmental bias),  whether developmental 
responses to environmental change can direct ge ne tic change (i.e., plasticity- 
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led evolution), and how the activities and outputs of organisms modify se-
lection (i.e., niche construction), relate to interactions between Lewontin’s 
subpro cesses. An exciting implication of the aforementioned new data is that 
the evolutionary  process itself evolves, as the characteristics of evolving popu-
lations and their modes of inheritance influence how natu ral se lection oper-
ates. To make sense of it all, evolutionary researchers may need to reconsider 
both the structure of evolutionary theory and the nature of evolutionary ex-
planations.  These themes are the focus of this book.

In 1973, the influential evolutionary biologist Theodosius Dobzhansky 
boldly asserted that “nothing in biology makes sense except in the light of 
evolution.”53 Nearly fifty years  later, leading evolutionary biologists worry that 
“nothing in biology makes sense anymore” and accept the “monumental chal-
lenge of making sense of a rapidly growing menagerie of discoveries that vio-
late deeply ingrained ideas.”54  Here, by contrast, we argue that  there is a natu ral 
order, a richness, and even an elegance to adaptive evolution implied by the 
“new biology”— but its comprehension requires thinking more broadly about 
evolution. Two fields of biology that historically became separated need to be 
brought back together. Dobzhansky’s famous assertion can be rescued if paired 
with the reciprocal dictum: nothing in evolution makes sense except in the light 
of development.55
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