
CONTENTS

Preface ix

Acknowledgments xiii

1 Mathematical and Biological Introduction 1

1.1 Interpreting Population-Genetic Statistics 1

1.2 A Note about Assumed Background 3

1.3 Definitions 3

1.4 Standard Inequalities 7

1.5 Genetic Diversity and Genetic Homogeneity 8

1.6 Genetic Differentiation and Genetic Similarity 13

1.7 Do Statistics “Depend” on Allele Frequencies? 18

1.8 Exercises 19

2 Homozygosity and the Most Frequent Allele 21

2.1 Arbitrarily Many Distinct Alleles 22

2.2 A Fixed Value I for the Number of Distinct Alleles 33

2.3 Example from Human Populations 40

2.4 Implications 43

2.5 Exercises 46

3 Variations on Homozygosity: JA, JB, and JC 48

3.1 Bounds on JC/JB in Terms of JA 51

3.2 Example from Drosophila 58

3.3 Implications 60

3.4 Exercises 61

4 The ith Most Frequent Allele 62

4.1 Lower Bound on J in Terms of pi 63

4.2 Upper Bound on J in Terms of pi 66

4.3 Lower and Upper Bounds on pi in Terms of J 75

vii



viii contents

4.4 Example from Human Populations 85

4.5 Implications 86

4.6 Exercises 90

5 α-homozygosity 92

5.1 Convexity Inequalities 93

5.2 Arbitrarily Many Distinct Alleles 94

5.3 A Fixed Value I for the Number of Distinct Alleles 99

5.4 Example from Human Populations 103

5.5 Implications 105

5.6 Exercises 106

6 Estimated Homozygosity 108

6.1 Samples 109

6.2 Number of Distinct Alleles Constrained by Sample Size 111

6.3 A Fixed Value I for the Number of Distinct Alleles 117

6.4 Example from Human Populations 119

6.5 Implications 120

6.6 Exercises 122

7 Conclusions 124

7.1 Summary of Mathematical Results 124

7.2 Summary of Mathematical Methods 126

7.3 Benefits of the Mathematical Bounds Approach 128

7.4 The Continuing Importance of Summary Statistics 137

7.5 Strategies for Improved Use of Summary Statistics 138

Notation 141

Solutions to Exercises 145

Bibliography 155

Author Index 163

Subject Index 167



1
Mathematical and Biological

Introduction

1.1 Interpreting Population-Genetic Statistics

Patterns of genetic variation in populations reflect the outcome of the evolutionary
processes that have shaped the populations in the past. Many types of evolution-
ary phenomena, including the classic effects of gene flow, mutation, natural selection,
and changes in population size, have distinctive consequences for patterns of genetic
variation. Much of the field of population genetics—the branch of evolutionary biol-
ogy concerned with genetic variation in populations—involves the measurement of
genetic variation, applying the long tradition of population-genetic theory to understand
how evolutionary mechanisms generate patterns in genetic variation, and connecting
observations of genetic variation to their consequences for the underlying biological
phenomena.

This enterprisenecessarily relies on statistics—that is, functions computed fromdata—
to evaluate the features of genetic variation. In a schematic paradigm for population-
genetic data analysis, an investigator first begins with an interest in empirical biological
phenomena in population genetics and related fields (Figure 1.1). The investigator col-
lects measurements of variable genetic types in populations, with the aim of understand-
ing these phenomena. Summary statistics—functions that provide summaries of complex
data sets—are then applied to the genetic variation data. To interpret the values of the
summary statistics, investigators can draw on theoretical modeling, simulations of evolu-
tionarymodels, andpast empirical studies that connect particular patterns in the summary
statistics to aspects of the biological phenomena of interest.

Our focus here is on another important factor that influences the interpretation of
population-genetics summary statistics: the mathematical properties of the summary
statistics themselves.Oneof themost important classes of statistics utilized in population-
genetic studies is the set of statistics that are computed from allele frequencies, quantities
that represent the frequencies with which particular genetic types occur in a population.
Allele frequencies and the statistics that employ them are among the oldest, most funda-
mental, and most widely applied quantities in population genetics. Even as population-
genetic data sets have grown dramatically in size in the era of genome sequencing, and
even as statistical methods have advanced in sophistication and computational complex-
ity, summary statistics have continued to provide the foundation for population-genetic
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figure 1.1. A conceptual model for population genetics, emphasizing the role of the math-
ematical properties of population-genetic statistics in inference about population-genetic
phenomena from data on genetic variation.

data analysis, serving as a guide to developing intuition about the biological phenomena
that underlie the data.

Despite their ubiquity throughout the long history of the field, simple summary statis-
tics can have surprising mathematical properties, properties that can have a substantial
impact on theway inwhich the statistics are interpreted.The allele frequencies at a genetic
site represent a collection of nonnegative numbers that sum to 1. This simple fact gener-
ates endless consequences for the statistics commonly used for analyzing genetic variation
in populations, and unexpected phenomena observed in patterns of genetic variation can
often be traced to underlying mathematical features of collections of nonnegative num-
bers whose sum is 1. In particular, statistics can have upper and lower bounds that depend
on aspects of the allele frequencies or on close mathematical relationships to other such
statistics.

Aswewill see, the insights providedby a carefulmathematical treatment of population-
genetic statistics enable us to explain a number of otherwise surprising observations that
have beenmade from population-genetic data.Wewill examine how counterintuitive fea-
tures of population-genetic summary statistics can be produced by the often-unexpected
or underappreciated phenomenon that the mathematical upper and lower bounds on the
statistics can vary with aspects of the allele frequencies. To reduce the potential for mis-
interpretations, we will study the bounds on a variety of population-genetic statistics in
relation to other such statistics, with a focus on measures of genetic homogeneity and
diversity built from the concept of homozygosity. These bounds can facilitate sensible
biological understanding, and in some instances they can suggest useful normalized statis-
tics. We examine how the mathematical bounds on population-genetic statistics provide
insight into potentially counterintuitive phenomena observed in such contexts as testing
for deviation from population-genetic null models and uncovering signatures of natural
selection. The aim is to thoroughly investigate how statistics used in population genet-
ics depend on allele frequencies, and to provide mathematics that informs the use and
interpretation of these statistics.
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figure 1.2. Dependencies among the chapters in the book.

1.2 A Note about Assumed Background

The book lies at an intersection ofmathematics, population genetics, and statistics. As the
motivating examples and interpretations of themathematical results lie in the field of pop-
ulation genetics, the typical reader is expected to have some familiarity with population-
genetic concepts and applications, at the level of textbooks in the field. Biologically
oriented readers are expected to be aware of typical empirical uses of population-genetic
statistics, and of their conventional interpretations. For biological readers interested
mostly in the implicationsof themathematical results, themathematics is at an elementary
level, primarily utilizing calculus and elementary probability, and only light knowledge of
statistics is required.

At the same time, though the motivation derives from biology, many of the results in
this book can be stated purely as mathematical results concerning nonnegative numbers
that sum to 1—without reference to biology at all. Population-genetic statistics are often
analogous or even mathematically identical to corresponding quantities in other areas,
including ecology, economics, and the field of statisticsmore generally. Thus, a number of
the mathematical results about population-genetic statistics can be viewed as providing
information about these other quantities as well. Although the language of population
genetics is used to contextualize the mathematical results, care is taken to separate results
that are purely mathematical from their consequences in biology. The work thus offers a
basis for readers from other fields that employ the same statistics to understand andmake
use of the results without requiring extensive knowledge of the biological context.

A diagram of the dependencies among the chapters of the book appears in Figure 1.2.
For introductions to population genetics with a focus primarily on biological phenom-
ena, readers are encouraged to consult [29], [52], [57], [60], [64], and [120]. For more
emphasis on statistical methods, see [12], [92], and [179].

1.3 Definitions

We focus on a genetic locus or marker, a location in a genome at which different genetic
types can be measured. These distinct types are termed alleles or allelic types. All that is
required of a locus is that it be a genomic region that in principle is assayable in different
individuals, and that the result of the assay be classifiable into one of a number of allelic
types. The terms locus andmarker are used interchangeably.

We can treat as a locus a single genomic site or base pair that can have type A in some
genomes and type C, G, or T in others (Figure 1.3A). Alternatively, a locus can be a
contiguous piece of DNA sequence consisting of many base pairs (Figure 1.3B). We also
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(A) (B) (C)
ACGCT
ACACT
ACTCT

TACGC
CACGC
TACAT

TCAGCGATAGATAGATAGGCT
TCAGCGATAGATAGATAGATAGGCT
TCAGCGATAGATAGATAGATAGATAGGCT

figure 1.3. Three loci, each with three allelic types illustrated. In each locus, allelic types
are described by a distinct aspect of the DNA sequence. (A) A locus defined by a single
genomic site—the third one in the sequence. (B) A locus defined by a contiguous piece of
DNA sequence five base pairs long. Distinct sequences over the entire region are distinct
allelic types, or haplotypes. (C) A locus defined by a DNA sequence region in which distinct
sequences vary in their number of copies of a short repeated segment, GATA. Such a locus is
amicrosatellite or short tandem repeat locus.

consider loci termedmicrosatellites and characterized by short tandem repeats—regions in
which individuals differ in their number of copies of a short repeated segment (Figure
1.3C). Such loci can be regarded as examples of insertion or deletion loci, in which allelic
types at a locus entail differences in presence and absence of specified pieces of DNA.

The number of distinct alleles at a locus in a population is denoted by I; except where
otherwise specified, we treat I as finite, but possibly very large. In a haploid species, each
individual possesses one copy of each genetic locus, so that only one observation of the
locus can be obtained from an individual; this observation has allelic type in the set
{1, 2, . . . , I}. Individuals in a diploid species each have two copies, so that two observa-
tions can be obtained from an individual. A polyploid species has more than two copies of
a locus; the ploidy of such a species specifies the number of copies.

The genotype of a haploid individual at a locus is the single allelic type observed at
the locus in the individual. For a diploid individual, the genotype is the pair of allelic
types, not considering their order, except where otherwise noted. Thus, for alleles i, jwith
i �= j, genotypes ij and ji have the same meaning. If a diploid genotype has two identical
allelic types, the individual is a homozygote. Otherwise, the individual is a heterozygote.
The (unordered) genotype at a locus of a polyploid individual of ploidy α is the set of all
α allelic types it has at the locus.

Note that an observation of the allelic type at a locus is, like the type itself, known as an
allele. We will often avoid this abuse of terminology by distinguishing between the allelic
types or distinct alleles at a locus and observed or sampled alleles; for example, the allelic
types at a locusmight beA,B, andC, and an individualmight be described as having allele
A. The meaning of allele as a type or as an observation will be clear from the context.

In considering a locus that consists of multiple neighboring sites (Figure 1.3B), an
allelic type in a haploid genome is termed a haplotype. A haplotype is simply a special
case of a genotype for loci consisting of multiple sites; an observation atmultiple sites can
be classified as having one of a number of distinct haplotypes from the set {1, 2, . . . , I}.
Alternatively, haplotypes can be classified by the vector of allelic types present across all
the sites in the locus. At a locus that consists of multiple sites, an individual with a diploid
genome possesses two haplotypes, one for each of the two copies of the genome.

The term haplotype is subject to the same abuse of terminology as allele, referring both
to an observation at a locus defined by multiple sites in a genomic region and to the clas-
sification of that observation. We can use haplotypic types or distinct haplotypes for the



mathemat ical and b iological introduct ion 5

(1,0,0)

(0,1,0)

(0,0,1)

figure 1.4. The unit simplex�2, representing the possible allele frequency vectors for a
locus with I = 3 distinct alleles.

classification and observed or sampled haplotypes for observations. As a haplotypic type is
a special case of an allelic type for a certain class of loci and an observed haplotype is a
special case of an observed allele, in mathematical results about allelic types or observed
alleles, it is understood that they also apply to haplotypic types or observed haplotypes.

In a population, the probability that a random observation of a locus has a particular
allelic type is the allele frequency. The sum across all allelic types at a locus of the allele
frequencies in a population is 1. In other words, denoting by pi the frequency of allelic
type i, each pi lies in [0, 1], and

I∑
i=1

pi = 1. (1.1)

We refer to the vector of allele frequencies p at a locus in a population as an allele fre-
quency distribution or allele frequency vector. We allow alleles to have zero frequency except
where otherwise stated. A locus in which one allelic type has frequency 1 and all others
have frequency 0 is said to be monomorphic, and the lone allelic type is said to be fixed
in the population. A locus for which at least two allelic types have positive frequency is
polymorphic.

For I � 1, the vector of allele frequencies at a locus is a point in the unit (I − 1)-simplex,
�I−1, defined by

�I−1 =
{
(p1, p2, . . . , pI) ∈ R

I
∣∣∣∣

I∑
i=1

pi = 1 and pi � 0 for all i
}
. (1.2)

The (I − 1)-simplex �I−1 represents the set of possible allele frequency vectors with I
distinct alleles (Figure 1.4). The vertex of the simplex at which pi = 1 and pj = 0 for j �= i
and allele i is fixed is denoted by ei.

At this point it is helpful to clarify that in population-genetic studies, a “population”
generally refers to a group of organisms that share a feature of interest to the investiga-
tor, such as a shared ancestry or shared habitation of a geographic location. Here, we are
considering allele frequencies of an extant population in the present; the allele frequen-
cies represent a snapshot of genetic variation in the present, and our mathematical results
do not consider the genealogy that underlies them. Note that the field of statistics has a
different meaning for “population” as a space of possible observations from which some
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sample of observations is drawn. Our use of the term “population” follows the usage in
population genetics; conveniently, however, the biological populations of interest here are
also statistical populations. Except where otherwise specified, the allele frequencies are
treated as parametric—the true frequencies in the biological population—rather than as
estimates obtained from data. As parametric frequencies, they describe a statistical pop-
ulation identified with the biological population. This choice places our analysis in the
realm of mathematics rather than in a context of statistical sampling. Alternatively, one
can view the allele frequencies as estimates obtained in samples from an infinite (biolog-
ical) population. In this context, the strong law of large numbers [153] allows us to view
sample allele frequencies estimated in the infinite (biological) population as parametric
allele frequencies.

We define by � the set of all possible allele frequency distributions, � = ∪∞
I=1�I−1.

The set� represents the set of allele frequency distributions when the number of distinct
alleles, I, is left unspecified. As loci represented by ei are monomorphic, we will also have
occasion to consider�∗ = � \ {e1, e2, . . .}, the set of allele frequency distributions rep-
resenting polymorphic loci, and�∗

I−1 = �I−1 \ {e1, e2, . . . eI}, the set of allele frequency
distributions representing polymorphic loci with at most I distinct alleles.

For a population of diploids, each distinct genotype ij has a genotype frequency, rep-
resenting the probability that a randomly drawn individual in the population has the
genotype. The genotype frequencies at a locus in a diploid population are said to satisfy
Hardy-Weinberg proportions if (1) for each i, the probability that an individual has geno-
type ii is p2i , and (2) for each unordered i, j with j �= i, the probability that an individual
has genotype ij is 2pipj. If the two observations in a randomly chosen individual from
the population represent independent random draws from the allele frequency distribu-
tion at a locus, then the genotype frequencies at the locus will satisfy Hardy-Weinberg
proportions. Figure 1.5 illustrates a geometric interpretation of Hardy-Weinberg propor-
tions. Note that the termHardy-Weinberg proportions describes the equations satisfied by
genotype probabilities. The related termHardy-Weinberg equilibrium refers to the equilib-
rium point of a dynamical system; at that equilibrium, Hardy-Weinberg proportions are
satisfied.

Each statistic thatwe consider canbewritten as a functionof the allele frequency vector
in one population, or as a function of the allele frequency vectors in two or more popula-
tions. For example, for a single population with I distinct alleles at a locus, we can define
the frequency of the most frequent allele as a functionM(p1, p2, . . . , pI),

M(p1, p2, . . . , pI) = max
i∈{1,2,...,I} pi. (1.3)

We generally drop the argument (p1, p2, . . . , pI) for this and other statistics, simply
writingM for the frequency of themost frequent allele. Considering all possible allele fre-
quency vectors p∈ �I−1,M lies in (0, 1]. Like all allele frequencies,M is bounded above
by 1. Also, because the sum of the allele frequencies is 1, at least one allele frequencymust
be positive—in particular, the frequency of the most frequent allele. Note thatM is well
defined not only on�I−1, but also on�.

We focus on a detailed study of statistics of genetic diversity and genetic homogeneity; for
completeness, we also define statistics of genetic differentiation and genetic similarity, as the
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figure 1.5. Hardy-Weinberg proportions for a locus with allele frequencies p1 = 0.5, p2 =
0.3, and p3 = 0.2. Separately on the x- and y-axes, the unit interval is partitioned into three
components, representing the frequencies of the three distinct alleles. In each area within
the unit square is an ordered genotype, representing a pair of alleles drawn with replacement
from the allele frequency distribution. Under Hardy-Weinberg proportions, the frequency of
an ordered diploid genotype is the product of the frequencies of its constituent alleles.

general issues of mathematical bounds on population-genetic statistics have often been
raised in the context of such statistics, to which we return in Chapter 7. For each statis-
tic, we use the same notation throughout the book, sometimes slightly abusing notation
by employing the associated symbol both for the function and for the value of the func-
tion computed fromaparticular allele frequency distribution;whether the function or the
value is meant will be clear from the context. Tomaintain consistent notation throughout
the book, we will denote some statistics by letters that differ from those often used in the
literature.

We first need a series of mathematical results.

1.4 Standard Inequalities

Our analyses of upper and lower bounds on population-genetic statistics repeatedly
employ a number of mathematical results. We state a few standard inequalities. Proofs
and additional information about these inequalities can be found in [17], [25], [104],
and [160].

1.4.1 Cauchy-Schwarz Inequality

Theorem 1.1: Consider two sequences of nonnegative real numbers, {pi}∞i=1 and{qi}∞i=1. Then ( ∞∑
i=1

p2i

)( ∞∑
i=1

q2i

)
�

( ∞∑
i=1

piqi
)2

. (1.4)

Equality holds in eq. 1.4 if and only if for all i, pi = λqi for a constant λ.

TheCauchy-Schwarz inequality states that the square of the sumof element-wise prod-
ucts of two sequences is bounded above by the product of the separate sums of squares of
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the two sequences.Note that by setting all except the first I elements of {pi}∞i=1 and {qi}∞i=1
to 0, the inequality holds for sequences of any finite length I.

We will have multiple occasions to use the following corollary of the Cauchy-Schwarz
inequality.

Corollary 1.2: Consider a sequence of nonnegative real numbers with length I,
{pi}Ii=1. Define C= ∑I

i=1 pi. Then
I∑

i=1
p2i � C2

I
, (1.5)

with equality if and only if p1 = p2 = . . . = pI =C/I.

Proof: Consider sequences {pi}Ii=1 and (1, 1, . . . , 1), both of length I. By the
Cauchy-Schwarz inequality, (

∑I
i=1 p

2
i )(

∑I
i=1 1) � (

∑I
i=1 pi)

2, with equality if
and only if pi = λ for a constant λ. Because

∑I
i=1 pi =C, equality holds if and only

if pi =C/I for all i.

1.4.2 Rearrangement Inequality

Theorem1.3: Consider two sequences of real numbers, {pi}Ii=1 and {qi}Ii=1, ordered
such that p1 � p2 � . . . � pI and q1 � q2 � . . . � qI . Suppose σ is a permutation of
(1, 2, . . . , I), mapping i to σ(i) for i= 1, 2, . . . , I. Then

I∑
i=1

piqi �
I∑

i=1
piqσ(i) �

I∑
i=1

piqI−i+1.

The rearrangement inequality states that the sum of element-wise products of two
sequences, pairing each entry in one of the sequences with an entry from the other
sequence, and allowing one of the sequences to be permuted, is maximal when the two
sequences are placed in the same order, descending from the greatest value to the smallest.
The sum is minimal when one of the sequences is reversed. Although our focus on statis-
tics in a single populationmeans thatwewill notmake use of the rearrangement inequality
here, it is included as it is useful for consideration of properties of statistics involving pairs
of populations.

1.5 Genetic Diversity and Genetic Homogeneity

Genetic diversity statistics, treated as functions of the allele frequencies of a locus in a sin-
gle population, measure the level of variability of the locus in the population. A sensible
diversity statistic assigns the minimal diversity score to a locus that is not variable, and it
has higher values when the locus has multiple allelic types with nontrivial frequencies. A
statistic of genetic homogeneity can be easily obtained from a genetic diversity statistic
by transforming the values for the diversity statistic so that the largest value occurs for a
monomorphic locus and the smallest values occur formultiallelic loci withmany nontriv-
ial allele frequencies. It is often convenient to obtain results on statistics of homogeneity,
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figure 1.6. Homozygosity for a locus with allele frequencies p1 = 0.5, p2 = 0.3, and
p3 = 0.2. Separately on the x- and y-axes, the unit interval is partitioned into three compo-
nents, representing the frequencies of the three distinct alleles. As in Figure 1.5, each area
within the square shows an ordered diploid genotype. The homozygosity, represented by the
shaded areas, is J = 0.52 + 0.32 + 0.22 = 0.38.

and to then perform a transformation in order to obtain results concerning diversity statis-
tics; with this understanding, we will primarily report results in terms of homogeneity
statistics.

1.5.1 Heterozygosity and Homozygosity

The homozygosity of a locus with allele frequencies {pi}Ii=1 is a statistic of genetic homo-
geneity, defined as

J =
I∑

i=1
p2i . (1.6)

Here, we drop the implied argument (p1, p2, . . . , pI) for J. The probability that two inde-
pendent samples drawn from the population produce allelic type i is p2i . Hence, consid-
ering all allelic types, the homozygosity represents the probability that two independent
draws from the population produce the same allelic type.

Considering all possible allele frequency distributions in the simplex �I−1, homozy-
gosity J lies in (0, 1]. As a sum of squares, with at least one positive term in the sum
(M2), homozygosity of a locus in�I−1 is positive and bounded below by a positive value.
Indeed, we can use Corollary 1.2 to provide the lower bound on J over the set of allele fre-
quency distributions �I−1 (Exercise 1.1). Figure 1.6 provides a geometric visualization
of homozygosity.

A homozygosity of 1 is achieved if pi = 1 for some i, and pj = 0 for all j �= i. In fact, J = 1
if and only if a locus is monomorphic. To obtain this result, note that by eq. 1.1,

J =
( I∑

i=1
pi

)2
− 2

I−1∑
i=1

I∑
j=i+1

pipj

= 1− 2
I−1∑
i=1

I∑
j=i+1

pipj. (1.7)
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figure 1.7. Heterozygosity for two loci, illustrating a smaller heterozygosity (A) and a
larger heterozygosity (B). Separately on the x- and y-axes, the unit interval is partitioned
into components representing the frequencies of the different alleles. The heterozygosi-
ties, represented by shaded areas are (A)H= 1− (0.52 + 0.32 + 0.22) = 0.62 and (B)
H= 1− (0.32 + 0.252 + 0.22 + 0.152 + 0.12) = 0.775. The locus in (B) has more alleles
than the locus in (A), and its allele frequencies are more similar to each other than those in
(A); thus, it is sensible to view its allele frequency distribution as “more diverse.”

Then J = 1 if and only if 2
∑I−1

i=1
∑I

j=i+1 pipj = 0, which, in turn, occurs if and only if
pi > 0 for only one value of i.

To obtain a corresponding statistic thatmeasures genetic diversity, we can consider the
heterozygosity of a locusH= 1− J, or

H= 1−
I∑

i=1
p2i . (1.8)

This quantity represents the probability that two independent draws from the population
producedistinct allelic types.HeterozygosityH lies in [0, 1). In the literature, heterozygos-
ity andhomozygosityhavebothbeendenotedbyH; hereweconsistently use J for varieties
of homozygosity andH for heterozygosities. Figure 1.7 illustrates how heterozygosity is a
sensible representation of diversity.

The interpretation of homozygosity and heterozygosity in the case of diploid organ-
isms explains the meaning of the terms. For a diploid, homozygosity is the fraction of
individuals in the population expected to have two identical copies at the locus, under
the assumption of Hardy-Weinberg proportions—that is, the fraction expected to be
homozygotes. Similarly, heterozygosity is the fraction of individuals in the population
expected to be heterozygotes. Indeed, J and H are often termed expected homozygosity
and expected heterozygosity, respectively, as distinguished from observed homozygosity and
observed heterozygosity. The distinction is important when tabulating the occurrence of
homozygotes andheterozygotes indiploid genotypes, as the fractionsof homozygotes and
heterozygotes so obtained are termed observed homozygosities and heterozygosities. The
“expected” in the terms “expected homozygosity” and “expected heterozygosity” refers to
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the expectation of the indicator randomvariables that record if a randomly drawn individ-
ual is a homozygote or a heterozygote under the assumption that two alleles are sampled
independently from an allele frequency distribution. We calculate homozygosities and
heterozygosities only fromallele frequency vectors, so that the “observed” statistics are not
considered; hence, we omit “expected” in describing homozygosity and heterozygosity.

The quantities termed homozygosity and heterozygosity in population genetics
achievedwidespread use as statistics with the increasing availability of population-genetic
data that accompanied the measurement of protein variation in the 1960s [59, 74, 99],
one of the founding papers on protein variation [74] having asked, “At what propor-
tion of his loci can we expect a diploid individual to be heterozygous?” The idea of
heterozygosity as a statistic appears in one of the most extensive data analyses of the
time [97]; and homozygosity and heterozygosity statistics are prominent in the work of
Nei [115, 116, 117, 118, 119]—who has also used the terms gene identity and gene diver-
sity to refer to homozygosity andheterozygosity, respectively—and in early statistical tests
of population-genetic models to detect unusual patterns of genetic variation [177, 178].
As measurements of the probabilities of identity and difference for pairs of alleles in
population-genetic models, the concepts of homozygosity and heterozygosity are much
older; they trace to early population-genetic theory,where theywere sometimes studied as
homozygosis and heterozygosis [185], and terms such as homozygosis, homozygosity, het-
erozygosis, and heterozygosity are common in early papers in population genetics [43].
Current uses of homozygosity and heterozygosity make use of these concepts in the con-
text of phenomena such as conservation, gene flow, hybridization, inbreeding, natural
selection, and relatedness [8].

As has sometimes been noted in the population-genetic context [177], homozygosity
and heterozygosity have appeared in a variety of other settings in which objects are clas-
sified by type and a measurement of similarity or diversity is of interest. The Herfindahl-
Hirschman index in economics [67, 71, 72] is equivalent to homozygosity, except that pi
is interpreted as the market share of firm i, expressed as a proportion of the total size of
themarket. Simpson’s index in ecology [155] is also equivalent to homozygosity; pi repre-
sents the fraction of a collection of individuals that originate from species i, and Simpson’s
index is the probability that two individuals drawn with replacement from the collection
are taken from the same species. The Bice-Boxerman index of concentration of health
care in health services research [20] is a homozygosity statistic. Quantities equivalent to
heterozygosity have appeared associated with the names Gini or Gini-Simpson, Gibbs-
Martin [51], and Blau [22], and in the probability-of-interspecific-encounter statistic in
ecology [77].

1.5.2 Extensions to Homozygosity

We also examine a variety of quantities obtained by modifications of the formula for
homozygosity. Theα-homozygosity changes the exponent towhich each allele frequency
is raised:

J(α) =
I∑

i=1
pα
i , (1.9)

where α is a constant with α > 1. The case of α = 2 is the standard 2-homozygosity.
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figure 1.8. The quantities JA, JB, and JC for a locus with allele frequencies p1 = 0.5,
p2 = 0.3, and p3 = 0.2. Separately on the x- and y-axes, the unit interval is partitioned into
three components, representing the frequencies of the three distinct alleles. The shaded
areas in the three panels represent JA, JB, and JC, respectively. (A) JA = 0.68. (B) JB = 0.38.
(C) JC = 0.13.

We often order the allele frequencies {pi}Ii=1 so that pi � pj for i< j. With this arrange-
ment, M is equivalent to p1. M can be interpreted as a statistic of genetic homogeneity,
since M= 1 for a monomorphic locus, and M has small values for a polymorphic locus
with many nonzero allele frequencies. With ordered allele frequencies, we can consider
additional modifications to homozygosity. Arrange the allele frequencies at a locus in
descending order of frequency. Define

JA = (p1 + p2)2 +
I∑

i=3
p2i , (1.10)

JB = p21 + p22 +
I∑

i=3
p2i , (1.11)

JC = p22 +
I∑

i=3
p2i . (1.12)

These statistics arise in a context in which it is of interest to modify the role of the most
frequent allele in calculating a homogeneity or diversity statistic. As defined in eq. 1.11,
JB = J. The quantity JA, which we term the 1, 2-pooled homozygosity, can be viewed as
combining the frequencies of the two most frequent alleles into a single allelic class with
frequency p1 + p2. JC, the 1-truncated homozygosity, drops the contribution of the most
frequent allele in computing homozygosity. For any allele frequency vector p∈ �I−1, the
statistics satisfy JA � JB > JC (Exercise 1.2).

Considering all allele frequency vectors, JA and JB lie in (0, 1], and JC lies in [0, 1] (Exer-
cise 1.3). Figure 1.8 provides a visualization of all three statistics. JA, JB, and JC refer to the
quantities denotedH12,H1, andH2 by Garud et al. [48].

Garud et al. [48] also examined

Z= JC
JB
, (1.13)
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representing the fractionof the homozygosity JB due tohomozygotes for alleles other than
the most frequent allele. The quantity Z lies in [0, 1).

1.6 Genetic Differentiation and Genetic Similarity

Statistics of genetic differentiation and genetic similarity are functions of the allele fre-
quency vectors in two or more populations, and they measure the level of difference
between the allele frequencies of the different populations. Differentiation statistics have
low values when the various populations have identical allele frequency vectors, and high
values when the populations have substantially different allele frequency vectors. A statis-
tic of genetic similarity can be obtained by transforming a genetic differentiation statistic
so that the largest value occurs when populations have identical allele frequency vec-
tors and the smallest value occurs when populations have substantially different allele
frequency vectors.

1.6.1 Many Populations

To examine genetic differentiation, we consider a locus in a set of K populations (some-
times viewed as “subpopulations” of a larger population).We assume that in the collection
of populations, the locus is polymorphic. Denote the frequency of allele i in popula-
tion k by pki. Each population k has an allele frequency vector pk, and the list of allele
frequency vectors in all K populations, (p1, p2, . . . , pK), lies in �I−1 × �I−1 × · · · ×
�I−1 = �K

I−1. By excluding loci that are monomorphic across the set of K populations,
we exclude the I points eK1 , e

K
2 , . . . , e

K
I in�K

I−1 in which all K allele frequency vectors pk
lie at the same vertex of the simplex.

The mean frequency of allele i across the set of populations is

p̄i = 1
K

K∑
k=1

pki. (1.14)

The homozygosity of the locus in population k is

Jk =
I∑

i=1
p2ki. (1.15)

Considering the set of K populations simultaneously, homozygosity can be computed in
two ways. The mean homozygosity across all populations is denoted by JS,

JS = 1
K

K∑
k=1

I∑
i=1

p2ki. (1.16)

The homozygosity of the population formed by pooling allK populations together into a
single group is

JT =
I∑

i=1
p̄2i =

I∑
i=1

(
1
K

K∑
k=1

pki
)2

. (1.17)
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Both JS and JT are functions of the set of allele frequency vectors (p1, p2, . . . , pK), where
pk = (pk1, pk2, . . . , pkI) is the allele frequency vector for population k. As in our descrip-
tions of statistics of genetic diversity and genetic homogeneity, we drop the implied
argument (p1, p2, . . . , pK).

Suppose that a locus is polymorphic in the set ofK populations. By definition of a poly-
morphic locus, p̄i must be positive for at least two values of i, say i= 1 and i= 2. Neither
p̄1 nor p̄2 can equal 1, as p̄i = 1 for some iwould imply that p̄j = 0 for all j �= i. Considering
all polymorphic sets of allele frequencies in�K

I−1 \ {eK1 , eK2 , . . . , eKI }, JS lies in (0, 1], and
JT lies in (0, 1) (Exercise 1.4).

Perhaps the most commonly used statistic of genetic differentiation is FST , which,
following [116, 118], can be defined as

FST = JS − JT
1− JT

. (1.18)

We can define the mean heterozygosity across the K populations and the heterozygosity
of the full pooled set of populations by

HS = 1− JS (1.19)

HT = 1− JT . (1.20)

Writing FST in terms of heterozygosities rather than homozygosities, we have

FST = HT −HS

HT
. (1.21)

Like JS, JT ,HS, andHT , FST has implied argument (p1, p2, . . . , pK). That FST is a sensible
measure of differentiation follows from a result that JS � JT , which in turn follows from
the Cauchy-Schwarz inequality.

Theorem 1.4: For all (p1, p2, . . . , pK) in�K
I−1, JS � JT , with equality if and only if

p1 = p2 = . . . = pK .

Proof: For a given i, consider the sequences of length K, (p1i, p2i, . . . , pKi). By the
corollary to the Cauchy-Schwarz inequality (Corollary 1.2),

K
K∑

k=1

p2ki �
( K∑

k=1

pki
)2

, (1.22)

with equality if and only if p1i = p2i = . . . = pKi.
Equation 1.22 applies for each i. Summing both sides of the inequality across

values of i and dividing both sides by K2, we have

1
K

I∑
i=1

K∑
k=1

p2ki �
I∑

i=1

(
1
K

K∑
k=1

pki
)2

. (1.23)
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figure 1.9. The quantities JS and JT for a pair of populations. Each pair of colored boxes
depicts a diploid genotype for a locus with I = 2 alleles, with lighter boxes representing allele
1 and darker boxes representing allele 2. (A) Under Hardy-Weinberg proportions, each of
the two populations has homozygosity 5

8 , so the mean homozygosity across the populations
is JS = 5

8 . (B) The pooled population obtained by averaging the allele frequencies of pop-
ulations 1 and 2 has homozygosity JT = 1

2 . The value of FST for the pair of populations is
( 58 − 1

2 )/(1− 1
2 ) = 1

4 .

Equality holds if and only if for each i, we have p1i = p2i = . . . = pKi—that is, p1 =
p2 = . . . = pK .

This result, that JS � JT , provides a mathematical formulation of the well-known
Wahlund principle, after [173], illustrating how a set ofK populations hasmean homozy-
gosity across populations (JS) greater than or equal to the homozygosity of the population
considered as a whole (JT) [138]. Indeed, a Wahlund principle holds for every allele
(Exercise 1.5).

Because JS � JT , considering the bounds on JS and JT , considering all points in�K
I−1 \

{eK1 , eK2 , . . . , eKI }, FST is bounded in [0, 1]. FST has a value of 0 if and only if JS = JT ,
which in turn requires all K populations to have the same allele frequency vector, p1 =
p2 = . . . = pK . As the K allele frequency vectors diverge, JS becomes increasingly differ-
ent from JT , the value obtained for JS if all K vectors are identical. Thus, because FST lies
in [0, 1], equaling 0 if and only if all K populations have identical allele frequencies and
having larger values as the K allele frequency vectors diverge, FST is a sensible measure of
genetic differentiation among K populations. The components of FST can be viewed in
Figure 1.9.

FST traces to the work of Sewall Wright [186] on “fixation indices,” as JS = 1 implies
that in each population, some allele is fixed at frequency 1 (not necessarily the same allele
in each population). Note that we are using FST as a statistic computed from allele fre-
quencies, a function that can be calculated from vectors of nonnegative values that sum to
1, with no consideration of a model that describes the evolution of populations. Another
tradition in population genetics considers FST as a parameter of population-genetic mod-
els [73, 179, 180]. We will return to the topic of model-independence of allele-frequency
statistics in Section 7.3.3.
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1.6.2 Two Populations

In the case ofK = 2 populations, genetic differentiation statistics are often viewed asmea-
sures of genetic distance, as they measure a “distance” between a pair of allele frequency
vectors. The term “genetic distance” persists despite the fact that commonly used mea-
sures of the level of difference between pairs of allele frequency distributions do not
necessarily satisfy all the mathematical criteria required for distance functions d. Such
functions, on a set of pointsM, must for each p, q, r∈ M satisfy

d(p, q) � 0, with equality if and only if p= q, (1.24)

d(p, q) = d(q, p), (1.25)

d(p, q) � d(p, r) + d(r, q). (1.26)

Weuse the termgenetic distance as it is commonlyused in the literature,without requiring
that a genetic distance function satisfy all of these criteria. Typical genetic distance func-
tions satisfy the first two criteria, but they do not necessarily satisfy the third criterion, the
triangle inequality (Exercise 1.6) [10, 83].

For K = 2 populations, it is convenient to simplify the general expression for FST in
eq. 1.18. The allele frequencies are p1i for population 1 and p2i for population 2.We write
σi = p1i + p2i = 2p̄i for the sum of the allele frequencies across the two populations, and
δi = |p1i − p2i| for the absolute value of the difference. Each σi lies in [0, 2], and each δi in
[0, 1].

Then

JS = 1
2

2∑
k=1

I∑
i=1

p2ki =
1
2

I∑
i=1

(p21i + p22i), (1.27)

JT =
I∑

i=1
p̄2i = 1

4

I∑
i=1

σ 2
i . (1.28)

We then have [24]

FST =
∑I

i=1 δ2i

4− ∑I
i=1 σ 2

i
, (1.29)

and in the I = 2 case, simply [140, 179]

FST = δ21
σ1(2− σ1)

. (1.30)

A quantityD12, which can be viewed as the homozygosity for a pair of sampled alleles
taken from two different populations, appears inmany formulas for genetic similarity and
distance with two populations:

D12 =
I∑

i=1
p1ip2i. (1.31)
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figure 1.10. The allele-frequency dot product for a locus in two populations. Separately
on the x- and y-axes, the unit interval is partitioned into components representing the
frequencies of the different alleles in two populations. The allele-frequency dot product, rep-
resented by shaded areas, isD12 = (0.5)(0.3) + (0.2)(0.25) + (0.1)(0.2) + (0.1)(0.15) +
(0.1)(0.1) = 0.245. Note that J1 = (0.5)2 + (0.2)2 + (0.1)2 + (0.1)2 + (0.1)2 = 0.32, and
J2 = (0.3)2 + (0.25)2 + (0.2)2 + (0.15)2 + (0.1)2 = 0.225, so that 0.245=D12 � √

J1J2 ≈
0.268.

This quantity, whichwe call the allele-frequency dot product, represents the probability that
a pair of sampled alleles, one drawn from population 1 and the other drawn from popula-
tion 2, have the same allelic type. The product p1ip2i is the probability that both have type
i, andD12 sums this probability across all allelic types (Figure 1.10).D12 is often denoted
by J12, or JXY if populations are labeled by letters rather than numbers.

In terms ofD12 and the homozygosities J1 and J2 of populations 1 and 2,
∑I

i=1 δ2i can
be written as J1 + J2 − 2D12, and

∑I
i=1 σ 2

i can be written J1 + J2 + 2D12. It then follows
from eq. 1.29 that

FST = J1 + J2 − 2D12

4− J1 − J2 + 2D12
. (1.32)

A second formula forFST that incorporatesD12 can also be derived using eq. 1.18 together
with the K = 2 cases of eqs. 1.16 and 1.17:

FST = JT −D12

1− JT
. (1.33)

The Cauchy-Schwarz inequality provides a simple relationship between D12 and J1
and J2.

Theorem 1.5: For all (p1, p2) in �2
I−1, D12 �√

J1J2, with equality if and only if
p1 = p2.

Proof: The theorem is simply a restatement of the Cauchy-Schwarz inequality with
p1 and p2 as the two sequences. The equality condition in the Cauchy-Schwarz
inequality indicates that D12 = √

J1J2 if and only if p1 = λp2. Because the entries
of p1 and p2 each sum to 1 by eq. 1.1, p1 = λp2 requires λ = 1.
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Table 1.1. Statistics introduced in this chapter.

Symbol Concept Equation

M Frequency of the most frequent allele 1.3
J Homozygosity 1.6
H Heterozygosity 1.8
J(α) α-homozygosity 1.9
JA Homozygosity with the first two alleles grouped 1.10
JB Homozygosity (equal to J) 1.11
JC Homozygosity excluding the most frequent allele 1.12
Z Fraction of homozygosity not due to themost frequent allele 1.13
JS Mean homozygosity across populations 1.16
JT Homozygosity of a total population formed by pooling its

subpopulations
1.17

FST “Fixation index” measure of genetic differentiation 1.18
HS Mean heterozygosity across populations 1.19
HT Heterozygosity of the total population 1.20
D12 Allele-frequency dot product 1.31
G Nei’s identity 1.34

This inequality in Theorem 1.5 motivates the definition of a measure of genetic
similarity calculated from eqs. 1.31 and 1.15,

G= D12√
J1J2

, (1.34)

known asNei’s identity [115, 118]. By Theorem 1.5, for all pairs of allele frequency distri-
butions representing polymorphic loci, Nei’s identity lies in [0, 1]. If p1 = p2, thenG= 1,
asD12 = J1 = J2. A genetic distance 1−G can be defined fromNei’s identity; Nei’s “stan-
dard genetic distance” (Exercise 1.7) is defined as− lnG [115, 118], and it lies in [0,∞].
Nei’s identity, denoted byG here, is often labeled I or INei.

1.7 Do Statistics “Depend” on Allele Frequencies?

Now that we have introduced many of the main concepts (Table 1.1) and mathematical
techniques for our analysis, we canpose themain questions answeredby the book: inwhat
ways dobounds onpopulation-genetic statisticsmathematically dependon theproperties
of allele frequencies, and how do these dependencies contribute to data analysis?

These types of questions have appeared in the literature: do population-genetic statis-
tics “depend” on allele frequencies? Framed in this way, this question [61, 65] is not fully
specified [98]. Inwhat sense dowemean “depend”? Each population-genetic statistic—J,
H, FST , and so on—is a function computed from allele frequencies and hence depends on
the allele frequencies in a trivial sense.

The question can be reformulated in a more precise manner: how do properties of the
allele frequencies constrain the values of a population-genetic statistic computed from
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those allele frequencies? Are the upper and lower bounds on a population-genetic statistic
always the same, given the value of another statistic? In other words, does knowledge of
the value of one statistic limit the possible values of another statistic?

We will see that if information is available about properties of an allele frequency dis-
tribution, then the values of those allele frequencies substantially constrain the values of
population-genetic statistics. The upper and lower bounds of a population-genetic statis-
tic are not in general identical across all values for another statistic: the value of one
statistic limits the possible values of another statistic—often substantially. We establish
these points by considering the relationships of a number of statistics to features of allele
frequency vectors, as well as to each other.

We will also see that the constraints on population-genetic statistics as functions of
other population-genetic statistics are important for the appropriate use of the various
statistics. The dependencies among statistics generate correlations in the values of statis-
tics computed from population-genetic data. In uncovering the mathematical bounds on
population-genetic statistics, we illustrate their consequences for data analysis.

Each chapter focuses on a pairwise relationship between twoquantities, loosely follow-
ing the elements of a unifying pipeline (Section 7.2). Chapter 2 considers homozygosity
and the frequency of themost frequent allele, drawing on [133, 139]. The following chap-
ters consider four directions for extending results from Chapter 2. Chapter 3 examines
a pair of statistics derived from homozygosity, drawing on [50]. Chapter 4 then studies
homozygosity in relation to the frequencies of alleles subsequent to the most frequent
allele. Chapter 5 discusses the extension of homozygosity to α-homozygosity, relying on
the majorization method of [11]. Finally, Chapter 6 examines homozygosity and the fre-
quency of the most frequent allele in finite samples, making use of ideas from [143] and
results from Chapter 5. Chapter 7 summarizes the results, the techniques used to obtain
them, and implications for data analysis.

Note that working with homozygosity is mathematically slightly simpler than working
with heterozygosity, as we can examine sums of squares of allele frequencies without the
additional step of subtracting them from 1. To view results in terms of diversity rather
than homogeneity, homozygosity can be viewed as a diversity measure, where diver-
sity increases with decreasing homozygosity, or results concerning homozygosity can be
reframed in terms of heterozygosity by replacing J with 1−H.

1.8 Exercises

1.1 Suppose a locus has I distinct alleles. Prove that J � 1
I , with equality if and only if

p1 = p2 = . . . pI .

1.2 Considering all possible allele frequency distributions in�I−1, prove that JA �
JB > JC.

1.3 Explain why JA and JB are necessarily positive but JC can equal 0.

1.4 Explain why JS lies in (0, 1] but JT lies in (0, 1).
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1.5 In the proof of theWahlund principle, interpret the meaning of the inequal-
ity eq. 1.22 in relation to the probability that allele i is homozygous. Use this
inequality to introduce a stronger principle that has theWahlund principle as a
special case.

1.6 Provide a counterexample of three allele frequency vectors p, q, r that demon-
strate that FST does not satisfy the triangle inequality.

1.7 Does Nei’s standard genetic distance satisfy the triangle inequality on�I−1 for
I � 2? Provide a proof or counterexample.
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