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M A P P I N G  T H E  B R A I N

In the jargon of neuroscience, to map the brain is to understand two 
things: all of the brain’s myriad connections (equivalent to drawing a 
map of all the roads and buildings in the United States) and all of the 
“traffic” (neural activity that occurs on those roads). “Connectomes” are 
like highway maps, “activity maps” record the traffic as the brain is en-
gaged in behavior. Like Google Maps, we ultimately need many “layers” 
of information, telling us about landmarks (like the folds of the cortex), 
annotations about particular types of neurons (the brain likely has close 
to a thousand), and ultimately about the pathways of neurons that are 
involved in particular kinds of behaviors.

The essays in this part tell a story— from the current, cutting edge 
to the future— about technological advances that will allow us to map 
out as much of that territory as possible. Most complex organisms have 
hundreds of thousands, if not millions or billions, of neurons. For de-
cades, neuroscientists have recorded from just a few at a time, inferring 
something about a complex system based on incomplete measurements. 
Mike Hawrylycz narrates the history of brain anatomy, from the earliest 
drawings of neural circuits by Ramón y Cajal to ongoing, cutting- edge 
efforts to obtain and annotate high- resolution anatomical maps of the 
entire human brain at cellular resolution. Misha Ahrens describes an 
approach called light- sheet microscopy for monitoring neural activity 
from the entire brain of a transparent organism, the zebrafish, and to do 
so during behavior in intact animals. Christof Koch describes a con-
fluence of emerging methods— anatomical, physiological, and optical— 
that are making it possible to characterize neural activity across large 
swaths of the visual cortex of the mouse. Looking further into the fu-
ture, Anthony Zador and George Church describe novel approaches to 
characterizing neural anatomy, specifically neural connectivity, that use 
genetic techniques to indirectly encode information about connectivity 
in sequences of DNA. Church discusses how these approaches might 
even be extended to record the firing of neurons over scales much larger 
than optical or electrophysiological methods currently allow.





B U I L D I N G  AT L A S E S  O F  T H E  B R A I N

Mike Hawrylycz

With Chinh Dang, Christof Koch, and Hongkui Zeng

A Very Brief History of Brain Atlases

The earliest known significant works on human anatomy were collected 
by the Greek physician Claudius Galen around 200 BCE. This ancient 
corpus remained the dominant viewpoint through the Middle Ages 
until the classic work De humani corporis fabrica (On the Fabric of the 
Human Body) by Andreas Vesalius of Padua (1514– 1564), the first mod-
ern anatomist. Even today many of Vesalius’s drawings are astonishing 
to study and are largely accurate. For nearly two centuries scholars have 
recognized that the brain is compartmentalized into distinct regions, 
and this organization is preserved throughout mammals in general. 
However, comprehending the structural organization and function of 
the nervous system remains one of the primary challenges in neuro-
science. To analyze and record their findings neuroanatomists develop 
atlases or maps of the brain similar to those cartographers produce.

The state of our understanding today of an integrated plan of brain 
function remains incomplete. Rather than indicating a lack of effort, 
this observation highlights the profound complexity and interconnec-
tivity of all but the simplest neural structures. Laying the foundation of 
cellular neuroscience, Santiago Ramón y Cajal (1852– 1934) drew and 
classified many types of neurons and speculated that the brain consists 
of an interconnected network of distinct neurons, as opposed to a more 
continuous web. While brain tissue is only semitranslucent, obscuring 
neuronal level resolution, a certain histological stain Franz Nissl (1860– 
1919) discovered, and known as the Nissl stain, can be used to stain 
negatively charged RNA in the cell nucleus in blue or other visible col-
ors. The development of this stain allowed the German neuroanatomist 
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Korbinian Brodmann (1868– 1918) to identify forty- three distinct re-
gions of the human cerebral cortex based on cytoarchitectural orga-
nization using this Nissl stain. These pioneering works of Brodmann, 
Constantin von Economo, Marthe Vogt, and others mapped cyto-  and 
myeloarchitectural landscape of the human cortex based on painstak-
ing visual inspection and characterization of a few observable cellular 
properties such as cell shape, density, packing, and such.

Since Vesalius, most atlases of the brain have been drawn on paper, 
with the most recent versions in vivid color delineating hundreds of 
structures. Such atlases have been drawn for most of the important 
model organisms studied in the laboratory and provide key bench- side 
experimental references. As with most aspects of modern biology, how-
ever, technology has been a driving factor in improved understanding 
of brain organization. Neuroimaging techniques evolved over the last 
twenty years have now allowed neuroscientists to revisit the subject of 
brain mapping, with the modern brain atlas more akin to a digital data-
base that can capture the spatiotemporal distribution of a multitude of 
physiological and anatomical data. Modern techniques such as mag-
netic resonance imaging (MRI), functional magnetic resonance imaging 

Figure 1. a. Cover of the work De humani Corporis fabrica libri septem, published by 
Andreas Vesalius in 1543. The work was the first major advance in human anatomy 
since the Greek physician Galen. b. A page from the fifth chapter of the book showing 
the cortex and ventricles of the brain.

a b
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(fMRI), diffusion MRI, magnetoencephalography (MEG), electroen-
cephalography (EEG), and positron emission tomography (PET) have 
provided dramatic improvements in brain imaging for research, clinical 
diagnosis, and surgery. Digital atlases based on these techniques are ad-
vantageous since they can be warped, mathematically or in silico, to fit 
each individual brain’s unique anatomy.

The origin of modern brain mapping for clinical use lies with the 
seminal work of Jean Talairach, who in 1967 developed a 3D coordinate 
space to assist deep brain surgical methods. This atlas was generated 
from two series of sections from a single sixty- year- old female brain, and 
was later updated by Talairach and P. Tournoux in a printed atlas design 
for guiding surgery. Today biomedical imaging forms a crucial part of 
diagnosis and presurgical planning, and much time and resources are 
invested in the search of imaging biomarkers for diseases. Atlases have 
been used in image- guided neurosurgery to help plan “stereotaxic,” that 
is, coordinate referenced, neurosurgical procedures. Using this data, 
surgeons are able to interpret patient- specific image volumes for ana-
tomical, functional, and vascular relevance as well as their relationships.

The field of digital atlasing is extensive and includes high- quality 
brain atlases of the mouse, rat, rhesus macaque, human, and other 
model organisms. In addition to atlases based on histology, magnetic 
resonance imaging, and positron emission tomography, modern digital 
atlases use gene expression, connectivity, and probabilistic and multi-
modal techniques, as well as sophisticated visualization software. More 
recently, with the work of Alan Evans at the Montreal Neurological 
Institute and colleagues, averaged standards were created such as the 
Colin27, a multiple scan of a single young man, as well as the highly ac-
cessed MNI152 standard. While inherently preserving the 3D geometry 
of the brain, imaging modalities such as MRI, CT, and PET do not usu-
ally allow for detailed analysis of certain structures in the brain because 
of limitations in spatial resolution. For this reason it is common to use 
very high- resolution 2D imaging of in vitro tissue sections and employ 
mathematically sophisticated reconstruction algorithms to place these 
sections back into the 3D context of the brain.

Today digital brain atlases are used in neuroscience to characterize 
the spatial organization of neuronal structures, for planning and guid-
ance during neurosurgery, and as a reference for interpreting other data 
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modalities such as gene expression or proteomic data. One ultimate aim 
of neuroscientific inquiry is to gain an understanding of the brain and 
how its workings relate to activities from behavior to consciousness. 
Toward this end, brain atlases form a common coordinate framework 
for summarizing, accessing, and organizing this knowledge and will un-
doubtedly remain a critical- path technology in the future.

The Genetic Brain

The development of the techniques of modern molecular biology and 
eventually whole genome sequencing opened the door for understand-
ing the genetics of the brain, and new perspectives on the study of brain 
anatomy are emerging with the availability of large- scale spatial gene 
expression data. The brain consists of at least several hundred distinct 
cell types whose complete classification is still at present elusive. Each 
cell type is related to its function with its gene expression pattern, for ex-
ample, on/off, high/low, as a key determinant. Gene expression data can 
be collected through a variety of techniques, and exploration of these 

Figure 2. Regions of the human cerebral cortex delineated by Korbinian Brodmann 
using Nissl stain histology. Brodmann identified forty- three distinct regions that today 
still serve as a guide for studying distinct functional areas in the human cortex.
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data promises to deliver new insights into the understanding of rela-
tions between genes and brain structure.

Early gene expression studies used methods such as northern blots, 
which combine electrophoresis separation of RNA molecules followed 
by hybridizing probes for detection. At one time this method was the 
gold standard for confirming gene expression, but it ultimately gave way 
to more quantitative methods. The microarray revolution dramatically 
increased our ability to profile genes by hybridizing many gene probes 
on a single gene chip. Today rapid digital sequencing technology can 
count individual RNA fragments that can subsequently be mapped back 
to the genome once it is known for an organism.

In 2001, Paul Allen, cofounder of Microsoft, assembled a group of 
scientists, including James Watson of Cold Spring Harbor Laboratory 
and Steven Pinker, then at MIT, to discuss the future of neuroscience 
and what could be done to accelerate neuroscience research. During 
these meetings the idea emerged that a complete 3D atlas of gene ex-
pression in the mouse brain would be of great use to the neuroscience 
community. The mouse was chosen due to the wealth of existing genetic 
studies and for practical reasons. Of the potential possible techniques, 
the project chose a technique for mapping gene expression called in situ 
hybridization (ISH) (automated by Gregor Eichele of the Max Planck 
Institute and colleagues), which uses probes that bind to mRNA within 
sectioned but intact brain tissue and thereby preserves spatial context 
(see color plate 1).

In 2006, an interdisciplinary scientific team at the Allen Institute 
for Brain Science, funded by Paul Allen and led by Allan Jones, deliv-
ered the first atlas of gene expression in a complete mammalian brain, 
publically available online at www.brain-map.org. Since then, the Allen 
Institute has expanded its projects to provide online public resources 
that integrate extensive gene expression, connectivity data, and neuro-
anatomical information with powerful search and viewing tools for the 
adult and developing brain in mouse, human, and nonhuman primate 
(see figure 3 for an example). In addition to the data there are colori-
metric and fluorescent ISH image viewers, graphical displays of ISH, 
microarray and RNA sequencing data, and an interactive reference atlas 
viewer (“Brain Explorer”) that enables 3D navigation of anatomy and 
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gene expression across these datasets. (Approximately fifty thousand 
users worldwide access the Allen Brain Atlas resources each month.) 
Scientists have mined the atlases to search for marker genes in various 
brain regions associated with diseases, to identify different cell type 
markers, to delineate brain regions, and to compare gene expression 
data across species.

Extending this work to humans, the Allen Human Brain Atlas was 
made public in May 2010 and is the first anatomically comprehensive 
and genome- wide, three- dimensional map of the human brain. This 
transcriptional atlas of six adult human brains contains extensive histo-
logical analysis and comprehensive microarray profiling of several hun-
dred precise brain subdivisions and has revealed that gene expression 
varies enormously by anatomical location, with different regions and 
their constituent cell types displaying robust molecular signatures that 
are highly conserved between individuals.

Prox1 Trpc6

Crlf1 Slc39a6

Figure 3. Genes whose expression pattern is highly correlated with Prox1 (upper left) in 
dentate gyrus of the hippocampus. These genes were found by starting with the image 
for gene Prox1 and searching for patterns whose spatial pattern of gene expression 
strongly resembled Prox1. Combinations of expression patterns such as these may help 
to refine our present understanding of the function of the hippocampus.
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In particular, these data show that 84 percent of all genes are ex-
pressed somewhere in the human brain and in patterns that while com-
plex are substantially similar from one brain to the next. The analysis of 
differential gene expression and gene coexpression relationships dem-
onstrates that brain- wide variation strongly reflects the distributions of 
the major cell types such as neurons, oligodendrocytes, astrocytes, and 
microglia, all of which are essential to brain function. Interestingly, the 
neocortex displays a relatively homogeneous transcriptional pattern but 
with distinct features associated selectively with primary sensorimotor 
cortices and with enriched frontal lobe expression. Interestingly, the 
spatial topography of the neocortex is strongly reflected in its molecular 
topography, that is, the closer two cortical regions are, the more similar 
their gene expression patterns remain.

Several other significant efforts toward understanding the genetic 
basis of brain organization are underway, including the Edinburgh 
Mouse Atlas Project (EMAP) (www.emouseatlas.org), which contains 
substantial spatial and temporal data for mouse embryonic develop-
ment, and the Rockefeller University– based GENSAT project of Na-
than ial Heintz and colleagues that seeks to characterize gene expression 
patterns using Bacterial Artificial Chromosomes (BAC) in genetically 
modified mice (www.gensat.org), as well as BGEM (www.stjudebgem 
.org), GenePaint (www.genepaint.org), EurExpress (www.eurexpress 
.org), and MGI (http://www.informatics.jax.org), all generally user 
friendly with useful tutorials.

A Standard Brain?

Does a standard or normal brain exist? This is less likely for humans 
than genetically bred mice, but mapping neuroscientific and clinical 
data onto a common frame of reference allows scientists and physicians 
to compare results between individuals. One main reason for standard-
ization is that multiple and diverse brains can be transformed into a 
standard framework that maximizes our ability to understand their 
similar features. Another is that it allows us to identify how unique or 
unusual features in a particular brain may differ from an average pop-
ulation. With modern advanced image processing capabilities, digital 
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atlases can serve as the framework for building standard atlases and for 
surveying the information linked to it. In contrast to basic data reposi-
tories, which allow for simple access to data through a single interface, 
sophisticated digital atlases backed by appropriate technology can act as 
hubs facilitating access to multiple databases, information sources, and 
related documents and annotations. These may act as a scaffold from 
which to share, visualize, analyze, and mine data of multiple modalities, 
scales, and dimensions.

Many of these ideas of standardization grew out of a major initiative 
of the National Institutes of Health in the 1990s called the “Decade of 
the Brain,” where a number of digital and electronic resources were cre-
ated to enable the unification and integration of the various subfields of 
neuroscience. One outcome of this work is the field of neuroinformatics, 
or the application of computer-  and mathematical- based technologies 
to organize and understand brain data. The ultimate goal of neuroinfor-
matics is to bring together brain architecture, gene expression, and 2D 
and 3D imaging information into common frames of reference. Major 
organizations have evolved around mapping brain data, such as the 
International Consortium for Human Brain Mapping (www.loni.ucla 
.edu/ICBM/About) and the International Neuroinformatics Coordinat-
ing Facility (INCF, www.incf.org). These efforts have led to atlases such 
as the standard Talairach Atlas and the Montreal Neurological Institute 
(MNI) standard that have been extensively used in neuroscience.

One consideration in standardizing brain atlases is the type of co-
ordinate system used. As Alan Evans of the Montreal Neurological In-
stitute remarks, “The core concept within the field of brain mapping 
is the use of a standardized or ‘stereotaxic’ 3D coordinate framework 
for data analysis and reporting of findings from neuroimaging experi-
ments. This simple construct allows brain researchers to combine data 
from many subjects such that group- averaged signals, be they structural 
or functional, can be detected above the background noise.” The con-
cept of a coordinate system is fundamental to digital atlases and requires 
two basic components: the specification of an origin in the stereotaxic 
space and a mapping function that transforms each 3D brain from its 
native coordinates to that of the atlas. A major step in addressing these 
issues, and a standard tool set that allows different types of neuroscience 
data to be combined and compared, is now in development for one of 
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the most important subjects in experimental neuroscience: the mouse, 
Mus musculus. This project is an international collaboration in digital 
atlasing and is sponsored in part by the International Neuroinformatics 
Coordinating Facility (INCF).

The Connected Brain

Much recent evidence indicates that the vast interconnected network 
of the human brain is responsible for our advanced cognitive capabili-
ties, rather than a simple expansion of specialized regions of the brain 
such as the prefrontal cortex. This may apply in particular to diseases 
associated with potentially aberrant wiring such as schizophrenia, au-
tism, and dyslexia. The importance of circuit considerations for differ-
entially characterizing disorders such as major depression, anxiety, and 
obsessive- compulsive disorder, and substance abuses including nicotine 
addiction, is now being widely recognized.

It is now understood that neuropsychiatric disorders likely result 
from pathologies at the system level, with both complex genetic and en-
vironmental factors impacting neural circuitry. As Jason Bohland and 
colleagues point out in a recent 2009 proposal for a “mesoscale,” that is, 
medium scale, connectome in PLOS Computational Biology: “For those 
[diseases] with heritable susceptibility effects, genetic polymorphism 
and cellular processes play a greater role, but anatomical circuits remain 
critical to understanding symptoms and developing therapies.” In Par-
kinson’s disease, for example, drug-  and stimulation- based therapeutic 
interventions do not occur at a particular cellular lesion site, but rather 
are contingent on understanding interactions within the extrapyramidal 
motor system of neurons.

The first unified approach to defining connectional atlases of the brain 
was proposed by Olaf Sporns (Indiana University) and Patrick Hag-
mann (Lausanne). In 2005 they independently suggested the term “con-
nectome” to refer to a complete map of the neural connections within 
the brain. This term was directly inspired by the concurrently ongoing 
effort to sequence the human genetic code, and since then the field of 
connectomics (see chapters by Sporns and Zador, this volume) has been 
concerned with assembling and analyzing connectome datasets. (The 
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term connectome was most recently popularized in Sebastian Seung’s 
book Connectome, which discusses the high- level goals of mapping the 
human connectome, as well as ongoing efforts to build a 3D neural map 
of brain tissue at the microscale.)

The first complete neural circuit in any organism was found in the 
common worm Caenorhabditis elegans, and research into its molecular 
and developmental biology was begun in 1974 by Nobel laureate Sydney 
Brenner. C. Elegans has since been used extensively as a model organism 
in biology. Using high- resolution electron microscopy and manual an-
notation of hundreds of images, the circuit- mapping project was a major 
tour de force of neuroanatomy, resulting in a 341- page publication by 
the Royal Society in 1986 by John White and Brenner titled “The Struc-
ture of the Nervous System of the Nematode Caenorhabditis elegans.” 
Other landmark studies include a study of the areas and connections 
of the visual cortex of the macaque published by Daniel Felleman and 
David Van Essen in 1991 and of the thalamo- cortical system in the fe-
line brain by J. W. Scannel and colleagues in 1999. Since then several 
neuroinformatics databases of connectivity have emerged, such as the 
online macaque cortex connectivity tool CoCoMac (www.cocomac.org) 
and the Brain Architecture Management System (BAMS, http://brancusi 
.usc.edu).

Several years ago, supported both by public and private funding, a 
series of independent projects were launched to map the connectome of 
the laboratory mouse at the mesoscale. Among these projects the Allen 
Institute embarked on a large- scale effort to develop a regional and cell 
type specific three- dimensional connectivity map. This Allen Mouse 
Brain Connectivity Atlas uses a combination of normal and genetically 
modified mice together with genetic tracing approaches and a high- 
throughput serial 2- photon tomography system to image the labeled 
axons throughout the entire brain. High- resolution coronal images are 
sampled every 100 μm (0.1 mm), resulting in a large 750- GB dataset 
per brain. At the end of 2013, approximately 1,500 terabytes of data (or 
1.5 petabytes) will have been generated, all mapped onto a common 3D 
reference space of high spatial fidelity that allows for identification of 
the neural circuitry that governs behavior and brain function.

Mapping the connectome of the human brain is one of the great sci-
entific challenges of the twenty- first century. The Human Connectome 
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Project (HCP, http://www.humanconnectome.org) is tackling a key as-
pect of this challenge by elucidating some of the main neural pathways 
that underlie brain function and behavior. Due to the immense com-
plexity and comparatively large size of the human brain, the HCP (see 
chapter by Sporns, this volume) is taking a more macro approach to 
mapping large- scale circuitry, comprehensively mapping human brain 
circuitry in a target number of 1,200 healthy adults using a combina-
tion of noninvasive neuroimaging techniques such as MRI, EEG, and 
fMRI.

Accurate parcellation of fMRI imaging activity into component areas 
of the brain is an important consideration in deciphering its connectiv-
ity, and it takes us back to our original discussion of anatomy. Modern 
imaging techniques have enabled parcellation of localized areas of cor-
tex and have been accomplished by using diffusion tractography and 
functional imaging to measure connectivity patterns and define corti-
cal areas based on these different connectivity patterns. Such analyses 
may best be done on a whole brain scale and by integrating types of 
noninvasive imaging. It is hoped that more accurate whole brain par-
cellation may lead to more accurate macroscale connectomes for the 
normal brain, which can then be compared to disease states. The HCP 
images and their parcellations are being made available to the public 
through a public interface called the ConnectomeDB at http://www 
.humanconnectome.org, mentioned above.

The current noninvasive imaging techniques cannot capture the 
brain’s activity at a neuronal level, and mapping the connectome at a 
cellular level in vertebrates currently requires postmortem microscopic 
analysis of limited portions of brain tissue. The challenge of doing this 
on a grand scale is quite major, as the number of neurons comprising 
the brain easily ranges into the billions in more highly evolved organ-
isms, with the human cerebral cortex alone contains at least 1010 neurons 
and linked by 1014 synaptic connections. A few of the main challenges of 
building a microscale mammalian connectome today include: the data 
collection would take years given current technology; annotation tools 
are insufficient to fully delineate and extract information at a neuronal 
scale; and, not least, the algorithms necessary to map relevant connec-
tions and build the connectivity graphs are not yet fully developed. To 
address these machine- vision and image- processing issues, the Open 
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Connectome Project (openconnectome.org) is a crowd- sourcing initia-
tive to meet this challenge. Finally, statistical graph theory is an emerg-
ing discipline that is developing sophisticated pattern recognition and 
inference tools to parse these brain graphs.

The Future Brain

Development of large- scale brain atlases is now a major undertaking in 
neuroscience. While it may not be possible to systematically map each 
of the one hundred billion neurons any time soon in any given individ-
ual brain, modern mapping techniques are providing atlases of remark-
able resolution and functionality.

Several recent advances in neuroimaging support the possibility of 
deep and large- scale mapping, and this goal may be less audacious than 
seems at first. For example, using a combinatorial color labeling method, 
Brainbow, which is based on the random expression of several types of 
fluorescent proteins, Josh Sanes and Jeff Lichtman at Harvard are able to 
mark individual neurons with one of over one hundred distinct colors. 
The labeling of individual neurons with a distinguishable hue then al-
lows the tracing and reconstruction of their cellular structure, includ-
ing long processes within a block of tissue. Labeling techniques such as 
these allow for classification and visualization of microscopic neurons. 
Another approach aimed at classifying diversity in the synaptic code, 
called array tomography, has been developed by Stephen Smith at Stan-
ford, and can also achieve combinatorial labeling of synaptic connec-
tions using electron microscopy.

Recently, in a processing tour de force, nearly 7,500 sections of an 
individual human brain were sliced and scanned and mapped onto a 
3D reconstructed brain at 20- micron isotropic resolution, that is, in 
all three spatial dimensions. This project is the culmination of years 
of work from the Katrin Amunts and Karl Zilles laboratory at Jülich, 
Germany, with semiautomated informatics reconstruction by Evans in 
Montreal. The atlas called BigBrain is a thin- sliced histology project that 
offers nearly cellular resolution, that is, detail close to the level of the 
cell. Because of the nearly continuously collected sections and the 3D 
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image reconstruction, BigBrain is a dataset 125,000 times bigger than a 
typical MRI! Atlases based on MRIs do not allow for the visualization 
of information at the level of cortical cells and layers, although this atlas 
will allow that. However, to make BigBrain into a full- fledged atlas it will 
need to be annotated, that is, it will need to provide the anatomic struc-
tural delineations that outline the fine structure of the brain.

The BigBrain effort indicates that high- resolution 3D microscopy is 
still not at a level of resolution to map the finest structures in the brain. 
However, advances are being made in 3D imaging as well. In 2013, in 
a highly publicized article in Nature, a method was developed to sub-
ject the brain to a three- dimensional network of hydrophilic polymers 
and then to remove the lipids from the brain by electrophoresis. The 
brain remains fully intact but optically transparent and macromolecule 
permeable. Using mouse brains, the authors show intact- tissue imag-
ing of long- range projections, local circuit wiring, cellular relationships, 
and subcellular structures. This method, called “CLARITY,” uses intact- 
tissue in situ hybridization and immunohistochemistry with multiple 
rounds of staining and de- staining in nonsectioned tissue to visualize 
gene expression or protein binding. The method is still being refined but 
may be useful for human postmortem imaging as well.

Alternative computational processing techniques will also be neces-
sary to deal with the massive data these new atlases generate. In 2012, 
a Citizen Science project called EyeWire, launched by Sebastian Seung 
of MIT, began attempting to crowd source the mapping of the connec-
tome through an interactive game in which contributors try to map the 
retinal connectome (Zador’s chapter herein outlines another possible 
approach to this problem).

Large- scale atlases of the brain are providing content to the neuro-
science community through molecular, cellular, functional, and con-
nectomic data. The transition from print to digital atlases has been 
revolutionary, as it has allowed navigation, 3D reconstruction, and vi-
sualization from the smallest nuclei to macroscale regions. Digital at-
lases have also transformed clinical neuroscience, and all stages from 
pre-  to postoperation of surgery in some way use digital atlases. It is 
likely that in the near future we will have annotated 3D microscale at-
lases of the structure of the human brain. In several years it should be 
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possible to achieve near complete axon and synaptic connectivity in a 
substantial segment of the human cortex, thereby elucidating the de-
tailed complexity of its cortical circuitry. Atlases will continue to be 
more integrated into scientific and clinical workflows, thus aiding in 
discovery science and providing novel ways of diagnosing, monitoring, 
and treating disease.
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