CONTENTS

Preface xv
How an Archaeologist Discovered Languages and Genes xvi
Reconstructing the Past from Multiple Sources xix
On “Prehistory” xxı

1 The Odyssey Revealed 1
Five Million Years of Hominin Achievement 1
Brains, Cultural Creations, and Population Numbers 4
Hominin Evolution as a Four-Act Drama 8
Population Growth and Migration: Why They Mattered 11
Our World as the Stage 12
How Old Is It? Dating the Past 14

2 The Odyssey Begins 17
How Did Hominins Come into Existence? 17
What Was an Early Hominin? 18
The “Missing Link” and the Elusive Common Ancestor of Hominins and Panins 23
On the Panin/Hominin Split 25
Beyond the Nest: The First Hominins Emerge 27
Pliocene Ancestors: The Australopithecines 28
“Man the Tool-Maker”? 31
Big Strides after 2.5 Million Years Ago: Early Homo 32
The Origins of Human Behavior 36

3 Out of Africa 40
Pleistocene Chronology: The Basics 43
The Pleistocene Glacial-Interglacial Cycles, and Hominin Migration to Asia 44
Escaping the Homeland 46
Early Exits from Africa: How Many? 47
Early Pleistocene Homo Reaches North Africa and Asia 48
Homo erectus: Getting to China and Java 51
The Enigma of Flores Island 53
Luzon, the Philippines 57
The Handiwork of Homo erectus and Its Contemporaries 58

4 New Species Emerge 60
Understanding the Course of Human Evolution 63
Homo antecessor in Europe 66
The Mysterious Homo heidelbergensis 67
The Acheulean 69
The “Big Three” Species of the Later Middle Pleistocene 71
The Neanderthals 72
The Denisovans and the Harbin Human Group 76
Neanderthals and Denisovans: Braving the Cold and Painting the Walls? 79
What about the Other Middle Pleistocene Hominins? 82

5 The Mysterious Newcomer 85
Here Comes Homo sapiens 87
The Riddle of Early Homo sapiens 89
The Emergence of Homo sapiens: Skulls and Genes 90
Beyond Africa, with a Mystery 92
The Emergence of Homo sapiens: Archaeology 95
The Upper Paleolithic in Eurasia 97
Homo sapiens and the Extinction of the Neanderthals 99
The Spread of Homo sapiens toward Eastern Eurasia 101
Onward to Sahul 102
When Was Australia Settled? 104
How Was Australia Settled? 105
How Many First Australians? 107
A Beyond-Africa Scenario 109
Lingering Mysteries: A Personal Tale 110

6 Stretching the Boundaries 112
Braving More Cold: Northeast Asia and the Americas 112
Upper Paleolithic Japan 118
A Japanese Origin for the First Americans? 121
Getting to America 123
Evidence for the First Americans 124
Languages and the First Americans 127
Genetics and the First Americans 128
Population Y? 129
South of the Ice 131
The Holocene Settlement of Arctic Canada: Paleo-Inuit and Thule Inuit 133

7 How Food Production Changed the World 136
What Was Ancient Food Production? 137
The Advantages of Food Production 138
The Ancient Domesticated Species That Still Feed Us Today 140
The Homelands of Food Production 141
Contents

Coincidence? 144
What Did Humans Do to Plants and Animals in Order to Make Them Domesticated? 145
Did the First Farmers Promote Plant and Animal Domestication Deliberately? 146
Why Domestication? 146

8 Homelands of Plant and Animal Domestication 152
The Fertile Crescent 153
The Natufian 157
The Fertile Crescent Neolithic 158
Cyprus 163
A Land of Demographic and Cultural Growth 164
The Transformation of the Fertile Crescent Neolithic 165
Early Farmers in East Asia 167
Millet and Rice 169
Major Trends in the East Asian Neolithic 170
The East Asian Neolithic Population Machine 173
The African Sahel and Sudan 174
The Saharan Humid Phase 176
Farmers and Herders from the Fertile Crescent 177
Savanna and Parkland 178
The Domesticated Economy behind the Bantu Migrations 179
Highland New Guinea 180
An Equatorial Homeland of Agriculture 183
The American Homelands of Agriculture 184
America’s First Farmers 187
South America: The Andes and Amazonia 191
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Voices from the Deep Past</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>The Early Farming Dispersal Hypothesis</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Understanding the Human Past through Language</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Why Are Language Families Important for Reconstructing Prehistory?</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>Do Language Families Equate with “People”?</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>The Origins of Language Families</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>The Spreads of Language Families: A Comparative Perspective from Recent History</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Did Elite Dominance Spread Languages?</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>Onward toward a Global Prehistory of Human Populations</td>
<td>219</td>
</tr>
<tr>
<td>10</td>
<td>The Fertile Crescent and Western Eurasia</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>Early Fertile Crescent Villagers</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Neolithic Migration across Europe, 7000 to 4000 BCE: The Archaeology</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Neolithic Migration across Europe: The Genetics</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>Migrations from the Eastern Fertile Crescent</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Early Farmers in South Asia</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Europe and the Steppes</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>The Contentious Prehistory of the Indo-European Language Family</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>Did Yamnaya People from the Pontic Steppes Spread the Oldest Indo-European Languages?</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>South Asia beyond the Indus Valley</td>
<td>245</td>
</tr>
</tbody>
</table>
Contents

South India and the Dravidian Language Family 247
What Happened Next in Southwest Asia? 249

11 Asia-Pacific Adventures 251
Ancient Human Populations of East Asia and Sahul 254
Plotting the Course of Transeurasian Dispersal 255
The Yellow River and the Sino-Tibetan Language Family 259
Southern China and the Neolithic Settlement of Mainland Southeast Asia 261
The Austroasiatic Mystery 264
The Austronesians 266
Lessons from the Austronesians 269
Malayo-Polynesian and Papuans 270
The Settlement of Polynesia 273
Rice versus Yams? 276

12 Africa, Australia, and the Americas 278
The African Continent 278
Afro-Asiatic Migrations from the Southern Levant into North Africa 279
The Transformation of Sub-Saharan Africa 281
The Bantu Diaspora 283
The Australian Continent 286
The American Continents 293
Holocene Migrations in the Americas 293
North American Hunter-Gatherers on the Move 294
Farming Spreads in the Americas: Some Examples 298
Algonquians and Uto-Aztecans 300
CONTENTS xiii

13 Ape to Agriculture 305

Did Food Production Change the Rules? 310

Acknowledgments 315

Notes 317

Index 349
The Odyssey Revealed

Five Million Years of Hominin Achievement

During the past five million years, humans and their hominin ancestors have evolved from a bipedal (two-legged) ape into the globally dominant species that we call *Homo sapiens*. We are now eight billion people rather than a few thousand; mobile phones rather than stone tools dominate the lives of many of those billions; and, by the start of the Colonial Era (1492 CE), our ancestors spoke at least 8,000 different languages, of which about 6,500 survive today. Our evolution has taken us from an African ape, through many intermediate hominin species, to *Homo sapiens* and the dizzying heights of the modern technological revolution. Indeed, the success of our global domination is currently causing many of us great concern.

How did all of this happen? The events of the past five (or more) million years have been immense in detail, and much of that detail will forever be lost to us. But there are guiding threads. Two essential processes, *evolution* and *migration*, have underpinned the histories of all species of life on earth, from viruses to whales, including *Homo sapiens* and its ancestors. Evolution creates new species out of existing ones, and migration carries the members of those new species into new environmental conditions, thus encouraging evolution to continue in new directions.

The never-ceasing production lines created by evolution, migration, and further evolution have left continuous traces of their passage, silent
witnesses scattered through space and time waiting patiently for those who can find and interpret them. Those traces are the plot for a saga on a cosmic scale.

The traces are not only biological; they include two major nonbiological categories of human achievement, these being the archaeological cultures that record ancient human lifestyles and the families of related languages that record how humans communicated in the past. Our cultures and languages evolved and traveled with their human creators to far-flung corners of the world during the course of prehistory. Together with the fossils and the genes, they add to the basic conceptual scaffold around which this book is constructed.

The human Odyssey, from ape to agriculture, is thus our main field of concern. I will examine how the different hominin populations that have existed during the past five million years, including our own modern human species and its immediate ancestors, have been identified by paleoanthropologists, archaeologists, and geneticists. One ultimate goal is to show how these ancestral populations have contributed to the creation of our own place in the world, although it is not my intention to put *Homo sapiens* on a pedestal of ultimate perfection. Many might say that we deserve no such accolade.

However, we might still ask: Where does *Homo sapiens* actually fit within the Odyssey? We did not exist five million years ago as a recognizable species separate from other hominins, except perhaps in nascent form; we were an undifferentiated glimmer in the genetic cosmos of archaic humanity, waiting for the eventual chance to make an appearance and then migrate into the world to become a new species. I describe the details, such as they are known to us, of this appearance later, but the main point to be stressed in this introduction is that we are a very young species compared with the five-million-year hominin Odyssey as a whole. The oldest fossil skulls recognized as approaching a modern human status in terms of brain size and shape are only about 300,000 years old. All of us alive today descend from a common genetic ancestry of similar antiquity, at least in terms of DNA comparisons between the living human populations of the world.
Yet the genus Homo, within which Homo sapiens is the sole survivor of what were once several species, including Homo erectus and the Neanderthals (Homo neanderthalensis), has existed for at least two million years, and hominins in general for more than five million years. This recency for Homo sapiens as a distinct species means that we can interbreed freely, if age and health permit, with a partner from anywhere in the world. The differences we perceive in individual bodily characteristics, such as skin or hair color, are superficial.

Furthermore, the recency of our origin in Sub-Saharan Africa means that all living humans carry the same basic ability to create languages, cultures, and societies at a global level of complexity that has been recorded by linguists, historians, anthropologists, and ethnographers for well over a century. We can each learn, speak, and understand the language of anyone else in the world, if we wish to. The shared features of basic behavior and intelligence that we see across the human population today must also have characterized our ancestors since the African emergence and expansion of our species throughout the Old World, from South Africa to Australia, by at least 50,000 years ago.

Right now, therefore, humans across the whole world are a biological unity at the species level. However, it was not always so. Before the main spread of Homo sapiens out of Africa, many different hominin species roamed the Old World continents at any one time. There were even several distinct hominin genera (groups of related species) in Africa before one million years ago. These genera and species had been differentiating from each other for many times longer than the modern human time span, so they expressed far more diversity than we see across our own species now. All eventually became extinct, except for the still rather obscure line of genetic descent that led eventually to us, Homo sapiens. Some of those pre-sapiens species, especially the Neanderthals and Denisovans of Europe and Asia (to be discussed in chapter 4), also hybridized with our own Homo sapiens ancestors, in the process transferring genes that still survive among us today.

From a five-million-year perspective, one point cannot be denied. As Homo sapiens, we have ridden hard on the achievements of our remote
ancestors to become the most successful, and now unique, heirs to those five million years of hominin biological and cultural evolution. As Charles Darwin noted over 150 years ago, “Man still bears in his bodily frame the indelible stamp of his lowly origin.” That five-million-year time span postdates our evolutionary separation from the ancestors of the living great apes, especially the panins (chimpanzees and bonobos, members of the genus *Pan*) of equatorial Africa. After that separation, hominins forged their own unique identities as upright bipedal and increasingly large-brained primate life-forms. The panins forged their own identities in another direction to become the knuckle-walking chimpanzees and bonobos that exist in tropical Africa today.

We come from an ape heritage, as of course do our closest cousins in the natural world, the great apes themselves. Jared Diamond once referred to us as the “Third Chimpanzee,” but our brains are huge by ape standards, and our cultural creations astonishing. Our ancestors spread eventually across the whole world, while those of the living great apes (panins, gorillas, orangutans) remained in tropical Africa and Southeast Asia, where they suffer threatened conditions of survival today. Our current human population numbers cause many of us concern, as does our ongoing impact on Planet Earth. In evolutionary terms we have been enormously successful, at least so far.

Brains, Cultural Creations, and Population Numbers

Let me illustrate the overall evolutionary success of humans with an impressionistic illustration of two aspects of the hominin achievement plotted against time. The first is the increase in the volume of the brain, from a chimpanzee (average 380 cubic centimeters) to a modern human (average 1,350 cubic centimeters), as recorded from fossils during the last 3.5 million years for which such brain size records exist (figure 1.1). A brain volume increase on this scale—by a factor of three or four through such a relatively brief period of evolutionary time—is unprecedented in the rest of the mammalian world.

The second aspect lies in human behavior, in the rising complexity of cultures and societies. Figure 1.2 is schematic and selective, but it
Figure 1.2. The evolution of hominin culture since 3.5 million years ago, with a time line for the four acts described in this chapter. Act I commenced six million years ago, but its early phases reveal no definite signs of cultural activity. The figure has two registers and starts at the bottom left. Note the changes in chronological scale in the vertical axes. KYA = thousands of years ago; MYA = millions of years ago.
focuses on some of the major developments in social and economic organization as recognized in the record of archaeology. These include developments in technology (e.g., stone to metal), provision of food (e.g., hunting and gathering to food production), and social organization from small nuclear family groups to the state-level empires of early history. The increasing tempo of development with the rise of food production after 10,000 years ago is evident.

There is a third aspect of the human career that is more difficult to illustrate: the increase in the estimated size of the human population. Prehistoric population sizes can be inferred from indirect sources of information, such as comparable ethnographic population densities, and areas and numbers of archaeological sites at different points in time. They can also be estimated from genetic comparisons of mutation frequency between the DNA sequences of different ancient and living populations. The larger the population, the more frequently one might expect mutation events to have occurred in its genome, and such mutation events can be dated using molecular clocks. However, I do not attempt here to create a graphical guestimate of hominin population numbers through time because there are too many uncertainties. The key point is that our numbers have grown dramatically during the course of our Odyssey.

The oldest hominin populations were small, and there were perhaps still fewer than two million humans in the world at 12,000 years ago. With the widespread establishment of food production, starting around 12,000 years ago, human populations began to increase with unprecedented speed. By 2,000 years ago we had reached an estimated 300 million people worldwide. Since 1 CE our numbers have skyrocketed, to one billion by 1800 CE and to almost eight billion now.

Of course, the trends through time in these three examples of human achievement are not identical. Our modern human brain volume was achieved by some hominin species more than 50,000 years ago, including our own *Homo sapiens* ancestors and our extinct Neanderthal cousins. There was a major development of cultural complexity (e.g., art, body ornamentation, and purposeful burial of the dead) at about the same time. But our population size only really began to explode with
the beginnings of agriculture after 12,000 years ago. States, cities, and writing only became prominent in certain regions of the world after about 5,000 years ago. Before this, most of humanity lived in small egalitarian kinship-based communities.

In short, our evolution over the past five million years of our Odyssey has impacted our world on a scale equivalent to that of a major epochal change, like the coming of the Ice Ages or the appearance of mammals. As earth scientists Simon Lewis and Mark Maslin point out, for the first time in the earth’s 4.5-billion-year history, a single species is increasingly dictating its future.4

Hominin Evolution as a Four-Act Drama

The events that have taken place in hominin prehistory can be visualized as a sequence of four Acts, which can be succinctly described as follows (figure 1.2):

- Act I: hominins before the genus Homo (6 to 2.5 million years ago).
- Act II: the genus Homo onward to the fossil appearance of Homo sapiens (2.5 million to 300,000 years ago).
- Act III: Homo sapiens onward to the appearance of food production (300,000 to 12,000 years ago).
- Act IV: the age of food production (12,000 years ago to the present).

Act I (discussed in chapter 2) was played out in Africa by the hominins who existed after the split from the panins but before the appearance of the genus Homo (to which we all belong today). It featured the emergence of a prototype hominin, most probably in Sub-Saharan Africa (although not everyone agrees on an ultimate African origin—see chapter 2), out of a small-brained and apelike ancestor who most likely had an upright body posture, and who later developed the ability to make and use stone tools. No definite fossils of this prototype are known just yet. The subsequent cast of Act I, as known to us today, included the extinct African hominin genera Australopithecus and Paranthropus (discussed together in chapter 2 as the “australopithecines”).
Act I ended with the gradual appearance of traits that defined the emerging genus *Homo*, especially an increase in brain size. However, ancient hominins did not evolve from one genus or species into another overnight—such processes required hundreds of millennia and occurred at different rates for different traits. Bipedalism, for instance, began to develop long before any marked increase in brain size or the use of stone tools. There is no single date at which the genus *Homo* suddenly sprang forth, fully formed.

Between 2.5 million and 300,000 years ago, Act II (chapters 3 and 4) was played out on the earth’s stage by a cast of species within the new genus *Homo*. The other australopithecine species that had existed in Africa during Act I gradually became extinct. As far as we know, one or more species of *Homo*, especially *Homo erectus*, left Africa early in this second Act, around two million years ago, to migrate into accessible regions of Eurasia.

Another significant migration out of Africa appears to have occurred during the later part of Act II. This gave rise eventually to new hominin species across Eurasia, one being the well-known Neanderthals, another being the recently discovered Denisovans of Siberia and eastern Asia. Back in Africa, some of the large-brained hominins who remained behind continued the separate evolution there of *Homo sapiens*, although we must wait for Act III to meet actual members of this species through their bones.

Act III (chapters 5 and 6) revolves around a new cast of ancestral modern human hunters and gatherers—*Homo sapiens*—the oldest fossil specimens of whom so far date between 300,000 and 200,000 years ago. Comparisons of skull morphology and ancient DNA suggest an earlier genetic initiation for this species in Sub-Saharan Africa, perhaps about 700,000 years ago, but no definite *sapiens* fossils yet exist from this earlier time period.

The definitive entry of *Homo sapiens* into Eurasia, in terms of founding the ancestry of living human populations outside Africa, occurred much later, between 70,000 and 50,000 years ago in terms of archaeology and genetic dating. Much mystery swirls around this topic, as I discuss in chapter 5, but we do know that ancestral *Homo sapiens* overlapped in
time and sometimes interbred with the other *Homo* species that also coexisted during Act III, both inside and outside Africa. These included the Eurasian Neanderthals and Denisovans.

All of these non-*sapiens* species of *Homo* became extinct toward the end of Act III, perhaps because of cultural and demographic competition as well as interbreeding with the clever and more fecund *Homo sapiens*, “the wise human.” Act III also witnessed the colonization by *Homo sapiens* of the remainder of the habitable world beyond Africa and Eurasia (except for distant oceanic islands), including Australia, New Guinea, and eventually the Americas.

Ancestral modern human populations during Act III, and especially since 50,000 years ago, also left behind a cultural record with far more detail than that left by previous hominins. Archaeologists recover aspects of these developing cultural traditions as art on cave walls and on portable objects, as red ocher used to decorate burials, and as body ornaments, including beads and pendants of stone, bone, and shell. *Homo sapiens* populations buried their dead according to rituals that sometimes involved placement of manufactured ornaments or other items for the afterlife in purposefully dug graves. These cultural traits, plus the sustained ability to travel farther at sea and farther into extreme cold than the more archaic hominins, were convincing and identifiable achievements unequalled by any pre-*sapiens* species of *Homo*.

Act IV (chapter 7 and onward), the final act that still occupies the global stage today, commenced around 12,000 years ago in the Middle East, and more recently in several other key homelands of agriculture. It emerged within the pronounced episode of global warming that followed the last Ice Age, after 18,000 years ago, and it involved only *Homo sapiens*—all other hominins were extinct as separate and independent species by this time.

The key development in Act IV was food production through the domestication of plants and animals. This created transportable food-producing economies that could underpin migration into new territories, leading in turn to dramatic population growth in latitudes where agriculture was possible. The eventual outcomes of this population growth were developing social orders that yielded cities and states in
many parts of the world, and eventually a series of scientific and industrial revolutions, all leading into our current world situation. The world’s largest language families underwent their expansions during this phase, many of them carried with the migrations of early farming and pastoralist populations.

Anyone who thinks further about this succession of four acts within human prehistory will quickly draw one obvious conclusion: each act was shorter in duration than its predecessor yet was increasingly dramatic in terms of human dispersal and population size. Human evolution has been like a snowball rolling downhill, gathering size and speed on steeper sections, losing momentum on flatter ones, but certainly never stopping altogether. Climate scientists even debate the possibility of an Act V which they term the Anthropocene, the Age of Humankind, although its date of commencement is not unanimously decided. The beginnings of agriculture, the Industrial Revolution, and the invention of the atomic bomb are currently all candidates.

Population Growth and Migration: Why They Mattered

Of all the hominin genera and species known to have existed, *Homo sapiens* survived the evolutionary fray as an eventual winner, alone in the world since perhaps 30,000 years ago. We are now burdened with a growing population that shares dangerously unequal access to our earth’s subsistence resources.

In modern human affairs, a growing population has long been a fundamental factor in driving history, for good or ill, as stressed for recent human history by demographer Paul Morland in his book *The Human Tide*.\(^5\) Increasing population size encouraged migration, and migration into new and productive landscapes in turn encouraged increasing population size—a powerful mutualism that must have driven a great deal of the Five-Million-Year Odyssey, especially in the case of *Homo sapiens*. Migration, after all, was one of the major factors that divorced the course of hominin evolution from that of the great apes. Our ancestors left home for good.
Prior to the start of the Colonial Era in 1492 CE, modern humans, *Homo sapiens*, experienced two unprecedented worldwide episodes of migration that led to significant population growth. The first was the successful movement beyond Africa into the rest of the world during the latter part of Act III. This unfolded as a series of consecutive migrations that commenced over 50,000 years ago, initially spreading out of Africa through Eurasia to reach Australia and New Guinea, and culminating in the settlement of the Americas from northeastern Asia by 15,000 years ago. The total human population increased greatly in overall numbers during this period, partly due to the enormous extent and resource potential of the newly colonized land masses.

The second major episode of growth resulted from the migrations of populations with transportable economies of food production during the past 12,000 years. Some of these farmer and herder migrations achieved enormous extents, even if they required centuries or millennia to unfold completely. These Act IV migrations in the Odyssey are of direct interest to billions of people in the world today because of their association with the origins and histories of many existing ethnic populations and language families. If we ever pause to wonder why English is spoken in England and Australia, Turkish in Turkey, Maori in New Zealand, and Navajo in Arizona, we will soon discover that the answers involve plentiful human migration.

Having introduced the actors, there are still two important matters that require some exposure in this introduction: the stage and the clock.

Our World as the Stage

Human evolution did not occur against an unchanging environmental background. Behind it lay the earth’s surface and atmosphere, subject during the past 2.6 million years of the Pleistocene and Holocene geological epochs (defined further in chapter 3) to regular cycles of climatic change. These gyrated, in cycles of approximately 100,000 years, between glacial ice ages at one extreme and interglacial warm intervals at the other, the latter similar to the climate that our world enjoys, and fears,
today. Each cycle was associated with substantial swings of temperature, rainfall distribution, and global sea level, the last varying by up to 130 meters, similar to the height of a thirty-five-story building.

Remembering that global sea level is close to a 120,000-year peak at the moment, let us imagine what the world’s coastlines would have looked like whenever a 130-meter depth of seawater became locked away in the massive ice sheets that extended from the North Pole almost as far south as New York and London. Because sea level change in the open ocean is a worldwide phenomenon, all of the world’s great river deltas would have been narrow incised river channels when the sea surface was so low and continental shelves would have been exposed as flat coastal plains around the edges of the continents. One would have been able to walk almost entirely on dry land, except for river crossings, from the Cape of Good Hope to Cape Horn. Asia was then joined to Alaska across a dry Bering Strait; Borneo and Bali were joined to the Malay Peninsula; and New Guinea was joined to Australia. The outlines of these land bridges can be seen in figures 3.1, 5.1, and 6.1.

One can also imagine, of course, what would have happened as rising sea levels flooded back over 130 meters in the reverse direction during warm interglacial conditions, when the ice sheets melted. Coastal impacts would have attended both directions of movement, especially when they were relatively rapid. Our ancestors lived through such glacial to interglacial cycles many times (probably more than twenty) during the 2.6 million years of the Pleistocene epoch, surviving through adaptation and movement as glaciers and sea levels waxed and waned in alternation.

Today, human activity is prolonging the current warm interglacial climate toward uncertain outcomes, causing many of us to question our future. The great climatic cycles of the Pleistocene enable us to see the results of our current actions from a long-term perspective. I do not profess to be a climate scientist or a politician, but I must state that I share the concerns of many people about the current climatic trends as they increasingly move the earth toward one of the warmest phases in its history during the past million years.
How Old Is It? Dating the Past

There is one final matter to explain before we launch into the Odyssey. To understand our past, we need a precise chronology for the many ancient populations and events that we wish to study. Obviously, it matters greatly if a given fossil from an australopithecine, a Neanderthal, or a modern human is two million, 200,000, or only 20,000 years old. The same applies to assemblages of stone tools, and indeed to all elements that survive from the human past. We need to know the real age if we are to avoid confusion in our interpretations.

So, where do “absolute” dates (i.e., dates counted in solar years ago) come from, bearing in mind that even the most precise will always have a statistical range of laboratory error? I am going to forego the temptation to explain here all of the dating methods used by investigators of the deeper levels of the human past, before written records existed, in terms of their laboratory techniques and statistical calculations. Readers who wish to know how scientists calculate dates using changes in the earth’s paleomagnetism recorded in sediments, or how they measure the changing states of the various atomic particles used in radiocarbon, potassium-argon, uranium series, electron spin resonance, optically stimulated luminescence, and cosmogenic nuclide dating (to name some of the major techniques currently dominating the literature), and over what periods of time these various methods work should research the answers themselves. I can only deal in this book with the actual results.

Furthermore, archaeology is not the only source of absolute dates in prehistory. Geneticists have access to many different molecular clocks that can calculate the spans of time that have elapsed since periods of common origin between related populations and species. Linguists can calculate approximate dates for periods of common origin between related languages, based on observations about how quickly individual languages and words have changed within the historical record. As with archaeological and geophysical dating, however, many of these methods are complex and highly statistical, and this is not the place to go into them in detail.
My main interest here is to discuss how we might “trust” the dates that scientists return to prehistorians, allowing that the issue is not just one of potential laboratory or calculation error but of ancient context. Error ranges and variations in laboratory competence are nowadays relatively minor contributors to uncertainty. But ancient context is absolutely fundamental, and it has two aspects—the context of deposition, and whether the date is direct or indirect in terms of the material being dated.

The first aspect concerns the context of deposition, or how the object of interest reached the resting place from which it emerged into the scientific light of day. Deposition can be either primary or secondary. An undisturbed human skeleton in a grave, with all its bones in articulation, is in a primary context. If it is under 50,000 years old it can probably be dated directly by radiocarbon dating, as long as the bones still contain sufficient carbon-bearing collagen. But a piece of charcoal in the grave next to that skeleton will not necessarily be in a primary context, unless it can be shown that the burial party deliberately lit a fire during the funeral ceremony. Otherwise, the charcoal could have been dug by the gravediggers out of deeper layers laid down many thousands of years before the death of the person buried, and then thrown back with the grave fill.

As another example, a stone tool or a fossil skull found in a layer of Pleistocene riverine sediment might be in a primary context if it was incorporated directly from its user or owner into an actively accumulating flood plain. But it is also necessary to consider whether the sediment was secondarily redeposited by forces of nature long after its original deposition. Thus, tool or skull and sediment might be of the same age, or they might be thousands, even millions, of years apart in age. Only informed research of a geomorphological and stratigraphic nature will give the answer.

The second issue is that of direct versus indirect dating. For example, the bones of a human skeleton subjected to radiocarbon dating are clearly being dated directly, even if the bones come from a secondary disturbed context. If the laboratory calculation of the date is correct, then that date applies automatically to the death of the human who once
carried the skeleton, wherever the bones might have been found. But a date derived from an adjacent piece of charcoal is, of course, a secondary date when applied to the skeleton, as described above—correct for the charcoal, for which it is a direct date, but not necessarily for the skeleton.

The materials that are being dated can also produce problems. Usually, dates for artifacts of stone, pottery, or metal are indirect because these nonorganic substances are difficult to date directly in terms of their actual manufacture by human artisans, as opposed to their geological ages as raw materials. However, direct dating methods can be applied to organic materials that contain carbon, such as bones or charcoal, as well to sediments that contain other radioactive minerals. Debates over the correctness of the chronologies claimed by those who have recovered ancient dating samples have peppered the literature about human prehistory for many decades.

Sometimes scientists can be led astray for long periods if wrong dates masquerade as right ones because of contextual ambiguity, especially if no further corroborating discoveries are made. More often, however, when discoveries around the studied topic are frequent, once-claimed but incorrect chronologies can be revealed as isolated outliers from the main distribution, hence unconvincing. Caution about absolute dates claimed for ancient hominins and their cultural products is always wise, as long as it is also well informed.
INDEX

Note: Page numbers in *italics* indicate figures and tables.

Abbo, Shahal, 146
Abu Hureyra (Syria), 165
Africa: ape ancestors in, 18–19; early agriculture in, 142, 143, 174–180, 195, 247; food producer migrations, 179–180, 279–286; hominin migration from, 40–42, 45–52, 55, 57–58, 306–309; hominins in, 3–4, 6, 8–12, 20–36, 65–72, 76, 83, 306–308; *Homo sapiens* and, 12, 41, 86, 89–95, 109–110; lithic industries, 82, 96–97, 103. See also Acheulean (stone tool industry); Oldowan tools
"African Eve," 64, 91
Afro-Asiatic language family, 279–281
Agriculture. See food production
Aiello, Leslie, 36
Ain Boucherit, 49–50
Ain Ghazal (Jordan), 165, 222–223
Ain Mallaha (Israel), 157
Akkadians, 249–250
Alaska, 126–127
Alexander the Great, 62, 217–218
Algonquian language family, 294, 300–304
alpacas, 186, 190, 192
Altai Mountains (Asia), 76–79, 82, 235, 258
Ambrose, Stanley, 97
Americas, the, 95; agricultural homelands, 142, 184–196; genetics, 128–130; Holocene movements in, 293–304; migration to, 92, 98, 101–102, 124; populations, 65, 92, 101, 106, 117, 121–123; settlement of the, 6, 12, 46, 112–135, 310; in the time of the First Americans, 115. See also First Americans
Amerind (language group), 127–128
Amud, 35
Amur Basin, 116, 129
Anatolian languages, 238–239, 242
Andes, 141
Angkor (kingdom of), 265
animals: in the Arctic, 116; breeding of, 137; dogs, 134, 145; domestication of, 145–151, 244; genetic changes, 137; herding of, 282; migration of, 48, 226–227; pigs, 167; and the Sahara, 177
Anthony, David, 235
Anthropocene, 11
Apidima Cave (Greece), 93
Arctic Canada, 133–135
Arctic Circle, 114, 117
Arctic Small Tool Tradition, 134
Ardipithecus (genus), 28
Argue, Debbie, 54
art, 6–7, 10, 80, 89, 98, 109, 246, 309
Ashoka, 248
Atapuerca cave complex (Spain), 29, 35, 74. See also Gran Dolina (Spain); Sime del Elefante (Spain); Sima de los Huesos (Spain)
Atbara River (Sudan), 178
Athabaskan language family, 297
Aurignacian, 98

349

Australopithecines, xx, 8, 18–21, 54; about, 28–30; brains of, 24, 30; and cultural development, 23; dwindling of, 32; versus Homo, 34; size of, 20; skulls, 24. See also hominins

Austroasiatic language family, xviii, 254, 264–266
Austronesian language family, xviii, 180, 263, 266–270
axes (edge-ground), 104, 110, 120, 287, 309

Bab el Mandeb (sea passage), 27, 46–47, 281
Baffin Island, 134
Baishiya Cave (China), 77
Baluchistan (Pakistan), 167
Bantu languages. See Niger-Congo language family
barley, 140, 141, 142, 153, 155, 163–164, 177, 231, 234, 260
Battle Axe culture, 237
beads, 10, 89, 93, 96–97, 262, 268
Belize, 299
Bell Beaker culture, 236, 243
Bering Strait land bridge (“Beringia”), 13, 112–114, 117, 123, 125, 134
bifacial points/tools, 87–88, 110, 122, 125–126, 132
bipedalism, 9, 18, 19–20, 25, 29, 39, 58
Birdsell, Joseph, 108
birth rates, 38, 81, 99, 101, 138, 166
blade tools, 80, 96, 98, 103. See also tools
Blazek, Vaclav, 280
boats, xviii, 112, 120, 126, 132, 224, 291
Böhme, Madelaine, 25, 56
bonobos (Pan paniscus), xx, xxii, 17–18, 25–26
Brahui (language), 248
Braidwood, Robert, 156

brains: of australopithecines, 20, 30; of Early Pleistocene Homo populations, 34–37; effect of diet on the, 37; erectus (“Solo Man”), 82–83; “Harbin human group,” 78, 79; of hominins, 5, 36, 37, 68, 83; of modern humans, 20, 37; of Sima hominins, 74; volume, 4–7, 54
Breasted, James Henry, 154
breastfeeding, 139
British Isles, 228–229
Broken Hill (Kabwe), 68
Buddhism, 247
burials, 7; in Australia, 103; in Brazil, 130;
cremation, 103; Homo naledi, 83; Homo sapiens, 93–94, 96, 98; in the Levant, 93–94; material culture of, 224, 226; modern humans, 10; of Neanderthals, 80; Polynesian, 274–275; in Siberia, 128; at Sima de Los Huesos, 75; in Turkey, 165, 223; in Vietnam, 261–262; by Yammaya, 236; Yana, 116
Bushmen. See San (Bushmen); hunter-gatherers

Cagayan Valley (Philippines), 57, 58
Callao Cave (Philippines), 57
Caribbean Islands, 132
Çatalhöyük (Turkey), 165, 222–223
Caucasus, 75, 82, 220, 224, 231, 235–236
Celtic languages, 239
Chalcolithic Age, 158
Chan, Eva, 92
Chibchan language family, 299
chickens, 137, 140, 144, 182, 255, 268, 276–277, 285
Childe, V. Gordon, 147, 154–155, 235
child-rearing; 37. See also reproduction
chimpanzees (Pan troglodytes), xx, xxii, 4, 17–18, 22, 25–26, 31
China, 51, 167–174, 262–263, 311. See also East Asia
Chiquihuite Cave (Mexico), 125

For general queries, contact info@press.princeton.edu
chronology: Australia, 102; and *Homo sapiens*, 60, 91; Pleistocene, 43–44; radiocarbon, 76, 102, 111; research methods for, 14–16; Sahul, 102
climate changes: and agriculture, 150; versus australopithecines, 34; and Deccan Peninsula, 247; East Asia, 169–170; and Fertile Crescent Neolithic, 153, 158, 166, 222; global warming, 10, 12–13; Last Glacial Maximum, 148; in New Guinea Highlands, 183; and out-of-Africa migration, 109; and *Paranthropus*, 32; Pleistocene epoch, 45; and Sahara, 176
clothing, 49, 79, 98, 117, 134, 222
Clovis culture, 126, 128, 132
Con Co Ngua (cemetery site), 261
Congo River, 18
Cooper’s Ferry (Idaho), 132
copper. See metallurgy
Corded Ware (culture), 236, 243
cores (tortoise/prepared), 82, 125
COVID-19, 100
Cramon-Taubadel, Noreen, 129
Crosby, Alfred, 214
cultivation, 137, 150, 156, 158, 162, 181, 191, 234, 257–258, 277
cultural evolution, 2, 4–7, 10, 23, 95, 99
“cultural influence,” 186
Cyprus, 163–164, 167, 224
Danuvius guggenmosi (ancient primate), 25
Darwin, Charles, 4, 23, 100, 208
dating methods, 14–16, 27–28, 331n1; direct versus indirect dating, 15
Deccan Peninsula, 249
Denham, Tim, 181
Denisovans: about, 9–10, 59–62, 76–79; ancestry, 62; emergence of, 72; evolutionary relationships, 61; and *Homo sapiens*, 79; and modern humans, 77–78; Neanderthals split from, 74
Dennell, Robin, 117
Diamond, Jared, 4, 149, 215–216
Diaz, Bernal, 215
dingoes, 288–292
Dmanisi (Georgia), 35, 48, 52, 71, 83
dogs, 133–134, 145, 157, 163
domestication, xviii, 10, 137–138, 145–151
Douka, Katerina, 76
“Dragon Man,” 78
Dravidian language family, 206, 247–249
Dubois, Eugène, 23
Early Pleistocene *Homo*, 21, 34–40, 46, 48–52, 54
East Asia, 195; agricultural homelands in, 167–173, 251–260; artifacts, 83, 122; food production, 102, 141; genetics, 130–131; importance of Japan, 119–120; Neolithic, 170–174, 255, 257–259; populations, 114, 116, 173–174, 254–255. See also China
Eastern Woodlands (United States), 194–196
edge grinding (axes), 104, 120, 287
Egypt, xix, xxii–xxiii, 141, 155, 177
Elamite (language), 248
elite dominance, 213–218
Engels, Frederick, 22, 37
English, 203, 206–207, 215
Eskimo-Aleut language family, 127, 128, 133, 134, 135
Euphrates Valley, 249
family sizes, 99, 139–140
farming. See food production
Fertile Crescent, 153–166, 221–224; agriculture, 146, 177; animals, 145; economic aspects, 221–222; expansion out of, 220, 229–231; farming/herding, 141, 177–178, 221; and food production, 153–156, 163–164, 243; Neolithic, 158–162, 165–167, 225; origin of term, 154; social/cultural development, 164. See also Natufian
fiber, 37, 150, 268
fire, 37–38, 49, 67, 79, 81, 100, 106
First Americans, 117, 121–123; archaeological evidence, 124–126; and genetics, 128–129; and linguistics, 127–128; movements of, 132
CVICE-19, 100
Cramon-Taubadel, Noreen, 129
Crosby, Alfred, 214
Cultivation, 137, 150, 156, 158, 162, 181, 191, 234, 257–258, 277
Cultural evolution, 2, 4–7, 10, 23, 95, 99
“Cultural influence,” 186
Cyprus, 163–164, 167, 224
Danuvius guggenmosi (ancient primate), 25
Darwin, Charles, 4, 23, 100, 208
Dating methods, 14–16, 27–28, 331n1; direct versus indirect dating, 15
Deccan Peninsula, 249
Denham, Tim, 181
Denisovans: about, 9–10, 59–62, 76–79; ancestry, 62; emergence of, 72; evolutionary relationships, 61; and Homo sapiens, 79; and modern humans, 77–78; Neanderthals split from, 74
Dennell, Robin, 117
Diamond, Jared, 4, 149, 215–216
Diaz, Bernal, 215
First Australians, 107–108
First Japanese, 120
fishhooks, 106, 121, 132, 291
Flannery, Tim, 100
Flores Island (Indonesia), 53–56
food production: about, 7–12, 102, 136–151, 310–312; advantages of, 138–140; in Africa, 174–180, 278–285; in the Americas, 184–191, 293–304; in Asia, 167–174, 251–277; in Australia, 106, 290; and climate changes, 150; in Cyprus, 163–164; early farming dispersal hypothesis, 197–199; in Egypt, 155–156, 278–279; in Europe, 224–229; expansion of, 220–221, 224; Fertile Crescent, 153–157, 163–164, 222–224, 243, 280; homelands, 152–196; and hunter-gatherers, 146–147, 312; irrigation, 192; and language, 197–219; main developments in, 195; in Mesoamerica, 193; in Mesopotamian lowlands, 156; and migration, 12; New Guinea, 99, 180–184; origins of, 141–151, 156; and population growth, 139–140, 310; South Asia, 231–234, 245–249
Ford, James, 185
Forster, Johann Reinhold, 238, 271
FOXP2 (gene), 80
Ganges Basin, 248
Gangetic Plain, 233–234
Gaomiao (China), 262
Garrod, Dorothy, 157
gazelles, 150, 157, 162, 176
Gibbons, Ann, 79
Gimbutas, Marija, 235, 244
glacial-interglacial cycles, 44–46
global warming, 10
Globular Amphora (culture), 236
Göbekli Tepe (Turkey), 159–162, 177, 226
Golson, Jack, 181
Gona, 31
Gonur (Turkmenistan), 234
Gopher, Avi, 146
gorillas, 18
Gowlett, John, 38
Gran Dolina (Spain), 66–67, 69, 71
Greek (language), 217
Greenberg, Joseph, 127
Groves, Colin, 87
Guatemala, 193
Hadza hunter-gatherers, 91, 92
hair, 3, 23
Halafians, 249
hand axes, 69–70, 75, 87
hand grip (in hominins), 18
Harappan phase, 233–234
Harar, 20
“Harbin human group” (species), 33, 59–60, 72, 78–79
Heidelberg (Germany), 67
Helalongjiang (China), 78, 116
Helwan Point, 177
Hemudu (China), 172
Herodotus, xxii
Heyerdahl, Thor, 275
Hill, Jane, 301
Hinduism, 247
Hittites, 238
Hoabinhian, 261–262, 266
Hoenigswald, Harry, 239–240
Holocene (era): climates, 148; and food production, 23, 102; as an interglacial, 12, 43; Japan during, 258; migrations in the Americas, 293–294; population movements during, 283; settlement during, 133–135; stone tool industries, 287
hominins, xviii, 3; about, 18–23; in Africa, 27–30, 33; ape ancestors of, 18; versus apes, 18–24; bipedality of, 19–20, 58; brains of, 36, 37; in China, 51; in Eurasia, 33; in Java, 52; populations, 7; Sima de Los Huesos, 74–75; species, 42. See also panins
Homo antecessor, 60, 66–67, 69, 79
Homo erectus, xx, 3; and the Arctic Circle, 114; departure from Africa, 9, 47–51; discovery of, 23–24; floresiensis, 55; in Java, 51–52; Nariokotome Boy, 36; in

For general queries, contact info@press.princeton.edu
Southeast Asia, 62, 71; tool industries, 103. See also Early Pleistocene Homo

Homo ergaster, 34, 36

Homo floresiensis, 46–47, 53–57, 62, 82, 84

Homo georgicus, 50

Homo habilis, 34

Homo heidelbergensis, 60, 61, 67–68

Homo luzonensis, 57, 58, 62, 84

Homo naledi, 62, 83, 84

Homo neanderthalensis. See Neanderthals

Homo rhodesiensis, 61, 68

Homo rudolfensis, 34

Homo sapiens: and Arctic Circle, 114; and art, 89; and chronology, 60; emergence/spread of, 44, 71–72, 86, 89–92; in Eurasia, 9, 101–102; evolutionary relationships, 33, 42, 61–68; facial features and findings, 87, 93; in general, xx, 1–4, 9–12; mating, 79; and migration, 12, 96; and Neanderthals, 62, 79–80, 100–101; origin in Africa, 3, 95; and other hominins, 87; out-of-Africa migration, 12, 92–95, 109–110, 130; and reproduction, 26, 83–84; skulls, 90; and technology, 100; teeth, 87; and tools, 87–89. See also Australia: settlement of Hopi, 302

horses, 26, 67, 81, 116, 132, 140, 215, 236, 259, 303; “horse hoof” cores, 109

Howe, Bruce, 156

hunter-gatherers: and agriculture, 146–147, 187; and farming, 312; and food production, 136, 138; Hoabinhian, 262

hunting, 98, 106, 116, 133; by Neanderthals, 80–81; North American, 294, 297–298; populations, 38–39, 139, 146; in Sub-Saharan Africa, 91, 282

hybrid vigor, 100

hyoid bone 74, 80

ice ages, 10, 12–13, 43, 45, 310

ice sheets, 112–115, 117

Indo-Iranian speakers, 266

Indonesia, xviii, 270; art in, 6; Austronesian societies, 270; food production, 277; land of, 45–46; languages in, 252; Malayans/Papuans, 270–271; tools, 287. See also Flores Island (Indonesia)

Indus Valley, 232–233

interglacials, 13, 43, 45, 47, 81, 93

Inuit (Eskimo-Aleut speakers), 133–135, 297, 312

ironworking, 180

Isaac, Glynn, 76

Jacobs, Zenobia, 76

Java, 45–56, 82–83

“Java Man,” 23–24, 51–52

Jericho, 159, 162

Jiangxi (China), 170

Jiangzhai (China), 172

Jomon pottery, 119, 120

Jones, William, 238

Kalahari Desert, 284

“Kelp Highways,” 113, 126, 148

Kenyon, Kathleen, 159

Khoisan language group, 282

Kintampo culture, 179

Kon-Tiki sailing raft expedition (1947), 274–275

Koobi Fora, 21, 39

Kra-Dai language family, xviii, 206, 252, 254, 263, 265, 268

Krantz, Grover, 298

Kuk Tea Station, 181–182

Kuroshio Current, 269

Lo (L zero) (mitochondrial lineage group), 91

lactose persistence, 166, 221

Laetoli (Tanzania), 20

Lake Baikal (Siberia), 128
La Marmotta, 226
language families, general, xxi, 2, 11, 197–219.
See also entries for named language families (as listed in table 9.1)
Lantien, 51
Lapa do Santo Cave (Brazil), 129
Lapita culture, 264, 271, 273
Last Glacial Maximum, 125; climate changes, 148; conditions, 44; exit from, 144; and human activity in Siberia, 117; Nile Valley during, 155–156; Northeast Asia and the Americas, 112, 114; and population, 148; tool industries, 98
Latin, 209
Lee, Richard, 139
Leon, Marcia Ponce de, 52
Levallois (technique), 70, 77, 81–82, 93
Levant, 279–280
Lewis, Simon, 8
Liang Bua, 35, 53–54
Liangzhu (China), 173, 263
Liao River (China), 142, 206, 251, 255, 257
Liao River valley (China), 169, 170
Linear B (Mycenaean) Greek, 238
Lipson, Mark, 92
llamas, 186, 190, 192
Lokalelei, 31
Lomekwi, 31
“Lucy” (female australopithecine), 20, 21, 24, 30, 54
Luzon (Philippines), 57–58, 82, 269
Madeira drainage system, 191
Madjedbebe, 104–105, 309
Magdalenian, 98
Malapa Cave, 32
Malayo-Polynesian languages, 269–273, 276, 290
mammoths, 46, 80, 88, 114–117, 132
Man Bac (Vietnam), 262
manioc (cassava), 185, 191–192, 296, 300
Maslin, Mark, 8
Mata Menge, 54
Max Planck Institute for Evolutionary Anthropology, 76, 257
Mayans, 299
McAlpin, David, 248
meat cookery/eating, 29, 36–38, 81, 190
Medieval Warm Period, 134
Mehrgarh (Pakistan), 230, 233
Melanesia, 271–272
Melka Kunture (Ethiopia), 68, 126
Mesoamerica, 141, 192–194, 301–303
metallurgy, 187, 221–222, 233–236
Mexico, 302
microblades, 122, 125–127, 134
migration: about, 1–2, 9–12, 308, 311–313; Afro-Asiatic migration, 279–281; and agriculture, 12, 116; in the Americas, 118, 123–134, 298–304; of animals, 48; in Asia, 251–277; Bantu, 179–180, 285–286; and Early Pleistocene Homo, 39, 45–56; and farming, 254; Fertile Crescent, 153–154, 163–166, 229–231; during Holocene, 127; and Homo sapiens, 12, 85, 89–109; Khoisan, 282–283; with language families, 197–219; Malayo-Polynesian, 269–273, 290; Neolithic Europe, 224–229, 243
Mijares, Armand, 57
Milankovitch cycles, 44
milk products, 137, 145, 166, 177–178, 221
Minanga Sipakko (Neolithic Settlement), 277
Miocene epoch, 17, 43
“missing link,” 23–25
Mithun, Marianne, 213–214
mitochondrial DNA: about, 321n4; “African Eve,” 63; from European populations, 228; and First Australians, 107; of Japanese, 123; Neanderthals and Homo sapiens, 62–63; and non-Bantu populations, 91–92
“Mitochondrial Eve,” 64, 91
modern humans. See Homo sapiens
Mohenjo Daro, 233
Mohicans, 301
Monte Verde (Chile), 132
Morland, Paul, 11, 313
Mousterian (stone tool industry), 70, 77, 81
Movius Line, 69
Munda-speaking peoples, 265
Muskogeans, 298–299
mutations, 318n10
Na-Dené (language group), 127, 128
“Nariokotome Boy” (skeleton), 36, 319n27
Native Americans, 128, 135, 275, 293, 303.
See also Americas, the
Natufian, 157–158
Neanderthals, xx, 3, 9–10, 59–63; about,
72–76, 79–81; ancestry, 62; emergence
of, 72; evolutionary relationships, 61, 65;
extinction of, 99–131; fossils, 79; gene
transmission, 26; and Homo sapiens, 62,
79, 100–101; hunting, 80, 81; skeletons, 73;
split from Denisovans, 74
needles, 97
Neo-Europeans, 214–215
Neolithic, 198, 224–229, 254, 268–269, 281
Neolithic Migration, 228–229
Neolithic (Pre-Pottery). See Pre-Pottery
Neolithic
New Guinea, xviii; agriculture, 181, 183;
versus Australia, 183; climate, 144; fruits/
tubers, 182; importance to Melanesia,
271–272; populations, 99
New Guinea Highlanders, xxii, 180–182
New World, 215–216, 295–297
Niger Basin (West Africa), 178
Niger-Congo language family, 179–180,
283–286
Nile Valley, 155, 176, 279
Nilo-Saharan language family, 176, 278,
280–284
Nwya Devu (Tibet/China), 116
Oaxaca, 193
Odyssey (Homer), xxii
Oldowan tools: about, 49, 69; discoveries
of, 53, 67; and Dmanisi peoples, 50–51;
of East Asia/Java, 83; and Eurasian
Early Pleistocene hominins, 58. See also
tools
Olduvai Gorge, 39, 71
Old World, 190, 196, 199, 200, 204, 215–217,
293, 309
Olmec Horizon, 193
opposable thumbs, 20
orangutans, 31
Orrorin tugenensis (Late Miocene species),
20, 28
Ostler, Nicholas, 218
Pama-Nyungan language family, 289–290,
292, 312
54, 306, 317n2
Pan paniscus (bonobos). See bonobos
Pan troglodytes (chimpanzees). See
chimpanzees
Papuans, 180, 182, 269–273, 276
Paranthropus (genus), 8, 20, 32
Parpola, Asko, 246
Pawley, Andrew, 180–181
Peiligang (culture), 170
“Peking Man,” 51
permafrost, 112
Perry, W. J., 154–155
Peru, 191–194
Philippines, 270
pigs, 56, 106, 121, 131, 140, 142, 144, 153,
163, 167, 182
“Piltdown Man,” 24
Pitcairn Island (Polynesia), 108
Pithecanthropus erectus. See Homo erectus
plankton faunas, 43
Pleistocene epoch: chronology, 43–44;
climate, 13–14, 45; Early, 43; Late, 44,
112, 114; Middle, 43–44, 57, 62, 67, 72,
82–84
Polynesia, xvii–xviii, 255, 273–276, 311
Pontic Steppes, 235–243
population size and growth, 7, 10–12
Population Y, 129–131
Pottery, 16; Africa, 177–179, 280, 282; Ameri-
cas, 191–195, 282, 296, 302–303; Deccan
Peninsula, 247; East and Southeast Asia,
119–120, 169–172, 255, 261–273; Fertile
Crescent, 158–167, 221–224; “Halafian”
painted, 249; Oceania, 182–184; South
and Central Asia, 229–234; Uruk,
249
prehistory, xxi–xxiii, 7, 14, 202–203
prepared cores. See Levallois (technique)
proteins, 36–37, 67–68, 77, 140, 206
proto-languages, 206, 208–209, 212, 248,
280
Qafzeh, 35
“races,” 201
Red Deer Cave (China), 131
red ochre pigment, 97
regional continuity (multiregional) model,
63–64
Reich, David, 92, 201
Renfrew, Colin, 197–198
reproduction: Australia/North America,
166; conception, 139; and Homo sapiens,
83–84, 313; interbreeding, 26, 94, 103,
107–108; sterility, 26
rice, 138, 140–144, 150, 167–174, 243, 247, 254,
258–263, 268, 276–277, 286. See also
japonica rice
Rift Valley (East Africa), 27–28, 65, 178, 282,
306
Robbeets, Martine, 257
Roi Mata, 274–275
Romance languages, 210
Roman Empire, xix, xxiii, 209–210, 245
Ryukyu Islands, 119, 121
Sahara Desert, 176
Sahel, 174–176
*Sa*lah*lan*thropus tchadensis* (Late Miocene
species), 28
Sala, Robert, 66
San (Bushmen), 91
Sangiran, 35, 52
Sargon of Agade, 250
Schmidt, Klaus, 160
Schöningen spears, 81
Schroeder, Linda, 94–95
sea levels: about, 13; Cyprus, 163; and
Fertile Crescent Neolithic, 222; glacial,
46–47; Holocene, 147; Japan, 118; Late
Pleistocene, 44, 102
Shangchen (China), 49
Shangshan (culture), 172
sheep, 81, 140–145, 150, 153, 163, 177–179,
221–222, 227, 231, 244, 258, 260,
279–284
Shelach-Lavi, Gideon, 169
Siberia, 112
Sima del Elefante (Spain), 66–67, 74
Sima de Los Huesos (Spain), 35, 74–75
Sino-Tibetan language family, 251, 253, 257,
259–261, 268
Siouan language family, 298–299
skulls: and ancient human populations,
254–255; *Australopithecus anamensis*, 30;
chimpanzee versus modern human, 22;
in Dmanisi, 50–51; hominin evolution,
35; Homo sapiens, 90; Homo sapiens in
Africa, 89; as teaching tool, 87
Slavic languages, 244
social organization, 7; in hominins,
37–39
Solo Valley, 82–83
Solutrean, 98
sorghum, 176–179, 247, 284
South Africa, 96–97
South America, 191–194
South Asia, 230, 231–234, 243, 245–247
Southeast Asia, xvii–xviii, 261–270; bifacial
points, 110; crops, 179, 185; Denisovan
presence, 77–78; migrations into,
262–263, 265. See also East Asia
Southworth, Frank, 248
spears and spearheads, 37–38, 81, 88–89, 96, 98
species (concept), xxi, 63–65; speciation, 25–27, 84
stegodons, 52–56
steppe peoples, 235–237. See also Pontic Steppes
Sterkfontein, 35
Stonehenge, 226
stone tools: in the Americas, 125; in Beringia, 117; Cyprus, 163; discoveries of, 47, 49; first appearance in Africa, 31, 37; flaked, 103, 110; and Flores Island, 53, 56; genomic split, 72; in Japan, 122; Levallois, 93; out-of-Africa migrants, 109; Paleolithic, 70; Polynesians, 274; spread of, 95; as teaching tool, 87; theories involving, 37; Upper Paleolithic, 98–99, 114, 116, 307–309. See also Acheulean (stone tool industry); Hoabinhian; Levallois (technique); Oldowan tools; Upper Paleolithic
Stringer, Chris, 72, 74
Sudan, 174–176
Sulawesi (Indonesia), 56, 186–287
Sumerians, 249–250
Sundaland, 45, 52, 55
Sutton, Peter, 291
Swaziland, 284
Sykes, Rebecca Wragg, 80
Taiwan, 268–269, 276–277
Takarkori rock shelter, 177–178
Talepu, 56
Tarim Basin (China), 239
taro, 179, 181, 262, 285, 290
tequisinte, 187
Texas, 126
textiles. See clothing
Thompson, Jessica, 31
Thorne, Alan, 63
thumbs (opposable), 20
Tianyuan, 114, 130–131
Tibetan Plateau, 77, 116
Tibeto-Burman speakers, 266
Tingkyau (Sabah), 110–111
Toalians, 286–291
Toba volcano (Sumatra), 97
Tocharian languages, 239–240
tools, 31, 37–38, 80, 87–89, 95; core and flake, 82, 90, 95. See also stone tools
tortoise cores, 82, 87
Tower of Babel, 250
Trans-New Guinea language family, 259
Transeurasian language family, 251, 256–257, 259
Trans-Neew Guinea language family, 272
Trinil, 23
Trypillia (culture), 236
“Turkana Boy.” See “Nariokotome Boy” (skeleton)
Turkmenistan, 231
Tuvalu, 270
Uighur (language), 239
United States, 194–196
Upper Paleolithic, 70, 95, 97–99, 114, 116, 118–123, 308–309
Uralic language family, 244, 245
Uruk (Iraq), 173, 249
Uto-Aztec language family, 294, 300–304
Vanuatu, 274
Volta Basin (West Africa), 178
Wahgi Valley, 181
Wallace, Alfred Russel, 53
Wallacea, 53–57, 86, 105–106
Walsh, Keryn, 291
Wei Valley (China), 170, 174
wheat, 140–144, 153, 164, 177, 231, 234, 260
Wheeler, Peter, 36
Wolpoft, Milford, 24, 63
Woronso-Mille, 30
Wrangham, Richard, 38
Xinglongwa (culture), 170
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamnaya (population)</td>
<td>235–237, 242–245</td>
</tr>
<tr>
<td>Yams</td>
<td>140–141, 181–182, 276, 290</td>
</tr>
<tr>
<td>Yana Rhinoceros Horn Site</td>
<td>116</td>
</tr>
<tr>
<td>Yangshao (culture)</td>
<td>170, 257, 259–260</td>
</tr>
<tr>
<td>Yangzi River (China)</td>
<td>150, 169, 172, 173, 253, 254, 263</td>
</tr>
<tr>
<td>Yangzi River valley (China)</td>
<td>173</td>
</tr>
<tr>
<td>Yayoi (culture)</td>
<td>258</td>
</tr>
<tr>
<td>Yellow River (China)</td>
<td>169, 173, 251–252, 259–261</td>
</tr>
<tr>
<td>Yellow River valley (China)</td>
<td>50, 169, 170, 173</td>
</tr>
<tr>
<td>Yersinia pestis (variant of plague)</td>
<td>244</td>
</tr>
<tr>
<td>Younger Dryas</td>
<td>43–44, 158, 176, 222</td>
</tr>
<tr>
<td>Zambezi River (Botswana)</td>
<td>92</td>
</tr>
<tr>
<td>Zhoukoudian</td>
<td>29, 51</td>
</tr>
</tbody>
</table>