
Table of contents

Preface xi
Acknowledgments xv

Part I
Propositi: Why and how to simulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 What are simulated data? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Simulated data are specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Yes, scientists really simulate data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 There are many good reasons to simulate data . . . . . . . . . . . . . . . . . . . . 9
1.5 Useful background knowledge to use this book most effectively . . . . 10
1.6 Notational conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Structure, organisation, and flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 The basics of simulating data and the need for computational
competence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 A road map for simulation in statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Two simple examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 More complex examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Simulating autocorrelated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Simulation versus randomisation techniques . . . . . . . . . . . . . . . . . . . . . 35
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Part II
Ante mensuram: Prospective simulations of study designs and their power . . . . . . . 45

3 Think before you act . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 The illusion of truth: A case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



viii Table of contents

3.2 The question comes first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Setting expectations, defining hypotheses . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Testing hypotheses and assessing their support . . . . . . . . . . . . . . . . . . . 55
3.5 Pre-registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Prospective simulation of statistical power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Simple group comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 How many data points do we need for a simple correlation? . . . . . . . 76
4.3 Is “recruit until significant” problematic? . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4 How long does a time series have to be? . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5 Improving estimates: Is the experiment powerful enough? . . . . . . . . . 91
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Part III
Post mensuram: Simulations in statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Assumptions: Is that one important? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Linear regression requires the data to be normally distributed . . . . . . 106
5.2 Regression models also assume that errors in predictor variables

are negligible or unimportant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 The intended, rather than the realised, manipulation is an

admissible predictor variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4 ANOVA requires homoscedasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.5 Multiple testing and the inflation of false positives . . . . . . . . . . . . . . . . 123
5.6 Hyper-distributions in mixed-effect models are normal . . . . . . . . . . . 131
5.7 Correlations among predictors are the same outside the range

of the observed data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6 Folklore: Is that rule-of-thumb true or useful? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.1 Model selection does not always improve interpretation . . . . . . . . . . . 154
6.2 Selecting one of two correlated predictors does not mitigate

collinearity in regression and machine learning . . . . . . . . . . . . . . . . . . 165
6.3 It is not OK to categorise continuous predictor variables . . . . . . . . . . . 172
6.4 Use Monte Carlo simulation when data are heteroscedastic . . . . . . . . 180
6.5 Time series should not be detrended by default . . . . . . . . . . . . . . . . . . . 190
6.6 Machine learning and Big Data do not obviate rules-of-thumb . . . . . 200
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7 Workflows and pipelines can introduce and propagate artefacts . . . . . . . . . . 211

7.1 What can we do about missing data? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
7.2 Types of missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212



Table of contents ix

7.3 Imputation of missing predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.4 Estimating values for censored observations . . . . . . . . . . . . . . . . . . . . . 222
7.5 Pre-selecting predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
7.6 Regression on residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
7.7 Error propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
7.8 Workflow: Stringing multiple statistical steps into an

analytical pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
7.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Part IV
Post exemplum: Diagnostic simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

8 Evaluating models: How well do they really fit? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

8.1 Learning from the prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
8.2 What does a model tell us, and what does it not tell us? . . . . . . . . . . . . 273
8.3 Visualising more complex effects: conditional, marginal, and

partial plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
8.4 Model diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
8.5 Predicting with confidence is not the same as confidence

in prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
8.6 Iterative learning: New priors from old posteriors . . . . . . . . . . . . . . . . . 305
8.7 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
8.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

9 Post hoc alternatives to retrospective power analysis . . . . . . . . . . . . . . . . . . . . . 311

9.1 Reprise: Prospective power analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
9.2 What is retrospective power analysis? . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
9.3 Post hoc alternatives to retrospective power analysis . . . . . . . . . . . . . . 318
9.4 Summary: Most retrospective analyses should be avoided . . . . . . . . . 332
9.5 Coda: What would a Bayesian do instead? . . . . . . . . . . . . . . . . . . . . . . . 334

Part V
In posterum: Simulations for new methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

10 Combining studies: Meta-analysis and federated analysis . . . . . . . . . . . . . . . . . 341

10.1 Whence the data? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
10.2 From meta-analysis through federated analysis

to complete analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
10.3 Meta-analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
10.4 Individual participant-level meta-analysis . . . . . . . . . . . . . . . . . . . . . . . 352
10.5 One-step federated analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
10.6 Multi-step federated analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
10.7 Complete data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360



x Table of contents

10.8 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
10.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

11 Putting it through its paces: Does this new method work? . . . . . . . . . . . . . . . . . 375

11.1 Unit testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
11.2 Dimensional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
11.3 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
11.4 Intellectual advancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
11.5 Intuitive understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
11.6 Model-agnostic number of parameters: Generalised degrees of

freedom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
11.7 Know your limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
11.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

12 Outroduction: How far should we push simulations? . . . . . . . . . . . . . . . . . . . . . . 403

12.1 Stochastic weather forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
12.2 Infusing fake signals to test the workflow at LIGO . . . . . . . . . . . . . . . . 404
12.3 Virtual LIDAR scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
12.4 Advanced simulation may be neither possible nor desirable . . . . . . . . 406

Appendix A
Useful R functions for data simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409

A.1 Drawing random values from a distribution . . . . . . . . . . . . . . . . . . . . . . 409
A.2 Doing things repeatedly: for-loops and replicate . . . . . . . . . . . . . 410
A.3 Shuffling, resampling, and bootstrapping: sample() . . . . . . . . . . . . . 417
A.4 Little helpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
A.5 Dedicated simulation packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Index 423



1
General introduction

In 2009, a poster at the Annual Meeting of the Human Brain Mapping conference caused a
stir. It showed significant brain activity in response to the subject being shown photographs
of humans in emotional valence. The subject was an Arctic salmon—and it was dead (Ben-
nett et al. 2009). In the same year, Kriegeskorte et al. (2009) highlighted a disturbing amount
of circular reasoning and double-dipping in neuroscience, particularly in fMRI analyses,
where the test statistics were not independent of the selection criteria and common analy-
ses produced spurious results. Later research comparing how statistical software designed
and used by different manufacturers of fMRI machines handled spatial autocorrelation in
the voxels revealed an error rate of up to 70% (Eklund et al. 2016). Yet even when done cor-
rectly, effects can be tiny and to reliably detect them requires sample sizes much larger than
usually published (Marek et al. 2022). Clearly, fMRI-based science needed improvement.
But are the statistical approaches and analyses used in fMRI any different from those used
in other scientific fields every day?

All statistical methods make some assumptions about the independence, distributions,
representativeness, etc. of the samples and the data collected from them. Most classical sta-
tistical methods have been mathematically (analytically) proven to yield “asymptotically
unbiased estimates.” This phrase means that a statistical estimate will converge to its “true”
value (that’s the “unbiased” bit) given an infinite number of observations (that’s the “asymp-
totic” bit) of randomly-collected samples (observations or data points) that conform to all
the assumptions made in the statistical model. However, no one collects an infinite amount
of data and residual assumptions are never 100% met, so it is important to ask how reli-
able our estimates are for finite or even rather small datasets. As a corollary, we also want
to know how small is too small (i.e., how many observations are too few for us to compute
unbiased, or at least reliably informative, estimates), how large is large enough, and whether
our conclusions are robust to minor violations of model assumptions.

Furthermore, statisticalmethods generally have been developed as stand-alone tools. For
example, general linear models (GLMs, of which the familiar analysis of variance [ANOVA]
is a special case) are used to identify the expected (or average) response of one variable as
a function of one or more predictor variables. Principal component analysis (PCA) is used
to reduce the dimensionality of a large and often unwieldy set of variables (either predictors
or responses) to a more manageable, smaller number (usually two or three) of compos-
ite variables that are linear combinations of the original data. Used by itself, PCA works
well as a descriptive, hypothesis-generating tool, whereas a GLM works well as a predictive,
hypothesis-testing tool. But what happens if we combine a PCA and a GLM in workflow?
Will the PCA-GLM approach still “work?” And what about more complicated methods and
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4 CHAPTER 1 General introduction

workflows using machine learning or neural networks? Will the resulting estimates still
be unbiased or will uncertainty and errors propagate throughout the workflow and create
statistical artefacts?

Questions such as these rarely can be answered for even a small number of statisti-
cal methods, hardly ever by non-mathematicians, and may even defy analytical solutions.
Instead, mathematicians and statisticians rely on simulations to answer them.

This book aims at providing an entry to understanding statistics using simulations. By
going through many examples, both conceptually and with code, we hope to lower the bar
so that scientists who use statistics can simulate data and associated analyses themselves.
Although simulations are a standard tool in statistical research and the development of new
statistical methods, we do not present or test general methods. Rather, we illustrate the value
of simulations by working through key issues and exemplar datasets in specific contexts
representing a broad range of research areas—from sociology and archaeology to ecology
and physics, and many in between.

What you will learn from this chapter
• What simulated data are, why they are important, and important ways in which they

are used.
• How the book is organized and what you need to know to use this book effectively.
• How to read, interpret, and use the Code Boxes.
• What notational conventions are used for mathematical expressions throughout the

book.

1.1 What are simulated data?
Simulated data are data similar to what we plan to collect or have already collected, but
are created using computational algorithms.1 We think it is helpful to think of such data
as emerging from a “data-generating model” (DGM). The central challenge addressed in
this book is to define such a data-generating model and then to use it effectively. When
simulating data, we usually take advantage of random-number generators to include ran-
dom variation in the simulated dataset that is similar to the random variation that occurs
in real data. Examples of such random variation include differences among sampled indi-
viduals (i.e., between-subject variance), random positions, and residual errors, amongmany
others.

Computers can simulate data efficiently and rapidly. When we run many simulations
(e.g., thousands of them, each starting with a different random “seed”), we end upwith repli-
cate datasets for which we know the true underlying parameter values, the sampling design,
underlying correlations, etc. When we analyse these simulated data, we can quickly check
for and identify biases in our estimates and determine whether our methods are reliable and
robust. We also can use simulations to test model fits and generate p-values. Pedagogically,
it can be argued that if we cannot simulate our data, we probably do not know what we are
doing when we are analysing them. Even if we think we know what we are doing, simulating
data opens our eyes to what is simple and what is difficult in statistical analysis.

1 Other terms you may encounter for simulated data include “synthetic data,” “fake data,” or “invented data.”
Fake data and invented data have negative connotations and suggest that we are “cooking the books” by doing
something wrong or illegitimate. “Synthetic data” is fine, but in the statistical sciences, “simulated” is used more
frequently than “synthetic.”
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Simulated data can take many forms, from a small number of observations of a single
variable to a very large number of observations generated by a sophisticatedmodel of a com-
plex system driven by different underlying stochastic processes and sampled with a different
stochastic sampling process (e.g., Zurell et al. 2010). Think, for example, about modelling
traffic jams or representing the associated emergency calls as a way of collecting data. Both
processes can be simulated at the level of the data (which is the focus of this book) or at the
deeper level of the process(es) that could plausibly generate the data. The latter approach is
touched upon in Chapter 12.

One more thing before we start. Simulations and reality have a lot in common.2 In both,
strong effects will shine through but weak effects will be hard to discern through the fog of
high variability (Silver 2012).

1.2 Simulated data are specific
Simulation sacrifices generality for ease of use. That is, we typically use simulations to ask
questions about a specific dataset or a very specific type of statistical analysis. Unlike an
analytical proof, the results of a simulation study rarely are applicable to a wide range of
statistical methods, even those that share underlying mathematical structures. Despite its
lack of generality, however, simulation is a great tool to use to explore how a particular kind
of statistical method works and what it can actually tell us about the kinds of data we can
collect or already have on hand.

Any real dataset is but a single instance (and, we hope, a random one) of all the possible
datasets that could have been collected from the population of interest. Although we might
have sampled more or fewer subjects or sites, used a different method, or collected the data
at a different time, we did not. We are usually interested in analysing such specific datasets
and using the analyses to make more general inferences about all the datasets we did not
collect, i.e., the population.

When we simulate data, we have such a specific dataset in mind, but we do not restrict
ourselves to the exact values in our real dataset. Rather, we are asking how much quantita-
tive information can be gleaned from this specific instance of a more general kind or type
of dataset.3 In other words, is the information in the data sufficient for us to extract a sig-
nal from the noise? To answer this question using data simulation, we repeatedly generate
data with a similar underlying structure and apply our intended analysis to them. Since we
defined and set the parameters in our simulations, we can now check: How often do we find
the effect we programmed into the simulation?Are our parameter estimates biased? If we are
interested in testing our model, we can also ask whether the p-value of the output correctly
reflects the number of significant effects across the simulations.

If a statistical method applied to our simulated data yields unbiased estimates or the
expected distribution of p-values, then we can be more confident that the application of the
method to the analysis of our single and unique real dataset will be similarly unbiased and
the p-value will accurately reflect the statistical “significance” of our results. But remember
the dead salmon. If the application of our method to our simulated data yields, for example,

2 In fact, many science-fiction writers and even some dyed-in-the-wool philosophers have asserted that reality
may be nothing more than a simulation (e.g., Adams 1979; Bostrom 2003).

3 We distinguish here between types and instances of a variable or a dataset. A type is a more general category,
whereas an instance is a specific example of the type. For example, the value 10 is an instance of a variable whose
type is “integer.” An interesting feature of types is that they are hierarchical, so that objects that are usually thought
of as types also can be used as instances of other objects.
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biased estimates, numerical anomalies, or incorrect standard errors, thenwe should not trust
a similar analysis of the real dataset.

1.3 Yes, scientists really simulate data
Although some mathematicians still frown upon simulations, there are many interesting
problems for which closed-form analytical solutions have not yet been identified. Using
computers to simulate data and explore a range of possible solutions of analytically insoluble
problems now is recognised as a legitimate approach to solving them; one of the first and per-
hapsmost familiar examples is the solution to the four-colourmap problem (Appel &Haken
1989; see Meyer & Schmidt 2012 for others). For many statistical methods, simulations are
the only way available to validate established and proposed methods.

Not only do many scientists simulate data and analyse them,4 statisticians and many
others teaching both theoretical and applied statistics actively encourage this practice (e.g.,
Crawley 2007; Jones et al. 2014;Morris et al. 2019;McElreath 2020; Crump et al. 2021;Dono-
van et al. 2021). Really, there is no reason not to, and we illustrate the power of simulation
with a few straightforward examples in the following subsections and in the next chapter.
These motivate the more complex problems described in the rest of the book and should
whet your appetite for doing simulations yourself.

1.3.1 Geographic biases in reported crime rates
Governments collect and analyse data on crimes to identify where they are committed and
the kinds of individuals most likely to commit them. Systematic reviews of these data have
suggested that most crimes reported to police occur in a small number of neighbourhoods
(Lee et al. 2017). This result has been used to develop strategies that, their proponents
assert, will most efficiently deploy people and resources to those areas where crimes are
most likely to occur. Critics point to the racial, socioeconomic, and other biases on which
these spatially-targeted strategies are based and that they perpetuate. Simulations have been
used extensively to support both sides of the debate (Liu & Eck 2008). An important, but
rarely asked question, however, is whether the data used to build the crime simulations are
themselves biased.

Buil-Gil et al. (2022) used simulation to address this question. They examined potential
sources of bias in reported crime statistics in the UK’s Crime Survey for England andWales
(CSEW). These researchers simulated three things for the city of Manchester, England: a
population of people, the number of crimes experienced by each individual in the popula-
tion, and the number of those crimes that were actually reported to the police (Figure 1.1).
Buil-Gil et al. (2022) then asked whether the bias in the number of reported crimes changed
from the smallest spatial scale (a neighbourhood of ≈125 households) to larger ones
(communities [collections of neighbourhoods], precincts [collections of communities], and
wards [collections of precincts]).

The results were striking. First, the simulations accurately reflected the CSEW data that
nearly two-thirds (62%) of all committed crimes are not reported to the police. But the vari-
ation in non-reporting was largest among neighbourhoods (inset plot in Figure 1.1). That is,
different neighbourhoods, each of which tends to be demographically more homogeneous
than the larger communities, precincts, or wards, report crimes at different rates. These

4 Any list of fewer than thousands of references is unfair to those doing simulations, but here are a few more
recent examples: Royston & Sauerbrei (2014); Boulesteix et al. (2018); Jayasekera et al. (2018); Boulesteix et al.
(2020); Adams & Collyer (2022); Martínez-Santalla et al. (2022); DiRenzo et al. (2023).
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Estimation SimulationData
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Figure 1.1Workflow and results of the simulation exploring geographic bias in reported crime rates. The workflow,
derived from the description of the simulation in Buil-Gil et al. (2022), includes obtaining data from government
sources, estimation using negative binomial and logistic regressions, simulations, and visualisations. The inset
figure is reproduced from Figure 1 of Buil-Gil et al. (2022) (CC-BY-4.0).

differences in reporting rates can lead to biases in the data that are used in criminological
research and caution against blind acceptance of crime reduction strategies targeted at
individual communities (“micro-geographies”).

1.3.2 Handling data gaps
FLUXNET5 is an international network of hundreds of stations that use the eddy-covariance
technique tomeasure the flux of CO2 andwater above vegetation in a standardisedway (Bal-
docchi 2003). The apparatus is very sensitive but requires air movement for measurements;

5 https://fluxnet.org.
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Figure 1.2Workflow for gap filling of eddy covariance data in the FLUXNET network. Image in the public domain
from FLUXNET (nd).

CO2 flux cannot be measured at very low wind speeds, which happen regularly and
especially at night and result in gaps in the data streams. Because these data gaps occur non-
randomly, they need to be “filled” before the dataset can be analysed to avoid biased results.

Over the years, and after many, many simulations and comparisons of gap-filling meth-
ods, a sophisticated data pre-processing pipeline has been established (Figure 1.2). This is
now the default workflow applied to all raw data entering the FLUXNET repository and
data-processing chain. However, this workflow and the resulting estimates of the flux of car-
bon between forests and the atmosphere depends strongly on how the “U-star” (“Ustar” in
Figure 1.2) threshold is determined. Simulations have shown that small changes in U-star
could change the conclusion that a forest takes up more carbon from the atmosphere than
it releases to its opposite—that the forest actually contributes planet-warming CO2 into the
atmosphere (Ellison et al. 2006).

1.3.3 Data augmentation in convolutional neural networks
Automatic classification of images is usedwidely—and often inappropriately or to ill effect—
by many people, organisations, and government agencies. Classification, also called the
“tyranny of the discontinuous mind” by Richard Dawkins (2011), can be improved by
providing more and more data to the classifying algorithm. In lieu of genuine new data,
computer scientists training convolutional neural networks (CNNs) on images use data
augmentation: simulation of new data points based on old ones. Typical methods of data
augmentation are flipping or rotating images, re-sizing or re-colouring them, adding noise
to them, or increasing their grain. More recently, generative adversarial networks (GANs)
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have introduced more sophisticated image mimicry but rely similarly on the variability in
the training data. If each training image is altered in all combinations of suchmanipulations,
sample size can be increased ten-fold with only marginal computational cost and at no cost
to data collectors (e.g., Gopal et al. 2020; Nandhini Abirami et al. 2021; Li et al. 2023).

The second step of these simulations is to see whether data augmentation using GANs
actually improves the classifier. Classifying the same images is uninformative; only classifi-
cation of new, previously analysed, and validated images can tell us whether the method of
data augmentation actually works. Indeed, it does improve classification accuracy for new
images (e.g., Perez &Wang 2017; Mikołajczyk & Grochowski 2018), but not for the reasons
initially suggested. Rather, the main reason seems to be that data augmentation using GANs
adds noise, making the classifier avoid focusing on the specifics of an image, such as the
stark contrast of the light reflection on the wet nose of a dog. As a result, data augmentation
is now seen as a regularising or shrinkage approach rather than as a way to simulate new
data (Steiner et al. 2022).

1.3.4 Null models in network analysis
When the value of an index depends in a complicated and non-linear way on its inputs, its
distribution can be difficult to derive mathematically. One relevant case is the structure of
bipartite (two-part) networks, which show the relationships between, for example, actors
and the movies in which they appear, directors and the boards on which they serve, or pol-
linators and the flowers they visit. A description of what network structure we could expect
based on how many movies and popular actors there are (i.e., in how many movies an actor
has appeared) requires simulating the networks.

For example, when trying to identify modules (“cliques”) of actors (or pollinators), we
use a “null model”: an algorithm to simulate a reference baseline. For either Boolean net-
works (e.g., an actor is in a movie or not) or networks with variable (but integer) number
of interactions (e.g., a pollinator visits a flower N times), a modularity algorithm uses the
sum of observations for each combination of actors and movies or pollinators and flowers,
respectively, to simulate thousands of random networks against which the observed net-
work is compared to determine if it is “structured” or random (e.g., Newman&Girvan 2004;
Newman 2006; Barber 2007).

1.4 There are many good reasons to simulate data
Data simulation often is motivated by a specific problem with real data, such as violation of
assumptions (e.g., normality, homoscedasticity), missing data, or unbalanced designs. How-
ever, there are many other benefits to simulating data besides demonstrating the validity or
soundness of a particular method applied to a specific dataset. Perhaps most importantly,
data simulation helps us to work through new problems that turn up while we are planning
our research or analysing our data, and assess the validity of our proposed solutions when
we are unsure of them.

While we were writing this book, ChatGPT, CoPilot, Llama, and many other large lan-
guage models (LLMs) masquerading as artificial intelligence (AI) came online (cf. Searle
1982). Although many pundits (and not a few of our students and colleagues) have asserted
that Big Data spelled the end of data analysis (e.g., Anderson 2008) and that AI and LLMs
will make it unnecessary to learn how to write code (Hutson 2022), statisticians and pro-
grammers are still in high demand. Why? Even the best LLMs “hallucinate”: although they
may confidently provide an answer to a question (a “prompt”), the answer may be inaccu-
rate or completely wrong (e.g., Lehr et al. 2024). Hallucinations are most common when the
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data used to train the LLM had errors or did not include enough information to address a
particular prompt, when the prompt does not have sufficient context, or if the prompt con-
cerns methods, packages, or programming languages that are not commonly used. Thus, it
is incumbent on us to be sceptical of responses given by any AI or LLM. Answers should
always be checked for accuracy and code should be tested carefully to determine whether it
works the way we expect (e.g., Cooper et al., 2024). Independent data simulations are one of
many useful tools to check the responses of an LLM and to use it effectively (see also Lubiana
et al. 2023; van Dis et al. 2023).

In this book, ourmain focus is on using simulations to better understand what statistical
models and analyses do, and in doing so, to improve our statistical competence. However,
simulations increasingly are being used as part of scientific publications. In recent years,
scientific societies and journal publishers have begun to develop guidelines for reporting
the results of simulations so that readers can trust andmaximally benefit from them (Morris
et al. 2019; DiRenzo et al. 2023).

1.5 Useful background knowledge to use this book most effectively
This book is for anybody doing statistical analysis who already is familiar with basic con-
cepts such as probability and likelihood and has skills with standard hypothesis-testing
and model-fitting methods such as t-tests, χ2-statistics, and GLMs. Our previous books
(Gotelli & Ellison 2012; Dormann 2020) can be used as refreshers. If you are starting
from scratch, the OpenIntro project6 has excellent open-source resources for teaching
and learning basic statistics. Its latest book, the second edition of Introduction to Modern
Statistics (Çetinkaya-Rundel &Hardin 2024), covers basic concepts inmodelling, hypothesis
testing, and statistical inference; includes detailed exercises and scripts in the R program-
ming language, and introduces simulation and randomisation tests with its discussion of
the foundations of statistical inference. Fieberg (2024) focuses more tightly on alternatives
to ordinary linear regression for analysing observational data collected by ecologists. His
text includes many good examples of using data simulation and, like us, takes a pragmatic
approach to the utility of both frequentist and Bayesian approaches.

We also assume familiarity with at least one statistical programming language, such as
R, Python, Julia, Matlab, or Mathematica, and the ability to construct scripts in it from
descriptive algorithms and pseudocode.We provide code for all our examples written in the
R programming language (R Core Team 2023) and presented in a standard form for all the
algorithms and examples in the text (Code Box 1.1).7

All the code may be downloaded from the online code repository associated with this
book (Dormann & Ellison 2024). With only a few exceptions, we eschew the tidyverse
and pipes (Wickham et al. 2019); all data wrangling and functions are written in “standard”
R and will run in either the classic R GUI (Venables et al. 2023) or RStudio (RStudio Team
2020). Similarly, with the exception of the graphics in the Appendix, all plots are gener-
ated using ggplot (Wickham 2016). Unless the primary goal of a particular code snippet
is generating a specific plot, we do not include the plotting commands in the Code Boxes.
However, the code to generate all the plots is included in the online code repository. Finally,
the online repository also includes additional examples and associated code that we have
developed since writing the book, and we encourage our readers and others interested in
data simulation to contribute their own examples and code to the repository.

6 https://openintro.org
7 There are packages in R or Python that simulate data for you (e.g., conjurer and simstudy in R; see

Appendix A for others), but which hide what actually is going on. So, we use them sparingly.
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Code Box 1.1: How to read the code in the Code Boxes

# Code is presented in the same way throughout the text

# Lines or phrases beginning with a "hash tag" or "pound sign" (#) are comments

that describe the subsequent or associated executable commands. If these

lines are pasted into an R script, they will not run. For example, the line

5 # Load required libraries

# tells you that the subsequent lines will include the contributed packages

(R "libraries") necessary for the executable code to run successfully.

# Lines indented with one or more spaces and lacking a leading character (such

as a # or a |) are executable code. If these are pasted into an R script,

they will run. For example, the line

10

mean(x)

# will return the average of the variable "x".

15 # Lines beginning with a vertical bar (|) include the output (returned to the

console) if executable code is executed. These lines should not be pasted

into an R script, as they are neither comments nor executable code. For

example,

| [1] 13.75

# would be the output from running the previous command (mean(x)).

1.6 Notational conventions
We have endeavoured to use consistent notation for mathematical expressions throughout
the book, following Casella & Berger (2002). An upper-case letter (e.g., X) indicates a ran-
dom variable, whereas its corresponding lower-case letter (e.g., x,) is a specific value from it.
The set of all N values of {X1,X2, . . . ,XN} is denoted as X or {X}. We capitalise the sample
size, N, throughout the main text, but in Code Boxes, it may appear in either lower case or
upper case, depending on how it is defined in existing R functions.8 We do not use vector
notation (e.g., X) for a matrix X; the difference between scalars and vectors should be clear
from context.

Population-level (“true” and usually unknown) parameters are writtenwithGreek letters
(e.g., the population mean μ and its variance σ 2), whereas sample parameters normally are
writtenwithRoman letters (e.g., the samplemean, x̄, and its variance, s2).Modelled estimates
are indicated with “hats” (e.g., the estimated population variance is written as σ̂ 2 and the
estimated sample variance is written as ŝ2).

8 Note that commands, object names, etc. in R are case-sensitive: “Bird” and “bird” would be two different
kinds of flying animals.
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The names of libraries, functions, and variables used in R (or other programming lan-
guages) are set in monospaced font; function names always include parentheses, as in
t.test(), to serve as a reminder that they need to have objects, parameters, or options
provided to them (e.g., t.test(x, y, type="paired")).

1.7 Structure, organisation, and flow
The book is constructed in such a way that the two chapters in this Part I set the tone. After
that, we proceed through topics following the same path that we would normally use to
develop a research project: ask a question and develop hypotheses; come up with a sampling
protocol or experimental design; collect, visualise, summarise, and analyse the data; fit and
test models and (re)check their assumptions; and state our conclusions together with our
degree of certainty about them. We show that using data simulation helps us do all these
steps better, improves our science, and give us more confidence in the conclusions we draw
from our research.

In the two chapters in Part II of this book, we show how to use simulations to plan
surveys, observations and experiments from the time we come up with an idea until we
actually start the study. For example, we can investigate how a proposed sample size will
affect the probability of detecting weak effects. Simulation might also suggest that we aban-
don a proposed study if we cannot muster the necessary resources and logistics to reliably
test our hypotheses. Thinking longer about a study before we do it is always beneficial. Data
simulation encourages us to think first and act later, and forces us to be explicit about our
assumptions and expectations.

The three chapters in Part III get us ready to analyse our hard-earned data. Before we
analyse the data we have collected, we should check to see if our data satisfy key distribu-
tional assumptions (Chapter 5).We also can use simulations to checkwhether themethod or
model we plan to use to analyse our datamakes sense or is it simply folklore: a rule-of-thumb
that “everybody knows” or has “always been done” (Chapter 6). In a similar vein, individual
models may work fine by themselves but exhibit strange behaviour when linked together in
a workflow or analytical pipeline. Data simulations can help us discover that before we get
so far into a tunnel that we cannot turn around and extricate ourselves (Chapter 7).

The two chapters in Part IV showcase ways to use data simulations to evaluate the fit
of our models and what to do if they exhibit strange behaviour or yield results that are not
statistically significant. If ourmodels work as expected, all is well; simulations let us evaluate
the fit ofmodels we know to be reliable (Chapter 8). If they do not and ourmodel yields really
strange or unexpected results when we analyse our real data, we also can use simulations to
probe the method or model more deeply, identify the origin of the weird results, and have
firmer grounds from which to judge whether the results are strange but true or only an odd
artefact of the specific sample or method (Chapter 8). Finally, if—despite all our careful
planning, scrupulous data collection, and robust analysis—our results are not statistically
significant, simulation shows us that we should not seek absolution in retrospective power
analysis (Chapter 9). At the same time, we can use retrospective design analysis (Gelman &
Carlin 2014) to test whether our statistically significant results are as meaningful as we think
they are (Chapter 9).

The three chapters in Part V close the circle. We can use all the approaches presented
in Parts II–IV to synthesise existing work using meta-analysis or federated analyses (Chap-
ter 10), or to design and test new statistical methods or create new indices (Chapter 11).
Using simulations offers an efficient and effective way to demonstrate the appropriateness
of a new procedure or detect its flaws. Finally, Chapter 12 returns to where we started this
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Table 1.1: Where to find detailed discussion of key statistical topics that recur throughout
this book.

Topic Chapter.Section

Assumptions:
– Normally-distributed data 2.3; 5.1; 5.6; 8.4
– Homoscedasticity 2.2; 5.4; 8.4
– Independence 2.4; 4.2; 5.5–5.6; 6.5–6.6
– Stationarity 5.7; 12.2

Bayesian inference:
– Bayes’ Theorem 3.3; 6.4
– Prior vs. posterior distributions 8.1; 8.6
– MCMC and its relatives 7.7; 8.1; 11.6

Categorical vs. continuous predictors 6.3; 8.5
Collinearity 6.2; 7.5; 7.8
Confidence intervals 2.3; 3.4; 8.5; 9.3
Effect size 3.4; 4.1; 7.6; 9.1–9.3; 10.3–10.7
Imputation of missing data 6.1; 7.3–7.4; 7.8
Machine learning vs. classical statistics 6.2; 6.6; 7.5; 8.4–8.5; 11.4–11.5
Meta-analysis 3.4; 10.3–10.4
Model selection 6.1; 7.8; 10.2; 11.3
Power analysis

– a priori (prospective) 3.4; 4 [entire chapter]
– post hoc (retrospective) 9 [entire chapter]; 10.3

Time-series analysis 2.4; 4.4; 6.4–6.5; 11.5

book: using simulations for planning large and very complex research programs that are
addressing some of the most difficult questions scientists have posed to date.

We encourage you to read and work through the chapters in order. However, each chap-
ter is mostly self-contained and you should be able to jump to, and work with, any part or
chapter of the book in which you are most interested. Some key statistical topics and con-
cepts pertain to more than one method or model, or recur in different contexts. Table 1.1
provides an overview of the most important of these topics and points to where we present
them in detail. For more fine-grained direction, please consult the table of contents and the
index.

1.8 Summary
• Simulated data are created using computational algorithms.
• Simulated data are similar, but not identical, to data we have already collected or that

we plan to collect.
• Simulating data requires a “data-generating model” that normally implies a specific

question, dataset, or type of statistical analysis.
• One of the most important uses of data simulation is to determine howmuch informa-

tion about a large population can be gleaned from the smaller sample of it that has been
collected.
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• Other common uses of data simulation include testing assumptions, working through
unanticipated or unexpected problems that came up while planning a research project
or analysing the data, assessing the validity of proposed solutions, and determining
whether the results of using large language models are real or hallucinatory.

• To use this book most effectively, you should already be familiar with basic statistical
concepts such as probability and likelihood, and have skills with standard hypothesis-
testing and model-fitting methods such as t-tests, χ2-statistics, and GLMs.
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