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 Introduction

 Humans have, since our beginning, looked at the stars and 
asked the big questions: “Who am I?” “Why am I  here?” “What 
or who is out  there?” We are close to being able to answer some 
of  these questions as our species continues its exploration of 
space and prepares to take the first steps  toward the stars. The 
stars are more than beautiful points of light in the night sky. Far, 
far away, they harbor new worlds. It is difficult to believe that 
 until the early 1990s the only planets we knew (scientifically) 
existed in the universe  were  those orbiting our sun. With the 
growing list of known exoplanets, some of which appear to lie 
in the habitability zones of their parent stars,  there are many 
beginning to won der about how we might someday travel  there 
to explore them. Despite the optimism of the early Space Age, 
our pro gress  toward this goal has been slower than many antici-
pated. This is not just for lack of trying; the challenges are 
daunting.

The nearest star, Proxima Centauri, is about 4.2 light- years 
away. That is, it takes light, traveling at about 186,000 miles per 
second (~300,000 km/sec), over four years to make the jour-
ney. For most  people, this is a meaningless mea sure ment; how 
many of us can truly relate to the speed of light? To illustrate the 
difficulty, consider distances much closer and the challenges we 
face in traversing them. The Voyager spacecraft, launched in 
1977, are the most distant emissaries yet launched from Earth. 
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Voyager 1 is roughly 156 astronomical units (AU) away as of this 
writing, 156 times the sun- to- earth distance of ~93 million miles, 
and it has taken it more than forty- four years to get  there. For 
up- to- date information about Voyager’s location, check out the 
NASA website https:// voyager . jpl . nasa . gov / mission / status /  .  If 
the Voyagers  were traveling in the correct direction, then it 
would take them about 70,000 years to reach Proxima Centauri— 
and that is the nearest star. The duration of a  viable interstellar 
journey must be mea sured in years, not millennia, for such mis-
sions to be undertaken.

Propulsion is not the only challenge. How would such a 
spacecraft communicate across such vast distances? Far away 
from any star, how can the craft be powered on its journey 
through the darkness between the stars? Traveling at the speeds 
necessary to shorten the trip time  will increase the risk of dam-
age to the craft from collision with interstellar dust— a poten-
tially catastrophic event when traveling at a significant fraction 
of the speed of light.

Fortunately, nature appears to allow rapid interstellar travel 
without having to invoke new physics. Propulsion technologies 
based on nuclear fusion, antimatter, and laser- beamed energy all 
appear to be physically pos si ble— but the engineering of systems 
of the scale required is well beyond  today’s capabilities.

If we are to undertake this ultimate voyage, we must first in-
habit much of our own solar system. Interstellar travel  will require 
new technologies, a new ethical framework for exploration that 
 will enable us to avoid repeating the  mistakes of the past, and a 
visionary mind- set that is reminiscent of the construction of the 
 great cathedrals of Europe— the notion that a proj ect begun 
 today may not be complete for many generations to come.

And then  there is the question of why. Why should we travel 
to the stars? For that  matter, why should we explore space at all? 
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In the first fifty- plus years of the Space Age, we now have com-
pelling and nearly universally accepted reasons for the explora-
tion and development of space near Earth and in Earth orbit. 
Weather satellites allow meteorologists to provide fairly accu-
rate weather forecasts days and weeks into the  future. They also 
help us predict the paths of hurricanes and cyclones, saving 
lives. Communications satellites knit the world together, allow-
ing us to know what’s happening all over the world in real time. 
They relay our tele vi sion channels and some cell phone conver-
sations, while large constellations of communication satellites 
are beginning to provide broadband Internet accessible every-
where around the globe. Spy satellites help keep the peace by 
allowing countries to monitor one another’s military activities, 
nearly removing the possibility of surprise attacks—an impor-
tant part of strategic safety in our nuclear weapons–armed 
world. Global Positioning System satellites allow us to navigate 
to new places and are essential to keeping our highly interde-
pendent world and global economy functioning. Space near 
Earth is now indispensable to our daily lives and well- being.

Many advocates believe that the next logical step is the de-
velopment of cis- lunar space, the region between Earth and the 
moon. With NASA and other countries planning to send 
 people to the moon in the coming years,  there is an expectation 
that new products and ser vices  will arise  there just as they did 
in Earth orbit. The argument is then extended out into the solar 
system and, ultimately, to the stars.

As a scientist, I believe  there is a valid reason for exploring 
space, including space beyond our meager solar system, that has 
nothing to do with economics or tangible return—to learn 
more about the universe, what’s out  there, and how it works. All 
of the engineering we use to keep our twenty- first- century lives 
functioning stemmed from scientists in  earlier eras asking 
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similar fundamental questions that, at the time, may or may not 
have had an obvious economic return or application. Expand-
ing  human knowledge is as valid a reason as any other.

 There are objections to  these views and some sticky ethical 
questions that arise when thinking about our expansion into 
space and then on to the stars. (Many of  these are addressed in 
chapter 3, “Putting Interstellar Travel into Context.”)

Interstellar travel is pos si ble— just extremely difficult. Are 
we willing to accept the challenge?
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