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the Northwest Territories in Canada and the Isle of Harris in Scotland. 
Granite is one of the bedrocks of our planet, but it is relatively 

rare on the surface beyond a few outcrops. Instead, our largest areas of 
exposed rock are the sands of deserts and coasts; there, the sands range 
from volcanic black to the more common red-yellow, to blinding white 
sands made from coral, shell, or exposed salt.

Plants
­e Earth is primarily a wet, living world. At the polar icecaps, the color 
is white as the result of light being scattered by snow and ice, while the 
vast expanses of deep water are blue. Elsewhere, plants color the earth. 

Almost every terrestrial region that is not covered with snow and 
ice has some foliage. Coastal oceans may also contain green chlorophyll 
in algae. Only the very harshest of deserts are totally devoid of plant life, 
and most of the world is covered with either forests or grasslands.

Whether tree, shrub, or grass, all plant life derives its color from one 
set of molecules—the chlorophylls. It is di�cult to determine what was 
the key innovation that led to our planet being as densely inhabited as it 
is, but most biologists would likely choose the evolution of chlorophyll, 
since it is central to the ability of plants, and many other organisms, to 
use the energy of the sun and to produce oxygen. Chlorophyll absorbs 
the blue and red parts of visible light in the initial step of this “light 
harvesting” (see page 29), leaving green light to be re�ected back. Not all 
plants are green, however, and even green plants do not appear green all 
the time. ­is is because plants contain varying amounts of chlorophyll, 
and also because they contain other pigments that serve other functions. 
In some cases, these pigments are quite obvious—for example, certain 
ornamental plants and some trees have purple or red leaves. In other 
cases, those pigments are hidden by the stronger e¥ect of the chloro-
phyll, as seen in most deciduous trees. When the leaves die in the fall, 
the chlorophyll is lost, often revealing the remarkable red, orange, and 
yellow pigments that have been present within the leaves the entire 
summer, but previously unseen.

opposite: A stream running 
through the El Yunque rain 
forest in Puerto Rico.

overleaf: Dunes in the Sahara 
desert, Merzouga, Morocco.
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Pigments are the most familiar producers of color in all living 
things. Pigments are based on atoms or molecules that absorb certain 
wavelengths of light, transmitting or re�ecting the rest in a region 
of the spectrum that we perceive as color. 

Pigments are ubiquitous in our world—they are used to color nearly 
every manufactured object that humans make, such as furniture, paints, 
appliances, cars, textiles, and so on. ­ey are even used to color our own 
bodies in the form of tattoos or body paint. Many of these artiµcial pig-
ments are inorganic molecules, such as minerals or artiµcial dyes, or even 
elements like copper or gold. 

Animals and plants use neither of these, instead employing organic 
compounds they make themselves or sequester from their food. Some-
times these compounds include metal ions: examples are red hemoglobin 
in blood or green chlorophyll in plants. ­e basic organic structure of 
these, called a “porphyrin,” is molecularly very similar in each case, but 
hemoglobin binds iron, making it red in color, while green chlorophyll 
has magnesium instead. 

In most cases, pigments in animals and plants produce color by 
re�ection, but transmission of color is also common. Structural colors 
are very di¥erent, relying on the geometry of components that are so 
small that they are on the scale of light waves. Humans use structural 
components to produce iridescent colors in polishes and they also occur 
by chance in the thin µlms formed by oil and other pollutants on the 
surface of water. Many animals and some plants make structural colors 
by scattering light (often appearing powder blue) or by controlling it 
with nanostructures called “photonic crystals.” 

How Do Living Things 
Make Color?

­ere are many ways to look colorful. 
Overwhelmingly, however, plants and 

animals rely on two very di¥erent 
mechanisms: pigments and structure.
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A cluster of monarch 
butter�ies, showing their 
orange ommochrome 
pigments highlighted by 
black melanin borders.
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In addition to these two approaches, which create color by re�ecting 
or transmitting light, a few animals make color by emitting light. Some 
are �uorescent, absorbing light of one color and re-emitting it as a dif-
ferent one; others are bioluminescent, making their own “cold” light 
biochemically (in contrast to the hot light of a µre or arc lamp). A very 
few fungi are phosphorescent, radiating light captured during the day 
later on at night in a spooky, ghostly glow.

Pigments and their diversity in plants 
­e beauty of the natural world is largely the gift of plants, which dominate 
the visual spaces of the terrestrial landscapes where most humans live, and 
provide the vibrant colors of kelp beds and coral reefs. ­eir beauty extends 
beyond this, though, because many animal pigments are either taken directly 
from the plants they ingest as food, or are modiµed from these plant pig-
ments. Humans have long used plant pigments, such as annatto, sa¥ron, or 
indigo, to color their textiles (and sometimes their bodies). ­e trade in such 
dyes is probably among the most ancient of human economies.

Plants are master biochemists, making their own colored pigments 
for photosynthesis, protection from damaging ultraviolet light (photo-
protection), �ower decoration (for pollination), and fruit enhancement 
(for dispersion). ­e chemicals they use for coloration are generally 
complex organic compounds, and commonly incorporate nitrogen and 
sulfur atoms in addition to the usual carbon, hydrogen, and oxygen. 
Chlorophyll adds magnesium to the mix. Few of the ways that plants use 
to produce pigments occur in animals, which explains why animals must 
ingest them for coloration.

Chlorophyll is a porphyrin. ­ere are several types of chlorophyll, 
with di¥erent but similar molecular forms. ­en there are pigments called 
“phytochromes,” which plants use to measure the color of natural light and 
thus evaluate day length and season. Other familiar plant colors come from 
isoprenes, which form the colorful red, orange, and yellow carotenoids, and 
�avonoids, which synthesize the brilliant violet and red anthocyanins.

Unlike animals, which manufacture melanins to make black colors, 
plants have no speciµc black pigment. Instead, they use high concentrations 
of tannins or anthocyanins, or other less-well-understood mechanisms.

opposite: Bird-of-Paradise 
plant, possibly colored by 
green chlorophyll, orange 
carotenoids, and red or blue 
anthocyanins.
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You might have noticed that none of these pigments produce blue! 
Faint blues can be derived from modifying some anthocyanins, but there 
are some other exotic blue-producing biochemical systems.

Pigments and their diversity in animals
­e brilliant colors of many animals, including vertebrates such as birds, 
reptiles, and µsh, and arthropods such as insects, are based on a widely 
shared palette of pigments. 

Melanins are used to make black in almost all animals. Usually, yel-
low, orange, and red colors are derived from carotenoids, although other 
pigments can come into play. A derivative of melanin called phaeomela-
nin is used to make yellowish or reddish colors in many vertebrates. 
­e red-winged blackbird displays all three of these popular pigments: 
melanin on most of the body, red carotenoid on the wing epaulets, and 
yellow phaeomelanin bordering the red patch. 

Besides carotenoids, insects and crustaceans often use ommochromes, 
derived from the amino acid tryptophan, to make reddish or brownish 
colors. For example, the monarch butter�y has ommochrome-colored 
dark-orange wings, outlined by melanin. ­e white patches are structural 
colors, not pigmentary. Crustaceans regularly incorporate carotenoids 
into proteins to make complexes called carotenoproteins, which are blue 
or green. When a lobster is cooked, its blue carotenoprotein is denatured, 
revealing the red carotenoid color instead.

Other than the blues of crustaceans, blue colors in animals are almost 
always structural. Green colors, on the other hand, originate from a variety 
of sources. As Kermit the Frog noted, “It’s not easy being green.” Frogs use 
something called biliverdin, which results from the breakdown of hemo-
globin. ­is is usually excreted, but here it is combined with a protein 
called serpin to make a pigment that circulates in the blood, coloring the 
skin green. (Hemoglobin itself is commonly used to produce red patches: 
often ones that appear and disappear rapidly like shy blushes.) 

Sloths have green hair from chlorophyll, being symbiotic with the 
green algae living there. Parrots have pigments called psittacofulvins, which 
are yellow. When parrots look green, it is because they combine a structural 
blue with this pigmentary yellow—there is no actual green pigment. 

opposite: A red-winged 
blackbird shows o¥ its brilliant 
red carotenoid patch against 
its melanin-black body, 
highlighting it with a yellow 
phaeomelanin border. 
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Nearly all plant growth is fueled by chlorophyll’s ability to capture the energy 
in sunlight and use it for chemical synthesis, ultimately forming nearly all the 
molecules of life. ­ere are a few microorganisms that are able to survive on 
chemical energy in hot springs and deep-ocean seeps, and small communities 
of animals that feed on these microbes. Overall, though, chlorophyll-driven 
biology dominates life on Earth, and chlorophyll’s reactive by-product, 
oxygen, fuels the high-energy lifestyles of complex animals.

All the plants that we are generally familiar with produce two forms 
of this pigment—chlorophyll a and chlorophyll b. ­ese are the two 
most abundant pigment molecules on our planet. Chlorophyll a is very 
ancient, µrst appearing billions of years ago. Chlorophyll b originated 
more recently, but is chemically nearly identical to its ancestor. Both are 
porphyrins containing a magnesium ion. ­ere are other chlorophylls in 
some algae, but these do not appear in terrestrial plants.

Chlorophyll is green—the name means “green leaf.” ­is color may 
seem ideal for capturing the high-energy solar radiation in the blue-
green to green wavelengths in sunlight. However, being green means 
that chlorophyll does not absorb green, but instead re�ects or transmits 
it. Instead, chlorophyll absorbs red and blue light best. Accessory 
pigments help by transferring some energy at middle wavelengths 
to chlorophyll, but the overall conversion of solar energy to chemical 
energy is surprisingly low—only about 1 percent. Fortunately, there is 
a lot of solar energy out there. 

In addition to producing oxygen and providing energy for biosyn-
thesis, chlorophyll is important because its action turns carbon dioxide 
into the organic chemicals needed for life, removing it from the air and 
fueling the major mechanism that o¥sets climate change. ­is is why the 
loss of chlorophyll via deforestation is having a major impact on Earth’s 
weather and ecosystems.

Chlorophyll in Leaves and Plants
Why is chlorophyll the most important of 

all pigments? Putting it simply, the diversity of life 
that we know today would not exist without it.
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Chlorophyll has another useful feature: it �uoresces light strongly at 
red and infrared wavelengths, which enables remote sensing of terrestrial 
and marine regions where photosynthetic plants are abundant. 

Tuning chlorophyll 
Chlorophyll is the only plant pigment that produces useful chemical 
energy from light, but it absorbs only part of the solar spectrum. As you 
would expect, the billions of years since chlorophyll a’s µrst appearance 
have provided plenty of time for adaptations to evolve that improve this 
critical molecule’s performance. Pigments called accessory pigments har-
vest light from spectral regions where chlorophyll does poorly, and then 
transfer the absorbed energy to chlorophyll.

Of the two chlorophyll pigments, only chlorophyll a actually con-
verts light to chemical energy. Chlorophyll b is an accessory pigment 
that links to chlorophyll a and passes energy to it. ­e other major class 
of accessory pigments is made up of the carotenoids, which are chem-
icals that are present in chloroplasts together with the chlorophylls 
and that directly transfer energy to chlorophyll a. (Chloroplasts are the 
cellular components where chlorophyll allows plants to make oxygen and 
form simple organic chemicals.) 

Carotenoids appear bright red, orange, or yellow; these molecules 
and their derivatives are taken from plants to make similar colors in ani-
mals. ­ey are e¥ective absorbers of blue-green and green light, and thus 
µll in the parts of the spectrum that the chlorophylls normally fail to 
capture. Other molecules, closely related to carotenoids, are the xantho-
phylls, which look brown or yellow. 

Even though all these variously colored pigments are always pres-
ent in leaves, they are so much less abundant than chlorophyll that we 
rarely see their colors. ­eir high concentrations in most leaves are only 
revealed when they are chemically extracted—or when the chlorophylls 
that overshadow them naturally degrade. Nature’s beautiful gift of 
autumn foliage exists simply because the chlorophylls disappear rapidly 
as photosynthesis shuts down at the end of summer. Leaves then show 
their carotenoid content by displaying their oranges and reds, and their 
xanthophylls by becoming yellow. ­ose beautiful pigments have always 
been there, it is just that chlorophyll is so much more abundant that they 

opposite: Red �uorescence 
from chlorophyll seen in a 
microscopic view of a pampas 
grass leaf lit by ultraviolet 
light. ­e “faces” are the leaf 
vascular bundles, with xylem 
vessels for “eyes.”
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were previously concealed. Despite their reluctance to display them-
selves, these pigments are essential for the success of plants.

Flowers and their pigments 
Flowers are beautiful, ephemeral entities: they may sometimes be weird 
or alien, but are often awe-inspiring. ­eir shapes range from simple to 
fantastic, as do their colors and pigments. 

Plant favorites are anthocyanins and carotenoids, each in a dizzying 
variety of types. ­e colors they produce range from blue-purple to orange-
red in the case of anthocyanins, and from yellow to deep red in carotenoids.

­e variety of pigments is enormous, but a few names provide a bit 
of �avor. ­e anthocyanin pelargonidin is found in geraniums (genus 
Pelargonium). Mallows make malvidin and peonies make peonidin. 
Not all anthocyanins have such obvious names, however. Carotenoids 
are sometimes named by the colors they produce, such as aurone 
(golden) or xanthin (yellow). 

Flowers µrst evolved only about 100 million years ago—relatively 
recently in geological terms—and often co-opt photosynthetic acces-
sory pigments to make their stunning colors. Some �owers use only 
one kind of pigment, but most mix pigments to produce their stunning 
colors, often using both anthocyanins and carotenoids. ­e various yel-
lows, oranges, and golds of marigolds are combinations of carotenoids, 
sometimes with a hint of anthocyanin. Hydrangeas make �owers with 
di¥erent colors based on the same anthocyanin pigment. ­e pigment 
is modiµed by aluminum ions, which are only freely available in acidic 
soils. ­at is why hydrangeas are blue in acidic soils, but are pink or 
red in alkaline ones. Depending on weather and growing conditions, 
hydrangeas can produce di¥erently colored blooms on the same plant.

Not all �owers are colorful. ­e colorful ones exist to attract polli-
nators, especially insects like bees and butter�ies, or nectar-feeding birds 
like hummingbirds, sunbirds, and honeycreepers. Over time, there has 
been a dance of adaptations, with animals evolving to better see �owers 
with abundant nectar, and plants adjusting to animals’ vision to attract 
their pollinating ability. Some �owers even have ultraviolet colors, visible 
to their pollinators but not to us (see page 123).

opposite: Wild�owers 
displaying their showy 
assortments of pigments.

overleaf: Lavender µeld at 
sunset, a sight not normal in 
the natural world but one that 
shows the human desire to 
amplify color sensation from 
�owers. In this case, smell 
sensations too.
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An oft-repeated statement is that “bluebirds are not blue,” with the 
writer going on to explain that their color is an optical illusion. One 
could just as well say that goldµnches are not gold and scarlet tanagers 
are not scarlet—they too are optical illusions! ­e di¥erence, however, 
is that complex organic pigments create red or gold colors, while blue 
colors generally arise from structure. 

Structural colors are produced when light encounters repeated, µne-
scale structures that constantly a¥ect its speed of travel through a material. 

Some familiar colors are produced by scattering light. Essentially, 
incoming photons are redirected by interactions with miniscule particles. 
Scattering produces both blue skies and white clouds; the di¥erence is 
that the molecules of gas in the open sky are much smaller than the tiny 
water droplets in clouds. 

­e colorful nanostructures in living things scatter light in a 
di¥erent way from atmospheric scattering. ­e scattering by living 
things is usually coherent, with all the outgoing light waves in lock-
step. An example is thin layering of materials that a¥ect how fast the 
light travels through them. If the layers are very regular, re�ections are 
iridescent—their apparent color changes with the angle of view. Both 
plants and animals make iridescent colors, which are often brilliant 
and eye-catching.

­ese thin layers are one type of photonic crystal: a term that 
sounds straight out of science µction, but simply refers to nanoscale 
structures with a regular geometry. ­e scale of the structure and the 
optical properties of its arrayed components determine the wavelengths 
of light it transmits or re�ects. Stacked layers only a¥ect light that 
enters perpendicular to the surface of the stack, passing from one layer 

Structural Color
Interactions of light particles (photons) 

with organized tiny features in organisms lead 
to interference phenomena that reinforce or 

obliterate speciµc wavelengths of light, producing 
brilliant structural colors in living things.
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A violet sabrewing 
hummingbird (Campylopterus 
hemileucurus), clothed in 
iridescent photonic colors.  



what is color?

60

Structural Colors 
in Butterfly Wings

Scanning electron micrograph of the photonic crystals in a butter�y wing.

Diagrams showing the structure of one-, two-, and three-dimensional 
photonic crystals, where the colors indicate materials of two refractive indices.
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to the next, so they are considered one-dimensional. Two-dimensional 
and three-dimensional photonic crystals also exist. Almost all naturally 
occurring photonic crystals are built by living organisms, although a few 
minerals, like opal, also contain them.

Whenever you see a brilliant blue on a living thing, or an iridescent 
�ash, or a bright metallic sheen, you can be conµdent that photonic 
crystals are responsible.

Structural colors in birds and insects 
Biological systems routinely contain features with the intricate geometry 
required for structural coloration. Some of these intricate structures can 
even become fossilized, preserving the colors of long-extinct marine 
creatures and dinosaurs. Today, structural colors are �agrantly used by 
birds, insects, and countless other creatures.

Bluebirds are the classic example. As their feathers grow, cells in the 
vanes form strands of keratin. ­e dry, mature feathers contain a sponge-
like mix of keratin and air pockets that have just the right dimensions 
to strongly scatter blue light. Because the keratin and air are arranged in 
a rather disordered array, termed “quasi-ordered,” the color is scattered 
similarly in all directions. A layer of melanin under the keratin guaran-
tees the purity of bluebird blue.

Some damsel�ies also use quasi-ordered clusters of particles in their 
epidermis to coherently scatter powdery blue or green coloration. Other 
damsel�ies take this a step further, creating photonic multilayers in the 
cuticle—their outermost covering—that re�ect iridescent blue, green, 
or gold. Such iridescent colors are brilliant when seen from the right 
position. Butter�ies also specialize in iridescence, frequently developing 
photonic structures to make stunning colors. A famous example is the 
blue morpho butter�y, whose wings are coated with sculpted photonic 
scales. ­e ridges on these scales look like Christmas trees when viewed 
in cross section using an electron microscope. ­is structure re�ects a 
deep blue blaze almost entirely in one direction that �ashes as the but-
ter�y beats its wings. ­e signal is visible from hundreds of yards away, 
an important use of color for the butter�ies and now also useful in our 
own medical world (see page 262).

structural color
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Hummingbirds are also masters of iridescence. ­e colors of the 
male’s throat (or gorget) are famous for their jewel-like brilliance when 
seen at a certain angle. In fact, most feathers on hummingbirds contain 
photonic crystals based on layers of �at, hollow structures. Even the 
green females have iridescent feathers, glistening in the sun.

Structures producing iridescence exist throughout living things, 
ranging from bristle worms, spiders, beetles, and bees to squid, µsh, and 
many other kinds of animals and even plants. Animals often exploit 
them to make brilliant, highly directional, pure-colored signals that can 
be aimed at any desired viewer.

Structural colors in primates
A memorable sight on an African safari is a retreating male vervet mon-
key. Against its gray fur, its strikingly blue testicles are unmissable. How 
can a mammal produce such an uncommon color?

After all, mammals are not typically colorful creatures. ­e yellow 
stripes of tigers and red coats of foxes blend into nearby vegetation when 
viewed by their mammalian prey. But among primates there are golden 
tamarins, ruddy orangutans, red howler monkeys, blushing macaques, 
and dramatically red-faced uakaris. Any red skin patches are due to a 
plentiful blood supply, while the reddish or golden pelts probably result 
from deposits of phaeomelanin (the same thing that gives rise to red hair 
in people).

Blue patches occur on bare skin in male vervets, male mandrills, 
and golden snub-nosed monkeys. No non-primate mammal uses pure 
blue coloration—blue whales are really blue-gray. ­e µne hairs of some 
populations of wildebeests and of the Maltese tiger can take on a bluish 
sheen; this is probably due to weak di¥raction of blue light. Ironically, 
the actual blue monkey is only faintly blue in certain lights, probably for 
the same reason.

So, how does a primate become blue? And why? Just like the blue 
of a bluebird, the blue of a primate is a structural color. ­e mechanism 
is analogous to that producing blue feathers in bluebirds—quasi-ordered 
arrays of tissue. In the case of primates, the array consists of parallel 
collagen µbers in the dermis layer of the skin. ­is structure coherently 

opposite: Rear view of a male 
black-faced vervet monkey 
(Mandrillus sphynx), showing 
its blue testicles colored by 
coherently scattered light.
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scatters blue light. Since the array is not a true photonic crystal, being 
rather disordered, the color is not iridescent, appearing the same from 
any direction.

We can only surmise why this happens, which is that it is likely a 
strong sexual signal in male mandrills, with their blue patches on the 
face and rump. ­e same probably holds for vervets. In the snub-nosed 
monkeys it seems to be a species characteristic, since all individuals have 
the same appearance. 

Primates have the best color vision of all mammals, which surely 
explains their frequent use of bright colors as signals. Our own primate 
vision lets us experience these colors just as they appear to our near cousins.

above: ­e blue face of a 
male mandrill (Chlorocebus 
pygerythrus). ­e hue is a 
structural color produced 
by coherent scattering.

opposite: ­e male cassowary 
(Casuarius casuarius) advertises 
his presence in the rainforests 
of Australia with a head of 
contrasting colors. ­e blue 
is made by a structural light 
scattering mechanism similar 
to the mandrill.
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With the exceptions of some rare (and dramatic) conversions between 
energy and matter, energy is turned into other forms of energy. In the 
case of pigments, this means that all light that is absorbed by the surface 
of a colored organism is converted to other forms of energy. 

When the light is extremely bright—for example, a laser—its 
energy can partially be turned into sound, ringing the tissue like a bell. 
For the most part though, the light is converted into heat. ­is is why 
black shirts and cars get hot on a sunny day, and why cell phones get so 
hot in the sun that they shut down. However, in certain cases, some of 
the light energy that is absorbed by a pigment is actually re-emitted as 
light. When the light is re-emitted so slowly that it lasts for many min-
utes after the original light has been shut o¥, it is referred to as phos-
phorescence. ­is is what may make your watch dial, the stick-on stars 
on a child’s bedroom ceiling, and the eerie fungus glowing in the forest 
all glow in the dark (see page 155). 

Fluorescence is when some light is re-emitted but only when the 
original light is present. Fluorescence has a number of special properties. 
One is that because only part of the energy of the original light—the 
excitation—is re-emitted, it must only contain colors (wavelengths) that 
have less energy. ­is means that �uorescence is always towards the red-
der end of the spectrum than the excitation light; typically it is just one 
color away, so ultraviolet excitation typically leads to blue �uorescence, 
blue leads to green, and green leads to red. However, it can sometimes 
be very far from the color of the excitation light. Secondly, �uorescence 
is typically not what is called an “e�cient” process. ­is means that it is 
normally much dimmer than the excitation, sometimes 50 to 100 times 
dimmer. For this reason, we can usually only see it if the excitation light 
is blocked with a µlter. With this light blocked, however, �uorescence can 
make it appear that the substance is glowing, which can be quite beautiful. 

Fluorescence
To humans, �uorescence can look as if a material 

is glowing. ­e color you see may not be what you would 
expect, however, and certainly never very bright.
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Minerals �uorescing in a tunnel 
lit by UV light: sphalerite is 
yellow, calcite is red, hydrozincite 
is white. Photographed at 
the Copper Queen Mine in 
Bisbee, Arizona.
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Discoveries in �uorescence
Recent advances in �uorescent imaging, which shine a bright UV or 
blue light on an object and then block the eye from seeing that light, 
have shown that �uorescence is common in nature. It is seen in many 
minerals, especially the mineral �uorite, which is named for its strong 
and beautiful �uorescence under UV light. Fluorite’s �uorescence is usu-
ally a deep blue, but can be nearly every color of the rainbow, depending 
on the impurities within the mineral. ­e geology sections in many 
museums contain exhibits of �uorescent rocks, where the light emission 
is triggered by a button that turns on a UV or deep blue light. 

Fluorescence in biological tissue is a more recent discovery, and is 
common wherever pigments are used. ­is is because pigments absorb 
light, which is the µrst step in creating �uorescence. Certain common 
and important biological molecules �uoresce. For example, the keratin 
that makes up our hair, µngernails, and parts of our skin �uoresces green, 
while chlorophyll, which is found in nearly every plant and a number 
of other organisms, �uoresces red. Indeed, almost every major group 
of animals and plants have �uorescent pigments. Scorpions strongly 
emit blue-green light when excited by UV light, which has been used 
to µnd them at night, but is almost certainly not useful for the animals 
themselves. ­e common nature of �uorescence has also generated a fair 
bit of excitement among scientists and has led to the hypothesis that 
�uorescence serves a visual purpose. 

We must be careful, however, in ascribing a function to a given 
example of �uorescence. As discussed, �uorescence tends to be weak. It 
also often requires excitation from parts of the sun’s spectrum that are 
not very bright to begin with, such as the UV region. For these reasons, 
�uorescence is usually much harder to see under natural lighting condi-
tions than it is in a laboratory, or at night where very bright excitation 
lights can be used together with µlters to maximize the e¥ect. ­e glow 
from scorpions, for example, which is so striking under UV lamps at 
night, is not even noticeable during the day, because even though more 
UV light is present, the blue emission is overwhelmed by the natural 
blue daylight.

opposite: Desert hairy 
scorpion (Hadrurus spadix) 
in eastern Oregon, USA, 
�uorescing under UV light.
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