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Introduction

The six chapters of this book that follow describe how ideas underlying the
renormalization group (RG), a significant breakthrough in theoretical physics
during the second half of the twentieth century, impact a broad range of areas in
condensed matter physics. After reviewing Ising models, lattice gases, and crit-
ical point phenomena in Chapter 1, we show in Chapter 2 how RG methods,
once migrated from particle physics to condensed matter physics, allow a deep
understanding of the functional integral Landau theories that describe magnetic
phase transitions of n-component classical spin problems, typically calculations
in d= 4− ε dimensions. We then move on to Chapter 3, which covers quantum
critical phenomenon, starting with a review of path integrals applied to quantum
double wells and subsequently covering various quantum rotor models on a lat-
tice, including spontaneously broken symmetries and phenomena in the vicinity
of d= 2 dimensions. For the problems we focus on, at both finite and zero tem-
perature, the rotor path integrals acquire an extra dimension in imaginary time
relative to their classical counterparts. Chapter 4 describes the statistical mechan-
ics of linear polymer chains, with broad applications to biology, chemistry, and
physics. When these one-dimensional assemblies of molecules, connected by
strong covalent bonds, are very long and wander due to thermal fluctuations in
two or three dimensions, they behave as if they are at a critical point. We cover
both freely-jointed chain and worm-like chain models, and then show how renor-
malization group ideas can be used to understand important aspects of their
behavior, such as swelling due to self-avoidance. Chapter 5 covers fluctuating
sheet polymers; examples include free-standing graphene and the spectrin skele-
ton of red blood cells. RG methods predict a remarkable low-temperature flat
phase, a rare example of a two-dimensional continuous broken symmetry that
survives even at finite temperature, with remarkable scale-dependent renormal-
ized elastic constants—for example, thermal fluctuations at room temperature
can enhance the bending rigidity of graphene from its value at zero tempera-
ture by 4000-fold! The dynamics associated with the Navier-Stokes equations
and simplified models of randomly stirred fluids are covered in Chapter 6 and
treated with a dynamical version of the renormalization group. The properties of
“active matter,” driven out of equilibrium by, e.g., biologically-inspired filaments
straddled by motor proteins that burn biological fuels like adenosine triphosphate
(ATP), are mentioned at the very end. This Introduction is intended to provide a
big-picture overview, as well as some historical context, for the contents to come.
The equations presented here will be explained in detail in the subsequent chap-
ters, so the reader should not worry if they seem unfamiliar or confusing on a first
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Figure i: “Let xC be the location of
the maximum of V(x), i.e. , the top
of the hill. If the ball is released at
any point x < xc (on the left of xC)
then the ball rolls down to the point
xA and stops. If it is released to the
right of xC , it rolls to xB and stops.”
Figure and quotation are from Ken-
neth Wilson’s seminal paper on the
renormalization group for classical
spin systems [5].

reading. Readers are encouraged to circle back and return to this chapter upon
reaching the end of the book.

A modern perspective on renormalization groups owes much to Kenneth G.
Wilson, who, although hired as a high energy field theorist at Cornell Univer-
sity during the mid-1960’s, made invaluable contributions to the systematic way
we think about condensed matter physics today. Wilson started publishing the
seminal papers that applied RG methods to condensed matter physics problems
in 1971 [5]. He postulated that in systems with phase transitions, the Hamilto-
nian (a function that takes many-body coordinates such as particle positions and
momenta and outputs the corresponding energy) can sit like a ball poised on the
top of a hill (see Figure i) and roll down the hill with motion described by a set of
overdamped dynamical equations for the coupling constants. This was a striking
concept at the time; physicists are used to thinking of Hamiltonians as control-
ling dynamics via equations of motion rather than as objects exhibiting dynamics
themselves. In Wilson’s picture of phase transitions, the spatial coordinates of
the hill and the ball describe parameters in the Hamiltonian functional, and the
time quantity is replaced by the fraction of degrees of freedom that have been
coarse-grained over (see Figure i). That is, the Hamiltonian of a given system
experiences dynamics as the system it describes is systematically coarse-grained
in some way, and these dynamics are intimately related to the phases and phase
transitions that the system exhibits. Wilson’s beautiful insights were recognized
by the Nobel Prize in Physics in 1982.

Liquid/gas phase coexistence and magnetic ordering

An important problem in chemistry and physics that stimulated the break-
through of an infrared RG (as opposed to the ultraviolet renormalization groups
more common in field theories) concerns phase transitions between solids, liq-
uids, and gases. These phases can be mapped out in a phase diagram, as in Figure
iia, where the axes are temperature and pressure. In the vapor or gas phase, which
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(a) (b) Figure ii: (a) Schematic of a
solid-liquid-vapor phase diagram
in pressure-temperature space.
(b) Schematic of isotherms near
liquid-gas coexistence as a function
of pressure and volume at different
temperatures, where Tc marks the
temperature at the critical point
in (a).

typically occurs at low pressure and high temperature, particles are randomly dis-
tributed and don’t interact much. This phase, at least when there are short range
attractive interactions between particles (as well as a repulsive hard core), is often
separated by a transition line from a higher density liquid phase, where the par-
ticles remain disordered but interact much more strongly. In the solid (crystal)
phase, the particles are arranged in regular repeating patterns. A natural question
to ask is: What is the nature of the transitions between these different phases?

In Figure iia, the solid-vapor and liquid-vapor transitions, marked respec-
tively by the red and blue curves, are first order phase transitions with discontin-
uous changes in density and entropy. The crystal-liquid transition, marked by the
green line, is more subtle. A crystal has crystallographic axes, which dictate how
it and its diffraction spots are oriented relative to a laboratory frame, and sets of
regularly spaced Bragg planes of atoms, each of which behave like a diffraction
grating. Relative to the liquid, the crystal breaks both orientational and trans-
lational symmetry. Thus, the first order green transition line separating liquid
and crystalline phases never terminates (unlike the blue first order transition line
between gas and liquid), as one cannot gradually abolish a pair of broken sym-
metries. Although not shown in Figure ii, the two broken symmetries of a crystal
can sometimes be broken sequentially as a material is cooled, as in the nematic
liquid crystals of oriented rod-shaped molecules. This phase is crucial for liq-
uid crystal display devices and has a broken rotational symmetry (the molecules
choose an alignment direction), but no broken translation symmetry. A crys-
talline phase can still exist, but only at an even lower temperature. There is an
analogous fourth, hexatic liquid phase of matter, which flows freely but has the
extended six-fold bond orientational order of a triangular lattice crystal and arises
in layered or two-dimensional systems, even with isotropic particles. Solid, liq-
uid and gas phases of point-like particles can simultaneously coexist at a special
place on the phase diagram of Figure iia, the triple point (Tt , pt). (The atmo-
spheric pressure on the surface of Mars is below the triple point of water, so don’t
go looking for liquid water on the Martian surface! Only ice and vapor phases of
water are possible there at the present time.)
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As shown in Figure iia, the liquid-gas line of coexisting phases terminates
at a special critical point given by (Tc, pc). The critical point is itself a set of
measure zero in the phase diagram, but its influence can extend far from the
point itself. To illustrate this fact, imagine varying the volume and measuring
the pressure at a variety of fixed temperatures to explore different features of the
phase diagram. We can then plot the pressure-volume isotherms, as shown in
Figure iib. At temperatures below the critical point temperature Tc, there is a
vapor-liquid coexistence region, as is apparent from the Van der Waals loops in
the pressure-volume isotherms. These loops are unphysical, and an equal-area
Van der Waals construction is required to replace this portion of these curves
by horizontal tie lines, across which liquid and vapor phases coexist with differ-
ent volumes and hence different densities if the particle number is fixed [6]. As
one approaches Tc from below, the distinction between liquid and gas vanishes
continuously. Above Tc, each isotherm decreases monotonically with increas-
ing volume. Something remarkable also happens as one approaches the critical
point from above. As T→T+c , the slope of the isotherm lines goes to zero, which
means that the isothermal compressibility κT =− 1

V

(
∂V
∂p

)
T

diverges to infinity.
The isothermal compressibility is just one of many singular response functions
we will encounter in this book. Its divergence already signals that remarkable phe-
nomena happen near a critical point. As we shall see, exactly at the critical point,
there are fluctuations in density (or in some other measure of order) at all scales
up to the system size. This phenomenon is called critical opalescence, where
initially transparent fluids become milky white and scatter light at many differ-
ent wavelengths. As mentioned, below the critical point (down the blue line of
vapor-liquid coexistence in Figure iia), such systems phase-separate into distinct
liquid and gas phases. Phase diagrams with solid, liquid, and gas phases, includ-
ing a special liquid-gas critical point with a diverging correlation length, arise
for many different substances composed of molecules and atoms (e.g., methane,
argon, xenon, water, toluene, acetone. . . ). Although the critical point is typically a
set of measure zero, its influence can be felt over a significant portion of the phase
diagram.

Remarkably, a simple model of interacting spins in ferromagnets, important
for magnetic phase transitions, can also capture phenomenon with very similar
features to the gas-liquid phase transition. The Ising model describes a system
of spins that can either point up or down. (We will study this model in detail in
Chapter 1.) On letting σi=±1 denote the orientation of the i-th spin, the Ising
Hamiltonian is given by

HI =−J
∑
〈ij〉

σiσj− h
∑

j
σj, σj=±1 (i)

where the exchange coupling J > 0 controls the strength of alignment between
neighboring spins, and h is an external magnetic field coupled to each individual
spin. The macroscopic magnetization of these spins is the average of the orien-
tations of the individual spins M=〈σi〉, where the brackets indicate a statistical
mechanical average.
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To draw an analogy between the Ising model of magnetic spins and the
liquid-gas phase transition, imagine that the particles in the latter system sit on
a lattice rather than in continuous space. At each site, a down spin corresponds
to the absence of a particle, while an up spin corresponds to the presence of a
particle. The external magnetic field h corresponds to the chemical potential that
controls the total number of particles on the lattice (the chemical potential is
another parameter, besides temperature and pressure, that one can tune to move
around with in a solid-liquid-gas phase diagram). In Chapter 1, we’ll see that,
like the liquid-gas portion of the phase diagram in Figure iia, the simple Ising
problem also has a line of discontinuous phase transitions between two distinct
ferromagnetic phases (mostly up spins or mostly down spins) that terminates at
a critical point, called the Curie temperature Tc. In fact, computer simulations
of the Ising model in thermodynamic equilibrium reveal that the system exhibits
fluctuations on all spatial scales near Tc, accompanied by a diverging correlation
length, similar to a liquid-gas critical point, which we will explore in various ways
in Chapters 1 and 2.

When the Ising model coupling J in Eq. i is negative, this Hamiltonian
describes some aspects of the behavior of brass, a common alloy of copper and
zinc. The phase diagram as a function of composition and temperature (with the
pressure fixed) is shown in Figure iii. Brass has a rich variety of phases, such as
α, β , β ′, and γ , characterized by different lattice structures for the positions of
the zinc and copper atoms, which depend on both temperature and their rel-
ative proportions. Although Cu and Zn form a liquid binary mixture at high
temperature, brass crystallizes and exhibits a two-phase region at low temper-
atures, where it spontaneously separates into face-centered-cubic α crystals and
γ crystals. Unlike for the liquid-gas system and the Ising model, the phase dia-
gram of brass has a line (rather than a point) of second-order phase transitions
separating the two body-centered-cubic (bcc) β and β ′ phases, with the same
lattice structure. Above the transition temperature, the zinc and copper atoms in
this alloy randomly occupy the sites of the two simple cubic sublattices of this
bcc lattice. Below the transition temperature, copper mostly occupies one sub-
lattice and zinc mostly occupies the other sublattice. If we identify copper atoms
with up-spins and zinc atoms with down-spins, we can map this system onto
an Ising antiferromagnet, which exhibits a line of second-order phase transitions

Te
m

pe
ra

tu
re

Composition (% zinc)

Liquid

α
γ

β

β

Figure iii: A schematic of the
phase diagram of brass, an alloy of
copper and zinc, in the plane of
temperature and zinc weight frac-
tion. There is a line of second order
phase transitions, roughly at a con-
stant temperature, separating two
distinct structural phases β and β ′.
The horizontal dashed lines span
regions of two-phase coexistance.
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Figure iv: Specific heat curves as a function of temperature for both (a) β-brass and (b) zero-
field Ising antiferromagnets (e.g. NiCl2· 6H2O) exhibit the same power-law divergence upon
approaching the critical points of these systems. Figure adapted from Refs. [7, 8].

separating the antiferromagnetic phase and the paramagnetic phase in the h-T
phase diagram; see Chapter 2 for details.

On measuring the specific heat of β-brass at fixed composition while the
system approaches the critical line segment in the phase diagram in Figure iii,
one finds that the specific heat rises to a singularity at the critical line. Sim-
ilarly, the zero-field specific heat of an Ising antiferromagnet also diverges as
one approaches the Curie transition temperature Tc. In both cases, the specific
heat curves near the respective critical points can be fit to a power law sin-
gularity with the same critical exponent (see Figure iv)! This shared behavior
between antiferromagnets and β-brass is an example of universality: Quite dif-
ferent physical systems can share similar properties near critical points, regardless
of their microscopic details. Chapters 1 and 2 will explore the question, where do
these singularities come from and can we understand the apparently universal
behaviors shared by these different systems?

An important message to take away from this book is that the renormaliza-
tion group maps hard problems onto easier ones. Ising models near the critical
point given by the dimensionless ratio Kc= J/kBTc and liquid-gas systems on the
verge of critical opalescence are hard to understand because they exhibit fluc-
tuations at all spatial scales. In 1966, Leo Kadanoff [10] envisioned dividing a
system of spins (interacting with dimensionless coupling constant K= J/kBT)
into blocks and coarse-graining within each block by replacing all the spins in
each block with a (super-)spin (see Figure v). These super-spins then interact
with each other via a new interaction constant K ′. Interestingly, the Hamiltonian
under an approximate coarse-graining procedure has a fixed point, i.e., a posi-
tion at the top of a hill in K-space (denoted by x in Figure i), where the coupling
constants are invariant to coarse-graining. If the Hamiltonian (ball) is to the left
of this fixed point, then it will roll to the left (high temperatures); if the Hamil-
tonain (ball) is to the right of this fixed point, then it will roll to the right (low
temperatures). The crest of the hill corresponds to Tc itself. We can therefore map
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K

Figure v: Leo Kadanoff ’s block
spin transformation for an Ising
model on a square lattice. Config-
urations of block spins, interacting
with a new coupling constant K′,
can be obtained from the original
spins by a simple “majority rule”:
the new block spin is up if the orig-
inal block has 3 or 4 up spins, and
down if the original block has 3 or
4 down spins. An up or down block
spin is chosen randomly if there is
a tie within a block. Figure adapted
from Ref. [9].

the Hamiltonian of the hard problem (i.e., an Ising system near the critical point
K≈Kc) to either a low-temperature problem or a high-temperature problem,
where all spins are, respectively, either mostly aligned or mostly uncorrelated,
allowing for the use of various approximation schemes.

Quantum critical phenomena

The Hamiltonian of a non-relativistic many-particle system typically has a
quadratic kinetic energy from the momentum degrees of freedom, as well as
potential energy from the interactions between the individual constituents. In
other words, we have a Hamiltonian of the form

H=
∑

i

|�pi|2
2m
+
∑
i�=j

φ(|�qi−�qj|) (ii)

where �pi and �qi are the momentum and position of the i-th particle, respectively,
and φ(|�qi−�qj|) describes a pairwise interaction potential between two parti-
cles, e.g., a hardcore repulsion at short separation distances and Van der Waals
attraction at long distances, as in a Lennard-Jones pair potential. When classical
physics dominates over quantum effects, such interactions give rise to the usual
solid, liquid, and gas phases. However, at sufficiently low temperatures, quantum
mechanics can change our perspective.

In classical statistical mechanics, one can immediately integrate out all the
momentum degrees of freedom, since they appear as decoupled quadratic terms
with effects that are independent of one another in Eq. ii. The Gaussian inte-
grals associated with these kinetic degrees of freedom can be easily eliminated
from the partition function, although a challenging classical statistical mechan-
ics problem involving the potential energy still remains. However, the statistical
physics is more challenging in quantum systems, because momentum and posi-
tion are intertwined by the uncertainty principle. Indeed, their corresponding
operators (indicated by a circumflex) don’t commute,

[p̂α
i , q̂β

j ] = i�δijδαβ . (iii)
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Figure vi: Helium-4 exhibits a
quantum phase transition from
solid to superfluid as a function of
pressure at sufficiently low temper-
atures. In the superfluid phase at
low temperature and pressures, the
bulk Helium liquid in the container
at left can escape by flowing thro-
ugh a porous material, or by form-
ing a thin film that flows without
resistance. All phase boundaries
describe first order transitions,
except the line separating the high
temperature liquid from the low
temperature superfluid. (Adapted
from video by Alfred Leitner,
Liquid Helium, Superfluid (1963),
available on Youtube.)

In fact, quantum zero-point motion, intimately connected with this nonzero
commutator, can disrupt perfect order at very low temperatures in intriguing
ways. For example, below about 2.5◦ K, liquid Helium 4 exhibits a new phase of
matter—a superfluid—so called because it flows without resistance even in the
thinnest films and through the finest capillary tubes, i.e., it has zero shear vis-
cosity. The He4 crystal becomes unstable with decreasing pressures near T= 0
to the superfluid phase due to the residual quantum zero-point vibrations of the
crystal lattice. This phase transition between solid and superfluid He4 is a quan-
tum first-order transition in three dimensions (see Figure vi). In this case, the
first-order quantum transition is associated with a changeover between two very
different many-body ground state wave functions, and involves the crossing of
two competing ground state energies. Outside of two dimensions, for which a
continuous transition to a quantum hexatic phase is possible [11], there are no
diverging correlation lengths and no critical phenomena in a conventional sense,
because the transition is first-order.

However, quantum critical phenomena near T= 0 does arise in other con-
texts, such as quantum antiferromagnets [12, 13]. Another paradigmatic quan-
tum problem, which we will study extensively in Chapter 3, is a lattice of
interacting quantum rotors. As is well known from the study of ideal gases with
structure, diatomic molecules have important vibrational modes and rotational
modes in isolation. If the bonds within the molecules are very stiff, then the
most important remaining descriptor of each molecule in isolation is its angu-
lar momentum. The Hamiltonian of a system of these stiff rotors on a lattice has
a kinetic energy from the rotation of the molecules and a potential energy from
the alignment interaction between neighboring molecules, as shown here

HR= Jg
2
∑

i
L̂2

i − J
∑
〈ij〉

n̂i · n̂j, (iv)

where Jg and J are coupling constants parameterizing the strength of the kinetic
energy and the alignment interaction, respectively, and the second term sums
over nearest neighbor rotor pairs on a lattice. The L̂i and n̂i operators describe
the angular momentum and the size and direction of the i-th rotor. The first
kinetic energy coupling constant in Eq. iv comes from the moment of inertia
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of the rod-like molecule. Given an alignment interaction coefficient J (somewhat
like a Heisenberg exchange coupling coefficient for a spin system) for the poten-
tial energy of neighboring rotors, it is convenient to rewrite the kinetic energy
parameter (scaling out J) as Jg, so g is a measure of the ratio of the kinetic to
potential energy. Here, again, the momentum and interaction degrees of freedom
of the rotors on the same site are linked by quantum mechanics, with nonzero
commutators, summarized as follows (see Chapter 3 for more details),

L̂α = εαβγ n̂β p̂γ (v)[
L̂α , L̂β

]
= iεαβγ �L̂γ (vi)[

n̂α , L̂β

]
= i�εαβγ n̂γ. (vii)

We use the summation convention for repeated indices throughout this book.
In both two- and three-dimensional versions of this model, quantum rotors

exhibit a second-order phase transition as g varies at T= 0. In the limit of large Jg,
the kinetic energy dominates, and the rotors minimize their ground state energy
in a quantum disordered state. When quantum fluctuations are weak, however,
interactions dominate and the rotors align in an ordered phase only mildly per-
turbed by quantum fluctuations. Away from zero temperature, this system of
quantum rotors can experience important crossover phenomena, such that the
quantum critical regime, much like the critical point in Figure iia, can influence
response functions some distance away from the critical point in the phase dia-
gram. Chapter 3 explores the rich physics associated with this simplified quantum
phase transition problem.

Fluctuating polymers

Polymers are all around us: Cross-linked polymers make up rubber bands.
Polystyrene, when cooled down from a melt, has a tangled glass phase useful
for disposable coffee cups and packing material. Polyethylene oxide (also called

(a) (b) Figure vii: The effect of ther-
mal fluctuations on the behavior
of linear and sheet polymers is
very different. (a) Thermal fluctu-
ations always crumple linear poly-
mer chains when they are suffi-
ciently long. (b) Sheet polymers
(e.g., free-standing graphene) have
a wrinkled flat phase, with long
range order in the normal vectors
even at finite temperatures. Figure
adapted from Refs. [14, 15].



10 INTRODUCTION

polyethylene glycol) is a turbulence damper, a dilute concentration of floppy
molecular chains that help the water slide through the hose of a firefighter and
shoot up higher than unadulterated water. Chapters 4 and 5 are devoted to
the study of chain and sheet polymers, and the insight renormalization group
methods can provide.

A chain polymer wandering about in a solution at finite temperature is anal-
ogous to a classical spin chain, with the spins being the tangent vectors pointing
along the backbone of the polymer. The aligning of these spins then corresponds
to the polymer being stretched out along a single direction. As shown in Chapter
4, however, linear polymers are almost always crumpled up, with no long-range
order in the orientation of their backbones. Nevertheless, when these polymers
are very long, they behave as if they are at a critical point, with nontrivial critical
exponents describing their conformations in the presence of self-avoiding inter-
actions. Remarkably, this problem of polymers with self-avoidance is intimately
connected with the physics of classical n-component spins in d-dimensions in
the limit n→ 0, as we will discuss.

In the late 1980’s and early 1990’s, the statistical mechanics of chain poly-
mers was extended to that of sheet polymers, that is, fishnet-like structures of
covalently bonded monomers in two dimensions. Unlike linear polymers, sheet
polymers do exhibit a low-temperature flat phase: although these ıtethered sur-
facesȷ are corrugated, the normal vectors of the sheet all point on average in the
same direction. The long-range order exhibited by these normal vectors thus
evades the well-known Mermin-Wagner-Hohenberg theorem, which states that
thermal fluctuations will almost always destroy long-range order in systems in
two dimensions or less. Elastic parameters such as the bending rigidity and shear
modulus are not in fact constants, but instead become strongly scale-dependent.
There are a number of experiments studying sheet polymers with stiff covalent
bonds, from observation of the rag (crumpled) phase of MoS2 in 1979 [16],
studies of crumpled graphite oxide in 1991 [17], and, more recently, elegant
probes of the bending rigidity of graphene ribbons in the flat phase in 2015 [18].
Using the results of Chapter 5, one can show that an atomically thin sheet of
graphene 10 microns across (i.e., an aspect ratio of about 40,000) has a bend-
ing rigidity that is roughly 4000 times stronger than that predicted by quantam
density functional theory, simply due to thermal fluctuations. If the graphene
sheet were instead 50 microns across, then its bending rigidity would be approxi-
mately 20,000 times stronger than that predicted by density functional theory for
unwrinkled graphene at T= 0.

Fluid dynamics and dynamical renormalization groups

Fluid dynamics is a rich, challenging field with many outstanding challenges,
a prime example of which is turbulence, described by a system of nonlinear
partial differential equations, when a dimensionless coupling constant called
the Reynolds number is very large. Chapter 6 begins with an introduction
to basic fluid mechanics and leads eventually to a dynamical renormalization
group, allowing us to compute correlations across both space and time for a
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Energy injection

Energy
transfer

Figure viii: Left: Schematic of the
Kolmogorov energy cascade in the
context of turbulence, arising from
nonlinearities in the Navier-Stokes
equations. Right: Flocks of star-
lings, schools of fish, and swarms of
bacteria can be described by hydro-
dynamical theories similar to the
Navier-Stokes equations, some of
which can be treated using renor-
malization group methods. Starling
image provided by Irene Giardina.
See also Ref. [19].

simplified model in the presence of advective nonlinearities, where the veloc-
ity field is purely longitudinal and subject to random stirring over many different
wavelengths. The nonlinear equations believed to embody the behavior of simple,
incompressible fluids were written down by Navier and Stokes in 1841 (shown
here in the absence of stirring for simplicity),

∂t�u+ (�u · �∇)�u=− 1
ρ0
�∇p+ ν∇2�u (viii)

�∇ · �u= 0, (ix)

where �u(�x, t) and p(�r, t) are the velocity and pressure fields of the fluid, ρ0 is
the fluid density, and ν is its shear viscosity. To this day, these equations are not
completely understood (see the fluid mechanics chapters in the Feynman Lec-
tures in Physics), especially in the presence of the strong advective nonlinearity
(�u · �∇)�u, which produces mode couplings between modes of velocity fields at
different wavelengths. It is known qualitatively that large eddies excited by macro-
scopie stirring transfer their energy into smaller eddies, which then transfer their
energy to even smaller eddies and so on. This is called the energy cascade. This
energy cascade generates many distinct time and length scales for velocity exci-
tations, somewhat reminiscent of a system at its critical point (see Figure viiia).
On non-dimensionalizing Eq. viii, the coupling constant in front of the adrective
nonlinearity becomes a parameter called the Reynolds number,

Re= L0u0
ν

, (x)

where L0 is the characteristic macroscopic system size (e.g., size of a stirred cof-
fee cup), u0 is the characteristic fluid velocity magnitude at that length scale, and
ν is the kinematic viscosity that dissipates the energy. The idea is that kinetic
energy is typically injected at large scales by stirring at large length scales. The
large whirls then cascade down to whirls of smaller length scales until the length
scales are so small that the derivative terms involving the Laplacian and the shear
viscosity become large enough to produce dissipation. The Reynolds number (or
nonlinear coupling strength) of cigarette smoke in the air is on the order of 100
to 1000, while the Reynolds number of oceanic flows excited by the wind-wave



12 INTRODUCTION

coupling can easily be 108 to 109. It’s evident that we cannot use perturbation
theory to treat such large nonlinearities! As discussed in Chapter 6, renormal-
ization group methods can help, at least for a simplified model system. Our final
chapter concludes with a brief review of recent ideas in the field of active matter,
such as spontaneous continuous symmetry breaking in simplified flocking mod-
els of bacteria, birds, and fish. Here renormalization group methods predict that
simplified hydrodynamic models of non-equilibrium active matter can support
long-range order of a vector velocity order parameter, even in two dimensions.
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