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CHAPTER 1
Five

The Pythagoreans associated the number five
with marriage, because it is the sum of what
were to them the first even, female number 2,
and the first odd, male number 3.

—DAVID WELLS, THE PENGUIN DICTIONARY OF
CURIOUS AND INTERESTING NUMBERS (1986)

EVEN AMONG THE FIRST TEN INTEGERS, five stands out. The
number one is, well, one, the generator of all integers.
Two is one doubled; it is the natural cycle that governs our
lives. We walk in steps of one-two, one-two, we breathe in
an inhale-exhale cycle, our daily activities are regulated by
the diurnal cycle of day and night, our body has a nearly
perfect left-right symmetry, and our sense of direction is
based on a left-right, forward-backward movement. The
Chinese yin-yang is a symbol of all things that come in
contrasting pairs—yes-no, on-off, good-evil, love-hate. Two
is the numeration base on which all our computers are
based, the binary system. We also note that two has some
unique mathematical properties: 2+2=2x2=22 And it
has the distinction of being the first prime number and the
only even prime. The exponent two is probably the most
common power in all of mathematics, appearing in the
Pythagorean theorem a? + b2 = ¢2, in the Mersenne numbers
2" —1 and Fermat numbers 22"+ 1, and in numerous theo-
rems in almost every branch of mathematics. It is just as
prevalent in physics as the exponent in all inverse-square
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laws, and it stars in the most famous equation in all of sci-
ence, E=mc?.

Three is next in line, being the sum of one and two
(although we often perceive it as a single unit in counting:
1-2-3, 1-2-3,...). Dances based on a triple meter are very
common, from Haydn and Mozart’s minuets to Beethoven’s
scherzos to the waltzes of the Strauss family. It is the first
odd prime, as well as the first Mersenne prime (3=22-1)
and the first Fermat prime (3 = 22°+1). It is also known as
the “biblical value of 7” due to a verse in I Kings 7:23: “And
he made a molten sea, ten cubits from one brim to the other;
it was round all about ... and a line of thirty cubits did com-
pass it round about.” The “he” refers to King Solomon, and
the “sea” alludes to a pond he ordered to be constructed at
the outer entrance to Solomon’s Temple in Jerusalem.

Next comes four, the smallest composite number and
the only square integer of the form p+1, where p is a
prime (this is because n?-~1=(n+1)-(n—1), a composite
number except when n=2). In the decimal numeration
system, a number is divisible by four if and only if its
last two-digit number is divisible by four (for example,
1536 is divisible by four because 36 is, but 1541 is not
because 41 is not). The first of the regular or Platonic sol-
ids, the tetrahedron, has four vertices and four faces, each
an equilateral triangle. Four colors are sufficient to color
any planar map such that two regions sharing a common
border will have different colors (this famous theorem was
first conjectured in 1852 but was not proved until 1977).
We view the world as comprising four dimensions, three
of space (length, width, and height) and one of time, all
merged into a single entity, spacetime. There are four car-
dinal directions, designated (in clockwise direction) as N,
E, S, and W. Four is the number of letters in the ineffable
YHWH (the so-called tetragrammaton), one of the names
of God in the Judeo-Christian tradition.
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Symphony Pathétique

Allegro con grazia P. I. Tchaikovsky

T 1
T 1
T I

FIGURE 1.1. The “limping waltz” in Tchaikovsky’s Pathétique

Al HAI Y0

CHINESE (MANDARIN) FOLK SONG

Al haiys, s haiyo, ai  haiyo hai yo Wan-hé tai-yang zhao da - di,

bethsnotes.com

Xin-nian yi - jing— dao, Jia jia xing-fa, Ming - nian— hdo—_ shdu - chéng

FIGURE 1.2. Chinese folk song in pentatonic scale

We now arrive at five. It feels somewhat awkward to
walk in steps of five, let alone to keep a five-beat rhythm
in music. A quintuple meter of five quarter-notes per bar
(denoted by 5/4) in classical music is quite rare; a notable
exception is the “limping waltz” from Tchaikovsky’s Sym-
phony no. 6, Pathétique (figure 1.1). Similarly, a person
accustomed to Western classical music may find it unnatu-
ral to listen to a piece played in a pentatonic scale of five
notes to the octave. There are several versions of this scale;
in one version, the notes are C, D, E, G, A, C’ (where C’ is
one octave above C), comprising the intervals 1, 1,1%, 1, 1%
(where 1 and % denote a full tone and a half tone, respec-
tively); another version starts with C-sharp and follows the
black keys of the piano, with the sequence of intervals 1,
1%, 1, 1, 1%4. Pentatonic melodies can be found in much of
African and Asian music. Figure 1.2 shows an example of
a Chinese (Mandarin) folk song in a pentatonic scale.
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But while it may feel awkward to count by fives in music,
it actually comes quite naturally in daily life. This is due to
the fact that we are born with five fingers on each hand. We
are therefore endowed with a natural calculating device—
literally, a “pocket calculator,” considering that many of
us like to hold our hands in our pockets on a brisk, cold
day. And it doesn’t need to be recharged, it never runs out
of power, and it is always available and ready to be used.
If this sounds a bit trite, consider that many cultures have
developed a kind of “finger arithmetic,” and all of us, at one
time or another, have used our ten fingers to count or do
some mental calculation. Indeed, the word digit literally
means “finger”; so every time you use the adjective digital,
remember that it comes from our built-in natural calculator.

The Romans had a special symbol for five: V, perhaps
resembling a fully opened hand, while one, two, and three
were written as I, II, III, obviously a visual image of the
raised fingers representing these numbers. For quick tally-
ing, the symbol }ifis often used even today, as can be seen on
many prison walls where inmates counted the number of
days already served. For multiples of five, the Romans used
the letters X=10, L=50, C=100, D=500, and M =1,000.
Other numbers were written in combinations of these
symbols, such as IV (=4) and VI (=6). The fact that smaller
values sometimes precede larger values but follow them in
other cases made the Roman numeration system awfully
difficult to compute with, but it has nevertheless survived
well into the Middle Ages and beyond. Even today you can
often see the groundbreaking date of a public building chis-
eled in the cornerstone in Roman numerals. It was only in
the Middle Ages that the Hindu-Arabic numeration system,
with the numeral zero at its core, was gradually adopted
in Europe and eventually became accepted internationally.

The Greek word for five is mevre (spelled “pénte” in the
Latin alphabet), from which numerous ancient and mod-
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ern words derive; we encounter some of them later in this
book. The Roman word for five was quinque, again the
source of many ancient and current words. For example,
quincunx describes a collection of five objects arranged in
a square pattern, with one object located at the center and
each of the others at a corner, as in the five-dot face on a die.
And on the opposite side of the ancient world, the Chinese
symbol for five was and still is Ti. (pronounced like “me” in
Mandarin), representing everything between heaven and
earth and referring to the five elements that make up the
universe: water, fire, earth, wood, and metal.

In the Hebrew alphabet, each letter is assigned a
numerical value: x (aleph)=1, a (beith)=2, 1 (gimmel)=3,
7 (dalet)=4, 1 (heih)=5,1 (vav)=6, 1 (zayin)=7, n (chet or
het)=8, v (teth)=9, and » (yod)=10. Beyond ten, the sys-
tem becomes additive (and read from right to left, as in all
Semitic languages):

xn=10+1=11,27=10+2=12,»=10+3=13,
1m=10+4=14.

But the next two numbers, 15 and 16, are written differently:
1"0=94+6=15,1v=9+7=16,

this in order to avoid adjoining the letters > and n, the first
two Hebrew letters of the ineffable name YHWH, in accor-
dance with the Third Commandment: “Thou shalt not take
the Name of Hashem, your G’d, in vain.” The remaining
twelve letters after yod have the values 20, 30, 40, ..., 100,
200, 300, 400.

The Hebrew word for five is wnn, pronounced “Ha’mesh.”
Several words derive from it: wmn (Hu'mash), standing for
the Torah—the Five Books of Moses, known in the West-
ern world as the Pentateuch; nwmn (Hami’sheet, one-fifth);
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wmnn (Mehu'mash, a five-sided polygon), and nmonn (Hamsah),
an amulet resembling the open palm of a hand, symbolizing
divine protection, fortune, and good luck; it usually comes in
vibrant colors dominated by blue (plate 4), and is commonly
found among Middle Eastern and North African cultures.
In the Talmud, the compilation of Jewish law written
simultaneously in Jerusalem and in Babylon around the
third century CE, it says “One should not donate more
than a fifth of one’s assets” (Babylonian Talmud, Tractate
Ketuvot, p. 50a). The intention, no doubt, was to forewarn
overgenerous donors against the possibility that they them-
selves might one day become dependent on charity.

* @ %

The ten fingers on our hands are the very reason why
the decimal system has become the universal numera-
tion system of the human race. Perhaps it isn’t the best
choice: had we been endowed with six fingers on each hand,
a duodecimal (base 12) system would have been the natu-
ral choice, and a much better one indeed. For one, twelve
has five proper divisors, 1, 2, 3, 4, and 6, whereas ten has
only three, 1, 2, and 5. As a result, division in base 12 would
be much simpler, avoiding, for example, a repeating decimal
like 0.333 ... when dividing by 3. Second, many things in
our lives already come in multiples of six—an egg carton
contains twelve eggs, a pack of beer holds six cans, and our
days and clocks are divided into twelve hours,? an hour has
sixty minutes, and a minute has sixty seconds.

Around the middle of the twentieth century, the Duodeci-
mal Society of America and a similarly named British society
(both later renamed the Dozenal Societies) launched a
vigorous campaign to change our numeration system from
decimal to duodecimal. They issued decimal-to-duodecimal
conversion tables, not just for integers but also for common
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and decimal fractions, special numbers like /2, 7, and e,
and even base 12 logarithmic tables. These were all well-
intended goals, and logic stood on their side. In the end,
however, five hundred years of familiarity with the decimal
system have prevailed, and we are still holding on to the
good old base 10 numerals.

Here is one small benefit of using base 10 as our numera-
tion base. Because 2x5=10, we have 10/5=2 and 10/2=5.
These last relations can be put to use for a quick, mental
multiplication and division of a number by five: for mul-
tiplication, divide the number by two and move the deci-
mal point one place to the right; for division, multiply the
number by two and move the point one place to the left.
For example, 38 x5=(38/2)x10=19x10=190, and 47/5=
(47x2)/10=94/10=9.4. Yes, I know, everyone nowadays has
a calculator on their smartphones, but still it is fun—and
sometimes quicker—to do it mentally.

The ancient Babylonians used a hybrid of the base 10
numeration system for numbers from one to fifty-nine and
a base 60 system—called the sexagesimal system—for num-
bers greater than or equal to sixty (presumably because sixty
has ten proper divisors, 1, 2,
3,4,5,6,10, 12, 15, and 30,
making division easier by
reducing the need to use frac-
tions). The Mayans preferred
asmaller base: a hybrid sys- — —————
tem based on five for inte- 10 11 12 13 14
gers up to nineteen—the o oo oeeo eoce

O 1 2 3 4
[ ]

@ o0 000 0000

5 6 7 8 9

quinary system—and pow-
ers of twenty (the combined
number of fingers and toes)
for numbers greater than or
equal to twenty (figure 1.3).
The few written documents

15 16 17 18 19

FIGURE 1.3. The integers one through
nineteen in Mayan representation
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that survived the Spanish conquest of their land include
calendars and astronomical records using this vigesimal
system.3

* 0 %

Before we turn to the number-theoretic properties of the
number five relevant to the pentagon, here is a brief aside.
The famous painting I Saw the Figure 5 in Gold by Ameri-
can artist Charles Demuth was first exhibited in New York
in 1929 and is now in the permanent collection of the Met-
ropolitan Museum of Art (see plate 5). Demuth (1883-1935)
painted it as a tribute to a poem, The Great Figure, writ-
ten by his friend William Carlos Williams describing a fire
truck racing down the streets of New York on a rainy night.
Demuth’s painting became an American icon and appears
on a US postage stamp issued in 2013. It also features on
the cover of a mathematical novel, Uncle Petros and Gold-
bach’s Conjecture by Greek author Apostolos Doxiadis, pub-
lished in 1992. The title refers to German mathematician
Christian Goldbach (1690-1764), who in 1742 wrote a let-
ter to Leonhard Euler, then Europe’s most famous math-
ematician, in which he claimed that every even integer
greater than two can be written as a sum of two primes
(sometimes in more than one way). For example, 4=2+2,
6=3+3,8=3+5,10=3+7=5+5, and so on. Euler, being
occupied by more pressing problems, ignored Goldbach’s
letter; it was only found after his death in 1783. Despite
its seeming simplicity and the fact that it has been con-
firmed for all even integers up to 4 x 1018, the conjecture
remains unproved. And while we are still on the artistic
side of our story, Eugen Jost has depicted many of the
daily occurrences of five in his painting All Is Five, which
shows several whimsical allusions to various aspects of
this number (plate 6).
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Five has some interesting mathematical features. It is the
hypotenuse of the right triangle (3, 4, 5)—the smallest
Pythagorean triangle and the only primitive one whose
sides form an arithmetic progression (a primitive triple
is one whose members have no common divisors other
than one). Also, the sequence 5, 11, 17, 23, and 29 is the
smallest sequence of five primes forming an arithmetic
progression.

Five is the second Fermat prime (5 =22'+1), and, con-
sequently, a regular pentagon can be constructed with the
Euclidean tools—a straightedge (an unmarked ruler) and
compass. This is due to a discovery made by Carl Friedrich
Gauss (1777-1855) when he was just nineteen years old:
a regular polygon of n sides—a regular n-gon, for short—
can be constructed with Euclidean tools if n is a product
of nonnegative powers of 2 and/or distinct primes of the
form 22°+1, where % is a nonnegative integer. Primes of
this form are called Fermat primes, after the great French
number theorist Pierre Fermat (1601-1665).

The only regular polygons the Greeks knew how to con-
struct with Euclidean tools were an equilateral triangle,
a square, a pentagon, and a fifteen-sided gon, plus any
polygons obtained from these by repeatedly doubling the
number of sides (for example, the hexagon, octagon, and
twelve-sided gon). Imagine the surprise when young Gauss
added a new member to that list—a regular seventeen-sided
polygon; that’s because seventeen is the third Fermat prime
(17 = 22+ 1). As the story goes, Gauss was deeply impressed
by this discovery and asked that a seventeen-sided gon be
engraved on his tombstone after his death. But the stone
cutter, fearing that a polygon with so many sides would
be mistaken for a circle, chiseled a seventeen-pointed star
instead. The original star is no longer visible, but Gauss’s
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hometown of Brunswick, Germany, erected a statue in his
honor, with a seventeen-sided star polygon engraved on
its base. Plate 7, Homage to Gauss, is an artistic rendition
of it by Eugen Jost.

Fermat conjectured that the expression 22" +1 yields a
prime for every nonnegative value of k. Indeed, for £=0,
1, 2, 3, 4 we get the primes 3, 5, 17, 257, and 65,537, and
therefore regular polygons with these numbers of sides
are constructable with the Euclidean tools. Well, at least in
principle. Even the seventeen-sided gon is fairly compli-
cated to construct, and I wouldn’t recommend anyone try
the 257-sided gon.

Fermat’s conjecture stood unchallenged until 1732, when
Leonhard Euler showed that for =5 we get the Fermat
number 22° + 1 = 4,294,967,297 = 641 x 6,700,417—a com-
posite number. As of this writing, it is not known if any
other Fermat primes exist, leaving the possibility that there
are other, as yet undiscovered regular polygons construc-
table with Euclidean tools. Needless to say, such polygons
would have a huge number of sides, making any actual con-
struction totally out of the question.*

Gauss’s discovery provided a sufficient condition for con-
structing a regular n-gon with Euclidean tools. In 1837,
Pierre Laurent Wantzel (1814-1848) proved that it is also
a necessary condition, so the Fermat-prime polygons, and
those obtained from them by repeatedly doubling the num-
ber of sides, are the only constructable n-gons. Thus, a
fifteen-sided gon is constructable because 15=3 x5, and
both 3 and 5 are Fermat primes. But a seven-sided gon
(a heptagon) is not, because 7 is not a Fermat prime. Nor
is a fifty-sided gon, because 50=2x5x5, and the double
presence of 5 makes it ineligible. But a fifty-one-sided gon,
practicably indistinguishable from its fifty-sided neighbor, is
constructable, because 51=3x17, each of the factors being
a Fermat prime.
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Five is the fifth member of the Fibonacci series, a
simple-looking sequence of numbers with many remark-
able properties. The sequence starts with 1 and 1, then
continues by adding the two previous numbers to get the
next number:

1,1,2,3,5,8,13, 21, 34, 55, 89, 144,...,
and in general
Fi=Fy,=1F, ,=F,+F,,;,n=1,23,... (1

The sequence grows very fast: the twentieth member is
6,765, and the thirtieth member is 832,040. It is named
after the Italian mathematician Leonardo of Pisa, born
ca. 1170 to a Pisan merchant; he later became known by
the name Fibonacci, meaning the son of Bonacci. In 1202
he published a book by the title Liber Abaci (“The Book
of Calculation”), in which he advocated use of the Hindu-
Arabic numeration system, known already for some time
in the East but not yet widely accepted in Europe. The
book became an instant hit and helped greatly in adopt-
ing the new system by merchants, then by scholars, and
eventually by most of the learned world. The Fibonacci
numbers appear in his book as a recreational problem: a
pair of rabbits produce an offspring at the end of their first
month and every month thereafter. The offsprings then
repeat the same schedule. How many rabbits will there
be at the end of the first year? It is easy to see that the
number of rabbits follows the Fibonacci sequence, whose
twelfth member is 144.°

It is somewhat ironic that Fibonacci’s name is remem-
bered today mainly for this little aside, rather than for his
promotion of the Hindu-Arabic numeration system. His
sequence enjoys numerous interesting properties, and a
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FIGURE 1.4. The five Platonic solids, Bagno Steinfurt, Germany

scholarly publication, the Fibonacci Journal, is dedicated
to their study. We will have much more to say about this
sequence in chapter 3.

Five is the number of Platonic or regular polyhedra,
symmetrical solids whose faces are all identical regular
polygons that meet each other at the same angle (figure
1.4): the tetrahedron (four faces, each an equilateral trian-
gle), the hexahedron, more commonly known as the cube
(six faces, each a square), the octahedron (eight equilat-
eral triangles), the dodecahedron (twelve regular penta-
gons), and the icosahedron (twenty equilateral triangles).
That there exist exactly five regular solids—unlike the
infinitely many regular polygons in the plane—is surpris-
ing and has made these solids an object of endless fascina-
tion (for a proof, see appendix C). The Pythagoreans were
familiar with all five solids and knew how to construct
them, using only the Euclidean tools. Four of these solids
involve either equilateral triangles or squares, which are
easy to construct; but the dodecahedron has pentagonal
faces, whose construction is not at all obvious. It was this
problem that most likely led them to discover the golden
ratio or divine proportion—the key to constructing the
regular pentagon.
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NOTES AND SOURCES

1. It is somewhat difficult to transliterate the guttural Hebrew consonant n
(het) into English; it is variously written as “ch” or just “h.”

2. Or twenty-four hours, known in the United States as “military time” but
in common usage throughout the rest of the world, where no one has any
trouble reading 17:00 as 5:00 p.m.

3. For more on the Mayan numeration system, see Georges Ifrah, The Universal
History of Numbers (New York: John Wiley, 2000), pp. 44-46, 94-95, 308-12,
339; and Frank Swetz, From Five Fingers to Infinity (Chicago: Open Court,
1994), pp. 71-79.

4. Around 1980, when the first programmable calculators appeared on the
market, I bought Texas Instruments’ latest version, the SR 56 (the designa-
tion SR stood for “slide rule,” until then the trade tool of every scientist and
engineer for the past 350 years). It had a ten-digit display, so I programmed
it to factor a number into its prime factors, punched in 4,294,967,297 and hit
the “start” key. For the next 28 minutes the machine did its calculations, and
then the smaller of the two factors, 641, appeared in the display, to my great
delight. Needless to say, a modern computer can do it in a tiny fraction of a
second. (There are several factorization sites available online, such as Prime
Factors Decomposition at https://www.dcode.fr/prime-factors-decomposition.)

5. The sequence can be extended to negative indices as well, by rewriting
equation (1) asF,=F, ,-F, ;...,-8,5,-3,2,-1,1,0,1,1,2,3,5,8,...,and
in general Fy=0 and F,=(-1)**' F,, where n is a positive integer. For more
on the Fibonacci numbers, see chapter 2 and appendix B.
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Fisher, Ian, 112, 114n7

five, 3; Chinese symbol for, 5; Greek
word for, 4; Hebrew word for, 5-6;
mathematical features of, 9-10;
Roman symbol for, 4; Roman
word for, 5

Five Disk Problem, 86, 155

fivefold symmetry in alloys, crystals,
and minerals, 103, 108-9; in
architecture, 119-31

formulas, summary of, 147-49

Fort McHenry (Baltimore, Mary-
land), 126-27

four, 2

four color theorem, 2

Gallo-Roman dodecahedrons, 115-16,
117

Gardner, Martin, 78, 91-92

Gauss, Carl Friedrich, 9

Geneva dodecahedron, 115, 116, 117

geometric progression (series), 65

Ghyka, Matila Costiescu, The Geometry
of Art and Life, 30-31

Goethe, Johann Wolfgang von, Faust I,
61

Goldbach, Christian, conjecture of, 8

golden ratio, xv, 12, 14, 17, 22, 26-33,
36-37, 42-46, 63, 65-66, 100,
135-37; approximate value of,
15; construction of, 18-20; exact
value of, 15, 16; expressed as
continued square roots, 33-35;
expressed as continued fractions,
35-36; symbol for, 17, 20n1.
See also phi (¢)

golden rectangle, 26-27

golden section. See golden ratio

golden triangle, 39-40, 42, 42,
43-44,45,47-49, 63

Great Star Flag, 74

Greeks, the, 18, 29, 59, 116

Groves, Leslie Richard, 129

Hamsah, 6
Haiiy, René-Just, 103—4, 108-10

Heath, Sir Thomas, 53; quoted, 58

Hecker, Zvi, 120

hexahedron. See cube

Hilbert, David, 90; eighteenth problem
of, 90

Hippasus, 23

Holmium-magnesium-zinc alloy
HoyMg,,ZN;,;, 112-13

hyperbolic plane, 98

i(v-1), 23-24

icosahedron, 12, 110, 116, 143
irrational numbers, 21-23, 35, 66
Islamic shrines, 101
isoperimetric problem, 123

Jaca (Spain), 125; Citadel of, 125

Jacob, Simon, 37, 136

James, Richard, 91

Jerusalem, 59, 60

JPMorgan Chase Tower (Houston,
Texas), 119-20

Judea (kingdom of), 59

kamon, xi, xii

Kepler, Johannes, 37, 136, 145; quoted,
14

Kershner, Richard B., 91

Key, Francis Scott, “Defence of Fort
M’Henry,” 126

Kroyanker, David, quoted, 120

Laue, Max Theodor Felix von, 104,
106-8, 114n3

Lendvai, Erné, Duality and Synthesis
in the Music of Béla Bartok, 31

Leonardo of Pisa. See Fibonacci of Pisa

Levine, Dov, 110-11

“Limping Waltz” (Tchaikovsky’s
Symphony Pathétique), 3

Lucas, Francois Edouard Anatole, 140n1

Luna 2 (Soviet spacecraft), ix

Maestlin, Michael, 20n1
Mann, Casey, Jennifer McLoud-Mann,
and David Von Derau, 93
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Marocaster coronatus, 74

Mathematical Association of
America, 92

McHenry, James, 126

Mercator, Nicolaus, 37n6

Mersenne numbers, 1; primes, 2

Mohammad al-Mansur, 130n6

mon. See kamon

Muslims, 59, 101

nonperiodic order of crystal lattices,
110

numeration systems: Babylonian
(sexagesimal), 7; decimal, 6-7,
duodecimal (base 12), 6-7;
Hebrew, 5-6; Hindu-Arabic, 4, 11;
Mayan (quinary and vigesimal), 8

octahedron, 12, 116, 143
Ohm, Martin, 32

Pacioli, Luca, De divina proportione,
32, 37n2

Pangaea, 73

Parthenon, the, 27, 29, 29

Pauling, Linus, 109, 114n5

Penrose, Sir Roger, 99, 102n7

Penrose tiling, 99-100, 110

pentagon, ix—xv; area of, 66—69; con-
struction of, 31, 37, 38-54; nonreg-
ular, xi, 88; regular: x—xi, xiv, 9,
88; relation to regular hexagons,
95; symmetry elements of, x, 110

Pentagon, the (Arlington, Virginia),
xii, 127, 129-130

pentagonal fortresses, xi—xii, 121-130

pentagon-pentagram system, 61-62, 65

pentagonal mazes, 83-84

pentagonal numbers, 55-57; as
square numbers, 56

pentagram, x, 48, 58-70; on the flag
of Morocco, 60

pentastar, xi, 71-77; area of, 77; length
of, 76; as logo of the Chrysler
Corporation, 71-72; on national
flags, 71

INDEX * 165

pentatonic scale, 3

periodic crystal lattices, 104

phi (@), decimal value of, 15-16, 20n1;
notation for, 17, 20n1; powers of,
17-18, 20n2, 21-24, 49, 137-38

Phidias (Greek sculptor and architect),
20n1

pi (7m): “biblical value” of, 2; Egyptian
value of, 22; three as an approxi-
mation to, 27

Pitane (Greek town), 58

plate tectonics, 73

Plato, xiv, 18, 66, 116

Platonic solids (polyhedra), 2, 12, 32

polygons, regular, 9-10, 88

Poussin, William Tell, 127

proportion, 14

Pythagoras, 58

Pythagoreans, x, 1, 12, 22-23, 58-59,
116

Pythagorean theorem, 1, 14

quasiperiodic crystals (quasicrystals),
xiv, 110-13
quincunx, 5

Raedschelders, Peter, 83—84
Ramot Polin (Jerusalem), 120
rational numbers, 21-23, 35
regular solids. See Platonic solids
Reid, Samuel Chester, 74-75
Reinhardt, Karl August, 88-89, 93,
101n2
Rhind Papyrus, 22
rhombicosidodecahedron, 144
Rice, Marjorie, 92
Romans, the, 118

Schattschneider, Doris, 92

sectio aurea. See golden ratio
seventeen-sided regular polygon, 9-10
Shechtman, Dan, xiv, 108-12, 114n5
Spannocchi, Tiburcio, 125

square root of two (\/5), 21, 23; Bab-

ylonian value of, 22
Stanley, Robert, 71-72, 76
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Stein, Rolf, 92-93

Steinhardt, Paul J., 110-12

stellated dodecahedron, 144—-45

stellation, 62

Stephansmiinster (Breisach,
Germany), xiii—xiv

St. Pierre Cathedral (Geneva,
Switzerland), 115

Suleiman the Magnificent, 59-60,
121

symmetry, 103; reflection, 97;
rotational, xi, 97; translational,
97

Talmud, the, 6

tangram, 82-83

Taylor, Henry Martyn, 53
tessellations, 88—-102
tetragrammaton (YHWH), 2
tetrahedron, 2, 5, 12, 116, 142
Theatetus of Athens, 66

three, 2

transcendental numbers, 21-22, 25n1
truncated icosahedron, 98

Tsai, An-Pang, 112, 114n6

two, 1

unit cells, geometry of, 104

Wantzel, Pierre Laurent, 10

Wegener, Alfred Lothar, 73

Weyl, Hermann, quoted, 130

Williams, William Carlos, The Great
Figure, 8

Witmer, David Julius, 127

X-ray diffraction images, 106

YHWH. See tetragrammaton
yin-yang, 1

zome ball, 144
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