
vii

CONTENTS

Illustrations  ix

Acknowledgments  xi

	 Introducing Good Enoughness  1

1	 Welcome to MiddleTech  22

2	 Software’s Sociality  43

3	 Where Stuff Goes Wrong  65

4	 Managing Good Enoughness  99

5	 Slowdown  132

	 Conclusion  157

Afterword: Good Enough beyond MiddleTech  179

References  189

Index  199

1

​
Introducing Good Enoughness

The notion of “good enough” is strange: often it means that we have given
up on the desire to be great, or even excellent, and sorrowfully succumb to
compromise. Even though the phrase “good enough” means that there is
“enough goodness,” and that things are generally fine, the phrase also evokes
failure or giving up and embracing mediocrity. I bet you would quickly return
this book to wherever it came from if on the back cover a reviewer wrote,
“This book is not bad, not excellent, but just good enough.” Or what if I told
you that the software running in your car was good enough? Wouldn’t that be
slightly scary? Or what if a colleague or boss said that the job you were doing
was good enough? “Good enoughness,” a term I use throughout this book,1
might have a pejorative ring to it. It connotes mediocrity, a failure to achieve
more; it’s something that we humans have learned not to desire. Yet this book
offers another perspective on what “good enough” means by focusing on
the regular, ordinary work of corporate software developers making regular,
ordinary software, and on the complex decisions, everyday practices, hidden
ethics, and implicit and explicit collective negotiations that make good-
enough software possible. My point throughout this book is that achieving
good enoughness is an incredibly complex and interesting endeavor.

1. I toyed with using the neologisms “good enoughing” or “good enoughness,” yet chose the
latter to stay consistent. Both are a bit awkward, but it was important for me to create a term
that highlighted an unfolding and negotiated process. Throughout my book, “good enough” is
less objective criteria, more a state, and for sure a practice. Both “good enoughing” and “good
enoughness” could have worked.

2 Introducing Good Enoughness

The first moment I remember encountering good enoughness in my field
was on a Friday afternoon during one of my first weeks of fieldwork at a
company I call MiddleTech, a mapping and navigation software company
in Berlin. It was getting close to 4 p.m., and happy hour was approaching.
A few software developers were planning to meet up for beers across the
street, and Marek (a front-end developer working on the Android naviga-
tion app) had not yet finished his code review. Much like any peer review,
software developers have to review each other’s code before submitting it
to the main code base. It was getting late, and the other developers called to
Marek: “Are you joining? Just give a +2 and come on!” They started laugh-
ing. Giving a +2 during code review meant giving the code a green light and
integrating it into the working software system. A web developer on Marek’s
team later confessed that when he feels like leaving work and running off for
a beer, he quickly goes through the code review system and just adds +2, +2,
+2 to all the tickets waiting to be reviewed. Marek followed suit, and fifteen
minutes later we were all sitting and sipping craft beer, enjoying the warm
autumn Berlin weather.

The gesture of giving fellow developers a +2 in order to leave work was
not done out of sloppiness, laziness, resistance, or protest, or at least not
mainly so. Engineers care about the software they work on, and Marek was
no exception. Marek was also not prone to political resistance against the
demands of his labor process. Marek clicked on +2 that Friday afternoon
because he knew his colleague’s code was good enough. By clicking +2,
he expressed an understanding that the code was good enough for now.
Moreover, he knew that if anything went wrong, he would have the ability
to come back and fix it later. Knowing when to stop and say something was
good enough was not about not caring but about understanding the balance
between care and compromise.

As my first encounter with good enough software culture unfolded before
my eyes, it seemed counterintuitive, shattering my own stereotypes about
what software production looked like. Weren’t software developers sup-
posed to be aiming for seamlessness and efficiency? It stood in stark contrast
to the narratives I encountered earlier that summer, interviewing various
technologists from the San Francisco Bay area—people at Facebook, the
Wikimedia Organization, Mozilla, the Electronic Frontier Foundation, and
a slew of entrepreneurs.

The Silicon Valley techies I encountered seemed to believe that technol-
ogy had to be great, and that work on technology had to be hard and sweaty.
I spoke with Eric, an older investor and entrepreneur in San Francisco whose

Introducing Good Enoughness 3

long career was based on liaising between venture capitalists and programmers.
During my discussion with him in San Francisco, he explained, “Coders do
it just for their art. They want to sit and perfect their little babies. Coders
sit over their laptops and want to develop until it’s done. The harder the
project, the better. If they code something that’s outta this world, they will
get recognized for it. And it’s that recognition they’re after. Like, ‘Hey man,
you did it, you’re the shit.’ ”

While Eric might have been an extreme stereotype of somebody with
Silicon Valley tech fever, many engineers I met that summer in Silicon Valley
fit his description: They were driven by a similar narrative to change some-
thing in the world with technology, to do something difficult, and to strive
for a sort of aesthetic excellence. What I found striking was the repetitive
narrative that software developers were dedicated to working into the late
hours perfecting something “outta this world.” Software was not just patched
together to run, occasionally break down, and be maintained; it was meant
to run, disrupt, and innovate all in one go. Within this cloud of Silicon Valley
hype, I never could have imagined that a software developer somewhere, on
a Friday afternoon, would give another software developer a +2 in order to
go out for beers with their friends.

My long-term fieldwork at MiddleTech helped me understand that the
discourse and practice of making excellent software under a hyped work
ethic are at odds with regular, run-of-the-mill corporate tech offices, where
software and software work practices are about being good enough rather
than excellent. The corporate tech office—both in Berlin and, as I will dis-
cuss, in Silicon Valley and beyond—propagates and maintains a state of good
enoughness, despite discourses stating the contrary.

I spent an intensive six months (with additional field visits and inter-
views spanning two years) observing and at times participating in the work
of software developers at a Berlin-based corporate software company that
makes mapping, routing, and navigation software. This research focused on
the software developers and their managers in both the front-end and back-
end routing and navigation teams. During my fieldwork there, I worked
among hundreds of people.2 On a daily basis, I would discover new people,
new conversations, new departments, and new projects, all of which would
send me down another interesting research path. I recorded these stories in

2. In this book you’ll notice that I often describe the field by directly quoting various interlocu-
tors. It is worth noting that the conversations I reference from MiddleTech were not audio recorded
but taken from my field notes in which I paraphrased the discussions with my interlocutors.

4 Introducing Good Enoughness

my field diaries, both on paper and digitally, during my fieldwork and after
I left the office. The latter helped me blend in with the people I sat next to:
while hunched over typing away on my laptop, I was at times mistaken for
a new programmer on the team. I concluded that at MiddleTech, software
is an ephemeral object that needs to be only good enough to function until
the next update. The people working on it are well aware of this fact and
often don’t feel too pressured to perform perfectly during the first, second,
or even third iterations. As a consequence, software can never be great but
is instead just, well, good enough.

Drawn directly from my observations in the field, this book joins recent
efforts to complicate the discourse that software is seamless and awesome
(and not just good enough), and that the corporate software worker needs
to be driven to achieve excellence. As we have witnessed throughout the
past, technology breaks: staff cutbacks cause media platforms to break,3
in-car GPS systems cause catastrophic incidents (Lin et al. 2017), and
chatbots “tell lies and act weird.”4 The stories we hear in popular media
shape our understanding of digital technology as either a technosolution-
ist savior, a mediocre disaster, or a robot-apocalyptic nightmare. As many
ethnographies hope to do, this book provides a more complicated, less
sensationalist, empirical story of why software can’t be perfect. My time
at MiddleTech helped me highlight how the ethics of practice prevalent
in corporate software cultures encourages a state of being good enough,
where something (like software) or someone (like a software developer)
needs to be only sufficiently competent to operate. As I will show through-
out this book, good enoughness is an inevitable part of software culture
that contrasts with the popular understandings of how software is built
and what software is. Defining good enough is collectively negotiated
in resistance to managerial ideology while fluctuating between care and
compromise for what, with, and for whom one is building software. It is
an aspect of German software culture but is also present in larger, aging
corporate software companies globally, and it might be inherent in all
software development.

3. Ryan Mac, Mike Isaac, and Kate Conger, “ ‘Sometimes Things Break’: Twitter Outages Are
on the Rise,” New York Times, Feb. 28, 2023, https://www​.nytimes​.com​/2023​/02​/28​/technology​
/twitter​-outages​-elon​-musk​.html.

4. Cade Metz, “Why Do A.I. Chatbots Tell Lies and Act Weird? Look in the Mirror,” New York
Times, Feb. 26, 2023, https://www​.nytimes​.com​/2023​/02​/26​/technology​/ai​-chatbot​-information​
-truth​.html.

Introducing Good Enoughness 5

Studying Software Developers

Before I dive into this book’s central argument, I’d like to explain the ori-
gin of the thinking behind my book. My exploration of the culture of good
enoughness first began as a quest to understand the fluctuating relationship
between the production of technology and society. My research started by
asking how “the society we live in affects the kind of technology we produce”
(MacKenzie and Wajcman 1985, 2) and turned to the producers, designers,
and programmers of technology and those who managed them. Focusing on
the producers of technology, rather than the users, was not as self-evident
as it might seem. Following a tradition of science and technology studies
scholars, I ethnographically focused on an overlooked group of engineers
rather than on the simplistic narrative of the lone-wolf innovator (Haigh
and Priestley 2015).

MiddleTech was always meant to be an ethnography about how a col-
lective group of people collaborate, communicate, care, and compromise
in order to make software work. By getting to know their work hierar-
chies, their forms of interaction, and the micropolitics of their profession,
I encountered the programmers’ social world. As I will illustrate through-
out the next chapters, good-enough software is achieved through collective
software practices, where programmers learn the process of programming
something in a good-enough way, which is part of their sense of belonging
and engagement in their sociotechnical worlds. Negotiating what is good
enough or not—through discussions, jokes, fights, and other practices—is
an important part of the collective practice of corporate programming.

My research resonated with maintenance and repair research, which
focuses on the programmer and those conducting the maintenance and
repair. As Lee Vinsel and Andrew L. Russell (2018) reminded us, life with
technology is usually far removed from the cutting edges of invention and
innovation and is instead devoted to keeping things the same. Drawing on
these researchers and their tropes, MiddleTech starts with an interest in the
programmer: interest in the human condition of being engaged with the craft
of programming, their relationship to their machine, and the way their work
and their profession are negotiated within their community.

MiddleTech also became an empirical description of the material con-
straints of software work, where software cannot be perfect in practice due
to certain forms of complexity in software production. Throughout the fol-
lowing chapters, I describe how old code, software’s constant cycle of being
updated, its architecture, and how it is designed and by whom all contribute

6 Introducing Good Enoughness

to the material complexity of software. As Marisa Leavitt Cohn (2016) has
highlighted, our software and our software companies are aging. As our
software ages, our software projects become more and more complex,
evolving into multilayered beasts, “polluted” by programs, reports, files, or
data that lose their purpose over time (Visaggio 2001). Much of the software
we use today is built on years and years of effort by software developers
who have managed to patch together a project to make it work. As our
societies continue to strive for smarter systems (Halpern and Mitchell
2023) and better solutions to our problems, it is crucial to understand the
faults in the technologies we so trust. Software’s increasing complexity
and age also challenge the relations between programmers, managers and
their programmers, programmers and their code, and various other actors
involved in the entire process. The moments when these actors have to
negotiate care and compromise are also a crucial part of the story of our
technological societies, and understanding this can help us as users, cus-
tomers, and creators grasp the tricky materiality of software: that the tools
we use are sometimes based on forgotten updates, lost pieces of code,
and scrapped software projects, which, among other issues and mishaps,
contribute to merely good-enough software.

Lastly, this book looks at the environment in which these material soft-
ware practices unfold. In particular, I became interested in how corporate
culture is shaped and reinvented (Kunda 1992) in the tech sector, both
top-down through managerial discourse and bottom-up via the practices
of engineers. My analysis zooms out to the corporate, organizational level,
where understanding the power dynamics, work processes, and manage-
ment dynamics within a corporate setting becomes central to understanding
the culture of good enoughness—both how it is counterintuitive to vari
ous corporate narratives and rituals, and how it becomes negotiated on a
day-to-day basis. We will witness the contrasting and chaotic priorities and
understandings between designers, managers, and programmers working
on the same product, which has been also observed in other ethnographies
of software cultures.

While these other ethnographies look at how race and class are negoti-
ated in corporate software settings (Amrute 2016) and how programmer
work is organized (O’Donnell 2014), this book’s specificity lies in its ethno-
graphic account of the work cultures within older, aging companies. In the
past decade, increasingly digitized Western societies have had an abundant
need for programming work. Additionally, as tech companies grow bigger
and become more established and embedded within our society, they are

Introducing Good Enoughness 7

here to stay—meaning they are growing older, adding a level of complexity
to the code being worked on and produced. Taking into account that soft-
ware is an “object subject to continuous change and lived with over time as
it evolves” (Leavitt Cohn 2019, 423), one that does not sit still “long enough
to be easily assigned to conventional explanatory categories” (Mackenzie
2006, 18), MiddleTech zooms in on a work culture within a growing and
aging software industry and aims to give a more nuanced understanding
of digital media as inherently made up of these mishaps and compromises,
bugs and breakdowns, and wonky, half-baked, good-enough work and good-
enough software. Thus, to understand good-enough culture, understanding
the material agency of software is important, specifically in relation to how
corporate software is still produced, repaired, and maintained.

Not Bad, Not Excellent

The notion of “good enough” in this book contradicts and complicates the
discourses and normative orders of excellence and improvement that perme-
ate the tech world and shows that there is a distinction between discourse
(which includes metrics and management methods) and the everyday prac-
tices of software developers. Throughout the following chapters, we will
witness how workers reject notions of excellence in practice, but I’d like to
highlight that a hegemonic excellence discourse does exist in theory. Cor-
porate software companies, like many corporate environments, propagate
an ideology of excellence and improvement, both in relation to the software
product they are building and regarding the type of work that goes into
building a software product. But where do these normative discourses of
excellence originate?

One of the best places to search for the roots of the narratives of excel-
lence, perfection, and 100 percent–ness is management literature. Writ-
ten for managers, usually by more successful managers or management
scholars, these books and journals show what types of narratives permeate
corporate culture. At MiddleTech, it was quite common to find this sort of
management literature lying on a desk or tucked away on a bookshelf in the
company library. For example, the Harvard Business Review, a key publica-
tion for managers and management scholars, is full of case studies in which
clear “performance expectations” are set by managers and team members,
“performance measures” are delineated by said managers, and finally, the
goal of achieving “performance excellence” is (hopefully) met by the given
team. The Harvard Business Review and other similar industry journals are

8 Introducing Good Enoughness

full of tips on how to foster or scale up a “culture of excellence” in the fastest
way possible.5 This type of rhetoric can also be found throughout manage-
ment handbooks, one of the most prominent being Thomas J. Peters and
Robert H. Waterman’s In Search of Excellence: Lessons from America’s Best
Run-Companies, which despite having been written in the early 1980s, is still
used today to help managers achieve “productivity through people” in order
to become a “learning organization” (1982, 111) that experiments with and
tries new things while striving to be the best.

More recently, Robert Sutton and Hayagreeva Rao (Stanford professors
of Management Science and Organizational Behavior and Human Resources,
respectively) promised to show managers “what it takes to build and uncover
pockets of exemplary performance, spread those splendid deeds, and as an
organization grows bigger and older—rather than slipping toward medioc-
rity or worse—recharge it with better ways of doing the work at hand” (2014,
20). In their book Scaling Up Excellence: Getting to More Without Settling for
Less, “driving towards mediocrity” is seen as the first step to downfall, and
Sutton and Rao are here to help companies foster a “relentless restlessness”
that helps them constantly innovate (20).

As Paul du Gay explained, “Excellence in management theory is an
attempt to redefine and reconstruct the economic and cultural terrain, and
to win social subjects to a new conception of themselves—to ‘turn them
into winners,’ ‘champions,’ and ‘everyday heroes’ ” (1991, 53–54). This is
done through a new form of management that emphasizes good corporate
culture that can foster these “winners” and “heroes.” Corporate culturalism,
in its central argument, strives for an expanded practical autonomy of the
worker. Yet as Hugh Willmott has pointed out, it aspires to “extend manage-
ment control by colonizing the affective domain. It does this by promoting
employee commitment to a monolithic structure of feeling and thought, a
development that is seen to be incipiently totalitarian” (1993, 517). As I will
show in the following chapters, engaging in good enoughness can thus be
the software workers’ way of regaining power over their “affective domain,”

5. See, for example, Tony Gambill, “A Leader’s Challenge: Developing Teams That Have
Strong Relationships and Excellent Results,” Forbes, Sept. 14, 2022, https://www​.forbes​.com​/sites​
/tonygambill​/2022​/09​/14​/a​-leaders​-challenge​-developing​-teams​-that​-have​-strong​-relationships​
-and​-excellent​-results​/​?sh​=37d953766bb5, or Jeanine Murphy and Michael Sioufas, “How
Agile Teams Can Pursue Technical Excellence,” McKinsey Quarterly, Feb. 2, 2022, https://www​
.mckinsey​.com​/capabilities​/mckinsey​-digital​/our​-insights​/tech​-forward​/how​-agile​-teams​-can​
-pursue​-technical​-excellence.

Introducing Good Enoughness 9

rejecting the notion of excellence and settling for a software product and a
way of working that’s just good enough.

In my specific field at MiddleTech, I first noticed that when building
critical software like routing and navigation infrastructure, corporate soft-
ware developers work under the orders of managers who strive to build
software that meets particular requirements and safety standards in order
to gain certain levels of certification. These standards and certifications help
order the world of software developers, their manager, and their customer
(Bowker and Star 2000): it communicates to customers that the product
(in this case software) they are using is seamless. At MiddleTech, software
product managers gained certification from the International Organization
for Standardization (ISO), a nongovernmental standards board that sets
out various types of standards certificates for corporate software compa-
nies, including “quality management standards” and “IT security standards”
among many others. In order to gain these certifications, products had to
meet certain safety criteria or achieve certain metrics. Managers would meet
these metrics by incorporating discourses and methods of working that
would strive for perfection, particularly during the months leading up to a
certification audit. Thus, to achieve seamlessness or these “great metrics,”
the office had to have a work discourse of excellence. In practice, developers
negotiate what is good-enough work in order to meet these standards and
metrics (or get away with not meeting them), but excellence is something
managers still push as the overarching narrative to legitimize their own posi-
tion and the ways of working around the office.

An Ideology of Improvement

Beyond the notion of excellence, another normative discourse that circulates
around the corporate software office is the concept of improvement. If we
accept that the update is a defining characteristic of software work culture,
then we can also imagine that the notion of continuous improvement is
essential to how programmers work. Each update carries the implication
that developers can and should continuously iterate and improve on their
product. That said, the ideology of improvement can be found everywhere
in software work, materialized in the tools and methods that managers use
to make software teams work better together and individual programmers
code better. With hundreds of moving parts and dozens of teams of software
developers carrying out work that their managers often do not understand,
corporate software development processes have fostered cultures, rituals,

10 Introducing Good Enoughness

and forms of organization that get a product delivered, create accountabil-
ity, and stabilize continuous improvement. One particular method is called
“Agile”, one iteration of which is called “Scrum,” where software developers
are meant to work in “sprints,” two-week stretches devoted to particular
tasks, which are broken down on Post-it notes on a whiteboard. In this
method, the head of the development team reports on progress using soft-
ware that includes a dashboard indicating the state of every project. “The
manager could also show a graph of the team’s ‘velocity,’ the rate at which
the developers finished their tasks, complete with historical comparisons
and projections” (Posner 2022). Developers also engage in a daily ritual
called the stand-up, where they all stand around in a circle and take turns
explaining how their work is progressing or how they are improving on
each task.

This methodology emphasizes a culture of improvement, where discus-
sions in team meetings, company meetings, and one-on-one manager-to-
programmer and programmer-to-programmer meetings are often focused
on how to improve something: how to improve a work process, how to
improve communication, how to improve a piece of software, or how to opti-
mize (improve!) an algorithm. The notion of improvement is woven through
everything.

Additionally, in a company like MiddleTech, the velocity of improvement
is quantified and measured using something called a KPI or key performance
indicator. This performance indicator is not specific to software companies in
particular (those who have worked in any other corporate environment have
probably come across the term). As the metric is quite broad, a KPI has to
be defined within each industry, based on something that a management
team can track. In the past decades of software production, managers have
attempted to track certain practices of the software developer’s work, such
as the number of lines of code a developer committed or entered into the
system, or the number of features completed on a certain day (the more, of
course, the better). Managers have also turned to software itself to measure
KPIs by looking at the number of bugs in a software system or the code
simplicity, meaning the number of independent paths code must take to
run a piece of software (the fewer the better).

Progress is thus characterized by a distinct normativity of numbers
(Anders 2015), meaning the use of numbers as norms for measuring a com
pany’s progress in fixing bugs, implementing innovative solutions, and
introducing systems like the KPI or various company software tools to col-
lect and process numbers in a standardized fashion. Numbers like KPIs are

Introducing Good Enoughness 11

essentially about projecting power and coordinating activity (Porter 1995,
44). In bureaucratic business corporations like MiddleTech, “quantification
is simultaneously a means of planning and of prediction” (43), and there is
great pressure for workers and their managers to conform to ever-increasing
demands for “greater workplace productivity and enhanced efficiency modu-
lated by computational systems that manage KPIs” (Rossiter 2016, 18). In
other words, developers are being increasingly pushed into productivity
by software-driven metrics, where KPIs and the real-time measurement
of labor imply a constant acceleration described in terms of improved pro-
ductivity. More specifically, the belief in the neutrality of certain metrics
and measurements helps to enforce the corporate ideology that the soft-
ware team and the software product can continuously improve and actually
achieve excellence.

Excellence and Improvement and Reality

I discovered throughout my fieldwork that while these metrics, methods,
and modes of excellence and improvement are present in the MiddleTech
office culture, the reality is different. On a discursive level, corporate soft-
ware environments can be understood as factories of so-called technological
acceleration (Wajcman 2014, 16), where technology is constantly updated
to improve and strive for excellence. Yet in the everyday, often mundane
reality, software developers are more informed by good-enough principles
and practices.

Good enoughness implies settling for the here and now, as opposed to
accelerating forward to achieve something better. While in theory, an old
software version is always being updated and improved, a software devel-
oper’s practical tasks at the workplace don’t necessarily have to be oriented
toward improvement or some form of innovation. For example, a piece of
navigation software that is shipped today might be full of bugs that slow
down users. But the good-enough developer’s tasks are often self-defined.
One update might fix just two bugs instead of the imagined fifty. While clean-
ing up these few bugs might give users a more seamless experience, it can
also cause other bugs to appear and other slowdowns to occur. Thus, while
on a discursive level, managers and software workers may speak of acceler-
ated improvement and innovation, in practice their relationship to this inno-
vation and constant improvement can be quite ambivalent. Improvement
doesn’t always mean peak innovation and can instead be just good enough.
This example also shows us that what is good-enough work is also a matter

12 Introducing Good Enoughness

of subjective estimation, normally arrived at by the developers who hold a
more intimate knowledge of the code than their managers or the customers
they work for.

The normative orders of excellence and the ideology of continuous
improvement are strong forces driving the software industry and its socio-
technical culture. This company ideology is something that is reproduced
in day-to-day, face-to-face discussions, in meetings, conferences, and coffee
breaks (Wittel 1997). Yet these ideologies are not necessarily something that
everyone in the corporate software office believes in (Wittel 1997). While
excellence and continuous improvement may permeate the office discourse,
I observed that often neither software workers nor their managers really
believe in the importance of excellence nor in the ability to continuously
improve. For a particular ideology to survive, it is not essential that people
actively support or believe in it. As Renata Salecl stated, “the crucial thing is
that people do not express their disbelief. For them to abide by the majority
opinion, all that matters is that they believe it to be true that most of the
people around them believe. Ideologies thus thrive on ‘belief in the belief
of others’ ” (Salecl 2011, 10). What she means here is that people often do
not believe in something but pretend to in order to avoid offending those
who might believe in it.

Something similar in our context of software development is described in
Frederick Brooks’s The Mythical Man-Month. In his seminal text on software
production methodology, Brooks (1975) explained that software develop-
ment teams, particularly their managers, repeatedly plan for software proj
ects to go well and be finished on schedule, when in reality projects are full
of bugs and are always delayed. Brooks says that programmers hold beliefs
or assumptions that “all will go well” or “that each task will take only as long
as it ‘ought’ to take” (14), while in reality they often settle for good enough.
As you will see in this book, when you candidly ask a manager or a developer
if they really believe that a project will be finished on time, or if a piece of
software will work seamlessly, they will emphatically say “no.”

At MiddleTech, most developers and managers would openly (in meet-
ings or job interviews, for example) express their belief in excellence, tech-
nological innovation, or the efficiency of production, while in reality, they
practiced the opposite, meaning the work ethic and software ethic of good
enough. Good enoughness, therefore, becomes an emergent cultural prac-
tice that happens in practice, juxtaposed to its more dominant other. These
“others,” which will reappear throughout this book, are excellence, techno-
logical innovation, and the efficiency of production.

Introducing Good Enoughness 13

Good Enoughness

The concept of good-enough software production is not one I coined myself
but rather found in the field during conversations among developers at Mid-
dleTech, in online hacker forums, or in software engineering literature. In
their article “How Good Is Enough: An Ethical Analysis of Software Con-
struction and Use,” W. Robert Collins and his coauthors suggest that the soft-
ware industry should “encourage reasonable expectations about software
capabilities and limitations” (1994, 89), both among users and producers of
software. This call to be “reasonable,” as Collins and his colleagues explain,
is about understanding “how good is good enough,” a responsibility of
the software provider or the programmers and their team. The term “good-
enough software” highlights that perfect software for a complex system can-
not be guaranteed in practice (Collins et al. 1994); thus, releasing software
to the public will always be done under a good-enough principle, and will
include some level of failure (Pelizza and Hoppe 2018). Good-enough soft-
ware is, as Collins and colleagues explain, a principle that understands that
every piece of new software can be assumed to contain errors, even after
thousands or millions of executions.

In the mid-1990s, the concept of good-enough software was “getting a
lot of attention” (Yourdon 1995, 78) in order to counteract the “we’ll deliver
high-quality, bug-free software on time” battle cry (78) that was sweep-
ing the industry. In his short article in IEEE Software magazine, Yourdon
explained that software engineers were shifting from working on propri-
etary, one-of-a-kind systems, developed according to schedules measured
in years and funded by budgets measured in millions to software as a cheap
commodity that can be made and reproduced relatively quickly. In other
words, instead of making software for a shrink-wrapped CD to slip into our
PC, the dawn of the internet brought programmers cloud computing and
the ability to iteratively change the software in our fridges, phones, and desk-
tops. Instead of perfecting and preserving a piece of software for eternity, the
update became like a lifeboat or an eraser, enabling developers to fix their
work at any time. In essence, the update gave the software developer the
ability to settle for something good enough for now, only to be fixed later,
which, as Yourdon explained, began “to challenge some of our basic assump-
tions about software development” (78).

Aside from software development, the good-enough principle has been
used in psychoanalysis, pediatrics, urban studies, design, philosophy, biol-
ogy, economics, and more popular self-help books. For example, using the

14 Introducing Good Enoughness

concept of the “good enough mother,” the British psychoanalyst Donald
Winnicott describes the caregiver who settles for “good enough parenting”:
recognizing the fragility of a baby but failing at meeting all of the infant’s
demands and one’s own standards of the perfect mother. Through this fail-
ure, mothers allow their babies to find their own way of doing things (see
Winnicott 1987 or Doane and Hodges 1992). The concept has also been
taken up in medicine (Ratnapalan and Batty 2009), where practitioners
argue that excellence in medicine can be achieved by ensuring results that
are good enough rather than by aiming for perfection, or in psychological
research methods, where researchers set standards that indicate what kinds
of experimental outcomes are good enough (Serlin and Lapsley 1985).

In economics and organization theory, Herbert Simon coined the term
“satisficing” to describe the decision-making process whereby individuals
or organizations seek a satisfactory solution rather than an optimal one.
Similar to good enough, satisficing is when people choose the first option that
meets their minimum criteria for acceptability, rather than continuing to
search for the best possible option. Simon argued that satisficing is a practi-
cal and efficient approach to decision-making as it allows individuals and
organizations to conserve resources and make decisions quickly. He con-
trasted this approach with the idea of optimizing, which maximizes the benefits
of a decision but can be time-consuming and requires extensive information
and analysis: “Evidently, organisms adapt well enough to ‘satisfice’; they do
not, in general, ‘optimize’ ” (Simon 1956, 136).

This approach also resonates with wider discussions around the preva-
lence of good enough in both biology and culture, where the evolution of
many species on Earth was not optimal as Darwin believed, but they sur-
vived anyway in a good-enough state (Milo 2019). Other scholars called for
society to embrace the “good-enough life” as a state that understands what
“goodness” and “enoughness” mean (Alpert 2022). Alpert in particular links
good enough to the human need to change our relationship with nature and
ecology. He calls for a reduction in our production and consumption in order
to live more in harmony with nature, building our “good-enough life within
these good-enough conditions” (5). This plea for restraint and reduction
goes hand-in-hand with notions around the “good enough job” (Stolzoff
2023), or the “smart enough city” (Green 2020), where “enough” means roll-
ing back our need for acceleration and overproduction in our optimization-
centric jobs or urban planning endeavors and “limiting growth” (Meadows
et al. 1972). Here, being good enough can also be connoted with mediocrity,
which, as Groth (2019a, 2019b, 2020a, 2020 b) highlighted, is increasingly

Introducing Good Enoughness 15

becoming a positive point of reference in different fields of practice. Keeping
up with the midfield, earning a middle-range income, or being part of the
middle class are powerful models for socioeconomic behavior and lifeworld
interpretations (Groth 2019a).

Two Good Enoughs

As we can see, the notion of good enough has been used in various fields,
including in organization studies and computer science (where this book is
situated more closely). Rather than merely demonstrating that good enough-
ness exists, what I hope to highlight throughout these next chapters are
the cultural aspects of good enoughness in practice. Over the course of
my ethnographic observations, I noticed that two specific kinds of “good
enoughs” emerged from my field, somewhat related but different at the same
time. The first type of good enoughness addressed in this book relates to soft-
ware itself. Software is a material product destined to be just good enough.
Contrary to the seamless save-the-world technology promised in YouTube
clips from product demos touted by CEOs like Elon Musk, Steve Jobs, or
Mark Zuckerberg, software isn’t all that it’s cut out to be. When we look into
software’s constitution and how it’s built and maintained, we see that at its
core, it will always be merely good enough. Software is complex and made
up of hundreds of lines of code that are constantly changing, constantly in
flux. Due to this complexity, the people who work on software can never
understand it in its entirety, which also makes these projects hard to manage,
and as Brooks (1995) explained, they are hard to estimate in terms of scope and
duration of completion. As I will describe in later chapters, managers refrain
from micromanaging a project on a technical level but still implement various
strategies to maintain control of a project’s completion time. Developers also
often give up on achieving what they promised and settle for a good-enough
project in a good-enough time frame.

Another issue with software, as Brooks explains, is that it functions on a
logic of constant improvement: nobody gets it right the first time, and often
“one has to build a system to throw away, for even the best planning is not
so omniscient as to get it right the first time” (1975, 116). In programming,
for example, programmers iterate a project by building one version, only
to improve upon it in a second version, only to improve upon this in a third
version, and so on. This means that no software project is ever complete,
with each version being just good enough for the time being, to be improved
upon in the following version.

16 Introducing Good Enoughness

The second type of good enough is good enoughness in corporate soft-
ware work. After a few years of studying how corporate software developers
build a seemingly boring everyday software product, I noticed that contrary
to corporate discourses of efficiency, productivity, and meritocracy that
permeate the corporate office, workers, most of the time, are doing work
that’s good enough and are happy with jobs that are good enough.

The two types of good enoughs do not function separately but co-inform
each other: the good-enough worker in good-enough work conditions
makes good-enough software. We can also flip this relationship around: if
software has limitations to what it can do (be merely good enough), then
a worker will settle for doing a good-enough job and come to work with a
good-enough work ethic.

While good enoughness might superficially function in the excellence
and efficiency discourse as something subpar or even as a failure, it can be
embraced and accepted as something “okay.” Good enoughness is about
being pragmatic or realistic about the amount of work developers want to
put into their projects and about the limitations of what a piece of software
can do.

That said, good enoughness—particularly in terms of a good-enough
work practice—can often be achieved only from a position of worker and
company privilege. The worker who gets away with doing a good-enough
job is a privileged worker. Good-enough jobs are sought after and coveted
and often flourish in a culture that provides safe working environments. Not
many software developers in an outsourced coding farm in Krakow or Ban-
galore, working to meet deadlines and concerned about their job security,
would be able to work in a good-enough job (see Amrute 2016, 103). The
same can be said for software. Only companies that were successful at build-
ing a software asset—meaning a product that continuously makes money—
can settle into being good enough. Large old tech companies like Google or
Facebook or even MiddleTech have certain assets (the search algorithm, the
advertising infrastructure, the mapping engine) that they created years ago
but still generate profit. Because they were eager, driven, and efficient years
ago, these companies now have assets that give them the financial stability
to be good enough in the present. A small start-up wanting to burst out into
the tech scene and get noticed can’t hire good enough workers and expect to
financially survive. I’ll discuss this dynamic in more detail in the next chap-
ter but mention it briefly now to illustrate the “privilege of good enough.”
Being a good-enough company like MiddleTech means also supporting an
inequality in work speeds and demands, allowing some people to sit back

Introducing Good Enoughness 17

and opt out of hyperproductivity while cruising on the unrecognized labor
of other software developers and service workers.

This book is about a specific type of software worker in a certain kind of
software company. MiddleTech is a specific type of company—one that sits
on a certain software asset that allows it to be continuously relevant in a
global software market. The company has a decades-old technology that is
still embedded in various networks of software devices. Both the age and
scope of MiddleTech are important for understanding how good enoughness
emerges and becomes stabilized in such a company’s culture.

Book Structure

This book’s specific case study at MiddleTech brings to the fore a central
mechanism in all software engineering, whether in Bangalore, Berlin, or
Silicon Valley: that software is always merely good enough, in particular
in companies sitting on older, still-valuable software assets. Like software’s
different layers of abstraction, this book is also structured in layers. Each
chapter brings the reader into a different layer of abstraction that contributes
to the larger picture of how good-enough software is made and good-enough
work cultures are constituted. I begin with how programmers relate to their
software, then move on to those who build software, and finally to the levels
of management and organization that influence them.

Each of the following chapters addresses good enoughness in its own
way and is structured around stories from my field. I take ethnographic
storytelling seriously as I believe “stories display, juxtapose, figure, guide,
and enliven in ways that philosophical concepts or abstract procedures
cannot” (Kelty 2019, 4). While stories are too often dismissed as “ ‘illustra-
tion” or ‘evocation,’ as if they lacked the (masculine) rigor of the ‘concept’
or the ‘procedure’; stories . . . ​are the space of emotion and affect—too often
demoted in power as something incidental, soft, solipsistic, not academic,
or inadequately precise for thinking” (4). The first chapters will be largely
based on the stories I encountered in my field, and the final chapter will be
mainly analytical, focusing on the practices and figurations we encountered
at MiddleTech.

In chapter 1, “Welcome to MiddleTech,” I introduce the company, what
makes it distinct but also similar to other “Medium Tech” software compa-
nies, and how this particular corporate software environment is the ideal
site where good enoughness takes root and flourishes. I situate MiddleTech
within the global software industry and show how its workers self-consciously

18 Introducing Good Enoughness

define themselves in opposition to Silicon Valley discourses, particularly
through how they work. I highlight the many similarities between what I call
Medium Tech and Big Tech companies, particularly in how programming
work is defined, how management is organized, and how various management
methodologies are implemented. I also explain how good enoughness flour-
ishes in older companies (both Medium Tech and Big Tech) because their
software is still embedded in various social and technical infrastructures
currently in use—and making money—today. This dependency on an older
asset turns the focus of a Medium Tech company to maintenance and repair
rather than “disruptive” innovation.

Once we get a picture of the way in which MiddleTech is situated in the
software industry, I’ll focus on the software developers and their relation-
ship with their community and technical objects. In chapter 2, “Software’s
Sociality,” we get to know Ori, the Java developer-turned-lead software
engineer, who helps readers imagine the type of care and compromise that
programmers must constantly negotiate when building software. This is
where the reader first encounters good enough at work. I explore the craft
of working on software, showing how it requires the knowledge of the inner
workings of a software system, experiencing moments of “closeness to the
machine” (Ullman 1997, 40) and zoning in to a software environment to
find a sense of flow in one’s work. These ideal forms of care are often dis-
rupted by various social and technical factors, and developers are forced
to compromise and settle for something that’s merely good enough for a
customer to use. Describing software’s sociality from the get-go is impor
tant as it helps the reader understand what is at stake and what kind of care
and compromise programmers have to negotiate with their managers and
customers when building software.

Focusing on yet another layer of abstraction, I bring us deeper into the
social and technical conflicts that arise when working on software. Chapter 3,
“Where Stuff Goes Wrong” builds on the understanding that software is a
social object and paints a picture of the chaos, conflict, and misunderstand-
ing that software inherently holds. I will show how conflict and controversy
are inherent and inescapable in the software development process and an
important part of understanding software development culture. I also frame
the software company as a sort of “organized anarchy” (Cohen, March, and
Olsen 1972), where the company’s purpose or what it’s working on becomes
unclear for those working within it. To connect us to my central concept of
good enough, I show that when stuff goes wrong, software is shipped to its
customers in a state of good enoughness. While it may seem that stuff goes

Introducing Good Enoughness 19

wrong in any company, the difference with software lies in the rapid speed
of change within the software industry, which is rooted in software update
culture. The constant drive to update, fix, and innovate software means that
it quickly becomes obsolete, and how it is programmed does too. This speed
of change during software development challenges the stability of the knowl-
edge of the people involved. These heterogeneous forms of knowledge result
in processes of explanation and translation. Through explanation and trans-
lation between software developers, their code, managers, and customers,
misunderstandings happen, and software development plans fall through the
gaps between states of knowing and not knowing. Chapter 3 will also explain
the different roles in programming, the nature of the customer-programmer
relationship, as well as the role of management in organizing software work.

After describing how good enoughness is fostered through programming
practices on an individual as well as collective level, I will introduce the pro
cesses of production and management in software development. Chapter 4,
“Managing Good Enoughness,” highlights how good enoughness in software
work and the product results from the politics behind its development—
both the macropolitics from the perspective of the software industry and
the micropolitics from the perspective of the developer.

As Gideon Kunda showed, managerial ideology and managerial action
designed to impose a role on individuals are normative demands that play
out differently in action (1992, 21). To illustrate this, chapter 4 will outline
the tensions among developers, their managers, and their machines, as well
as how power and control are exerted, performed, and achieved when build-
ing software. While these forms of politics and power might be similar to
those in other large corporations, my ethnographic descriptions underline
the specificities of corporate software development, as well as the way in
which power and politics influence how software is built, deployed, and how
robust it becomes. Moreover, I also ethnographically show that software’s
materiality shapes the way in which programmers, managers, and customers
interact with one another.

Chapter 4 also describes the deep tension between managers, who need
to quantify their developers’ work, and developers, whose goal is to build
and fix their software, preferably with ample amounts of time. To highlight
this tension, I describe the culture of speed and the drive for efficiency,
velocity, or agility, which are all part of the office discourse at MiddleTech.
I also describe the industry-wide software development management tools
or methodologies that help drive this discourse (that is, the Scrum or Agile
methodologies of organizing software work) and how good enoughness

20 Introducing Good Enoughness

becomes a way of pushing back against the desired outcomes that such
methodologies aim to foster.

While my ethnographic stories are often more focused on the social
and cultural dimensions of building software, in Chapter 5, “Slowdown,”
I focus more specifically on the culture of speed and efficiency when building
routing and navigation software. Mobility systems, and the development of
software for them, are intrinsically dynamic processes encompassing various
temporalities, which are shaped by the interaction of sociality and technol-
ogy. Yet slowdown is often at the core of software work. The slowdowns do
not happen because the programmer chooses to take time to think through
a topic; instead, slowdowns are imposed on programmers and their teams
through various social and technical constraints. Once faced with these
constraints, programmers need to compromise on what they are creating
and releasing to the public. These slowdowns lead developers to create good-
enough code. In chapter 5, I show how slowdown is the precursor to good
enoughness, where part of a programmer’s practice is halting the inertia
of acceleration in the corporate software environment. Through various
stories, we will witness good enoughness at work with constant stutters,
blockages, breakdowns, moments of slowness, and deviations from the plan.

I conclude my journey through MiddleTech by theorizing the stories
we encountered and placing them into a wider understanding of what
good enoughness is and how it functions. To do so, I analytically explore good
enoughness from a variety of angles, showing how different relational con-
stellations inform good enoughness. Through this notion, we will start
to understand the myriad of actors relating to one another and helping
shape what “good for what” and “good enough for whom” can mean. When
exploring the various stories of good enoughness in the previous chap-
ters, we encountered different good enoughs for the programmer or good
enoughs for MiddleTech’s management or their customers. These parties
have different concepts of what counts as good enough, which are often
in conflict with each other and in need of negotiation. Of course this leads
to compromise on what’s good enough for the different parties involved.
I will conclude by exploring the ways good enoughness is under threat,
mainly by the forces of postindustrial capitalism that work against its logic,
and how it is then kept alive.

This book is about the collective struggle to keep the software we all
use alive, viable, and functioning. It is also a story about what is happening
to our tech companies today, particularly the larger, older, aging software
companies that built a good product sometime in the mid-2000s and are now

Introducing Good Enoughness 21

trying to maintain the one or two software assets that keep their revenue
flowing. I paint a picture of one specific “software world,” bringing you closer
to places where software is made and maintained, while introducing you to
the people who build it. I hope that this approach will also help personalize
your everyday digital objects, giving you an intimate picture of software’s
complexity. I hope it will be good enough.

199

INDEX

CAE (formerly Canadian Aviation
Electronics), 34

capitalism, 169–170
care: compromise and, 47, 63, 165–168;

crisis of care, 169; work tactics and, 184
certifications, requirements of, 9
change, 148, 168–170
Cisco, 183
clients, 162
Close to the Machine: Technophilia and Its

Discontents (Ullman), 50–51
closeness to software, 49–51, 53, 58–61, 64
cloud storage, 70–71, 87
code and coding: abstractions and, 53, 111;

appeal of, 45; art of, 3, 104–105, 121–123;
bugs, 11, 31, 55; code reviews, 2, 56–57,
59, 92–94, 167; coding style, 55–56;
fixathons, 75; hacks, 56, 85–86; history
of, 30n, 113–114; IDEs and, 50, 58, 163;
legacy code, 53, 80, 86–91, 90f, 146, 164;
monkey coding, 31, 62; open-source
code, 66, 163; personal factor, 57–58;
power and, 53; programming environ-
ments, 50–51; requirements of, 51; rough
hacks, 56; slow code, 57, 58–59; spa-
ghetti code, 86, 147; style of, 57–58; test-
ing, 56, 58–59; updates, 9, 13, 69–71, 143.
See also software production

Cohn, Marisa Leavitt, 6, 34, 89, 90, 147
collective practices: coordination, 54–55;

negotiation, 167; process of, 5; standards,
63. See also teams

Collins, W. Robert, 13
communication, nodding, 74
company size: accountability and, 27; assets

and, 33–34
comparisons, 167
competition, 133
compromise, care and, 47, 63, 165–168

abstractions, 53, 111
accountability, company size and, 27
Achievements and Objectives (As & Os), 116
affective domain, corporate culture and, 8
agency, 167–168
Agile, 10, 116
Alexander, Neta, 150
Alphabet, popular discourse and, 26
Amazon: Amazon Web Services (AWS),

70, 87; employees, 101–102; Leadership
Principles, 100–101; popular discourse
and, 26; size of, 183. See also Big Tech

ambition, 168–169
anarchies, organized, 68
Apple: popular discourse and, 26; size of,

183; waiting and, 150. See also Big Tech
artifacts, software as, 146
assets, company size and, 33–34
at-will employment, 39
automation, 186
averageness, fieldwork and, 24–25

back-end developers, 29–30
balance, 101
Ballmer, Steve, 23
batch processing, 154
Berlin, Germany, 36–37
Big Tech: popular discourse and, 26; privi-

lege and, 62; size of, 183; social activity
and, 174–175

Bijker, Wiebe, 46
blocked work, 149–151, 151f, 185
Blunden, Bill, 86, 87
bots, 63
British Royal Mail software scandal, 143
Brooks, Frederick, 12
bugs: causes of, 55; fixing, 11; outsourcing

and, 31. See also code and coding
Buscher, Monika, 132

Note: Page numbers followed by an ‘f ’ refer to figures.
Page numbers followed by an ‘n’ refer to notes.

200 INDEX

concentration, 52
Confluence, 59–60
constellations of good enoughness, 161–165
contentment, 172–173
controversies, technological systems and, 67
coordination, 54–55
corporate culture: overview, 6; differences in,

36–37; excellence and, 7–8; inequalities in,
31–32; passion and, 23–24; reality of, 11–12

The Craftsman (Sennett), 51
creativity, 46–47, 52, 63
crisis of care, 169
critical rationalism, 98
Csikszentmihalyi, Mihaly, 52
culture, 74
culture of uncertainty, 127–129
customers: Amazon, 100–101; MiddleTech,

104

data scientists, 29, 30, 50
decision-making process, 14
degrowth, 173
demonstrations (demos), 75, 105–106
design defects, 150
dev drop procedure, 73
DevOps teams, 31
disruption, innovation and, 39
distractions, 51–54
documentation, 164
Du Gay, Paul, 8
dynamic data, 79
dynamics of good enoughness, 165–168

Edgerton, David, 35
efficiency, speed and, 133
Electronic Numerical Integrator and

Computer (ENIAC), 142
embeddedness, 34
emergencies, 186
emotional expression, 23–24
employees: agency of, 167–168; Gen Z work-

ers, 174; losing track of, 183, 184; manage-
ment and, 102–104; monitoring of, 60;
unionization of, 170; work contracts and,
161–162

energy consumption, 71
engine rial mindset, 163
The Engineers and the Price System (Veblen),

128–129
Ensmenger, Nathan, 90, 113–114
environments, 50–51, 52, 58, 163
equality, 31–32
estimates, 82–84, 127
ETA game, 136–141, 137f, 139f, 140f, 153–154

excellence: freedom from, 173–174; good
enoughness and, 168–170; notions of, 7;
vs. reality, 11–12

expert knowledge, 110–112
exploitation, 101–102

FAANG (Facebook, Amazon, Apple, Netf-
lix, Google) companies. See Big Tech

Facebook: popular discourse and, 26; privi-
lege and, 62; privilege of good enough
and, 16; size of, 183; waiting and, 150.
See also Big Tech

farewell rituals, 159–160
FastMap, 26–27
Feathers, Michael, 88
feature-complete day, 95, 147
Feyerabend, Paul, 98
fieldwork, averageness and, 24–25
firefighting, 95–96
fixathons, 75
flow, 51–54, 62
fluid participation, 68
Foxconn Technology Group, 26
Fraser, Nancy, 169
front-end developers, 29
frustration, 78–80
Fugaku Supercomputer, 142
full-stack developers, 29

Gen Z workers, 174
German labor laws, 40
Gerrit, 59, 91–94, 167
Gherardi, Silvia, 172
GIT and git blame, 59–61
Global South, 62, 177
goal-oriented uncertainty, 128
Goldstine, Herman, 30n
good enoughness: overview, 1, 13–15, 158–160;

code reviews, 92–94; collegiality of, 172;
constellations of, 161–165; contentment
and, 172–173; dynamics of, 165–168; fire-
fighting and, 96; methodologies, 129–131;
privilege and, 16–17, 176–177; slowdown
and, 134; stability of, 171–174; threats to,
168–170; types of, 15–17

good life, 164–165
Google: PageRank algorithm, 34; popular

discourse and, 26; privilege and, 62; priv-
ilege of good enough and, 16; size of, 183;
20 percent rule and, 36. See also Big Tech

growth, 173

Hacker News, 163, 179–180
hacks, 56, 85–86

INDEX 201

halting projects, 148–149
handwork, 30
hardware, 143
Harvard Business Review, 7
headphones, 51–52
headwork, 30
house metaphor, 55
“How Good Is Enough: An Ethical Analy

sis of Software Construction and Use”
(Collins et al.), 13

Hughes, Thomas, 46

IBM, 183
IDEs (integrative development environ-

ments), 50, 58, 163
IEEE Software, 13–15
imaginaries, 37–38
improvement: ideology of, 9–11; vs. reality,

11–12
In Search of Excellence: Lessons from Amer

ica’s Best Run-Companies (Peters and
Waterman), 8

inequality, 31–32
information-control systems, 112
inheritance, 87
innovation: stages of, 46; technology hubs

and, 38–39
instability, 70
Intel, 26, 142
internet revolution, 69
interruptions, 51–54
invisibility of software, 32–33
ISO (International Organization for

Standardization), 9

Jira, 106, 116, 120–121, 120f
job hunting, 181–183
job security, 40
job titles, 30

Kameo, Nahoko, 127–128
Knorr-Cetina, Karin, 48
knowledge: expert knowledge, 110–112;

knowledge silos, 75–76; of managers, 185;
myth of knowing, 81–82, 97–98; types of,
71–74; vs. understanding, 80–82

KPIs (key performance indicators), 10–11
KPMG, 38
Kraft, Philip, 114
Kunda, Gideon, 19

labor laws: Germany and, 40; at-will
employment, 39

labor unions, 170

Latour, Bruno, 67
Law, John, 47
legacy code, 53, 80, 86–91, 90f, 146, 164
leisure time, 164–165
Leveson, Nancy, 80–81
Linden Labs, 116
Lynd, Robert S. and Helen Merryll, 24

maintenance mode of work, 148, 173
Malaby, Thomas, 116
managers and management: challenges

of, 121–123; demonstrations (demos),
105–106; expert knowledge and, 110–112;
information-control systems and, 112;
knowledge of, 185; literature, 7; meetings,
119–125; methodologies used by, 10, 112,
126–127; power and, 110, 112, 122; pro-
grammers and, 102–104, 113–114; Scrum
and, 10, 115–118, 119f, 123–127; Tarzan and,
125–126; team reshuffles, 105–110, 110f;
tools, 60. See also software production

material consciousness, 51
materiality, 47–49
mediocrity, embracing, 1, 174
Medium Tech companies: overview, 26;

good enoughness and, 181–182; invisibil-
ity of, 33; revenue of, 35

meetings: stand-ups, 10, 73–74, 119–125;
team-building and, 152

metrics, 9
Microsoft: passion and, 23; popular dis-

course and, 26
MiddleTech: age of, 33–36; averageness

of, 24–25; corporate culture of, 23–24;
customers, 104; fieldwork at, 2–4; invis-
ibility of, 33; location of, 39; office build-
ing, 22; organization of, 29; purpose of,
68; Scrum and, 117–127; size of, 27; social
culture of, 28; software work at, 35

Middletown: A Study in Contemporary
American Culture (Lynd and Lynd), 24

“Mobile Utopias” conference, 132–133.
See also ETA game

mobilities, 141–142
Mol, Annemarie, 47
monkey coding, 31, 62
monopolies, 183
Moore’s Law, 142–143
music, 52
myth of knowing, 81–82, 97–98
The Mythical Man-Month (Brooks), 12

negotiation, 167
Netflix, 183. See also Big Tech

202 INDEX

No-Collar (Ross), 113–114
nodding, 74

object-centered sociality, 48, 62
The Office (TV show), 25n
open-source code, 66, 163
optimization, 14, 134–135, 138
Oracle, 183
organizational memory, 128
organized anarchies, 68, 186
outsourcing, 31–32, 66
ownership, 27

PageRank algorithm, 34
passion, 23–24
patching, 86
performance indicators, 10–11
performative gestures, 74
personal factor in coding, 57–58
Peters, Thomas J., 8
Pinch, Trevor, 46
“Planning and Coding of Problems for an

Electronic Computing Instrument”
(Goldstine and von Neumann), 30n

power: code and, 53; managers and, 110, 112,
122; team reshuffles and, 110

privacy officers, 29, 32
privilege: company size and, 34; flow and,

62; good enoughness and, 16–17, 176–177
problems, 76–80
productivity, 142
professional ethos, 163
professional vision, 48
programmers, management and, 102–104
programming. See code and coding

Rao, Hayagreeva, 8
rationalism, 98
reality, vs. excellence and improvement, 11–12
reasonableness, 171–172
recognition, code and, 3
repetition, 186
research work, 184
Ross, Andrew, 113–114
Russell, Andrew L., 5

safety standards requirements, 9
Salecl, Renata, 12
Samsung Electronics, 26
San Francisco, California, 36–37
satisficing, 14
Scaling Up Excellence: Getting to More With-

out Settling for Less (Sutton and Rao), 8
scrapping projects, 148–149

screen-tilting, 122
Scrum, 10, 115–118, 119f, 123–127
Second Life, 116
Sennett, Richard, 51
sensory engagement, 33
Silicon Valley: identity of, 38–39; work ethic

of, 3, 36–37
Simon, Herbert, 14
skill-driven uncertainty, 128
Slashdot, 163
slow code, 57, 58–59
slowdowns: batch processing and, 154;

blocked work and, 149–151, 151f, 185;
good enoughness and, 134; legacy code
and, 146; mobilities and, 141–142; scrap-
ping projects, 148–149; time travel and,
146–147; undone work and, 150–151;
vacations and, 154; waiting around and,
149–151, 151f. See also temporal orders

social life, 164–165
sociality of software: overview, 46–47; close-

ness and, 49–51, 53, 58–61, 64; collective
coordination and, 54–55; flow and, 51–54,
62; object-centered sociality, 48, 62

software companies: culture of, 74; knowl-
edge silos in, 75–76; as organized anar-
chies, 68, 186

software production: agility in, 115–116;
change and, 148; collective practice of, 5;
complexity of, 5–6, 15, 29, 35, 80–81, 185;
components of, 50; constellations within,
161–165; firefighting, 95–96; history
of, 113–114; house metaphor, 55; speed
and, 142; stereotypes, 2–3; task-based
fragmentation in, 114; teams, 78–80.
See also code and coding; managers and
management

software systems, invisibility of, 32–33
software-as-a-service, 69, 71
software-driven uncertainty, 127–129
spaghetti code, 86, 147
speed: efficiency and, 133; software produc-

tion and, 142; updates and, 143
stability, 70
stability of good enoughness, 171–174
standards and certifications requirements, 9
stand-ups, 10, 73–74, 119–125
start-ups, 34, 58, 175–176, 181
storytelling, 17
stutters, 141
subjective estimation, 82–84, 127
Suchman, Lucy, xii, 61
Superstore (TV show), 25n
surveillance, 60

INDEX 203

sustainability, 173
Sutton, Robert, 153–153

Taiwan Semiconductor Manufacturing Co.,
Ltd. (TSM), 26

Tarzan, 125–126
task-based fragmentation, 114
Taylor, Frederick Winslow, 111
team reshuffles, 110f
teams: comparisons and, 167; constellations

within, 163–164; frustration and, 78–80;
meetings and, 152; team reshuffles,
105–110; team scrapping, 148–149.
See also collective practices

Tech Giants, popular discourse and, 26
technological artifacts, 46–47
technology, shortcomings of, 4
technology innovation hubs, 38–39
technology-in-use, 35
temporal orders, 55, 69, 133, 144–146,

155–156. See also slowdowns
Tencent Holdings, 26
threats to good enoughness, 168–170
thumb estimates, 82–83
time and time management, 82–84, 127,

151–153
time travel, 146–147
T-shirt size estimates, 83
Turkle, Sherry, 51
20 percent rule, 36

Ullman, Ellen, 50–51, 53
uncertainty, 127–129

unclear technology, 68
understanding, vs. knowledge, 80–82
undone work, 150–151
unionization, 170
updates: good enoughness and, 13; improve-

ment and, 9; role of, 69–71; speed and,
143. See also bugs

vacations, 154
vagueness, 186
Veblen, Thorstein, 128–129
Vinsel, Lee, 5
visibility of software, 32–33
vision, 48, 85–86
von Neumann, John, 30n

waiting around, 149–151, 151f
Waterman, Robert H., 8
Willmott, Hugh, 8
Winnicott, Donald, 14
‘work at will’ states, 39
work contracts, 161–162
work ethic, 3
work tactics, 183–186
Working Effectively with Legacy Code

(Feathers), 88
work-life balance, 101, 164–165, 174
workspaces, 49, 72
writing process, 49

Y2K, 143

Zuckerberg, Mark, 70

