

1.2 Sex and caste 8
1.3 Circulation and respiration 12
1.4. Nervous and digestive systems 14
1.5 Glands ... 16
1.6-Sex and caste anatomy 18
2.1 - Mating season 20
2.2. Nuptial flight 24
2.3 Mating and search for a nest 28
2.4 - Nest establishment 32
3.1 Construction materials 36
3.2 Nest architecture 40
3.3 Annual cycle | Spring 44
3.4-Summer ... 46
3.5 Autumn ... 48
3.6 Winter .. 50

4.1 Forest exploration 52
4.2 Ants' enemies 54
4.3 Foraging ... 60
4.4 - Visual orientation 62
4.5 Celestial orientation 64
4.6 Return to the nest 66

68
5.2 Birth of an ant trail •........................... 76
6.1 Aphid colony .. 82
6.2 Enemies and competitors 86
6.3 Plant food .. 90
6.4 Animal food 92
6.5 Food sharing 94
6.6 Waste elimination 96

.1 Origin of sex and caste 98

7.3 The life of a worker 108
8.1. The attack ... 112
8.2 Defense of the nest 116
8.3 Exploration of the surroundings 120
8.4 A new nest .. 122
8.5 Colony relocation 124

3.2 Nest architecture

The different stages of brood development (eggs, larvae, and pupae) require different temperatures and humidity levels. The workers are constantly transporting the brood to rooms where the conditions are the most favorable,

 $-73,3,9$

The interior of the dome is made of coarse materials and surrounds a central tree stump. A dense network of rooms serves as chambers, incubators, and storage areas.

3.3 Annual cycte fispring

A red wood ant nest is a dynamic structure that the workers are constantly adapting to temperature and weather fluctuations. In the spring, the colony awakens from its winter rest. It begins by restoring the nest to working order and warming it up.

At the end of the winter rest, the ants gather on the surface of the dome to warm themselves in the sun. Ants being heterothermic, they need external heat to accelerate their metabolism and become active again.

The queen basks in the sun under the protection of the workers and without straying from the entranceway. She is already beginning to lay the winter eggs, which will produce reproductive individuals.

Ants still too numb to drag themselves to the surface are picked up by active workers and carried outside. distributed, posted, or reproduced in any form by digital or mechanica

The workers who are not busy rebuilding the nest gather in small clusters on the surface to warm themselves in the sun. Once their body temperature reaches $30^{\circ} \mathrm{C}-34^{\circ} \mathrm{C}$, they immediately rush inside the nest. means without prior written permission of the publisher.

3.4 Summer

If the temperature is too low in certain areas of the nest, workers are transported there to increase the ant density. Since more ants transmit more body heat, the temperature of these areas increases and approaches that of the rest of the nest.

3.5 Autumn

Toward the end of the season, the colony gets ready for winter rest and the nest is prepared for the cold.

In order to take better advantage of the weaker sunlight, the dome is raised and its slopes are steepened. The sun can then illuminate a larger area and heat the nest more efficiently.

To keep the heat inside, many entrances are sealed and the cover layer is thickened.

Exploration outings decrease from August onward. To feed the last larvae and to accumulate winter reserves, the workers continue to bring back all kinds of food.

3.6 Winter

In winter, the ants cease all their activities. To protect themselves from the cold and frost, they retreat underground, to the bottom of the nest.

In mild weather, a few foragers emerge from the anthill.

In winter, green woodpeckers feed almost exclusively on ants. To capture the numb ants, they dig deep holes in the anthill; with the help of their sticky tongues, the tip of which has curved hooks, they penetrate the convoluted galleries to the wintering rooms.
 these outposts sense the warming and awaken their fellow congeners. Without these outposts, the bulk of the colony would miss the start of spring because the rise in temperature on the surface cannot be perceived from the depths of the nest.

During the winter rest, the workers gather around the queen. When the temperature approaches $0^{\circ} \mathrm{C}$, the metabolism of ants slows down so much that they do not need to feed.

4.1 Forest exploration

Foragers are constantly looking for food in the vicinity of the anthill.

4.2 Ants' enemies

Outside the anthill, the workers are exposed to numerous predators specialized in capturing ants.

(3) Struggling to free itself, the ant detaches the thread from the ground. It is lifted into the air and becomes entangled in the thread.

(4) As soon as the ant is within reach, the ant lion grabs it with its mandibles and paralyzes it with its venom.
(5) The ant lion pulls its prey under the sand. It sucks the liquid from its body and completely empties it. When an ant lion funnel is near an anthill, ants are its primary food.

The scout has found food. She must now find her way back to the nest and lead other foragers to the food source.

(1) The scout tastes the food. If it suits her, she fills her crop with it. The more she likes the food, the more she ingests.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical

4 means without prior written permission of the publisher.
4.4 Visual orientation

On the return journey, the worker's two complex eyes give her a rough picture of her surroundings.

part of the light spectrum
perceived by the compound eye
(1) The ants' compound eyes are composed of a large number of isolated individual eyes in apposition, known as ommatidia, which each produce a visual signal. A red wood worker ant's compound eye has between 580 and 700 ommatidia, most of which capture polarized light in the green-blue light spectrum perceived region of the visible light spectrum. by the human eye

Light enters the ommatidia through a chitinous lens.

A lens cone concentrates light
Each of the eight retinal cells and directs it to a retinal cell.

Dark pigmented cells isolate the ommatidia from one another.
$8.4 \mu \mathrm{~m}$ Retinal cells make up the sensory part of the ommatidia.
(2) The image that ants perceive of their environment is a grid of light and dark dots, each corresponding to what an ommatidium captures. Each ommatidium perceives the intensity of only a single ray of light.

Neurons transmit signals from visual cells to the brain.
blue-green receptor
UV recepto

The microvilli fringes are inclined 60° relative to each other.

The microvilli fringes in - each of the eight cells form the rhabdome.

A large number of tubules stacked on top of each other constitute the ommatidia's light receptors. Each perceptual level is made up of six blue-green receptors and two UV receptors. Due to the twisting of the retinal cells, the receptors all have different orientations.

(3) In the brain, the ommatidia's pixels are assembled to form a rough vertical image. The image of the forest is thus reduced to vertical silhouettes of the trunks and foliage patterns. The trunks' silhouettes serve as the scout's orientation landmarks.

(4) The scout has recognized the nest's surroundings from previous outings. She memorized the trees and light sources, as well as the angle of her route. On the way back, she recognizes these landmarks and remembers the corresponding angle, and she takes the correct direction to return to the anthill.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical

4.5 Celestial orientätión

The position of the sun and its light polarization are landmarks that complete the visual orientation.

light spectrum perceived by the human eye
(1) With its compound eyes, the ant also perceives polarized light. This is the function of the ommatidia of the POL region on the upper edge of the eye, which specializes in the perception of UV light. Using polarized light, the ant determines the sun's position even when it is hidden.
>
\qquad

(2) The image provided by ommatidia of the POL region is a pattern indicating the direction of the sky's polarization. These ommatidia are similar in structure to the others, but are specialized in the perception of polarized light.

$$
\begin{aligned}
& \text { © Copyright, Princeton University Press. No part of this book may be } \\
& \text { distributed, posted, or reproduced in anyxform by digitabpsmempannical }
\end{aligned}
$$ means without prior written permission of the publisher.

(3) The sky polarization pattern is produced by the refraction and reflection of sunlight in the earth's atmosphere. Regardless of their angle of incidence, light rays are more or less polarized. The preferential direction of polarized light vibration is always perpendicular to the direction of the sun. The directions of the different light rays' polarization thus create a pattern of concentric circles around the sun, allowing the ant to orient itself.

(4) The scout compares the sky polarization pattern with a simplified image stored in her brain. The degree of correspondence between the two images allows her to know the angle of her course in relation to the sun. This faculty serves as a compass to determine the direction of the nest: when leaving the nest, she goes toward the sun; on her return, she turns her back on it. But since the sun has changed its position in the meantime, she follows a certain angle with respect to it in order to take the right path.

4.6 Return to the nest

Arriving near the nest, the scout meets members of her colony.
Their scent helps her find her way back.
 congeners' scent and follows it.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

(1) When the workers encounter a greater number of ants from a colony or a foreign species in unfamiliar territory, they adopt a defensive attitude and avoid them.
(1) When the workers encounter
a greater number of ants from
a colony or a foriegn species in
unfamiliar territory, they adopt a
defensive attitude and avoid them.
defensive attitude and avoid

2) On familiar ground and in the presence of other members of their colony, the workers are more aggressive toward foreign ants, assuming a threatening posture and striving to drive them away.
4. 4

5.1 Recruiting help

In order to exploit the food source, the scout needs help. Back at the nest, she informs her congeners of her discovery and recruits foragers.

