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Chapter One

Fluctuations and the Nature of Mutations

1.1 HANDS-ON APPROACH TO MUTATIONS AND SELECTION

The goal of this lab is to simulate a growing bacterial population, including the ances-
tral “wild type” as well as mutants generated de novo during the growth process. The core
techniques are straightforward: connecting the simplest model of exponential growth with
stochastic events. To do so requires a few techniques, all centered on the ramifications
of sampling from random distributions using Python. As you will see, learning how to
sample from random distributions will be relevant in many biological systems. Indeed,
being able to simulate stochastic dynamics is key for simulating biological systems at scales
from molecules to organisms to ecosystems. Hence, this opening chapter introduces basic
concepts that are used throughout the laboratory guide. This chapter also serves another
function: to link the material in the textbook with the homework.

The laboratory will prepare you to build components of two categories of mutational
models, as illustrated in a generalized schematic form in Figure 1.1. These initial compo-
nents form the basis for the homework problems presented in the main text. In this figure,
the left panel illustrates a branching process in which an individual bacterium in generation
g=0 divides so that there are two bacteria in generation g= 1, four bacteria in generation
£=2,and so on such that there are 2¢ bacteria after g generations. Of these, a fraction of the
offspring may be different than the ancestral wild type. These different bacteria are referred
to as mutants. Notably, in this model, mutants give rise to mutant daughter cells and not to
wild-type cells. The right panel illustrates an alternative model of mutation, in which many
bacteria in a single generation undergo some stochastic change, i.e., a mutation, render-
ing a small number of bacteria into mutants. This latter case may be related to a phenotypic
change, e.g., exposure to a virus or chemical agent. How to build models of both kinds, how
to compare them, and how to reconcile the predictions of such models with experimental
data from Luria and Delbriick form the core of this laboratory.

The key aim of this laboratory is to begin a process to relate the mechanism by
which mutants are generated with signatures that can be measured. These signatures
may include the mean as well as the variance in the number of mutants between parallel
experiments.

For general queries, contact info@press.princeton.edu



4

Chapter 1

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

Branching process Event-associated mutation

O—0O
O—>O Mutant
O—0O

O—0O

Figure 1.1: Stochastic models of mutation: Mutations are independent of selection (left) or dependent on
selection (right). (Left) Branching process in which a single (or small) number of wild-type bacteria (empty
cells) divide and occasionally mutate; the mutants (shaded) also divide. (Right) Mutation occurs randomly
among a large population given interaction with a selective pressure, leading to a small fraction of mutants.

Wild types

Wild types

1.2 SAMPLING FROM PROVIDED DISTRIBUTIONS

In order to simulate stochastic processes, such as mutation in a population, one must
repeatedly sample random numbers. Random numbers can be generated by any modern
programming language. In doing so, it is possible to use built-in functions or to manip-
ulate the generated random numbers to ensure they have a specified mean, variance, and
higher-order moments. For example, to randomly sample a number between 0 and 1, use
the command

import numpy as np
import matplotlib.pyplot as plt

np.random.rand ()

Do this a few times. Each number is different. But generating multiple random numbers
one at a time is unnecessary. Instead, generating multiple random numbers can be done
automatically; e.g., use the following commands to randomly sample 100 points between
Oand I:

randvec = np.random.rand(1,100)
or
randvec = np.random.rand(100,1)

These commands will generate a set of 100 random numbers in either a row or a column.

It is also possible, as shown in the introductory coding demos available on the book’s
website, to generate random matrices. Use the following command to generate a random
matrix of size m X n array:

randarray = np.random.rand (m,n)

For general queries, contact info@press.princeton.edu
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As is apparent, the shape of the matrix can be specified in terms of the number of rows m
and columns n. If the code does not work, that is probably because you have not yet defined
the size; do so a few times and see how easy it is to generate distinct random matrices. Note
for future reference that two arrays must be the same size in order to perform element-wise
operations (e.g., addition, subtraction, or element-by-element multiplication). Also note
the names of variables—they tend to be descriptive. This is a good practice because it makes
code easier to read, modify, and reuse. The first challenge problem should help get you more
comfortable working with the core features of random distributions.

CHALLENGE PROBLEM: Properties of Random Distributions

What is the mean value of a single instance of invoking np . random. rand? Simi-
larly, what is the variance? Once you have identified the mean and variance, plot the
distribution of numbers generated by np . random. rand by sampling a large num-
ber of points (10*) and then using the p1t . hist function to generate a histogram.
What shape is the distribution? How does it change as you change the number of bins
for the histogram?

Python also allows sampling different distributions than the uniform distribution. As
one exercise, plot the distribution of the output for the following functions: (i) standard
normal distribution with a mean of 20 and standard deviation of 5 using

np.random.normal
and (ii) the Poisson distribution with rate parameter 4 =20 using
np.random.poisson

Examples of the outputs can be seen in Figure 1.2.

Normal distribution Poisson distribution
1000 x=mean_val+std_val*np.random. 1000 x=np.random.poisson(20,size=10**4)
randn(10**4)
750 750
2 ]
Z 500 Z 500
5] 3]
o o
250 250
0! 0!
0 10 20 30 40 50 0 10 20 30 40 50
Value Value

Figure 1.2: Sampling from random distributions, including the normal distribution (left) and the Poisson
distribution (right).
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It is possible to shift the range of randomly generated numbers using relatively simple
operations, generating arbitrary variations (in range and location) of preexisting distribu-
tions. This may be useful in many circumstances, not only within the context of the LD
problem. The following challenge problem provides an opportunity to build your intuition
for manipulating and generating random numbers with distinct means and ranges.

CHALLENGE PROBLEM: Random Number Generation

This problem focuses on modifying the means and ranges of random numbers by
modulating the output of built-in random number functions.

o Generate 1000 random numbers equally spaced between 0 and 5.
o Generate 1000 random numbers equally spaced between 2 and 7.
o Generate 1000 random numbers equally spaced between —5 and 5.

In each of these cases, use the built-in random number generator and then simple
arithmetic (i.e., addition, subtraction, and multiplication) to transform the random
numbers to specified ranges. You can do it!

1.3  SAMPLING FROM CUSTOM DISTRIBUTIONS

Python offers the option to generate specialized distributions. However, it is also possible to
sample from “custom” distributions, i.e., both parametric and non-parametric distributions.
One way to do so is to leverage the cumulative distribution function, or cdf. The cdfata point,
x, gives the probability of observing a value less than or equal to x. Formally, if p(x)dx is
the probability of observing the random variable between x and x + dx, then the cdf is

P(x) :f_;p(y)dy (1.1)

where y is a “dummy” variable used here for notational purposes of integrating over
the probability distribution. The cdf is a monotonically increasing function with a range
between 0 and 1. These constraints allow random sampling from arbitrary distribu-
tions if one is provided with the cdf in advance, by leveraging properties of the uniform
distribution. An ideal way to illustrate this is via the exponential distribution.

The exponential distribution arises in many biological processes. For example, for pro-
cesses that randomly occur with a constant rate A, then the time of the first occurrence of
an event is exponentially distributed such that p(x) = le~**, given mean time 1/A. The cdf
of the exponential distribution is 1 e **. Most numerical software tools have packages
to sample exponential random numbers; this is precisely why it is instructive to compare
the built-in solution to the custom solution. Indeed, one can think of the cdf of the expo-
nential random distribution as having a one-to-one correspondence with the cdf of the
uniform random distribution. That is, whereas half the values generated by a uniform ran-
dom distribution will be <0.5, that is not true for an exponential distribution. Instead,
given the shape parameter 4, then half the values of an exponential distribution will have
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values x < x, such that 1 — e~ #¥ =

the other.
To sample random numbers from the exponential distribution, first sample from the
uniform distribution between 0 and 1.

0.5. This insight can help move from one distribution to

probsamp = np.random.rand ()

Think of this as a random value of P, which we denote as c,. By randomly sampling the cdf
of the uniform random distribution, the next question becomes: what value of the expo-
nentially distributed random variable x, corresponds to that point in the cdf? To answer
this question requires that we invert the cdf, i.e., P=1 - e **, to obtain an equation of x,
in terms of the cdf. To show this in action, denote ¢, as the randomly selected value from
the cdf of the uniform distribution. To map the cdf of the uniform distribution onto the
cdf of the exponential distribution (our custom distribution) requires that ¢, =1— e e,
For x, to be an exponentially distributed random number requires transforming the uni-
form random numbers into the exponentially distributed random numbers we would like
to generate:

—Ax,
1-e "e=¢,

e Me=1-¢,
—Axe=logl-¢,
_log1—
xe:y (1.2)

This gives x, = —% log (1 -¢,). This converts the sampling distribution of rand (i.e., ¢;) to
an exponential distribution. In order to use this repeatedly, it will be convenient to make
and save a function:

def randZexp (probsamp,my lambda) :
# Do not overwrite the lambda Python function
# lambda is the rate of the Markov process
# probsamp are uniformly random sampled numbers
return -1/my lambda*np.log(l-probsamp)

The following section leverages the prior code snippet for using uniform sampling to
generate exponentially distributed numbers given a process with rate 4=1/10:

my lambda=1/10
probsamp=np.random.rand (10**3)
expprobsamp = randZexp (probsamp,my lambda)

Now it is time to see if any of this works—via a challenge problem.

For general queries, contact info@press.princeton.edu
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CHALLENGE PROBLEM: Comparing Exponential Random Sampling

Compare the distribution of 10* exponentially distributed random numbers using the
cdf-based method to the distribution using the following built-in Python command:

my lambda=1/10
pythonexprnd=np.random.exponential (1/my lambda, 10**3)

Note that the function random allows sampling from a number of different
common distributions. (Hint: Another helpful function is the empirical cumula-
tive distribution function, or ECDF, from statsmodels.distributions.
empirical distribution. This is useful in generating cumulative distribu-
tions.) If your code is working, it should look like the following:

0.5 1.0 —
mm Custom method
= = Built-in method
£ 0.4f 0.8
5
S
2 03} =06
g 2
T 02} B 04
%
S 0.1 0.2 @ Custom method
& O Built-in method
— Theory, 1 - eMx
0.0 [ 0.0
0 20 40 60 80 100 0 20 40 60 80 100
Value, x Value, x

These figures show a comparison of customized sampling and built-in exponential ran-
dom sampling via probability distributions (left) and cumulative distributions (right).
For the cdf, the expected distribution is shown as a solid black line.

14 COMPARING BINOMIAL AND POISSON DISTRIBUTIONS

Binomial distributions result from counting the number of occurrences given independent
samples with probability of occurrence p. For example, consider a mutation probability of
p=1078. Irrespective of whether mutations are independent of or dependent on selection, it
would typically take a large number of cell divisions (or cells) for a mutant to appear. Using
a binomial distribution, one could, in theory, predict the number of mutants expected to
occur in a single round of cell division or given an exposure of a large collection of # cells to
a selective force. Formally, the binomial distribution denotes the probability that k events
occur out of # trials given the per trial probability p. This distribution is

P(k)z(Z)pku—p)” (13)
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where (Z) denotes the number of unique ways of choosing k of # elements (i.e., the binomial
coefficient). However, if occurrences are rare and the number of samples, #, is large, then
the binomial distribution converges to the Poisson distribution with shape parameter A = np
(this shape is the expected mean number of events in # trials). To see this computationally,
compare the cdfs of the sample of repeated binomial sampling to repeated Poisson sampling
with varying n. For example, use the following code to obtain and plot the cdf for binomial
random numbers given 100 trials each with probability p=0.2:

n=100

my lambda = 20
p=my lambda/n
numsamps=10**3

binosamps = np.random.binomial (n,p,numsamps)
sortbino = np.sort (binosamps)
cdfbino = np.arange (1, numsamps+1) /numsamps

plt.plot (sortbino, cdfbino,color="k', linewidth=2)

Here binomial samples binomial random numbers, and sorting the result allows for an
explicit calculation of the empirical cdf (without using a built-in function).

CHALLENGE PROBLEM: Comparing the Binomial to the Poisson

Compare the binomial and Poisson cdfs for n = 40, 100, and 1000 in each case, assum-
ing there is an expected number of 20 events such that the probability per event
decreases from 0.5 to 0.2 to 0.02, respectively. If your code is working, it should look
something like this:

0.8

0.6

cdf

0.4

0.2

0.0
0

Sample size, n = 40

— Binomial
— Poisson

10 20 30 40
Value, x

cdf

0.8

0.6

0.4

0.2

0.0

Sample size, n = 100

Sample size, n = 1000

— Binomial
— Poisson

cdf

0.8

0.6

0.4

0.2

— Binomial
— Poisson

10 20 30 40
Value, x

0.0
0

10 20 30
Value, x

40

Technical note: Keep in mind that the binomial function generates the out-
come of n trials each with a p probability of success. Try to compare outcomes with
sum (np.random. rand (n) <p) . Are the outcomes different in a substantive way than
simply sampling from a binomial? It is worth considering that the binomial distribution is
equivalent to running # trials each with a p probability of success and then reporting how
many, m, were successful. By definition, 0 <m < n. Hence, each trial is successful with prob-
ability p. Because rand returns uniformly distributed random numbers between 0 and 1,
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then rand < p is 1 with probability p and 0 with probability 1 - p. As such, by invoking
the rand command #» times and comparing it to p, it should return a 1 approximately np
times; this is, by definition, 4 from above. Hence, just as we used the uniform random dis-
tribution to generate exponentially distributed numbers, it is also possible to use the same
distribution to generate random events that have precisely the same properties as binomial
random numbers.

1.5 THESTART OF DYNAMICS

The schematics in Figure 1.1 illustrate two distinct mechanisms by which mutant bacte-
ria can increase in number in a population. Via the independent mutation hypothesis,
mutations happen rarely during cell division and then selection acts upon them later. Via
the dependent mutation hypothesis, mutations only occur when the cell experiences a selec-
tion pressure, and in that case a small fraction of heritable cells acquire a mutation. The
consequences of these two ideas are examined at length in the main text and then developed
as the centerpiece of the homework problems. Yet to get there requires that you develop a
dynamic simulation.

Rather than giving away the homework (and the fun involved in doing this yourself),
there is a way to start along the path toward dynamics. First, consider the case where
mutations are dependent on selection. It should be apparent that manipulating probabil-
ity distributions as described here can be used to generate a small number of mutants in a
population. For example, consider the case where there are = 10° cells and p = 10, In that
event, one expects approximately 10 mutational events, which can be generated as follows:
sum (np.random.rand (n) <p) . Yet the case of the independent selection is more
difficult.

As a start to a dynamic model, consider a two-step process. First, a population of cells,
with certain features doubles in size. Second, a fraction of the cells changes in some way.
Simply to illustrate this point, initialize a 1X 5 array with 0.5 in the second entry, e.g.,

x=np.zeros (5)
x[1]1=0.5

Next, double the size of the array. How to do this is up to you. Indeed, doubling an array
is perhaps a crude way to simulate a dynamic process, but it provides some intuition to
the underlying changes in the system. It also helps illustrate ways to concatenate matrices
together, e.g., np.concatenate ([x, x]) Examine the output of v and notice that
there are now instances of a 0.5 value, in the second and seventh positions. This is a direct
result of concatenating the matrices. Now, if the value of 0.5 was some property of a cell,
then it is clear that two cells have that same property. If instead one used a value of 1 for
a mutant and 0 for a wild type, then it is apparent that the process of cell division (which
doubled the number of cells) also doubled the number of mutants. Of course, at this point it
would be important to change the property of y in the event of a new mutation. In that case,
you can use the random number generating methods already described to decide which, if
any, of the array elements to change.
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Of course, if you want to see what happens in a few instances, consider this loop:

x=[1,0]
for 1 in np.arange (4)
x=np.concatenate ( (x, x),axis=None)

The result should be a growing list of 0s and 1s:

This kind of approach loses track of the mother-daughter relationships (at least explicitly).
But it is possible to modify the arrays and then begin to change both the size and the nature
of the population.

How to build models of bacterial growth and mutation is treated in detail in the text-
book (and associated homework). From a computational perspective, such models are built
around a few simple ideas, including adding elements to an array and changing the value of
an array. For example, here are a series of small exercises that illustrate core concepts toward
building your own simulation model of bacterial growth and mutation. Type in each and
modify them. Soon you may just be ready to tackle the question of whether mutations are
dependent on or independent of selection.

CHALLENGE PROBLEM: A Step toward Bacterial Growth

Write a program to generate an in silico population of 100 bacteria, of which & 90% are
wild types and the rest are mutants (denote these as 1s and 0s, respectively). Then dou-
ble the size of this population while retaining the properties of the original population.
Finally, switch one element, either 0 to 1 or 1 to 0.

1.6 INFERRING PARAMETERS FROM DATA

Thus far, this laboratory has provided resources for sampling from and manipulating dif-
ferent probability distributions—with an eye toward developing dynamic simulations of
growing and mutating bacterial populations. These can be used in a generative sense, as
described in the textbook, to compare and contrast the independent and acquired muta-
tional hypotheses. However, there is another question that is relevant to hypothesis testing:
how to infer process rates and parameters from data. To tackle such an approach, first
download the file poissdata. csv, which contains 100 random samples from Poisson
distributions with an unknown rate parameter. Or you can enter the following string of
numbers into an array. Here it is—exciting, no?
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3,4,2,5,2,2,5,0,5,2,4,4,4,1,4,3,3,2,3,2,2,6,3,4,4,5,2,2,5,0,1,2,2,2,4,3,
3,2,4,5,2,4,6,3,5,5,1,3,1,2,2,5,4,8,4,3,5,2,6,3,3,2,3,4,4,3,2,2,3,2,6,2,
2,0,2,5,4,5,4,5,3,9,3,5,2,6,3,5,1,1,2,1,4,2,5,7,4,3,4,4

Although this seems abstract, imagine that these numbers correspond to resistance
colonies measured after a Luria-Delbriick (LD) experiment—it turns out that these have
features quite distinct from the LD experiments, but they nonetheless provide a good basis
for deeper exploration. The remainder of this lab is aimed at estimating the rate parame-
ter, i.e., the unknown 4, from which one could estimate the unknown mutation rate. These
steps are the centerpiece of the homework. Hence, it's worthwhile to take some time to
understand the inverse problem using a simpler example.

The central objective of parameter inference is to try to identify a value (or set of val-
ues) that is compatible with observations. The degree of compatibility may depend on
one’s preference for the unexpected. In practice, most inference approaches try to ask the
question: what is the probability that some unknown parameter 6 is compatible with the
observed data x, or P(0|x)? Yet, to answer that question, it is often critical to answer a related
but different question: what is the likelihood of observing the data x given a parameter 6,
or P(x|0)? These are not the same and, in fact, can be quite different (the literature on false
positives in medical testing is an excellent example for study).

In this case, one way to estimate the rate parameter is to use features of the data—and
find parameters that are expected to generate similar features. In this case, the pdf for the
Poisson distribution is p(x=k) = Aklf; ~. This means the probability of observing 0 occur-
rences is p(0) = e~*, the probability of observing 1 occurence is Ae™*, the probability of

observing 2 occurences is %e"l, etc. Note that the Poisson distribution is defined over
discrete values such that the sum of these must be 1, i.e., Yoo p(x=k[4) = 1.

One of the features that Luria and Delbriick were interested in was simply the fraction
of experiments in which nothing happened—meaning no mutant colonies formed on the
agar plates after being exposed to viruses. This feature, the probability of zeros, can be used
to infer a rate parameter. In the example, inverting the equation for p(x=0) leads to an
estimate of A based on the data: A=—log(P(x=0)). To calculate the probability of observing

0 from the data, use

poissdata = np.genfromtxt ('poissdata.csv',delimiter="',")
numberofzeros = np.sum(poissdata==0)
probzero = numberofzeros/len (poissdata)

where sum (poissdata==0) counts the number of zeros, which then can be used to
infer the associated Poisson shape parameter as follows:

« Estimate A and save the values as lambda est.

o Write code that takes a vector of data as input and outputs the estimated A based
on the number of zero occurrences. Name this function lambda estimator
Zeros.

Of note, the datain 'poissdata.csv' looks like the following, which you should plot
to verify:

For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

Fluctuations and the Nature of Mutations

Histogram count

Values

Try to write such a script on your own. However, for your reference, here is one solution
script. The danger of course is that, if there are no zeros, then the estimator is undefined.
Note that there is another way to estimate A by using the average value of the output:

def lambda_estimator_zeros(x):
# function lambda est = lambda estimator zeros (x)
# Estimates the Poisson rate parameter associated with a vector
# of points x based on the zero
numberofzeros=np.sum( (x==0) *1)
probzero=numberofzeros/len (x)
lambda est = -np.log(probzero)
return lambda est

What does all of this mean? According to the Poisson distribution, if A4y is the true value,
then we should observe an output of 0 a fraction e™* of time. In the dataset, there are
three zeros out of 100 trials. Hence, the observed probability of 0 is P,y(0) = 0.03. Hence,
our best estimate is A = —log(P,ys), or A=3.51. It turns out that is not quite right, yet it is
also not surprising; that is, such an output is expected given the true but unknown value
Atrue. It turns out that the true value is Ay = 3. But you didn’t know that in advance, did
you? And that is the point.

Indeed, Luria and Delbriick didn't know what the actual mutation rate was before the
experiment (even if they had some idea that it was small, and even some idea of the level of
smallness). In the case of any particular estimate, one may ask how confident the estimate
of the rate value is. In other words, how often does sampling 100 points from a Poisson
distribution with a predetermined rate of A, lead to similar best estimates of 4.4? One
way to quantify similarity is to ask whether 1ambda_est lies within the middle 95% of
a distribution of estimates obtained from a specified A;,.. To get a better sense, let’s look
at the distribution when we set Az, equal to 1ambda est. However, in estimating the
Poission rate parameter, it is necessary to use a stable statistic—the mean value. Note that
the expected value of the Poisson distribution is:

(x) = i kp(k). (1.4)
k=0
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The mean, as it turns out, is simply (x) = A

numsamps = 10**4
lambdadist = np.zeros (numsamps)
for j in range (numsamps) :
currdata = np.random.poisson(lambda est,100)
lambdadist[j] = np.mean(currdata) # Best estimate of $\lambda$

Next, plot a normalized histogram of this distribution and address whether 1ambda est
appears to be contained in the middle 95% of the distribution. As seen in the following
plot—the answer is yes (as you should have expected):

0.12 [~ . i

0.1t
0.08 i
0.06

0.04 |

Probability distribution, p(A)

0.02 |

oL ,-.ITIrﬂ H-‘HTIHH
2.5 3 3.5 4
Value of A

4.5

This histogram can be generated using the following code:

# Main data goes here
x = np.genfromtxt ('poissdata.csv',delimiter=",")
lambda est = lambda estimator zeros(x)

numsamps = 10**4

lambdadist = np.zeros (numsamps)

for i in range (numsamps) :
currdata = np.random.poisson (lambda est,100)
lambdadist[i] = np.mean(currdata)

n, bin edges = np.histogram(lambdadist, bins=30)

bin probability = n/numsamps

bin middles = (bin_edges[l:]+bin_edges[:—l])/2.

bin width = bin edges[l]-bin edges[0]

plt.bar (bin middles, bin probability, width=bin width,
color=[0.75,0.75,0.75],edgecolor="k")

plt.plot([lambda est, lambda est], [0, 0.12],'k--'",linewidth=3)

plt.ylabel (r'Probability Distribution, S$p(\lambda)s$', fontsize=14)

plt.xlabel (r'Value of $\lambda$', fontsize=14)

Although it is apparent that the first estimate of A does lie within the center, you can formally
identify the bounds to the middle 95% by sorting the distribution as follows:
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sortedlambdadist = np.sort (lambdadist)
lower025 = sortedlambdadist[int (0.025*numsamps) ]
upper975 = sortedlambdadist[int (0.975*numsamps) ]

Such an outcome might not always be the case. What if you had set Ay =1 instead
of lambda est (which is equal to 3.51)? To estimate the confidence intervals of the
estimated value of A, one must establish the expected largest and smallest value of Ay
with associated distributions that contain lambda est in the middle 95%. We can
accomplish this by systematically looping over values of lambda and repeating the analysis
above:

lambdavec = np.arange (0.5*lambda est,1l.5*lambda est,0.01)
lower025 = np.zeros(len (lambdavec))
upper975 np.zeros (len (lambdavec))

for j in range(len(lambdavec)) :
currlambdaset = lambdavec|[7]
poissfitdist = np.zeros (numsamps)
for k in range (numsamps) :
currdata = np.random.poisson (currlambdaset, 100)
poissfitdist[k] = np.mean(currdata)
sortedlambdadist = np.sort (poissfitdist)
lower025[j] = sortedlambdadist[int (0.025*numsamps) ]
upper975[j] = sortedlambdadist[int (0.975*numsamps) ]

CHALLENGE PROBLEM: Estimating the Confidence in Parameters

In thislast problem, plot the lower and upper bounds of the realized values, Aops, given a
range of true values for A. Then use these forward likelihoods to answer two associated
inference problems. First, what is the maximal value of A with an upper bound below
lambda est? Second, what is the minimal value of A with a lower bound above
lambda est? Interpret your findings with respect to the certainty you would have
about the underlying value A, given observations.

SOLUTIONS TO CHALLENGE PROBLEMS

SOLUTION: Properties of Random Distributions

The mean value of the output of rand is 0.5 because the values are uniformly spaced
between 0 and 1. The variance of a distribution is defined as Var = (x?) - (x)2, in other
words, the expectation of the sampled value squared minus the square of the expected
value of the sampled value. For a uniform distribution such that p(x) =1 for 0 <x<1,
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the variance is

Varxzj(;lxzp(x)—(/lep(x))2 (1.5)

1 51 1 ,1\?
Lot (L0)
=1/3-(1/2)* (1.7)
=1/12 (1.8)

This result can be verified entering the command np.var (np.random.
rand (10000) ), which returns the variance of 10,000 uniformly distributed ran-
dom numbers and a number very close to 1/12, or 0.0833. A histogram can be used
to visualize the random numbers. As is evident, the shape of the distribution seems
largely “flat,” though the noise increases with the number of bins. The expected num-
ber in a bin is itself a different sampling problem, i.e., a multinomial problem, a topic
for a different day. The code to generate the histogram is

# Histogram with 25 bins

plt.hist (np.random.rand (10**4),25,\
facecolor=[0.5,0.5,0.5],edgecolor="k")

plt.xlabel ('Value', fontsize=20)

plt.ylabel ('Counts', fontsize=20)

plt.title('hist (rand(10**4,1),25)"', fontsize=20)

This code bins 10* random numbers into 25 bins and then visualizes them with labeled

axes and a title.
hist(rand(10%*4,1),25)

400

Counts

00 02 04 06 08 1.0
Value

SOLUTION: Random Number Generation

In order to generate this set of random numbers, recall that the rand command gen-
erates uniformly distributed numbers between 0 and 1. Hence, if you add or subtract
a value, then you can shift the range. Moreover, if you multiply the output of rand by
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a constant, you can expand the range. Judicious use of these techniques suggests the
following solutions:

o Generate 1000 random numbers equally spaced between 0 and 5:
np.random.rand (1000) *5

« Generate 1000 random numbers equally spaced between 2 and 7:
np.random.rand (1000) *5 + 2

o Generate 1000 random numbers equally spaced between -5 and 5:
np.random.rand (1000) *10 - 5

SOLUTION: Comparing Exponential Random Sampling

The two distributions can be compared using their pdfs (probability distribution functions) or cdfs (cumu-
lative distribution functions). A comparison of the histograms of the pdfs reveals the exponential shape.
Transforming the y axis to logarithmic scale would also reveal a linear decline (a bonus challenge for the
interested reader). Second, if comparing cdfs, then both distributions map onto each other. In the case of
the cdf, the theoretically expected functional form is plotted as an overlay. For plotting pdfs, the following
code snippet is useful:

N=10**3

my lambda=1/10

probsamp = np.random.rand (N)

expprobsamp = randZexp (probsamp,my lambda)
Pyexprnd = np.random.exponential (1/my lambda,N)
# Get the histograms

binrange=np.arange (0,105,5)

# Overlay the histograms side by side

plt.hist ([expprobsamp, Pyexprnd], binrange,
weights = [np.ones (N) /N, np.ones(N)/N],
label=["'Custom method', 'Built-in method'],
color=["'gray', 'black'])

plt.legend(fontsize=12, frameon=False)

For plotting cdfs, the following code snippet is useful. In particular, note that this code samples the cumu-
lative distribution at different points to help reveal the overlay of the two approaches to the theoretical
distribution.

# Generate the random numbers

N=10**3
my lambda=1/10
probsamp = np.random.rand (N)
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expprobsamp = randZexp (probsamp,my lambda)
Pyexprnd = np.random.exponential (1/my lambda,N)

# Get the empirical cdfs

from statsmodels.distributions.empirical distribution import ECDF
f1=ECDF (expprobsamp)

f2=ECDF (Pyexprnd)

x1=f1 (np.arange (0, max (expprobsamp) ,max (expprobsamp) /10))

x2=f2 (np.arange (1, max (Pyexprnd) +1, (max (Pyexprnd)+1) /10))

# Overlay the cdfs
# First overlay
plt.plot (np.arange (0, max (expprobsamp) ,max (expprobsamp) /10) ,x1, 'o"',
color=[0.5,0.5,0.5],markeredgecolor="black',markersize=10)
# Different overlay
plt.plot (np.arange (1, max (Pyexprnd)+1, (max (Pyexprnd)+1)/10),x2,'o",
color='white',markeredgecolor="black',markersize=10)
# Theory
x3=np.arange (0,100,0.1)
plt.plot(x3,1-np.exp(-my lambda*x3),'-', color='black')
plt.legend(['Custom method', 'Built-in method', \
r'Theory, S$l-e”{-\lambda x}$'], fontsize=12,\
loc='lower right', frameon=False)

SOLUTION: Comparing the Binomial to the Poisson

The comparison is facilitated by generating samples using the following command:
poisssamps = np.random.poisson (n*p, size=numsamps) . The con-
vergence between binomial and Poisson improves markedly with increasing n, as is
apparent in the three sets of cdfs. In each of these cases, 1000 samples were taken given
a process that should have an average value of 20. However, when the total number of
trials increases from n =40 where p=0.5 to n=1000 where p =0.02, then the conver-
gence to the conditions of the Poisson apply, i.e., large number of trials each with a low
probability of success.

SOLUTION: A Step Towards Bacterial Growth

First, generate an array of Os and 1s, using the np . random. choice function, in
which % 90% of them are 1s:

x = np.random.choice([1,0],size=(100,1),p=[0.9,0.1])
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Next, try to change a specific type, e.g., by changing it from 0 to 1 or 1 to 0.

ind = 20
x[ind]=1-x[1ind]

Check the value of x before and after to verify that the value did indeed flip. Now double
the array in size, copying all elements. There are many ways to do this. In Python, the
simplest way is to use the vectorized approach with np . stack (though a for loop
could also work):

x.shape
x2 = np.concatenate ((x,x),axis=0)
x2 .shape

This simple command stacks the two column vectors atop each other. In contrast, to
copy a column vector so that the resulting array has two (equal) column vectors, use
axis=1:

x.shape
x2 = np.concatenate ((x,x),axis=1)
x2 .shape

Note in the example above that 2 values were given for the size when creating x. This
allows Python to differentiate between a column vector and a row vector. If a single
number is given, Python will default to creating a 1D array without any notion of rows
or columns. In the two examples above, the shape attribute provides information
on the number of columns and rows. Hence, if x did have information on the wild-
type and/or mutant state of many bacteria, then a simple stacking command or direct
modification of states could be used to explicitly modify the status of a population at a
given time or from one generation to the next. How you use these and other techniques
to build a simulation model of cell growth and mutation is up to you!

SOLUTION: Estimating the Confidence in Rates

19

The plot illustrates the bounds, calculated using a computational approach to generate estimates based on

sampled data and then sorting the estimates to identify 95% confidence intervals. Yet to find compatibility

requires that we look at what true value of A could be compatible with the observation of an estimate of 3.51.

By looking horizontally across the y axis, one can observe that if the true value had been 2.95, then the value

of 3.51 would be a plausible upper limit. Similarly, if the true value had been 3.95, then the value of 3.51

would be a plausible lower limit. This provides a rationale for a confidence interval, as illustrated using the

zeros method. See the image below, including a horizontal line at the 1ambda_est value.
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The code to generate this plot is as follows:

## Plot commands for estimating lower and upper bounds

plt.plot (lambdavec, lower025, linewidth=3, color='k'")

plt.plot (lambdavec, upper975, linewidth=3, color='k")

plt.plot (lambdavec, lambdavec, linewidth=2, linestyle='--', color='k')

tmpi=np.where (lower025 > lambda est) [0]

llow=lambdavec [tmpi[0]]

tmpi=np.where (upper975 < lambda est) [0]

lhigh=lambdavec [tmpi[-1]]

plt.plot([llow, lhigh], [lambda est, lambda est],
linewidth=4,color=[0.75,0.75,0.75])

plt.plot(1.25,lambda est, 'ko',\
markerfacecolor=[0.75,0.75,0.75],markersize=12)

plt.xlim([1.25, 5.75])

plt.ylim([1.25, 5.75])

It is possible to use different summary statistics other than the number of zero occurrences. If time permits,
repeat this analysis using the mean of the Poisson distribution (equivalent to ).
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