CONTENTS

- 4 Introduction
- 34 Anisoptera
- 130 Anisozygoptera
- 132 Zygoptera
- 250 Glossary
- 251 Selected resources
- 252 Index
- 256 Picture credits and acknowledgments

JUNGLESKIMMERS, GRENADIERS, **AND ASSOCIATES**

Thile the subfamily Libellulinae's dominance at open and disturbed habitats may have been facilitated by a reduced dependence on plant matter (p. 36), its diversity appears to have originated in lush tropical climes. Between these extremes, a staggering (but confusing!) variety of sizes, shapes, and colors evolved.

Retaining water in the smallest spaces, rainforests abound in potential habitat: even the squelching forest floor may provide

ABOVE A male of the Common Grenadier (Agrionoptera insignis) on Sulawesi in Indonesia.

RIGHT | Madagascar Jungleskimmer (Thermorthemis madagascariensis) female laying eggs by propelling them in drops onto the bank.

DIVERSITY

147 species at almost any water in the tropics where odonates occur

Genera Aethiothemis (13 species), Agrionoptera (8), Amphithemis (3), Cannaphila (3), Cratilla (2), Dasythemis (4), Diplacina (28), Epithemis (2), Hadrothemis (7), Hylaeothemis (4), Hypothemis (1), Lathrecista (1), Lyriothemis (19, including Boninthemis),

Micromacromia (4), Misagria (4), Neodythemis (14), Nesciothemis (5), Nesoxenia (2), Notolibellula (1), Orchithemis (3), Oxythemis (1), Pacificothemis (1), Palaeothemis (1), Phyllothemis (2), Pornothemis (2), Potamarcha (2), Protorthemis (4), Pseudagrionoptera (1), Tapeinothemis (1), and Thermorthemis (2). All (probably) belong to Libellulinae, but position of Akrothemis (2) unconfirmed

a place to breed. To profit from the limited resources in such constricted habitats, some species are tiny, while others may be very large in order to compete (compare p. 156).

Throughout the tropics, for example, the puddles mushing up the forest roads are guarded by big fat libellulines, such as the Malagasy jungleskimmers (*Thermorthemis*), *Protorthemis* in New Guinea and Sulawesi, and the Americas' burliest *Libellula* and *Orthemis* (pp. 37–8). Most bombardiers (*Lyriothemis*) in Asia and the African jungleskimmers (*Hadrothemis*) also breed in muddy pools, but some favor waterfilled cavities in trees.

In such wet environments, suitable habitat is typically closeby, so many species adapted with narrow wings, suitable for taking off quickly into the canopy but not for going far. Consequently, their veins were often rearranged and reduced, inspiring

the description of numerous genera (p. 26). The name Agrionoptera, for example, means damselflywing. Genetics show this genus should not only include the grenadiers found at leafy pools and forest swamps from tropical Asia to the Pacific, however, but also the bulky Protorthemis and the smaller Bicolored Skimmer (Notolibellula bicolor) from north Australia's rock pools. In Asia, the Nesoxenia grenadiers and Bloodtail (Lathrecista asiatica) are also related, as may be the pursuers (*Potamarcha*) and forestskimmers (Cratilla). Even the structurally and ecologically similar Cannaphila, Misagria, and especially Dasythemis might well have been placed in Agrionoptera if they were not from Central and South America! Forest libellulines everywhere have the piebald thorax stripes for which those genera have been named "convict skimmers."

To absorb the reduced sunlight in their shady environs, or to blend in, adults can also be largely black, marked only with dabs of yellow or green. Larger spots frequently lie near the abdomen tip, perhaps serving as signals. Such unshowy males may need other ways to woo females, perhaps with elaborate claspers or genitalia (compare p. 99).

From the study of genitalia, nymphs, and genetics, it has become clear that some libellulids have changed so much that they are barely still recognizable as such. Earlier odonatists considered the smallest and darkest species with the narrowest wings to be more primitive, like an ancestral group from which larger and more colorful ones evolved (p. 72). The opposite, however, appears to be true. The claspers of some junglewatchers (*Hylaeothemis*, *Neodythemis*) and micmacs (*Micromacromia*), small dragonflies inhabiting forest streams and seeps in tropical Asia, Africa, and Madagascar, for example, put the similarly black-and-yellow Gomphidae to shame (p. 92). The stream-living *Diplacina* from the

Philippines, Sulawesi, the Moluccas, and New Guinea, as well as the streamwatchers (*Phyllothemis*) in Southeast Asia, are similarly disparate.

Sometimes only the female's sideflaps (p. 37), or details of nymphs or genitalia, reveal that species are part of Libellulinae. Uncovering their exact affinities to infer their history and ecology, and classify them correctly, is even harder. In tropical Africa, the flashers (*Aethiothemis*) have a distinctively exposed penis in common, but were initially described in five different genera. Longfield's confusing blacktails and peppertails (*Nesciothemis*) proved close to the Pepperpants (*Oxythemis* phoenicosceles) (p. 39).

Much work remains to be done. Restricted to Sundaland's swamp forests and mangroves, the sentinels (*Orchithemis*; photos p. 28) and marshals (*Pornothemis*) recall miniature and thin-bodied *Lyriothemis*. The similarly small hawklets from India's Western Ghats (*Epithemis*) and Indochina (*Amphithemis*) appear close too.

Some of the most modified genera are so poorly known that identifying their true affinities is still quite impossible. Fiji's *Hypothemis*, Pohnpei's *Pacificothemis*, Myanmar's *Palaeothemis*, Borneo's *Pseudagrionoptera*, and the Solomon Islands' *Tapeinothemis*, all with a single species, do appear to be near Libellulinae.

Two species of *Akrothemis* from New Guinea, however, might in fact belong to one of the groups treated next.

ABOVE LEFT This male Spring Micmac (*Micromacromia zygoptera*) from Ghana is one of many inconspicuous libellulids confined to rainforest streams.

ABOVE MIDDLE The male Pepperpants (*Oxythemis phoenicosceles*) from tropical Africa shows off his brightly colored legs.

ABOVE RIGHT This male *Diplacina phoebe* from Halmahera, Indonesia, and its relatives from New Guinea are likely to form a separate genus from the true *Diplacina* species found on Sulawesi and the Philippines.

RIGHT Red-rumped Hawklet (*Epithemis wayanadensis*) male. Only the second of its genus, this southern Indian species was first described in 2023.

SCARLETS, DRAGONLETS, AND KIN

Humans have moved many insect species around the globe, often with dire consequences. The only truly invasive odonate, however, is the Oriental Scarlet (*Crocothemis servilia*); besides Hawaii (where five species introduced from North America have become established), this Asian species gained a foothold in Florida in the 1970s and on Cuba in the 1990s, and now occurs on all islands of the Greater Antilles. There is no trade and thus no deliberate transport of odonates. As odonates

often disperse well, there may be fewer unoccupied niches available for invasion than is the case for other insects. So how did this species succeed?

Crocothemis belongs to Palpopleurinae, the second-largest subfamily in Libellulidae, with almost 170 species currently classified. Like Libellulinae (p. 36), they are abundant and conspicuous at most standing, open, warm waters, which are often recent or seasonal, forming after the ground has been disturbed or rain has fallen.

LEFT Africa's most widespread dragonfly, the Broad Scarlet (*Crocothemis erythraea*), is superficially identical to its Asian counterpart, the Oriental Scarlet (*C. servilia*).

RIGHT This female Indian Rockdweller (*Bradinopyga geminata*) has excellent camouflage.

DIVERSITY

118 species in a wide range of warmer waters (mostly open and standing, often temporary) around the world

TAXONOMY

Genera Bradinopyga (4 species), Crocothemis (9), Diplacodes (10), Erythrodiplax (61), Hemistigma (2), Indothemis (2), Nannodiplax (1), Neurothemis (17), Palpopleura (7), and Thermochoria (2) appear close, but Anatya (2) and Pseudoleon (1) treated here somewhat tentatively

Unlike libellulines, most palpopleurine nymphs are smooth with large eyes and slender legs, indicating they roam freely rather than burrow, and appear to lack dorsal abdominal spines.

While these can be absent in other subfamilies too, most libellulid genera and their presumed ancestors have them. As spines protect against fish, their consistent absence in such a dominant group suggests that their nymphs manage best in small, isolated, ephemeral waters without fish, or in microhabitats fish cannot penetrate.

Rockdweller (*Bradinopyga*) nymphs, for example, amble about fearlessly in rock pools (and cement basins and water tanks!) in Africa and Asia. The speckled adults sit flat on rockfaces and walls nearby, blending in completely. Nymphs of most palpopleurines clamber among submerged plants, however. The females place their eggs onto these plants, organic matter or mud, using the genital opening's extended (and often downcurved) lip (compare Libellulinae; p. 37).

Scarlets and rockdwellers are among almost 60 such species from the Old World's warmer reaches. Found at any rice paddy or roadside pool, their often colorful wings mean they may be the most photographed odonates: in Africa, perhaps the black-winged Lucia Widow (*Palpopleura lucia*) wins; from Asia across to Australia, one of the parasols (*Neurothemis*) with their black-and-white or largely

RIGHT This male Lesser Red Parasol (Neurothemis fluctuans) from Thailand must be agitated, as most parasols hold their colorful wings down, shading the body like an umbrella.

red wings. The perchers (*Diplacodes*) too are very numerous on these continents.

Also in the warmer parts of the New World, about 60 species are among the most-seen dragonflies. The majority are classified as dragonlets (*Erythrodiplax*), which have diversified into an even wider array of habitats: Costa Rica's Canopy Dragonlet (*E. laselva*) breeds in bromeliads holding water high in rainforest trees; the Seaside Dragonlet (*E. berenice*) favors brackish water in mangroves, saltmarsh, and deserts.

The tropical distribution and success of the subfamily Palpopleurinae suggests that only cold winters limit its conquests. The shallow and well-vegetated waters they favor might warm up in summer, but leave the nymphs exposed when temperatures drop. Nonetheless, all Africa's most widespread odonate, the Broad Scarlet (*C. erythraea*), needed to expand across Europe was some eutrophic ponds and a bit of global heating.

Perhaps all its near-identical Asian counterpart needed in America, therefore, was a head start. The Oriental Scarlet is one of the commonest species in tropical Asia, where many aquarium and pond plants are cultivated for export.

Unsurprisingly, therefore, it is the dragonfly imported accidentally most often, of 40 odonate species reported so far (see also p. 136).

The ecologically varied but closely related species of this subfamily have often converged

in appearance: separating some *Diplacodes* and *Erythrodiplax* is hard without knowing the continent they are from. Others look more distinct than they are. Despite its grizzled body, tiger-striped eyes, and blotched wings, the Filigree Skimmer (*Pseudoleon superbus*), adapted to rocky streams in Middle America, is near *Erythrodiplax*, for example. Two blue-eyes (*Anatya*) from rainforest pools seem near that genus too.

Many genera are ill-defined, therefore. The piedspots (*Hemistigma*) and piedfaces (*Thermochoria*) from Africa and Madagascar differ only in their veins' density. One of six widows (*Palpopleura*) there (the seventh is Asian) looks so deceptively like the

LEFT | This female Asian Widow (Palpopleura sexmaculata) strongly recalls the Americas' distantly related amberwings (p. 66).

TOP RIGHT The male of Middle America's unique Filigree Skimmer (*Pseudoleon superbus*).

LOWER RIGHT | Band-winged Dragonlet (*Erythrodiplax umbrata*) male from the Cayman Islands.

former that it was once named *Hemistigmoides deceptor*! The Pygmy Percher (*Namodiplax rubra*) from Australasia is just a tiny *Diplacodes*, while tropical Asia's two demons (*Indothemis*) look like rather robust, black examples of that genus.

means without prior written permission of the publisher. LIBELLULIDAE—PALPOPLEURINAE—*ERYTHEMIS* AND RELATED GENERA

PONDHAWKS, PINTAILS, PYGMYFLIES, AND KIN

The bright colors of the male Bluebolt (*Cyanothemis simpsoni*) in Africa, Greenbolt (*Viridithemis viridula*) on Madagascar, and redbolts (*Rhodothemis*) from south Asia to Australia inspired both their common and scientific names (p. 38). Their American counterparts are just as colorful: the redskimmers (*Rhodotygia*) are a particularly

vivid red, while some pondhawks (*Erythemis*) are red or black and others largely green. Like many libellulids, pruinosity can affect their look too, with age turning two green *Erythemis* species wholly blue and a red *Rhodopygia* purple; Brazil's *Carajathemis simone* is pruinose with a red tip.

RIGHT | A female Great Pondhawk (Erythemis vesiculosa) in Suriname feeding on a close relative, a male Black Pondhawk (E. attala).

LEFT The weirdly shaped pintails (*Acisoma*), such as this male Stout Pintail (*A. inflatum*) from Ghana, are found within grassy verges from tropical Africa to Madagascar and Asia.

DIVERSITY

43 species of richly vegetated (standing and sometimes running) waters; almost global, but absent from much of Eurasia

TAXONOMY

Genera Nannophya (8 species) and Nannothemis (1), both blue on map, appear closer to each other than to Acisoma (6), Carajathemis (1), Cyanothemis (1), Frythemis (10), Porpax (6), Rhodopygia (5), Rhodothemis (4), and Viridithemis (1) in pink

Representing only 43 species of the dragonflies' largest and gaudiest family (p. 35), this group is indeed unrivaled in color range. The Bluebolt and some pintails (*Acisoma*) and pricklylegs (*Porpax*) in Africa are the only libellulids whose deep blue markings are not caused by pruinosity but, as damselflies (p. 148) and aeshnid dragonflies (p. 112), by pigments. And while many dragons have touches of green, notably those in dark habitats, that color rarely covers the entire body of those sitting out in the sun; its red tail-end makes the Greenbolt male look like a popsicle!

Remarkably, the group's size range is unequaled too. The 2½ in (6 cm) Great Pondhawk (*E. vesiculosa*) habitually takes butterflies and other dragonflies as prey. While the Bluebolt is almost as big, its cousins in the genus *Porpax* include Africa's smallest dragonfly, less than ¾ in (2 cm) long. Down to ¾ in (15 mm), the pygmyflies (*Nannophya*) from Japan to Tasmania are even the shortest odonates. Their North American sister, the Elfin Skimmer (*Nannothemis bella*), is almost as tiny.

All species favor waters rich in vegetable matter, such as swamps and pools with lush vegetation or

ABOVE This male Scarlet Pygmyfly (*Nannophya pygmaea*) from east Asia may be the world's tiniest dragonfly.

BELOW While many libellulids appear blue, the male of Africa's Bluebolt (*Cyanothemis simpsoni*) is among very few species where this color is not produced by pruinosity.

thick deposits of leaf-litter, rivers with floating organic debris, or seeps with wet cushions of peatmoss. Males perch persistently near preferred microhabitats, often defending them vigorously. Deep within grassy borders, pygmyfly territories are under a square meter in size. Strong evolutionary selection on size and color either led them to fit into such specific niches, therefore, or rather stand out from them. Catching big prey might even have evolved from aggressive territoriality, literally eating the competition!

Many species press their body, wings, and legs against leaves or the ground when perched. Perhaps that is why their bright colors are often concentrated dorsally and the occiput (the triangle separating the top of the eyes) is diagnostically large: to make them more visible. Large spines and dense setae on the hind femora, especially in some males, may be linked to this posture too. These can aid the capture of large prey but, judging from their diversity in pricklylegs, also have a sexual function.

means without prior written permission of the publisher. LIBELLULIDAE — PALPOPLEURINAE — URACIS AND YPIRANGATHEMIS

WOODSKIMMERS

any palpopleurines breed in seasonal waters, the adults sheltering in woodland for months and only attaining their mature colors as the first rains flood the landscape. In lowland forest in Central or South America, great numbers of dull dragonflies with dark-marked wings perch among the undergrowth just above the ground. Brown with a unique wood-grain pattern of fine transverse lines on the thorax, they eventually become dark and dusted with gray pruinosity.

Males of *Uracis* species, and the much smaller Little Woodskimmer (*Ypirangathemis calverti*), differ mostly in their wings, which are black-tipped in some, broadly banded in others. Alongside the black bands, the White-banded Woodskimmer (*U. siemensi*) develops pruinose flashes in the wing bases, a piebald pattern that stands out as it hovers over small shaded waterholes.

Female woodskimmers jab their eggs in flight into muddy pools, damp earth, and even dry soil in shallow depressions before those inundate. While drawn out in most Palpopleurinae (p. 45), the plate below the female's genital opening is developed most dramatically here, even projecting far beyond the abdomen like a stinger (thus recalling Cordulegastridae; p. 86) in the Spike-tailed Woodskimmer (*U. ovipositrix*).

DIVERSITY

8 species of seasonal puddles on the forest floor in Central and South America

TAXONOMY

Genera *Uracis* (7 species) and *Ypirangathemis* (1)

TOP A male of the Large Woodskimmer (*Uracis fastigiata*) in Panama.

ABOVE | Female of the Common Woodskimmer (*Uracis imbuta*) demonstrating the group's characteristic wood-grain pattern.

RAINPOOL GLIDERS

BELOW | Wandering Gliders (Pantala flavescens) mating in flight in Nepal.


7ith Pantala roughly meaning "throughout-roaming" in Greek, the Wandering Glider (P. flavescens) is indeed one of the most widespread insect species and most remarkable odonates. Also called the Globe Skimmer, it is the only one to occur on every continent but Antarctica (rare in Europe), reach the sub-Antarctic island of Amsterdam, and breed on Rapa Nui (Easter Island), over 1,200 miles (2,000 km) from the nearest populations.

> Turning orange as they mature, adults are built completely for flight: robust

> > pointed wings, the very broad-based

hind pair being distinctly triangular; the abdomen is cylindrical and tapered, almost conical. Built for growth, the big nymphs are just as unmistakable. They are active hunters with prominent eyes and teeth, and long abdominal spines and legs, the latter peculiarly black-tipped, contrasting with the almost translucent body.

Melanin provides sturdiness, perhaps another adaptation to their rapid lifestyle.

New generations emerge from rain puddles (and other warm and unvegetated waters) within about five weeks, which are among the fastest developments in a relatively slow-developing insect order.

The species is thus optimized entirely for living in the wake of summer rains: as the seasons shift, each generation must move across the equator to find a new bounty of balmy food-filled pools. Wherever a monsoon climate prevails, numbers build up toward the rains, swarming around treetops and patrolling over swimming pools and shiny car roofs. Tending to glide and hover, during rare resting periods they typically hang inside vegetation.

Only in 2009 it was inferred that their annual arrival on the bone-dry Maldives is part of what may be the greatest event of insect dispersal. Masses appear to fly directly from India to Africa each year, benefiting from favorable winds to cross the ocean in as little as four days. To get back, however, their offspring must take the long way around, following the coast.

Although some Trameinae look similar (p. 68), *Pantala* appears to have no direct relatives (but see next pages), the darker and thicker-bodied Spot-winged Glider (*P. hymenaea*) being the only other species. Recognized by a dark blotch in its hind wing expansion, this species has a similar ecology as its global cousin but only extends from Canada to Argentina, and from the Caribbean to the Galapagos.

ABOVE Distributed globally, the Wandering Glider (*Pantala flarescens*) is the Worldwide Dragonfly Association's mascot. As harbinger of the rains and monsoon mosquito oppressor, it is the perfect focus for global collaboration among odonate enthusiasts (p. 31).

OPPOSITE Wandering Glider (*Pantala flavescens*) nymph.

CASCADERS AND DROPWINGS

s that family dominates ephemeral ponds (p. 34), it makes sense that the Wandering Glider (Pantala flavescens)—the farthest-flying and perhaps fastest-breeding odonate—is a libellulid (p. 52). Most pantalines favor permanent streams and rivers, however, forming the family's largest running-water radiation. Cascaders (Zygonyx) guard their domain in sustained flight and rest away from water hanging in vegetation, just like their wandering relative, but their spiny nymphs cling to rocks like limpets in rapid currents, even of waterfalls (see photo p. 9).

Most genera perch frequently, though, such as the dropwings (Trithemis) that occupied almost the full complement of freshwater habitats available to them. Genetics suggest that the oldest extant species arose in Africa when forests gave way to savanna 10 mya, but most appeared in the last

TOP LEFT | Many libellulids, such as this male of Africa's Red-veined Dropwing (Trithemis arteriosa), will point their abdomen at the sun and also often lower their wings to minimize exposure, behavior known as obelisking.

LEFT | Africa's Ringed Cascader (Zygonyx torridus) extends to India and southern Europe, patrolling over open streams.

DIVERSITY

75 species mostly in wide range of flowing waters in tropics of Africa and Asia

TAXONOMY

Genera Trithemis (43 species including Thalassothemis; both colors on map) and Zygonyx (24; purple)

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

RIGHT Appearing like a typical dropwing, *T. marchali* from the oceanic island of Mauritius was only separated from *Trithemis* in the genus *Thalassothemis* ("sea-libellulid") on account of its venation.

BELOW This photo taken in Angola's highlands in 2018 was the first evidence of this dropwing's existence. Still unnamed, this new *Trithemis* species appears to mimic large *Acraea* butterflies.

5 mya. As the climate continued to fluctuate, they became isolated as habitats fragmented, or adapted as new ones appeared. Ultimately over 40 species thus evolved there, dominating dragonfly communities from cool streams to warm temporary pools, rainforests to deserts, and lowlands to highlands today.

Some species left Africa, resulting in another two on Madagascar and five in Asia, of which one got to New Guinea. And the exodus continues. The Violet Dropwing (*T. annulata*) arrived in Spain in the 1970s and is now halfway through France. Even inhabiting swimming pools and fountain basins,

the Orange-winged Dropwing (*T. kirbyi*) crossed over only in 2008 but reached Belgium in 2022!

These species and most others of sunny habitats have red males (see photo p. 13). That color stands out against green plants but also against the open sky. To aid warming, most species in shadier places are largely black, often combined with blue pruinosity to still stand out. The species' wings, meanwhile, vary from clear and narrow with reduced venation at forest streams (compare p. 41) to broad with dense cells and butterfly-like blotches of color in open swamps (p. 64).

Many species were placed in separate genera to capture this diversity, but most have been sunk back into *Trithemis*. The next may be *Thalassothemis marchali*, restricted to rocky streams on Mauritius. Related to the Dancing Dropwing (*T. pallidinervis*), a south Asian colonist of new ponds, its ancestor must have crossed the Indian Ocean just as the Wandering Glider does annually today.

Indeed, the cascaders' restless habit and the dropwings' dramatic diversification show how such a species can evolve and colonize the world. On Rapa Nui, meanwhile, the glider has shorter wings and is said to fly lower, settling as soon as bad weather threatens to carry it offshore. Are these starved castaways or is the evolution of another island specialist like Mauritius's dropwing already underway?

RIVERDARTERS, STREAMSKIMMERS, AND KIN

espite the extremes discussed in the previous profiles, most pantalines inhabit streams and rivers, often in forest. Each tropical region, for example, has robust species that fall ecologically between Zygonyx and Trithemis, with males aggressively defending stretches of rapid water from a conspicuous perch.

In Asia, these are the riverdarters (*Onychothemis*), in America, the streamskimmers (*Elasmothemis*) (both marked pink on the map). The related *Orionothemis* is known only from its extremely spiny nymphs found on Brazil's high plateau, reared to adult. Aside from Pantala (p. 52) these are the subfamily's only members to reach the New World.

DIVERSITY

101 species of (often forested) running waters in the global tropics

Genera Archaeophlebia (1 species), Atoconeura (6), Bironides (5), Celebophlebia (2), Celebothemis (2), Elasmothemis (8), Eleuthemis (5), Huonia (15), Lanthanusa (7),

Malgassophlebia (5), Microtrigonia

- (5), Nannophlebia (26), Olpogastra
- (1), Onychothemis (7), Orionothemis
- (1), and Zygonoides (4) included here, but position of Risiophlebia (2) is uncertain

In Africa and Madagascar, the riverkings (Zygonoides; photo p. 35) and Bottletail (Olpogastra *lugubris*) fill this niche (**blue on map**). With its yellow-studded black body and narrow but swollen-based abdomen, the latter is almost identical to Celebothemis delecollei from Sulawesi. The gap between them may seem surprising but fits the distribution of the many smaller stream-dwellers.

While Celebophlebia is also confined to Sulawesi, that genus appears related to the archtails (Nannophlebia) that occur from there to Australia, mostly on New Guinea (blue and purple on map). These tiny black-and-yellow species, moreover, seem close to another 32 limited to New Guinea, the adjacent Moluccas, and the extreme north of Australia, placed in Bironides, Huonia, Lanthanusa, and Microtrigonia. The highlanders (Atoconeura) are limited largely to Africa's tropical uplands and three leaftippers (Malgassophlebia; photo p. 12) and firebellies (Eleuthemis) to the lowlands, while the Furbelly (Archaeophlebia martini) and another two leaftippers inhabit Madagascar.

ABOVE The archtails (Nannophlebia), such as this male Common Archtail (N. risi) from Australia, perch with the slender abdomen held curved.

LEFT | The aggressive male of the Bottletail (Olpogastra lugubris) in Ghana.

RIGHT A male of the Blushing Streamskimmer (Elasmothemis rufa) from Suriname.

In Asia (dark pink on map) only the potbellies (Risiophlebia) from the swamp forests of Sundaland and adjacent Indochina look similar, recalling Nannophlebia especially with their swollen abdomen bases and arched tails, but such an affinity is unproven. Nonetheless, the pantalines' distribution suggests they arose on Gondwana (p. 111) before Africa and Australia split from Antarctica and drifted toward Asia (compare pp. 171 and 199).

Probably, the ability to secure their eggs was instrumental in this subfamily's evolution. Zygonyx attach them to rocks in the splash zone of waterfalls (p. 54) and *Elasmothemis* in stringlike filaments to rootlets. Leaftippers glue the eggs to leaves above the water, while in flight, and firebellies stick clumps to leaves hanging in the current. Males defend such spots vigorously, flashing the bright orange or yellow undersides and white-pruinose backs of their abdomens.

SYLPHS, SETWINGS, AND KIN

BELOW The abdominal club of this male White-tailed Sylph (Macrothemis pseudimitans) in Costa Rica may become covered entirely in white pruinosity.

7ith almost 140 species concentrated in the American tropics, this group seems like the New World's answer to Pantalinae (previous profiles): together, they make up about 35 percent of Libellulidae but over 70 percent of its flowdependent species. Some Dythemis and Brechmorhoga adults are indeed uncannily like *Trithemis* and *Zygonyx*, the names setwing and dropwing referring to the same posture (p. 54).

No other libellulids, on the other hand, move quite

as sylphs (Macrothemis) do. Contrary to what their scientific name suggests, they are rather

> small and slender, with males that skim rapidly over streams, landing close to

the surface, usually flat on leaves,

rocks, or sandbars. Away from water, they rest in an almost vertical position, their double-hooked claws recall those of other hanging (more distantly related) groups, notably Macromia (p. 80), hence their name.

With the similar little sylphs (Gynothemis), the larger and more consistently patrolling clubskimmers

Clubskimmer (*Scapanea frontalis*), they form a group of over 60 tropical stream-dwellers.

(Brechmorhoga), and the Antillean

DIVERSITY

138 species in most standing and (especially) running waters in the New World's warmer reaches

TAXONOMY

Genera Argyrothemis (1 species), Brechmorhoga (16), Dythemis (7), Edonis (1), Elga (2), Fylgia (1), Gynothemis (4), Macrothemis (42), Micrathyria (48), Nephepeltia (6), Pachydiplax (1), Paltothemis (3), Scapanea (1), and Zenithoptera (4), but placement of Nothodiplax (1) uncertain

ABOVE | Checkered Setwing (*Dythemis fugax*) female in Texas, with its wings "set" to speed off.

BELOW Red Rockskimmer (*Paltothemis lineatipes*) male in Arizona.

All feed over clearings and roads, multiple species often swarming together with females, which frequently have orange- or brown-marked wings, standing out.

As in many "stream-dragons" (pp. 74 and 92), the male's slender abdomen can be expanded near its tip, forming a club with a pale mark at its base. While both club and mark (typically located on the abdomen's seventh segment) are less frequent in libellulids than in other dragonflies, they are present in most dythemistines.

With black-checkered bodies infused with red (or dark blue pruinosity) and a tendency to perch vertically on rocks and walls, Middle America's rockskimmers (*Paltothemis*) recall *Bradinopyga* from Africa and Asia (p. 45). Their patrols over small streams and sustained feeding flights confirm they are affiliated to the sylphs, however.

While the subfamily forms the Neotropics' main libellulid radiation in running water, with *Erythrodiplax* their counterpart in more open stagnant sites there (p. 46), another nearly 60 dythemistines dominate well-vegetated or sheltered ponds and swamps. Most are recognized instantly by their glowing (blue-)green eyes, white face, and posture whereby they perch near the water with slender abdomen raised to show the tail-light and club, with wings drooped forward.

The species are mostly classified as Neotropical dashers (*Micrathyria*), but the Blue Dasher (*Pachydiplax longipennis*)—maybe

North America's most numerous dragonfly and minute dryads (*Nephepeltia*) belong here

too. Brazil's Mantled Dasher (*Edonis helena*) and the barely known Canopy

Skimmer (*Nothodiplax dendrophila*) from the Guianas may do too.

Other genera stand more on their own. The setwings (Dythemis) have a mixed habit, preferring streams but often breeding in standing waters too. Accordingly, they look like oversized dashers or, rather, like clubskimmers that perch with the abdomen up and wings down, thus "set" to take off again. Named for Old Norse spirit guides

fylgja, the Pearleye (Fylgia amazonica) is spritely indeed. Black with bright red tail and

ghostly white eyes, the tiny males guard leaf-littered

pools in the Amazon rainforest. The Silverspot (Argyrothemis argentea) lights up shady streams in these tropical lowlands with its white-pruinose thorax as do the fairies (Elga) with their brilliant blue eyes.

Sapphirewings (*Zenithoptera*), which breed in forest-rimmed marsh and ponds, are also called morpho dragonflies. While smaller than *Morpho* butterflies, they too seem entirely dark with the wings shut, startling the observer when the blue-metallic (often white-banded) upperside is revealed! Except for Australia's *Cordulephya* (p. 84), no other dragonflies perch with closed wings when mature, although sapphirewings often droop them (or just the front pair) down as they relax, sitting high up in the trees.

ABOVE | Piebald Sapphirewing (Zenithoptera viola) female in French Guyana. The blue-metallic reflections are startling to us but may actually provide camouflage against a backdrop of glistening water.

MEADOWHAWKS, FLUTTERERS, AND KIN

donates can react quickly to environmental change (p. 6). Few have amazed observers more, however, than the whitefaces (Leucorrhinia) from the cooler parts of Eurasia and North America (dark pink on map). Once the boreal realm warms up in spring, these small dragonflies will soon dash over still water, their bright snouts and wingtip veins standing out against their dark bodies.

In Europe, two species favor peat bogs and acidic fens, two like lakes, often with abundant vegetation such as lilypads, and a fifth has intermediate tastes, such as for lushly grown ditches. As humans transformed the landscape, all five suffered. By the late twentieth century, the lake species had been virtually wiped out in the west, while the bog-dwellers, though largely confined to protected areas, were still quite abundant.

Within the last quarter-century, however, fortunes have turned completely. Numbers of the bog species are collapsing, notably at their southern limit, while the lake ones have become locally common again, even at isolated sites. The fifth species has made gains in many places, but losses elsewhere.

As summers get hotter, bogs are drying out. Climate change, moreover, affects wind patterns, and the persistent easterlies in the spring of 2018

DIVERSITY

108 species found almost worldwide at mostly standing waters that, especially in cooler regions, are often comparatively warm

Genera Austrothemis (1 species), Celithemis (8), Leucorrhinia (14), Nannophyopsis (2), Nesogonia (1), Rhyothemis (23), Sympetrum (56), and Tyriobapta (3)

ABOVE A male Lilypad Whiteface (Leucorrhinia caudalis) in Switzerland, uncharacteristically not perching on floating plants.

brought all five species to western locations where they had never been seen before. Water and landscape management also improved, restoring and creating habitats.

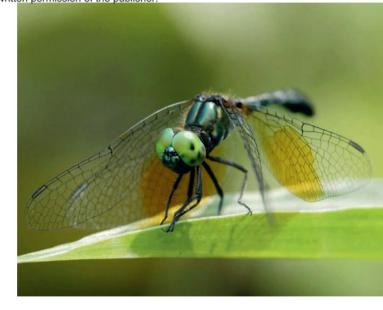
The advance of southern species (p. 46) must have mattered too, as may the interactions between the five relatives themselves and with their predators. The bog species' short-spined nymphs appear more vulnerable to fish than the long-spined lake species, for example.

Leucorrhinia is the most boreal genus of the family's largest temperate radiation, with about 80 species in three genera. While whitefaces merely have black marks at the wing bases, the closely related small pennants (Celithemis) of eastern North America's marshy ponds and lakes have colored faces and often elaborate wing patterns in brown, red, and gold, like painted glass. Resting atop vertical perches, they brandish these wings like pennants (pp. 65 and 67);

LEFT | Pair of Variegated Meadowhawks (Sympetrum corruptum) laying eggs in Montana, USA.

UPPER RIGHT | Emerald Bijou (*Nannophyopsis clara*) male in Hong Kong.

LEFT The spectacular Picturewing Flutterer (*Rhyothemis variegata*) must be among South Asia's most photographed dragonflies.


LOWER RIGHT North America's Halloween Pennant (*Celithemis eponina*) strongly recalls some of its distant tropical relatives, notably Australia's Graphic Flutterer (*Rhyothemis graphiptera*).

Celithemis translates as "stained-libellulid" (p. 38).

With 56 known species—called darters in the Old World and meadowhawks in the New—Sympetrum is the most successful odonate genus in the temperate north: their cold- and drought-resistant eggs let them benefit from the many standing or flowing microhabitats there that warm up quickly but can cool down or dry out just as fast. Females have very varied spout-like nozzles to place them, therefore, one Asian species even being called S. cordulegaster for its spiketail-like apparatus (compare p. 86).

They are good dispersers, some species migrating in great numbers. While most inhabit northeast Asia and North America, the genus has expanded south too, particularly in the Andes (**pink and purple on map p. 61, excepting Australia**). Eurasia's vagile Red-veined Darter (*S. fonscolombii*) extends across the higher and drier parts of Africa and has even established outposts on high islands such as Sri Lanka and Réunion.

Its large relative, *S. dilatatum*, occurred on the mid-Atlantic island of St. Helena, but was last seen in 1963, probably extirpated by introduced frogs. The Hawaiian Streamhawk (*Nesogonia blackburm*) has similarly adapted to island streams. While looking so distinct that it was placed in a separate genus, genetics show it originated from within *Sympetrum*. The evidence, moreover, suggests that this temperate radiation originally came from the Old World tropics.

RIGHT | Male of the Obsidian Flutterer (*Rhyothemis plutonia*) in Thailand. Translating to the inapt "stream-libellulid," the genus name may refer to rhyolite, a multicolored igneous rock.

Flutterers (*Rhyothemis*), formerly given their own subfamily Rhyothemistinae, are found at still waters with plenty of sun and vegetation (blue and purple on map on p. 61). They are the butterflies of the dragonfly world, with greatly expanded wings with extravagant dark markings. These, often interspersed with transparent windows and translucent amber, have strong blue, purple, and copper reflections, inspiring names such as Bronze, Iridescent, Obsidian, and Sapphire Flutterer.

Often abundant, these dragonflies clearly aim to be seen, sitting atop exposed perches, tilting their big wings from side to side in the breeze, like a funambulist on a tightrope, or weirdly angling their dark surface away from the sun. Aggregating to feed, they flutter about leisurely over clearings or shrubbery, often at some height. While seeming lackadaisical and weak, their flight can be very fast, and some species are strong migrants.

Treehuggers (*Tyriobapta*), by contrast, are restricted to Borneo, Sumatra, and the Malay Peninsula. They characteristically perch horizontally on tree trunks or rocks, camouflaged in blotched black and beige, like *Bradinopyga* (p. 45). Males become dark-glossy covered with bright pruinosity and fiercely defend small waterbodies in swamp forest. While two species have (almost) clear

wings, the third has extensively dark hind wings with purple reflections.

The bijous (*Nannophyopsis*) of Southeast Asia have gleaming copper bodies and emerald eyes. Like the distantly related *Nannophya* (p. 49), from which their name derives, they are among the smallest dragons (down to ⁵/₈ in/16 mm long). Perching deep inside weedy borders of ponds and lakes, with their yellow wings pressed forward and strongly clubbed abdomen curved down, they look almost like wasps.

Superficially, Australia's black-spotted red Swamp Flattail (*Austrothemis nigrescens*) is very distinct from its dark-metallic tropical cousins (**also pink on map p. 61**). Indeed, it is more like a temperate *Sympetrum*! The swampy pond and lake habitat, adult's paddle-shaped abdomen, and nymph's strange side-pointed eyes recall the bijous, however.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical

BASKERS AND KIN

ost insects cannot survive high concentrations of dissolved ions, but the closely related Black (Selysiothemis nigra) and Marl Pennants (Macrodiplax balteata), found along the Mediterranean and Caribbean coasts and in deserts nearby, fare well in brackish or alkaline waters. Their mature males' densely melanized skin (under a thin layer of reflective pruinosity) may help absorb intense heat and ultraviolet radiation, protecting the body beneath.

Like other so-called pennants (pp. 62 and 67), they sit atop exposed perches with legs thrust forward and wings raised, twisting in the breeze. The red Coastal Pennant (*M. cora*) breeds in lagoons in the Indo-Pacific, alongside 15 relatives known as baskers (*Urothemis*) and adjutants (Aethriamanta). These blue-pruinose or red species also inhabit warm and open sites, but favor richly vegetated standing freshwaters. The eggs of urothemistines can be bright green or blue and are often deposited on floating plants.

While *Urothemis* species are large and *Aethriamanta* small, this division may not hold up to closer scrutiny. Selysiothemis might best be sunk into Macrodiplax, thus losing a genus honoring the nineteenth-century founder of odonate taxonomy, the Belgian baron Edmond de Selvs Longchamps.

DIVERSITY AND OCCURRENCE

18 species of (mostly open) standing waters in warmer parts of the world, only one reaching the Americas

Closely related genera Macrodiplax (2 species) and Selysiothemis (1), pink on map; Aethriamanta (6) and Urothemis (9), blue

TOP | Coastal Pennant (Macrodiplax cora) male, perching at the end of a stick like a fluttering banner. Sometimes called Macrodiplactinae or even awarded family rank, the subfamily has distinctly wide-spaced venation.

ABOVE | Black Pennant (Selysiothemis nigra) male in Portugal.

AMBERWINGS, BLACKWINGS, AND POSSIBLE KIN

ntirely glossy black with deep red branding on the abdomen and sometimes face and wing bases, male blackwings (Diastatops) appear like glowing coals. They pursue each other in a rapid fluttery flight along the grassy verges of ponds and ditches in South America's tropical lowlands. At rest, the very broad and densely veined wings are often held at weird angles, possibly to prevent overheating, as males are known to abandon the waterside on hot afternoons.

If blackwings are smoldering embers, the tiny amberwings (Perithemis) are like flickering flames. The feisty males' wings and body appear entirely orange, run through with yellow to reddish veins and marked intricately with yellow and brown, like brooches of gold filigree. Female wings are more often clear, banded with amber and brown.

Like other compact libellulids with tinted wings, such as *Palpopleura* (p. 46) or *Zenithoptera* (p. 60), both sexes perch prominently and often high up, tilting one or both pairs of wings up or down, or waving them slowly. With a buzzy flight, they are easily mistaken for wasps or bees. All species favor smaller and often sheltered stagnant waters, like forest pools. Males typically perch in sunspots near the

DIVERSITY

62 species of richly vegetated standing and slow-flowing waters, mostly in the American tropics

TAXONOMY

Genera Brachymesia (3 species), Diastatops (8), Idiataphe (4), Oligoclada (25), Perithemis (12), and Planiplax (5), but inclusion Chalybeothemis (3) and Trithetrum (2) speculative (both blue on map)

TOP LEFT | Red-saddled Blackwing (Diastatops pullata) male in Ecuador. Greek for "divided eyes," the genus name refers to the wide-spaced eyes, unique in Libellulidae.

LOWER LEFT | Mexican Amberwing (Perithemis intensa) male in Arizona, USA.

surface, taking off frequently to drive intruders away or inspect their little kingdom in a low hovering flight.

While both genera have slim legs, those of their apparent relatives of open water, the spiderlegs (*Planiplax*) and tropical (*Brachymesia*) and metallic (*Idiataphe*) pennants, are longer still. Bigger with less color in the wings, but often bright red bodies, all favor larger ponds and lakes. These pennants (compare pp. 62 and 65) rest at the tip of stems, raising their wings like flags. The restless males perch far out over water, readily speeding off for long skimming flights.

The small and slender leafsitters (Oligoclada), by contrast, spread their spindly legs across the top of leaves to oversee swampy backwaters and sluggish streams. Their dark bodies' slight steely sheen and light pruinosity creates a dull-metal look, contrasting with often gleaming green eyes. Found at weedy borders of lakes and rivers in Southeast Asia, greeneyes (Chalybeothemis) are remarkably alike. Equatorial Africa's Fiery (*Trithetrum navasi*) and Sooty Darters (T. congoense) are ecologically and structurally close, the former recalling a red Brachymesia. Further study, however, must confirm whether their longmysterious affinities are truly Neotropical.

TOP RIGHT Common Greeneye (*Chalybeothemis fluviatilis*) male in southern Cambodia.

LOWER RIGHT A male Guiana Spiderleg (*Planiplax phoenicura*) showing off its long limbs in Brazil.

SADDLEBAG GLIDERS AND KIN

BELOW As all species in the genus, this male Carolina Saddlebags (Tramea carolina) in Canada is a strong migrant. Trameare, indeed, is Latin for "passing through."

Plocks of Wandering Gliders (*Pantala flavescens*; p. 52) often contain similar dragonflies with wing markings flanking the body like bags on a saddle. Called gliders in the Old World too, but saddlebags in the New, the genus Tramea is indeed much like Pantala. The hind pair of the long, pointed wings is similarly broad and triangular, with notably smaller stigmas than the front. The big nymphs are spindly and thin-skinned, with bulging eyes and toothy protruding palps to

quickly see and grab their prey, the abdomen

ending in long and slender spines.

Closer scrutiny and genetics show they are not closely related. Both are adapted to seasonal rains,

growing rapidly by feeding ferociously in balmy water, then setting off to find fresh opportunities. Adults are built to fly long distances with minimal effort, tending to glide and hover as they patrol their breeding sites or feed, before resting with a hanging posture.

Tramea species favor more vegetated ponds and also often perch atop exposed lookouts with the abdomen held up or pressed down and wings raised to

DIVERSITY

39 species of mostly open standing waters in warmer parts of the world

Genera Antidythemis (2 species), Atratothemis (1), Camacinia (3), Garrisonia (1), Hydrobasileus (3), Miathyria (2), Pseudotramea (1), Tauriphila (5), and Tramea (21)

TOP RIGHT | The tricolored male of the Blazing Sultan (Camacinia harterti) seems to be on fire: rarely seen, this Asian behemoth probably breeds only between the buttresses of giant rainforest trees.

LOWER RIGHT | Hyacinth Glider (Miathyria marcella) male in Florida, USA.

show their markings. While *Pantala* females usually oviposit alone, *Tramea* males release and recapture their mate each time she swoops down to hit the water, unique behavior facilitated by their very long and slender claspers.

Although not all affinities are confirmed, aside from Tramea (pink and **purple on map**), another 18 conspicuous patrollers of standing waters, which readily wander and mostly rest hanging, are included in the subfamily too (**purple** only). Besides half of Tramea species, eight gliders in the closely related Garrisonia, Miathyria, and Tauriphila are Neotropical. They often mix with saddlebags in foraging flights, but are smaller and more colorful and favor floating vegetation (water lettuce and hyacinth, especially), their nymphs living among the roots. Amazonia's poorly known velvet gliders (Antidythemis) have unusually large stigmas.

The remaining diversity ranges from tropical Asia to the Pacific, although two Asian *Tramea* are common in Africa too. *Hydrobasileus* gliders and sultans (*Camacinia*) sail majestically over lush ponds and lakes on colored wings.

Largely carmine and ebony, the massive Red (*C. gigantea*; photo p. 34) and Black (*C. othello*) Sultans appear like hefty hyperactive *Neurothemis* (p. 45). Hardly known, the Swarthy Sultan (*Atratothemis reelsi*) from Indochina and adjacent China could be allied, while *Pseudotramea prateri*, reported sparsely along the Himalaya, may just be a *Tramea* with smaller wing spots.

DUSKDARTERS AND KIN

Tisit any urban pond in tropical Africa or Asia by nightfall and you may see numerous dragonflies skimming fast and low over the foul water. Initially red with dusky-stained wings, eventually only dark dashes with whirring white flashes are visible in the gloom. Some without bright flashes tap the floating debris with their tail-ends, veer up, swing around, and tap down again, twisting to-and-fro as in a trance.

Named for the rhythmic motion with which its eggs are laid, the Twister (Tholymis tillarga) is among the tropics' most tolerant (even inhabiting brackish water) and widespread odonates; the Evening Skimmer (*T. citrina*) is its American counterpart. Daylight reveals a brown smear in each hind wing, paired in Twister males by a patch of gleaming pruinosity that looks ever brighter as darkness falls.

Flying continuously at dusk and (if warm enough) dawn, and hanging in vegetation all day, these are the quintessential crepuscular dragonflies, with big eyes, plain bodies, and broad

DIVERSITY

19 species of standing and slow-flowing waters in warmer parts of the world, but with only one reaching the Americas

Genera Brachythemis (6 species), Deielia (1), Parazyxomma (1), Pseudothemis (2), Tholymis (2), and Zyxomma (6), but placement of Zygonychidium (1) tentative

TOP | Following humans and other animals to snatch up disturbed insects, this Southern Banded Groundling (Brachythemis leucosticta) is among Africa's most familiar dragonflies.

LOWER | Male of the Twister (Tholymis tillarga) resting at daytime, showing the wing markings that stand out at dusk

INDEX TO FAMILIES AND GENERA

A	Anisopleura 204, 206	Austrogomphus 108–9	Castoraeschna 118
Acanthaeschna 122–3	Anomalophlebia 104	Austrogynacantha 116–17	Celebargiolestes 196, 198
Acanthagrion 142–3	Anomisma 33, 156	Austrolestes 242	Celebophlebia 56–7
Acanthallagma 142–3	Anormogomphus 94–5	Austropetalia 128	Celebothemis 56–7
Aceratobasis 158, 161	Anotogaster 86–7, 91	Austropetaliidae 112, 128–9,	Celithemis 61–3
Aciagrion 141	Antiagrion 162, 164	244	Cephalaeschna 124–5
Acisoma 25, 48–9	Antidythemis 68–9	Austrophlebia 122–3	Ceratogomphus 4, 108–9
Acrogomphus 100–1	Antipodochlora 78–9	Austrophya 84–5	Ceriagrion 146, 162–3
Aeolagrion 162–3	Antipodogomphus 108	Austrosticta 178–9	Ceylonosticta 234
Aeschnophlebia 121, 124–5	Antipodophlebia 122	Austrosynthemis 82	Chalcolestes 240
Aeschnosoma 78–9	Apanisagrion 144	Austrothemis 61, 64	Chalcopteryx 218–20
Aeshna 26, 112-13, 115, 118,	Aphylla 104	Azuragrion 31, 132, 141	Chalcostephia 73
121, 127	Apocordulia 84–5		Chalcothore 218, 220
Aeshnidae 20, 75, 112–27,	Arabicnemis 172–3	В	Chalybeothemis 66-7
128, 238, 244, 250	Arabineura 170–1		Chlorocypha 31, 189, 190-1
Aethiothemis 40, 42	Archaeogomphus 106–7	Basiaeschna 115	Chlorocyphidae 180,
Aethriamanta 65	Archaeophlebia 56–7	Bayadera 204, 206	188–93
Africallagma 141	Archaeophya 82–3	Bironides 56–7	Chlorogomphidae 90–1, 129
Africocypha 189	Archaeopodagrion 226–7	Boninthemis 40	Chlorogomphus 90
Afroaeschna 115	Archaeosynthemis 82	Bornargiolestes 214–15	Chlorolestes 217, 244, 246–7
Agriocnemis 145–7	Archboldargia 174–5	Borneogomphus 100–1	Chloropetalia 90
Agriogomphus 106	Archiargiolestes 196–7	Boyeria 124–5	Chorismagrion 244, 246
Agriomorpha 214–15	Archibasis 150	Brachydiplax 73	Choristhemis 82
Agrionoptera 40–1	Archilestes 240–1	Brachygonia 73	Chromagrion 162, 164
Agyrtacantha 116–17	Archineura 182–3	Brachymesia 66–7	Chromatallagma 134
Akrothemis 40, 43	Archipetalia 128–9	Brachythemis 70–1	Cnemisticta 178–9
Allocnemis 155, 167, 171,	Argentagrion 142–3	Brachytron 120–1	Coeliccia 171, 176
172–3	Argia 150, 152–3, 173, 175,	Bradinopyga 44–5, 59, 64	Coenagriocnemis 141
Allolestes 165, 197, 199	196	Brasiliogomphus 106	Coenagrion 132-3, 148-9
Allopetalia 124–5	Argiocnemis 146–7	Brechmorhoga 58, 74	Coenagrionidae 20, 132–65,
Allopodagrion 194–5	Argiolestes 196, 198	Bromeliagrion 157, 158, 161	177, 196, 238, 244
Amanipodagrion 217	Argiolestidae 196–9, 216,	Bryoplathanon 187	<i>Copera</i> 168–9
Amanipodagrionidae 217,	231	Burmagomphus 94–5	Cora 218–21
229	Argyrothemis 58, 60	Burmargiolestes 214–15	Cordulegaster 33, 74, 86-7
Amazoneura 154	Arigomphus 94		Cordulegastridae 51, 74,
Amorphostigma 135–6	Aristocypha 190–1	C	86-7, 89, 90, 129
Amphiaeschna 118–19	Armagomphus 21, 105	Cacoides 102–3	Cordulephya 60, 84-5
Amphiagrion 142, 144	Arrhenocnemis 174	Caconeura 170–1	Cordulephyidae 85
Amphiallagma 141	Asahinagomphus 94–5	Caledargiolestes 196–7	Cordulia 74, 76–7
Amphicnemis 158, 160-1	Asiagomphus 94–5	Caledopteryx 196–7	Corduliidae 33, 74–9, 84–5
Amphigomphus 100–1	Asthenocnemis 176	Calesynthemis 82	Corduliochlora 76
Amphipterygidae 194, 209	Atoconeura 56–7	Caliaeschna 124–5	Cordulisantosia 78–9
Amphipteryx 209, 213–14,	Atratothemis 68–9	Caliagrion 148–9	Cornigomphus 98–9
229	Atrocalopteryx 181	Calicnemia 176	Coryphaeschna 112, 118
Amphithemis 40, 42	Austroaeschna 122–3	Caliphaea 184–5	Coryphagrion 158, 160
Anaciaeschna 118–19	Austroagrion 148–9	Calocypha 190–1	Cratilla 40–1
Anatya 44, 47	Austroallagma 141	Calophlebia 72	Crenigomphus 98–9
Anax 18, 75, 114, 117–9	Austroargiolestes 196–7	Calopterygidae 180–7, 195	Crocothemis 44
Andaeschna 115	Austrocnemis 138–9	Calopteryx 9, 25, 181	Cryptophaea 185, 204, 206
Andinagrion 142–3	Austrocoenagrion 148–9	Calvertagrion 144–5	Cyanallagma 142–3
Angelagrion 162–3	Austrocordulia 84–5	Camacinia 34, 68–9	Cyanocnemis 167, 174
Anisagrion 144	Austrocorduliidae 85	Cannaphila 40–1	Cyanogomphus 106
Anisogomphus 94–5	Austroepigomphus 108	Carajathemis 48	Cyanothemis 48, 50

н Cyclogomphus 94-5 Epallage 9, 204-6 Inpabasis 158, 161 Epiaeschna 120-1 Hadrothemis 40-1 Cyclophaea 204-5 Iridictyon 186 Hagenius 96-7 Cyrano 190-1 Epigomphus 106-7 Ischnura 135-7, 138, 144 Epiophlebia 130-1 Heliaeschna 116-17 Isoaeschna 115 Epiophlebiidae 129, 130-1 Heliocharis 224 Isomma 108 D Isosticta 178–9 Heliocharitidae 224 Epipleoneura 154 Dactylobasis 158, 161 Heliocypha 190-1 Isostictidae 155, 178-9 Epipotoneura 154 Dasythemis 40-1 Episynlestes 244, 246 Heliogomphus 108-9 Davidioides 108-9 Epitheca 76-7 Helocordulia 76-7 Davidius 96-7, 109 Epithemis 40, 42-3 Hemicordulia 78 Deielia 70-1 Junix 144, 154-5 Hemigomphus 105 Epophthalmia 80-1 Dendroaeschna 122-3 Hemiphlebia 249 Erpetogomphus 100 Denticulobasis 25, 144-5 Hemiphlebiidae 238, 249 Erythemis 48 Desmogomphus 104 Erythrodiplax 44, 46-7, 60 Hemistigma 44, 47 Labidiosticta 178-9 Devadatta 209, 210 Erythromma 150-1 Hesperagrion 144-5 Labrogomphus 94-5 Devadattidae 210-11, 214 Ladona 38-9 Esme 170 Hesperocordulia 84-5 Diaphlebia 104 Euphaea 204-5 Hetaerina 187 Lamelligomphus 100-1 Diastatomma 102-3 Euphaeidae 180, 204-8 Heteragrion 222-3 Lamproneura 154 Diastatops 66 Eurysticta 178–9 Heteragrionidae 222-3, 226 Lanthanusa 56-7 Diceratobasis 157-8, 161 Lanthus 96-7 Eusynthemis 82 Heterocypha 190-1 Dicteriadidae 195, 224-5 Euthore 218-20 Heteronaias 78-9 Lathrecista 40-1 Dicterias 224 Euthygomphus 94-5 Heterophaea 204-5 Lathrocordulia 84-5 Didymops 80 Heteropodagrion 222-3 Lauromacromia 84-5 Dimeragrion 222-3 Hivaagrion 135-6 Leptagrion 157, 158-9, 161 Diphlebia 207, 209 Homeoura 142-3 Leptobasis 144-5 Diplacina 40, 42-3 Fluminagrion 142-3 Huonia 56-7 Leptocnemis 165 Diplacodes 44, 46-7 Forcepsioneura 154 Huosoma 162-3 Leptogomphus 108-9 Disparocypha 190-1 Franciscagrion 142-3 Hydrobasileus 68-9 Lestes 10, 21, 109, 196, Disparoneura 170-1 Franciscobasis 142-3 Hylaeargia 174 238-9, 240, 242, 243 Dolonagrion 144-5 Fukienogomphus 96-7 Hylaeonympha 158, 161 Lestidae 20, 179, 196, Dorocordulia 76-7 Fylgia 58, 60 Hylaeothemis 40, 42 238-43, 244 Drebanoneura 154 Hylogomphus 94-5 Lestinogomphus 108-9 Drepanosticta 27, 234-5 G Hypolestes 225 Lestoidea 5, 155, 207 Dromaeschna 122-3 Garrisonia 68-9 Hypolestidae 225 Lestoideidae 155, 207, 208 Dromogomphus 94-5 Gastrogomphus 94-5 Hypopetalia 128 Leucobasis 144-5 Dubitogomphus 96-7 Gombhaeschna 14, 126-7 Hypothemis 40, 43 Leucorrhinia 9, 20, 61, 62 Dysphaea 204-5 Gomphidae 20, 42, 74, Libellago 188, 191, 192-3 Dythemis 58-60 92-109, 127 Libellula 22, 27, 37, 38-9, 41 Gomphidia 102-3 Libellulidae 20, 34-73, 74, Ictinogomphus 81, 102-3 E Gomphidictinus 102-3 75, 112, 133, 134, 238, Idiataphe 66-7 Ebegomphus 106 Gomphoides 104 244 Idiocnemis 174 Ecchlorolestes 245-7 Gomphomacromia 82-3 Libellulosoma 78-9 Idiogomphoides 104 Echo 182-3 Gomphurus 94-5 Libyogomphus 98-9 Idioneura 154 Edonis 58, 60 Gomphus 74, 94-5 Lieftinckia 174-5 Idionyx 84-5 Elasmothemis 56-7 Griseargiolestes 196-7 Limnetron 124-5 Idomacromia 84-5 Elattoneura 170-1 Guadalca 78-9 Linaeschna 126-7 Igneocnemis 167, 174-5 Eleuthemis 56-7 Gynacantha 71, 116-17 Lindenia 102 Indaeschna 118-19 Elga 58, 60 Gynacanthaeschna 124-5 Lithosticta 178-9 Indocnemis 176 Enacantha 134 Gynothemis 58 Lochmaeocnemis 174 Indocypha 190-1 Enallagma 18, 134-5, 136, Luzonargiolestes 196, 198 Indolestes 238, 242 141, 149, 166 Luzonobasis 158, 161 Indosticta 234-5 Eoargiolestes 196-7 Lyriothemis 40-2 Indothemis 44, 47

Eogomphus 105

M
Marramonia 167 174
Macrocnemis 167, 174
Macrodiplax 65
Macrogomphus 94–5, 97
Macromia 9, 58, 80-1
Macromidia 84–5
Macromiidae 80–1
Macrothemis 58, 91
Malgassophlebia 12, 56-7
Mastigogomphus 94
Matrona 180–1
Matronoides 181
Matticnemis 168
Mattigomphus 94–5
Mecistogaster 156
Megalagrion 29, 140
Megalestes 244–5
Megalogomphus 100–1
Megaloprepus 156–7
Megapodagrion 194-5, 217
Megapodagrionidae 194–5,
196, 197, 200, 213, 217,
226, 230, 232
Melanesobasis 158, 160
Melanocacus 102–3
Melanocypha 190–1
Melanoneura 170
Melligomphus 100-1
Merogomphus 94–5
Mesagrion 222–3
Mesagrionidae 222–3
Mesamphiagrion 142–3
1 0
Mesocnemis 153, 172–3
Mesoleptobasis 144-5, 155,
161
Mesopodagrion 216, 232
Mesopodagrionidae 216
Metacnemis 169, 172-3
Metagrion 196, 198
Metaleptobasis 145, 158, 161
Metaphya 78–9
Miathyria 68–9
Micrathyria 58, 60
Microgomphus 108–9
Micromacromia 40, 42–3
Micromidia 84–5
Microstigma 156
Microtrigonia 56–7
Minagrion 162–4
Miniargiolestes 196–7
Miocora 218–221

Mnais 182, 185 Mnesarete 187 Mortonagrion 146

Ν

Nannodiplax 44, 47 Nannophlebia 56-7 Nannophya 48-50, 64 Nannophyopsis 61-2, 64 Nannothemis 48-9 Nasiaeschna 120-1 Navicordulia 78–9 Neallogaster 86-7 Negragrion 142-3 Nehalennia 132, 162, 164 Neocaledosynthemis 82 Neocordulia 84-5 Neodythemis 40, 42 Neoerythromma 150-1 Neogomphus 105 Neoneura 154-5 Neopetalia 88-9 Neopetaliidae 88-9, 128 Neophya 84-5 Neosticta 178-9 Nephepeltia 58, 60 Nepogomphoides 98-9 Nepogomphus 100-1 Nesciothemis 39, 40, 42 Nesobasis 138 Nesocordulia 84-5 Nesogonia 61, 63 Nesolestes 197-9, 231 Nesoxenia 40-1 Neuraeschna 116-17 Neurobasis 33, 181 Neurocordulia 76-7 Neurogomphus 94 Neurolestes 197-8 Neurothemis 34, 44-5, 69 Nihonogomphus 100-1 Nikoulabasis 138 Noguchiphaea 184-5 Nososticta 170-1 Nothodiplax 58, 60 Notiothemis 72 Notoaeschna 122 Notogomphus 94-5 Notolibellula 40-1 Nubiolestes 245-7 Nychogomphus 100-1

0

Octogombhus 96-7 Odontogomphus 105 Oligoaeschna 91, 126-7 Oligoclada 66-7 Olpogastra 56-7 Onychargia 177 Onychogomphus 23, 98-9, 100 - 1Onychothemis 56 Ophiogomphus 100-1 Oplonaeschna 115 Orchithemis 29, 39, 40, 42 Oreaeschna 115 Oreiallagma 142-3 Oreocnemis 158, 160 Orientogomphus 100-1 Orionothemis 56 Oristicta 178-9 Ormenophlebia 187 Orolestes 21, 240-1 Orthemis 36-7, 39, 41 Orthetrum 36-7, 38, 201 Oxyagrion 142-3 Oxyallagma 142-3 Oxygastra 84-5 Oxygastridae 85 Oxystigma 222-3 Oxythemis 40, 42-3

P

Pachycypha 192-3 Pachydiplax 58, 60 Pacificagrion 135-6 Pacificothemis 40, 43 Palaemnema 236 Palaeosynthemis 82 Palaeothemis 40, 43 Palaiargia 174-5 Palpopleura 44-7, 66 Paltothemis 58-9 Pandanobasis 158, 161 Pantala 25, 31, 52-3, 54, 56, 68 - 9Papuagrion 157, 158, 160 Papuargia 174 Paracercion 150 Paracnemis 177 Paracordulia 78-9 Paragomphus 98-9, 104 Paramecocnemis 174-5 Paraphlebia 212-13

Parasynthemis 82 Parazyxomma 70-1 Pentaphlebia 209, 228-9 Pentaphlebiidae 229 Pentathemis 78-9 Periaeschna 124-5 Pericnemis 157, 158, 161 Perigomphus 104 Perilestes 248 Perilestidae 238, 248 Perissogomphus 100-1 Perissolestes 248 Peristicta 154 Perithemis 66 Peruviogomphus 104 Petaliaeschna 124-5 Petalura 110, 120 Petaluridae 110-11 Phaenandrogomphus 100-1 Phanogomphus 94-5 Phaon 186 Phasmoneura 154 Phenes 110 Philoganga 202-3, 209 Philogangidae 200, 202-3 Philogenia 220, 226, 226-7 Philogeniidae 226-7 Philosina 200-1 Philosinidae 200-1, 203 Phoenicagrion 162-3 Phyllocycla 104 Phyllogomphoides 104 Phyllogomphus 93, 108-9 Phyllomacromia 80-1 Phylloneura 170 Phyllopetalia 128 Phyllothemis 40, 42 Phylolestes 245, 247 Pinheyagrion 141 Pinheyschna 115 Plagulibasis 158, 160 Planiplax 66-7 Plathemis 38-9 Plattycantha 116-17 Platycnemididae 155, 165, 166-77, 232, 244 Platycnemis 166-8 Platycypha 189 Platygomphus 94, 95 Platylestes 240, 241 Platysticta 233-6 Platystictidae 155, 212,

233 - 7

Misagria 40-1

Platystigma 156 Podolestes 197-9 Podopteryx 196, 198 Polycanthagyna 117, 118-19 Polythore 218-21 Polythoridae 180, 218-21 Pornothemis 39, 40, 42 Porpax 48-9 Potamarcha 40-1 Praeviogomphus 105 Priscagrion 25, 232 Priscagrionidae 232 Procordulia 78 Prodasineura 170-1 Progomphus 104 Proischnura 141 Proneura 144, 154-5 Proplatycnemis 166, 168-9 Protallagma 142-3 Protolestes 230-1 Protolestidae 216, 230-1 Protoneura 154-5, 170 Protoneuridae 154-5, 170 Protorthemis 40-1 Protosticta 234-5 Psaironeura 145, 154 Pseudagrion 13, 18, 27, 31, 147, 148-9, 150-1, 152, 170 Pseudagrionoptera 40, 43 Pseudocopera 168 Pseudocordulia 82-3 Pseudocorduliidae 82 Pseudoleon 44, 47 Pseudolestes 208, 219 Pseudolestidae 208, 209 Pseudostigma 156 Pseudostigmatidae 156-7 Pseudothemis 70-1 Pseudotramea 68-9 Psolodesmus 182-3 Pyrrhargiolestes 196, 198 Pyrrhosoma 162-3

R

Racenaeschna 124–5 Raphismia 73 Remartinia 118 Rhadinosticta 178–9 Rhinagrion 200–1, 203 Rhinocypha 27, 190–1 Rhinoneura 190–1 Rhionaeschna 114, 115
Rhipidolestes 214–15
Rhipidolestidae 214–15, 223, 237
Rhodopygia 48
Rhodothemis 48
Rhyacocnemis 174
Rhyothemis 31, 61–2, 64
Rialla 75, 78–9
Rimanella 209, 228, 229
Rimanellidae 228
Risiocnemis 174–5
Risiophlebia 56–7
Roppaneura 154

S Salomocnemis 174-5 Sangabasis 158, 161 Sapho 186 Sarasaeschna 126-7 Scalmogomphus 100-1 Scapanea 58 Schistolobos 162-3 Schizocordulia 78-9 Schmidtiphaea 185, 204, 206 Sciotropis 222-3 Sclerocypha 192 Selvsioneura 178-9 Selysiothemis 65 Shaogomphus 94-5 Sieboldius 96-7 Sinhalestes 240-1 Sinictinogomphus 102 Sinocnemis 232 Sinogomphus 96-7 Sinolestes 244-5 Sinosticta 237 Solomonargiolestes 197-8 Somatochlora 75, 76-7 Spesbona 168-9 Spinaeschna 122 Staurophlebia 116-17, 118 Stenagrion 148-9 Stenocnemis 172-3 Stenocora 218, 220 Stenocypha 14, 189 Stenogomphurus 94-5 Stylogomphus 96-7 Stylurus 9, 16, 92, 94-5 Sulcosticta 234-5 Sundacypha 190-1 Sundaeschna 126-7

Sympecma 242, 243 Sympetrum 61–4 Syncordulia 84–5 Synlestes 244, 246 Synlestidae 238, 244–7, 248 Synthemiopsis 82 Synthemis 82 Synthemistidae 82–3, 85, 244

T

Tachopteryx 110-11 Tanymecosticta 178-9 Tanybtervx 110-11 Tapeinothemis 40, 43 Tatocnemididae 230 Tatocnemis 230-1 Tauriphila 68-9 Teinobasis 158, 160 Teinopodagrion 194-5 Telagrion 144-5 Telebasis 162-3 Telephlebia 122 Telosticta 234-5 Tepuibasis 158, 161 Tetracanthagyna 117, 120, 123 Tetrathemis 72 Thalassothemis 54-5 Thaumatagrion 138-9 Thaumatoneura 212-3, 215 Thaumatoneuridae 212-13. 214 Thecagaster 86-7 Thermochoria 44, 47 Thermorthemis 40-1 Tholymis 70 Tibiagomphus 106 Tigriagrion 142-3 Titanosticta 178-9 Tonyosynthemis 82 Torrenticnemis 174 Tragogomphus 98, 99 Tramea 68-9 Triacanthagyna 116-17 Trigomphus 96-7

Trineuragrion 197 Trithemis 13, 54–5, 56, 58

Trithetrum 66–7 Tuberculobasis 144–5

Tukanobasis 144-5

Tyriobapta 61, 64

U

Umma 186 Uracis 51 Uropetala 110–11 Urothemis 65

V

Vanuatubasis 138–9 Vestalaria 184–5 Vestalis 184–5 Viridithemis 48

W

Wahnesia 197–8 Watanabeopetalia 90 Watuwila 192 Williamsonia 76–7

X

Xanthagrion 148–9 Xanthocnemis 148–9 Xiphiagrion 141

Y

Ypirangathemis 51 Yunnanosticta 237

Z

Zenithoptera 58, 60, 66 Zephyrogomphus 108 Zoniagrion 134 Zonophora 104 Zoraena 86–7 Zosteraeschna 115 Zygonoides 34, 56–7 Zygonychidium 70–1 Zygonyx 9, 54, 56–7, 58, 74, 79, 91, 122 Zyxomma 70–1