CONTENTS

Preface xv

1 Ancient Greece and Rome 1

The Facts 1
The Birth of Biology 1
Overview of Ancient Greek and Roman Biological Sciences 2
Hippocratic Medicine 3
Aristotle 4
Galen's Physiology 8
Pliny the Elder's Natural History 9
The Atomists 10

Historical Overview 11
The Role of Experimentation in Greek Science and Particularly in Life Sciences 11
Anaximander and the Atomists: The Futile Search for Pioneers 13

Contemporary Relevance 17
Mechanistic and Molecular Explanations 17
The Role of Analogy 18
CONTENTS

1. The Beginnings of the Chain of Being
 - Pliny’s Legacy 20
 - Ever-Present Finalism 20

2. The Middle Ages and Arab-Muslim Science
 - The Facts 23
 - The Arab-Muslim World 23
 - The Middle Ages in the West 26
 - Historical Overview 28
 - Contemporary Relevance 31
 - Scientific Progress Is Not a Given 31
 - Less Obvious Contributions to the Development of Science 32

3. The Renaissance (Sixteenth Century)
 - The Facts 34
 - Progress in Anatomy and Depictions of the Human Body 34
 - Books on Natural History 38
 - Alchemy in Medicine: From Paracelsus to Van Helmont 41
 - Historical Overview 45
 - A Fascination with Dissections 45
 - The Role of Alchemy 46
 - Changes in the Social Structure of Science 47
 - Contemporary Relevance 48
 - Finding the Right Distance from the Past 48
4 The Age of Classicism (Seventeenth Century) 52
 The Facts 52
 The Discovery of Circulation 52
 The Development of Quantitative Experiments 57
 The Invention of the Microscope and Its Consequences 63

Historical Overview 67
 The Not-So-Obvious Case of Circulation 67
 The Mechanistic Model of Life and Its Limitations 67
 The Incomprehensible Theory of Preformationism 69
 Invisible and Indirect Changes 70

Contemporary Relevance 72
 The Machines in Front of Us 72
 Vestiges of Preformation Theory 72
 Accepting the Plurality of Approaches in Biology 73
 Translational Medicine Is Not New 73

5 The Enlightenment (Eighteenth Century) 75
 The Facts 75
 Vitalism 75
 Classification: Linnaeus versus Buffon 78
Reproductive Physiology 86
The Role of Breathing Becomes Clear 94

Historical Overview
Variations on Vitalism 97
Classification versus Evolution 99
Classifying Humans 99
Priestley and Lavoisier: Only the First Step 100

Contemporary Relevance
A Natural Classification? 101
Comparing Plants and Animals 102
Maupertuis, the Father of Self-Organization? 103

6 The Nineteenth Century (Part I): Embryology, Cell Biology, Microbiology, and Physiology 105

The Facts
Embryology Becomes an Established Discipline 106
The Emergence of Cell Theory 109
The Rise of Germ Theory 120
Physiology’s Golden Age 131

Historical Overview
The Roots of Cell Theory 143
Scholars Trapped by Their Own Philosophical Ideas? 145
The Tension between Chemical Explanations and Structural Models 150
Was Embryology Holding Out for Evolution? 151
1859: A Remarkable Year 151
Contemporary Relevance

152

The Disappearance of Traditional Disciplines in Biology 153
The Endogenous or Exogenous Origins of Diseases 153
The Debate on Cerebral Localization 155

7 The Nineteenth Century (Part II): The Theory of Evolution, the Theory of Heredity, and Ecology

157

The Facts

157

Lamarck: An Early Version of the Theory of Evolution 157
The Contribution of Georges Cuvier 163
The Second Wave of Transformism: Darwin 169
The Theory of Heredity 177
The Reception of Darwin’s Theory and the Eclipse of Darwinism 188
From Biogeography to Ecology 199

Historical Overview

203

A Moving History 203
The Birth of a Science of Heredity 204
Biology: A Comparative Science, according to Auguste Comte 205
Darwinism and Ecology: A Complex Relationship 206
Biogeography 208
The Epistemological Originality of the Darwinian Model of Natural Selection 209
Science and Religion 210
Darwin and the Human Being 212

Contemporary Relevance 214
Epigenetics and the Return of Lamarckism 214
Compensation and Life Histories 216
The End of Orthogenesis? 217
Did Geoffroy Saint-Hilaire Win the Argument with Cuvier? 218
The Mathematical Laws of Morphogenesis:
The First Steps of Phyllotaxy 220
Another Mendel? 221

8 The Twentieth Century (Part I): The Diversity of Functional Biology and the Birth of Molecular Biology 223

The Facts 223
Biochemistry 224
Endocrinology and Neurophysiology 231
Immunology, Microbiology, Virology, and Chemotherapy 240
Developmental Biology and Cellular Biology 250
The Rediscovery of Mendel’s Laws, and the Rise of Genetics 256
The Rise of Molecular Biology 264

Historical Overview 281
The Complex Dance of Disciplines 281
The Identity of Objects Studied and the Tools for Studying Them 284
Multiple Explanations—Contentious Explanations? 286
Embryonic Induction, Hormones, and Genes: Another Model for the Action of Genes 288

Contemporary Relevance

The Recurrent Enigma of Phenomena of Regeneration 289
From Data Science to Networks 291
Metchnikoff, the Inventor of Exaptation? 292
The Explanation of Diseases: A Plus or a Minus? 293
What Are the Colloids of Today? 294
The End of the Dominant Position of Genetics 294
The Asilomar Conference: A Model? 296

9 The Twentieth Century (Part II): The Theory of Evolution, Ecology, Ethology 297

The Facts

Genetics and the Theory of Evolution (1900–1920) 297
The Rise of Population Genetics (1918–1932) 299
Modern Evolutionary Synthesis (1937–1950) 303
Ecology 307
Ethology 313

Historical Overview

The Influence of Marxism 319
The Rise of Holism and Emergentism 321
The Energetics View of Life 322
The Question of Life 324
The Process of “Synthesis” in Science 325

Contemporary Relevance 326
From Energy to Information 326
From the Biosphere to Global Warming 326
The Responsibility of Biologists 327

10 Twentieth–Twenty-First Centuries:
After the Syntheses 329

The Facts 329
The Rise of Structural Biology 331
The Encounter between Molecular Biology and the Modern Synthesis 341
Genome Sequencing 352
The New Frontier: The Neurosciences 353
A New View of the Living World 358

Historical Overview 364
The Dogma and Its Overturning:
The Example of Prions 364
Molecular Noise 365
Does Systems Biology Have a Place? 366
Beyond Specificity? 368
Time and Life 370
Mastering the Evolutionary Future 371
The Mystery of Life 372
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Ever-Ambiguous Place of the Human Being</td>
<td>373</td>
</tr>
<tr>
<td>Contemporary Relevance</td>
<td>373</td>
</tr>
<tr>
<td>In Conclusion</td>
<td>376</td>
</tr>
<tr>
<td>References</td>
<td>383</td>
</tr>
<tr>
<td>Index of Names</td>
<td>403</td>
</tr>
<tr>
<td>Thematic Index</td>
<td>413</td>
</tr>
</tbody>
</table>
Ancient Greece and Rome

The Facts

The Birth of Biology

It is impossible to pinpoint the precise moment when the first notions of our modern understanding of biology emerged. Our interest in the natural world is not a new phenomenon—a preoccupation with reproduction, birth, and the nature of disease, as well as descriptions of animal and plant species, can be traced back to ancient times. With the establishment of settled communities and the changes brought about by the Agricultural Revolution, an early biological understanding of the world began to develop. Plants were increasingly employed to treat disease, and with their greater use, efforts to describe them progressed, first in China and India and later in the Middle East. The earliest explanations of the formation of the world and of living things originated in the ancient region of Sumer in Asia, and these were taken up by neighboring peoples and reinterpreted in various ways. The practice of divination and, to a greater extent, the embalming of corpses in Egypt helped advance people’s understanding of human and animal anatomy.
Overview of Ancient Greek and Roman Biological Sciences

We won’t speculate here as to what gave rise to the development of what we call “science” or to attempts to provide rational accounts of natural phenomena in ancient Greece.

In our look at the history of biology in ancient times, the first period, known as the pre-Socratic period, is of little interest to us. Though Pythagoras (580–495 BCE) and Empedocles (490–435 BCE) attempted to provide overarching explanations of the world, their contributions to biology were limited. The influence of outlying Greek colonies that were in contact with Middle Eastern and Indian civilizations was important in these early stages of the development a scientific worldview. In the field of life sciences, two names are worth mentioning: Anaximander (whom we will touch on later) and Alcmaeon of Croton, who, around 500 BCE, carried out dissections and vivisections, described optical nerves and the Eustachian tube, and made the connection between the formation of thoughts and the brain. Conceptual frameworks were developed, which, while not providing a great deal of substance to add to our biological knowledge, would be drawn upon by later authors and shape the way they thought about the world. These included the nature and number of elements and essential qualities, and the notion that souls animated living beings.

Aristotle (384–322 BCE) is without a doubt the father of biology. Indeed, it was not until the second century CE that Galen, a Greek physician working in Rome, would complete and in some cases correct Aristotle’s physiological works and the medical works of Hippocrates and his followers, and Aristotle’s natural history works would be taken up and distorted by Pliny the Elder in the first century CE. Nonetheless, it is
thanks to the latter that these works were passed on and have survived to this day.

Atomists developed their ideas in a parallel fashion, beginning with Leucippus and Democritus in the fifth century BCE, followed by Epicurus in the third century BCE. In the first century BCE, Lucretius would outline the principles of atomism in his poem *De rerum natura* (On the Nature of Things), which is the only account of atomism from this period that has survived.¹

Hippocratic Medicine

Hippocrates (460–370 BCE) and his followers borrowed the concept of the four elements—earth, air, fire, and water—and the four qualities, in opposing pairs—wetness and dryness, and hot and cold.² He extended these divisions to the humors, and differentiated blood (produced by the liver), phlegm (produced by the lungs), yellow bile (produced by the gallbladder), and black bile (produced by the spleen). The predominance of one or another of these humors would lead to four different temperaments, and an imbalance would lead to disease.

A unique feature of the Hippocratic medical school of Kos is that it considered nature to be self-medicating, and thus capable of correcting imbalances as they arose. A physician’s role was therefore to promote this power in the patient.

In the field of biology, it was the Hippocratic model of embryonic development, which would later be labelled as “epigenetic,” that would have the most lasting impact. In this model, the sperm and ova play equal roles in reproduction. These two

¹ Lucretius, 1995.
² Hippocrates, 2012.
kinds of “semen” are formed in various parts of the parents’ bodies, and substances produced from similar parts later recognize each other and combine over the course of the development of the embryo, in a process comparable to fermentation. This model allowed for traits acquired over one’s lifetime to be transmitted to the next generation.

Aristotle

In *Timaeus*, Plato (428–348 BCE) added little new to the work of his predecessors, associating life with the presence of multiple souls and framing illness as resulting from imbalances. He considered the entire universe to be a living being.

Aristotle’s natural history work has always been considered as secondary and subordinate to his work as a philosopher and physicist. More recently, however, historians have reconsidered this view and some have suggested that Aristotle’s natural history and physiological work in fact inspired his work as a physicist and philosopher. Aristotle’s work in physics and philosophy can be best illustrated in the living world, and without this context it is often difficult to understand.

Aristotle’s body of work on natural history is quite substantial. Not only did he put forward one of the first classifications of animals that divided them into species and genera, but his descriptions were also generally very accurate. This precision was drawn from his own observations and experience, but also from conversations with fishers and travelers. This doesn’t prevent us from pointing out the more questionable ideas that can be found in his work. He took a particular interest in the behavior of ani-

mals and their lifestyles, and comparisons between human behavior and animal behavior are a recurring theme in Aristotle’s writing, in which humans don’t always come out on top! However, we generally find support for the notion of a hierarchy of beings in his work, with humans at the top.

Aristotle did write a work on plants, although it has not survived. However, his successor at the head of the school, Theophrastus (371–287 BCE), would do for plants what his predecessor had done for animals. This work was the product of four years’ study (between 347 and 343 BCE) undertaken jointly by Aristotle and Theophrastus, which would result in 200 works written by Theophrastus, of which only 2 have survived: *Enquiry into Plants* and *On the Causes of Plants*. Theophrastus separated trees, shrubs, and herbs, and paid a great deal of attention to the environmental conditions that were favorable to plants, which is why he is sometimes considered the father of ecology. However, his descriptions of plants are written very much in relation to human needs. He would, for example, describe the conditions that foster the growth of trees to produce wood that is easy to work. A large part of these works is devoted to medicinal plants and their uses, and points out that it is often through similarities in shape or color that plants reveal their therapeutic uses to us.

In the first century CE, Pedanius Dioscorides (40–90) would complete Theophrastus’s work in *De materia medica* (On medical material) by describing more than 600 substances with therapeutic properties obtained from plants. The great renown of this work stems in large part from the fact that it was accessible both in the West and in the Arab-Muslim world.

Aristotle was not particularly innovative in his thinking on the nature of the elements or essential qualities. However, the distinction he made between matter and form was quite an important one in biology. Examples borrowed from biology and medicine will allow us to better illustrate the significance of these ideas and, as we have seen, it was in thinking about living things that these distinctions became apparent. In his view, disease (and death) are rooted in matter, while essence (or what something must be) stems from form. An animal or a plant belongs to a species, and this association is due to its form and not what it is made of, which does not differ from other animals or plants. Similarly, reproduction is seen as a coming together of matter from the female seed and form from the male seed. This union was used to explain how embryonic development was initiated.

The same applies to the distinctions established by Aristotle among four causes—material cause, efficient cause, formal cause, and final cause. The main examples used by Aristotle and his successors to illustrate the different roles of these four causes are borrowed from human activity. In the creation of a statue, the stone or wood represents the material cause, the chisel manipulated by the sculptor is the efficient cause, the formal cause is that which the sculptor wishes to represent (the person), and the final cause is the project of the statue. Similarly, when a physician cures a sick patient by administering plant extracts, the material cause is the extract, the efficient cause is the active ingredient found in the plant, the formal cause is the existence of a state of good health, and the final cause is the physician’s desire to cure the sick person.

The notion of the final cause would be vindicated when it was applied to the development of the embryo, while at the same time stirring up more debate. If the formal cause explains
why the result of embryonic development will be a cat or a dog, it is the final cause that accounts for the process of embryonic development toward its intended goal—the formation of an adult organism.

These distinctions among the four causes may seem rather counterintuitive to modern readers. Only the efficient cause is still considered a cause. The material cause is no longer a cause, but rather that which causality acts upon. The formal cause is of no particular use and the final cause is incompatible with our nonfinalistic view of the world and particularly the living world, whereby natural processes are not thought to be driven toward some ultimate goal.

Moreover, Aristotle distinguished between three types of soul in living beings—the vegetative soul, which is common to all; the sensitive soul, which is found only in animals; and the rational soul, which is specific to human beings. However, in contrast to Plato, Aristotle believed that souls, and specifically the rational soul, could not be separated from the body.

Unlike his anatomic work, Aristotle’s physiology was dependent upon or even “imprisoned” by his philosophical worldview. Thus, due to the prominence he gave to the quality of heat, he believed that the heart, which heated the whole organism, was home to the soul and, for this reason, was the first organ to be formed. For Aristotle, the heat coming from the heart was the work of the soul, and the role of the lungs and the brain was nothing more than cooling.

Aristotle also observed the development of eggs, and, like Hippocrates before him, considered certain steps in this development to be fermentation processes. The quality of his embryologic observations did not preclude him from believing in the spontaneous generation of complex organisms, including certain types of fish.
Aristotle’s finalistic views did not, however, go so far as to exclude mechanisms altogether, when, for example, he described the role of tendons in the movement of limbs.7

Galen’s Physiology

Galen (129–201 CE) was born in Pergamon in modern-day Turkey, where he practiced as physician to the gladiators, and later settled in Rome, where his reputation earned him the title of personal physician to Emperor Marcus Aurelius. Galen’s work is characterized by the prominent role he gave to experiments and his strong, sometimes “absolute,” finalistic views, whereby natural processes are directed toward some goal.

For Galen, reason and experiments were the two pillars of a physician’s work. Galen liked to distinguish his approach from that of more “dogmatic” physicians who denied the importance of experimentation. His role models were Alexandrian physicians from the third century BCE (which we will touch on again later). He practiced animal dissection and, with some restrictions, vivisection. However, in contrast to the Alexandrian physicians and owing to widespread condemnation of the practice, he did not carry out dissections of human cadavers, which would lead to some errors in his anatomic descriptions of the human body. Nonetheless, he made significant contributions to anatomy and physiology, particularly in nerve anatomy and physiology. He demonstrated that the brain was the seat of thought and sight, and situated the soul in the third ventricle (under the cerebellum). He distinguished sensory nerves from motor nerves, and made the connection between spinal cord problems and the sensory and motor deficiencies that result from them.

The views Galen held on reproduction were a middle ground between those held by Hippocrates and Aristotle on the respective roles played by the man and the woman. Moreover, he was the first to suggest that male and female sexual organs shared a common embryologic origin.

Galen believed that each organ had a specific function and was designed in the best possible way to accomplish it. In his view, organs carried out their functions thanks to the abilities with which they were endowed, to which Galen added many more. As with Aristotle, this finalism did not exclude a more mechanistic approach, and the focus on abilities was sometimes replaced by precise descriptions of the mechanisms involved. Galen fiercely opposed the atomists (more on this later), who believed that organs were not created to perform a function, but rather that it was the nature of the organ that led to its function.

Galen’s finalistic worldview, which was linked to his firmly held Stoic beliefs in the existence of a benevolent deity, would allow his work to gain a foothold in a newly Christianized world. Though he liked to think of himself as restoring Hippocrates’s work to its rightful place, Galen’s work would dominate Western medicine to a greater extent than Hippocrates’s until the middle of the nineteenth century.

Pliny the Elder’s Natural History

Pliny the Elder (23–79) is known for his tragic death in 79 CE during the eruption of Vesuvius. Wishing to save those in danger but also to learn more about what was happening, he landed with his galley south of Naples and was no doubt asphyxiated by the toxic gases emitted during the eruption.

Pliny is also famous for having written the 37-volume *Natural History*. His political writings, which were the result of his close relationship with Emperor Vespasian, are much less known, but just as prolific: *Bella Germaniae* (The wars of Germany), which he took part in, and *History of His Times*.

Natural History was the product of knowledge he acquired through book learning and a compilation of prior descriptions, and did not come from study in the field as had been the case with Aristotle. What interested Pliny was not nature itself, but nature that was accessible to and used by humans, and more specifically Roman citizens. When referring to “exotic” animals, he thought it important to mention when the first specimen had been seen by Romans as well as to detail its characteristics. In describing vines, he also detailed methods for preparing wine and their flavor profiles. In keeping with the authors he borrowed from, Pliny endowed animals with human emotions and behaviors: an elephant kneels and prays and studies his lessons, like humans.

Pliny’s work is puzzling and can seem to have regressed when compared to Aristotle’s, from which he drew much of his inspiration. However, his work had a considerable influence during the Middle Ages and even into the modern era.

The Atomists

The debate around atomism was sparked not by the hypothesis that matter was made up of atoms (indivisible, as the name implies) that were infinite in number but finite in type, as much as the atomists' search for a totally natural explanation of the world, based on chance encounters between atoms. Epicurus (341–270 BCE) built on the ideas developed by Democritus (460–370 BCE) and Leucippus (460–370 BCE), and introduced the notion of *clinamen*—a slight swerve from a straight
line in the movement of atoms, which allowed them to preserve their free will. A text by Lucretius (98–55 BCE) is the only work by atomists that has survived. Its poetic form allowed it to endure through the Christianization of society.

Lucretius believed that the primitive Earth was capable of producing all living creatures, including human beings, but also other organisms that have disappeared because they were poorly formed. To survive, specific qualities were needed—speed or visual acuity. When it came to heredity, Lucretius adopted a model that was close to that proposed by Hippocrates—the difference being that he could designate as atoms that which Hippocrates had difficulty naming.

Historical Overview

The Role of Experimentation in Greek Science and Particularly in Life Sciences

You may be asking yourself why we are revisiting this topic. I have already touched on Galen’s vivisection experiments, which allowed him to describe different types of nerves and advance our knowledge of the nervous system. The Alexandrian scholars I mentioned before included Erasistratus (310–250 BCE) and Herophilos (310?–250? BCE), who carried out the first quantitative experiments on living things. They weighed them (to estimate the invisible weight lost owing to exhalation), and measured their pulses and how these varied with relation to disease and age. They also conducted dissections of human cadavers, and, according to their rivals, carried out vivisection experiments on human beings.

However, we must also contrast these achievements with the obstacles that prevented a more systematic implementation of the experimental method—namely, the weight of theoretical reasoning and the priority given to experiments conducted “by analogy.” The first of these impediments was felt particularly strongly in medicine, which would very quickly be perceived as a settled discipline, whose principles had been well established since the time of the School of Kos. Even for a thinker such as Aristotle, who was fond of direct observation, it was reason and solely reason from which fundamental principles were derived, which experiments confirmed or occasionally clarified. This preference for reason can be clearly seen in his physiological work: it was not experiments that demonstrated the heart’s central role in the organism, but rather reason that allowed us to deduce it thanks to the qualities that this organ possessed.

Experiments also appeared to go against nature. They were a distortion of it, and therefore could not reveal anything about it. It was not only scholars and thinkers in antiquity who held this prejudice—the same criticisms can be leveled against seventeenth-century experimenters. A mistrust of experiments and the hope that reason on its own would suffice to arrive at the correct explanation has probably not been completely eliminated even from the thoughts of modern-day biologists.

The second hurdle was the value accorded to experiments by analogy (or similarity). To illustrate this type of experiment (and explanation), which is particularly common in the Hippocratic corpus, let’s look at an example. Why does the female body seem to be more susceptible to water retention, as can be observed in certain diseases? For Hippocratic authors, the answer was simple: because it was less firm. The proof was derived from the following experiment: take raw wool and a sheet of woven wool and place both in the same humid conditions—the
raw wool will absorb much more water than the sheet. The result is so obvious that conducting the experiment is often seen as pointless; the experiment itself is a thought experiment.

In *Le chaudron de Médée* (Medea’s cauldron), historian Mirko Grmek tried to understand why scientific experiments had not played a major role in Greek science, and particularly in the area of life sciences. Others had advanced the hypothesis that experimentation was curbed by the low status given to technical work (technical trades being reserved for slaves). Grmek came to a different conclusion; namely, that the establishment of an experimental approach is a complex process, which involves several stages to get beyond a groping empiricism. Greek scholars had made it through some of these stages, but not all. There were some attempts at quantification, but it was not widely practiced. What they probably needed most is what Pasteur called an “experimental reflex,” or the widespread recourse to experiments.

Mirko Grmek was right in reminding us that modern-day science and its way of functioning are the result of a long process that was built over several centuries. Greek science was only a chapter in the history of its development.

Anaximander and the Atomists:

The Futile Search for Pioneers

Despite repeated warnings from science historians, the hunt for pioneers—the first people to have conducted an experiment or put forward a hypothesis—remains as strong as ever. But this search is of little interest to science historians trying to piece

together the genesis of an area of scientific knowledge. This is due to the fact that, in most cases, such forerunners were ignored by their contemporaries and successors and thus played no role in the development of the idea. However, more importantly, the notion of a pioneer is a false one, in that it is a retrospective and distorted view that provides the illusion of discerning the beginnings of later ideas in older writings. It is often difficult to disprove the validity of a so-called pioneer. However, the result is always gratifying as it precisely reveals the ways in which our modern-day understanding differs from that of the past.

Ancient Greece still provides fertile ground in the search for these forerunners. The small number of texts (which is why people try to extrapolate things from them) and difficulties translating and interpreting them make it even more so. Let’s look at some examples to illustrate the recurring myth of pioneers. Conflicting theories of embryonic development in the seventeenth and eighteenth centuries placed scholars in two camps. Those in the preformation camp believed that organisms were already formed in the egg (or the spermatozoon) and simply grew over the course of embryonic development. Those in the epigenesis camp believed that the organism was formed over the course of its development and did not exist prior to this. Some have claimed that these two models can be traced back to pre-Socratic notions of the universe. For Parmenides (sixth–fifth century BCE) nature was one, and from the beginning contained everything that would later appear. Heraclitus (544?–480 BCE) and others believed that the diversity observed was the result of transformations and that it did not pre-exist in that which gave rise to it.

One can draw an analogy here, but we have learned to be wary of analogies. The conflict that divided embryologists in
the seventeenth and eighteenth centuries was not a revival of an earlier debate, but rather resulted from new observations, particularly in microscopy. While it cannot be denied that this debate can be framed within these older schools of thought, it did not originate from them nor was it shaped by them.

It is with respect to evolution that the search for pioneers has been most actively pursued. When Anaximander (610–546 BCE), in Ionia, described the appearance of life and the formation of the first human beings as fish, did he anticipate our modern-day view of the evolution of the living world? Clearly not, as there are large discrepancies between the scenario he was describing and the account that is widely accepted today. The first discrepancy is the amount of time needed for these processes to run their course. The second and no doubt more important difference is that the transformations described by Anaximander are commonplace in Greek mythology, as indeed they are in the mythologies of various peoples. Developing ideas on the evolution of living forms first required renouncing these fanciful notions. And evolutionary changes would make sense only in the context of our understanding of the stability of living species.

To take the argument further, it is not only the idea of evolution that ancient authors would have had to anticipate, but rather the Darwinian mechanism of evolution. Lucretius described the random recombination of the atoms that generate living beings, leading to misshapen individuals and to others with qualities that allowed them to survive. Lucretius’s text does seem modern (or, more precisely, consistent with modern science) in its desire to find a natural explanation for biological phenomena. However, is it truly Darwinian evolution? It seems
to me that there are two fundamental differences between Lucretius’s view and modern-day thinking. The first is that Lucretius’s misshapen individuals disappear—that is to say that natural selection eliminates only individuals that are not viable. This is not in keeping with modern-day thinking on the role of natural selection, even if many have interpreted Darwin’s writings in this way, as we will see. The second is that, for Lucretius, individuals that survive do so only because of their particular traits. There is no reference to the central tenet in Darwin’s theory that selection acts on relative differences between individuals and not on particular traits. This is a good example of how historical comparisons allow one to refine modern-day thinking.

Other examples of these so-called pioneers must be mentioned briefly, as they have recently found some resonance. The “living universe” described by Plato in Timaeus is reminiscent of the living Earth in the Gaia hypothesis that James Lovelock proposed in the 1970s. This is analogous to what we have seen with theories of embryonic development. These are, of course, analogies, and we will see that this idea of a living Earth was a view also held by alchemists. However, to consider the Gaia hypothesis to be simply the revival of an ancient idea does not recognize everything that this hypothesis owes to scientific knowledge accumulated up until 1970.

Similarly, to call Aristotle one of the pioneers of molecular biology by likening the genetic program to the final cause, as proposed by Max Delbrück, one of the fathers of molecular biology, makes little sense. Such a suggestion would not only neglect the novelty of genetic information as an idea, but also be erroneous because for modern-day biologists the genetic program does not represent a final cause but an efficient cause.

Finally, to claim that Theophrastus (or even Empedocles) is the father of ecology is to look at the field in a very simplistic
way. As the first farmers no doubt quickly learned, there is much more to ecology than the rather obvious fact that plants don’t grow in the same way in different soils, when it is hot or cold, when it is raining or when it is dry.

Could the accomplishments of these alleged pioneers be removed from the scientific record without negatively impacting our comprehension of its history? The answer is less obvious than the preceding remarks may lead one to believe. At least in some cases, these forerunners were able to put together a thought framework within which the models and theories they are credited with having originated could later be understood. I am thinking specifically of the ancient atomists here. Though it would be a stretch to raise their concepts to the status of scientific theory or to claim that the ideas of modern atomists were a continuation of their work, they nonetheless set the stage for new ideas.

Contemporary Relevance

Mechanistic and Molecular Explanations

Models and ways of thinking from antiquity can seem so strange to our modern sensibilities that our first instinct is to dismiss them as irrelevant. However, is this reaction justified? Two types of explanations that still hold sway in biology have their roots in this period: mechanistic explanations and explanations involving the action of ferments.

A mechanistic explanation is an explanation by analogy. That is, the biological phenomenon taking place in the organism is compared to a machine and the explanation hinges on there being mechanisms analogous to those present in machines within the organism. In explanations relating to the action of
ferments, it is proposed that phenomena take place that are analogous to those used by humans to transform foods: making bread, alcoholic beverages (wine, beer), cheese, and so on. In a process that is poorly defined, fermentation brings together heat, changes in form and appearance, and small amounts of matter to produce some effect—features that are useful when trying to explain incomprehensible phenomena.

Mechanistic explanations can be found in the writings of Aristotle and Galen. For these authors, such explanations do not account for all physiological phenomena, but they played a role in movement for Aristotle and digestion in the case of Galen, for example. Explanations involving action by ferments come into play in descriptions of embryonic development, but also in explaining the functioning of certain organs, such as the liver or the heart. Both of these types of explanations would have a bright future. Mechanistic explanations would feature prominently in the seventeenth century, without forgetting the action of ferments. The action of enzymes, the successors to ferments, would play a central role in explaining biochemical processes in the first half of the twentieth century. Explanations based around the action of ferments would progressively shift toward molecular ones. Macromolecular mechanisms are now ubiquitous in our explanations of biological processes. The phenomenon of self-organization shares certain characteristics with the action of ferments, including its nearly limitless ability to explain things.

The Role of Analogy

Given the persistent nature of these two types of explanations, we should ask ourselves about the role that analogy plays in the modern-day models we use to explain the natural world. Were
we right to scoff at Hippocrates’s thought experiments? Anal-
ogy is an indispensable tool in science, in particular for the de-
velopment of models, but it must not, as was the case with Hip-
pocrates, replace experimental facts. It is particularly prevalent
in biology, perhaps because it makes use of everyday language.
Can we distinguish a good analogy from a bad one? It appears
not, as we can know only in hindsight whether the analogy will
have advanced our understanding of the phenomena in
question.

The disciplines from which analogies are drawn depend on
the culture that prevails during the period—i.e., its “episteme,”
or system of thought and knowledge. This explains why analo-
gies from the past sometimes seem absurd to modern readers.
Perhaps in a few centuries some modern-day analogies will ap-
pear as ridiculous as those of Hippocrates.

The Beginnings of the Chain of Being

Aristotle was the first to develop the idea of a scala naturae, or
chain of being, in a scientific way—i.e., that organisms could be
more or less positioned along a “ladder” with human beings at
the top. This idea would later take root among the naturalists
who would follow Aristotle, as well as among embryologists
such as Baer, who would characterize embryonic development
as a progression from general to specific or from simple to
complex.

The concept would not disappear with the rise of Darwin’s
theory of evolution. The first evolutionary trees naturally posi-
tioned human beings at the end of the highest branch. One
could argue that it remains influential today, given the position
that human beings occupy in many representations of evolu-
tionary trees, or indirectly and in a reactionary way through the
often clumsy and unsuitable attempts by those who would like to counter this ancient view and thus make the human line a nearly invisible branch of the evolutionary tree. Their arguments, such as referring to the “small genetic distance” between humans and their closest cousins (chimpanzees), unfortunately often don’t make sense from a biological point of view. The chain of being still poisons biological thought.

Pliny’s Legacy

In Pliny’s writings, it is not uncommon to find distortions of fact or human behavior projected onto animals that he is describing. His works would be nonetheless praised by many naturalists, including Buffon. Do we not have some modern-day Plinys—authors who have poor scientific credibility and who use second-hand information, but who nonetheless receive wide coverage in the media because they know how to frame their ideas for the public to attract attention much better than do scientists, at the risk of sometimes going beyond or even sidestepping scientific knowledge? Regardless of their perceived value, the ideas in Pliny’s scientific writing certainly have proved nothing if not remarkably persistent.

Ever-Present Finalism

We should not be too quick to poke fun at Galen’s finalism either, which led to justifying the small size of human ears by our need to wear hats! Do we not also indulge in the same finalist thinking when we describe the functions of certain organs? Interpretations of brain imaging are almost as naïve as those put forward by Galen, when they attribute certain cognitive abilities to certain parts of the brain. The same thing occurs when “func-
“Finalisms” are attributed to genes and their products. What usually happens is that after a phase of optimistic simplification, genes are found to have multiple functions, which are much more complex than the first observations had led us to believe.

However, finalism had and still has some utility. What Galen proposed was a sort of plan of action—to uncover the functions of different organs—which has proven itself useful in enabling discoveries over the centuries. However, we must nonetheless accept its limitations as demonstrated by experiments.
INDEX OF NAMES

Agassiz, Louis, 191
Aldrovandi, Ulisse, 38–40, 49
Alexander, Samuel, 322
Ames, Bruce, 338
Anaximander, 2, 13, 15
Appert, Nicolas, 121
Arber, Werner, 285
Aristotle, 2, 4–10, 12, 16, 18–19, 23, 27, 30, 37–38, 40, 42, 57, 59, 65, 69, 78, 94, 97, 140, 313, 377–378
Arrhenius, Svante, 242, 311
Aselli, Gasparo, 62
Astbury, William, 269–270, 272
Avery, Oswald, 242, 269–270, 273, 285, 339
Avicenna (Ibn Sina), 23–24, 26–27
Baartman, Sarah, 164
Baer, Carl von, 19, 106–108, 151, 190
Baglivi, Giorgio, 60, 67, 73, 109
Banting, Frederick, 233
Barthez, Paul-Joseph, 77, 111
Bartholin, Thomas, 63
Bassi, Agostino, 125
Bateson, William, 118, 257–259, 261, 273, 297
Bates, Walter, 177
Baudin, Nicolas, 1611
Baumgarten, Paul, 241, 286
Baur, Erwin, 263
Bayliss, William, 233
Beadle, George, 263, 273, 285, 288–289, 376
Behring, Emil, 128, 241
Beijerinck, Martinus, 245
Beisson, Janine, 351
Bell, Charles, 132
Bélou, Pierre, 39–40, 48–49
Berg, Paul, 281
Bernal, John, 266
Bernoulli, Daniel, 128
Bertalanffy, Ludwig von, 366
Berthold, Arnold, 232
Bertrand, Gabriel, 227
Berzelius, Jacob, 123, 135–136
Bichat, Xavier, 78, 97, 109–111, 119, 132, 136, 147
Binet, Alfred, 314
Bishop, Michael, 338
Blumenbach, Friedrich, 83, 99, 146
Boerhaave, Hermann, 71
Bohr, Niels, 268
Boivin, André, 270
Bonnet, Charles, 87–88, 90, 220
Bonnier, Gaston, 197
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonpland, Aimé</td>
<td>199</td>
</tr>
<tr>
<td>Bordet, Jules</td>
<td>241, 243, 246</td>
</tr>
<tr>
<td>Bordeu, Théophile de</td>
<td>76–77</td>
</tr>
<tr>
<td>Borelli, Giovanni Alfonso</td>
<td>59, 131</td>
</tr>
<tr>
<td>Bory de Saint-Vincent, Jean-Baptiste</td>
<td>92, 161</td>
</tr>
<tr>
<td>Bourguet, Louis</td>
<td>89, 159</td>
</tr>
<tr>
<td>Boussingault, Jean-Baptiste</td>
<td>201</td>
</tr>
<tr>
<td>Boveri, Theodor</td>
<td>117–119, 253, 259, 338</td>
</tr>
<tr>
<td>Bovet, Daniel</td>
<td>249</td>
</tr>
<tr>
<td>Boyle, Robert</td>
<td>46</td>
</tr>
<tr>
<td>Brachet, Jean</td>
<td>274</td>
</tr>
<tr>
<td>Bragg, William</td>
<td>266</td>
</tr>
<tr>
<td>Braun, Alexander</td>
<td>220, 231, 235</td>
</tr>
<tr>
<td>Brenner, Sydney</td>
<td>275, 291</td>
</tr>
<tr>
<td>Bridges, Calvin</td>
<td>261</td>
</tr>
<tr>
<td>Broca, Paul</td>
<td>140–141, 321</td>
</tr>
<tr>
<td>Brongniart, Alexandre</td>
<td>165–167</td>
</tr>
<tr>
<td>Broussais, François</td>
<td>135</td>
</tr>
<tr>
<td>Brown, Robert</td>
<td>114</td>
</tr>
<tr>
<td>Brown-Séquard, Charles</td>
<td>232</td>
</tr>
<tr>
<td>Brunfels, Otto</td>
<td>40</td>
</tr>
<tr>
<td>Büchner, Eduard</td>
<td>224, 226</td>
</tr>
<tr>
<td>Burnet, Frank Macfarlane</td>
<td>336</td>
</tr>
<tr>
<td>Butenandt, Adolf</td>
<td>234, 289</td>
</tr>
<tr>
<td>Cabanis, Georges</td>
<td>147</td>
</tr>
<tr>
<td>Cagniard Latour, Charles</td>
<td>122</td>
</tr>
<tr>
<td>Calmette, Albert</td>
<td>130, 244</td>
</tr>
<tr>
<td>Calvin, Melvin</td>
<td>54, 335</td>
</tr>
<tr>
<td>Camerarius, Rudolf Jakob</td>
<td>79</td>
</tr>
<tr>
<td>Camper, Petrus</td>
<td>87</td>
</tr>
<tr>
<td>Candolle, Alphonse de</td>
<td>80, 199–200, 208</td>
</tr>
<tr>
<td>Cannon, Walter</td>
<td>234</td>
</tr>
<tr>
<td>Carlsson, Arvid</td>
<td>237</td>
</tr>
<tr>
<td>Carpenter, William</td>
<td>191, 230</td>
</tr>
<tr>
<td>Carrel, Alexis</td>
<td>255</td>
</tr>
<tr>
<td>Carroll, Sean B.</td>
<td>346</td>
</tr>
<tr>
<td>Carson, Rachel</td>
<td>361</td>
</tr>
<tr>
<td>Cartier, Jacques</td>
<td>229</td>
</tr>
<tr>
<td>Caspari, Ernst</td>
<td>262</td>
</tr>
<tr>
<td>Caspersson, Torbjörn</td>
<td>269, 274</td>
</tr>
<tr>
<td>Castle, William</td>
<td>260, 262, 301</td>
</tr>
<tr>
<td>Caton, Richard</td>
<td>141</td>
</tr>
<tr>
<td>Cavendish, Henry</td>
<td>96</td>
</tr>
<tr>
<td>Cesalpino, Andrea</td>
<td>40, 55, 78, 220</td>
</tr>
<tr>
<td>Chabry, Laurent</td>
<td>251</td>
</tr>
<tr>
<td>Chain, Ernst</td>
<td>249</td>
</tr>
<tr>
<td>Chamberland, Charles</td>
<td>245</td>
</tr>
<tr>
<td>Chambers, Robert</td>
<td>173, 175</td>
</tr>
<tr>
<td>Changeux, Jean-Pierre</td>
<td>333, 356</td>
</tr>
<tr>
<td>Charcot, Jean-Martin</td>
<td>239</td>
</tr>
<tr>
<td>Chargaff, Erwin</td>
<td>269, 271</td>
</tr>
<tr>
<td>Chase, Martha</td>
<td>270</td>
</tr>
<tr>
<td>Chetverikov, Sergei</td>
<td>304</td>
</tr>
<tr>
<td>Chomsy, Noam</td>
<td>356</td>
</tr>
<tr>
<td>Churchland, Paul M.</td>
<td>356</td>
</tr>
<tr>
<td>Claude, Albert</td>
<td>275</td>
</tr>
<tr>
<td>Clements, Frederic</td>
<td>308, 360</td>
</tr>
<tr>
<td>Clusius, Carolus</td>
<td>40</td>
</tr>
<tr>
<td>Cohn, Ferdinand</td>
<td>130</td>
</tr>
<tr>
<td>Cohnheim, Julius</td>
<td>116</td>
</tr>
<tr>
<td>Colombo, Realdo</td>
<td>37, 54</td>
</tr>
<tr>
<td>Comte, Auguste</td>
<td>111, 119, 152, 187, 205</td>
</tr>
<tr>
<td>Condillac, Étienne Bonot de</td>
<td>147</td>
</tr>
<tr>
<td>Conklin, Edwin</td>
<td>253</td>
</tr>
<tr>
<td>Cope, Edward</td>
<td>192–193, 198, 210, 286</td>
</tr>
<tr>
<td>Copernicus, Nicolaus</td>
<td>33</td>
</tr>
<tr>
<td>Cory, Robert</td>
<td>272</td>
</tr>
<tr>
<td>Correns, Carl</td>
<td>256, 257, 263, 351</td>
</tr>
<tr>
<td>Cowles, Henry</td>
<td>307–308</td>
</tr>
<tr>
<td>Croizat, Léon</td>
<td>209</td>
</tr>
<tr>
<td>Cuénot, Lucien</td>
<td>257</td>
</tr>
</tbody>
</table>

For general queries, contact webmaster@press.princeton.edu
Index of Names

Dale, Henry, 236–237
Darlington, Cyril, 262, 281, 300
Darwin, Erasmus, 173
Daubenton, Louis, 84
Davaine, Casimir Joseph, 126
Davidson, Eric H., 347, 372
Dawkins, Richard, 342, 358
Degli Aromatari, Giuseppe, 66
De Graaf, Régnier, 66, 107
De Kruif, Paul, 247
Delbrück, Max, 16, 276–277, 325, 356
Democritus, 3, 10
Denis, Jean-Baptiste, 68, 74, 154
Descartes, René, 47, 59–62, 67–70, 72, 87, 94, 98, 109, 376–377
De Vries, Hugo, 185–187, 256–257, 260, 297–298
De Waal, Frans, 359
Diderot, Denis, 77, 93
Dioscoride, Pedanius, 5
Djerassi, Carl, 234
Dobzhansky, Theodosius, 304–305, 327
Dohrn, Anton, 119
Dokuchaev, Vasily, 310–311
Doll, Richard, 300
Domagk, Gerhard, 249
Doppler, Christian, 179
Driesch, Hans, 97, 251–252, 260, 321–322, 378
Dubos, René, 250
Duclaux, Émile, 130, 278
Duesberg, Peter, 154
Dujardin, Félix, 118
Du Mortier, Barthélemy Charles, 114
Dürer, Albrecht, 38
 Dutrochet, Henri, 112–113

Eberth, Carl, 126
Eccles, John, 236, 238
Edelman, Gerald M., 356
Eijkman, Christiaan, 230
Eimer, Theodor, 195
Eldredge, Niles, 344
Elton, Charles, 309
Empedocles, 2, 16
Enders, John F., 256
Ephrussi, Boris, 262, 273, 288, 351, 376
Epicurus, 3, 10
Erasistratus, 11, 53, 131, 369

Fallopio, Gabriele, 37, 55
Fernbach, Auguste, 248
Fernel, Jean, 54
Ferrier, David, 141
Fichte, Johann Gottlieb, 145
Fischer, Emil, 137, 225, 243, 251, 272
Fisher, Ronald, 4, 137, 180, 299–300, 302, 323, 342
Fiske, Cyrus, 255
Fitz Roy, Robert, 170, 213
Flahault, Charles, 307
Fleming, Alexander, 249
Flemming, Walther, 117–118
Florey, Howard, 249
Flourens, Pierre, 140–142, 155, 196
Fodor, Jerry, 356
Fol, Hermann, 117
Fontana, Felice, 109, 120
Forbes, Stephen Alfred, 201–202
Ford, Edmund B., 304
Forel, François Alphonse, 202
Fourcroy, Antoine François de, 135
Fourneau, Ernest, 249
Fracastor, Girolamo, 45, 120, 127
Franklin, Rosalind, 270, 378
Frederick II, 27–28
Frisch, Karl von, 315–316
Frosch, Paul, 245
Fuchs, Leonhart, 40
Funk, Casimir, 230
Gaffky, Georg, 126
Galen, 2, 8–9, 11, 18, 20–21, 23, 34, 37, 42,
 52–54, 57, 59, 61, 67, 97, 140, 369, 377
Galileo, 33, 58, 60, 68, 77, 210, 377
Gall, Franz Joseph, 141
Galan, Francis, 183, 187, 212, 214, 263
Galvani, Luigi, 138–139
Gamow, George, 274
Ganti, Tibor, 322
Garcia-Bellido, Antonio, 345
Garrod, Archibald, 272
Gassendi, Pierre, 57, 60
Gause, George, 310
Gehring, Walter, 346
Gessner, Conrad, 38–40
Giard, Alfred, 197
Gisson, Francis, 109
Goethe, Johann Wolfgang von, 82,
 146–147, 161–162, 194, 315
Goldschmidt, Richard, 306, 347
Golgi, Camillo, 142, 236
Goodall, Jane, 359
Goodpasture, Ernest, 245
Gould, Stephen Jay, 174, 218, 292,
 342–345, 360, 365
Grant, Robert, 161, 169, 173
Gray, Asa, 172, 191, 211
Grew, Nehemiah, 65
Griﬃth, Frederick, 269
Grinnell, Joseph, 309
Grisebach, August, 200
Guérin, Camille, 244
Haacke, Wilhelm, 195
Haeckel, Ernst, 107–108, 151, 189, 191,
 193–194, 201, 206–207, 210, 250, 253,
 260, 286, 288, 314, 323, 344, 378
Haffkine, Waldemar, 129
Hahnemann, Samuel, 149
Haldane, John Burdon Sanderson,
 299–304, 319–321, 325, 342, 370
Hales, Stephen, 59
Haller, Albrecht von, 78, 86, 90–91,
 109, 131, 222
Hamburger, Viktor, 254, 255
Hamilton, William, 342
Hankin, Ernest, 246
Hardy, Godfrey Harold, 299
Harrison, Ross, 255
Hartsoeker, Nicolas, 66
Harvey, William, 37, 52, 55–57, 59,
 61–62, 65–66, 69, 74, 131, 376
Heatley, Norman, 250
Hegel, Georg Wilhelm Friedrich,
 145
Heidelberger, Michael, 242–243
Heinroth, Oskar, 314
Helmoltz, Hermann von, 139–140
Henle, Jakob, 116, 127
Hennig, Willi, 362
Henri, Victor, 228
Heracleitus, 14
Hérelle, Félix d’, 246–247, 276, 325
Hernandez, Francisco, 39
Herophilus, 11
Hershey, Alfred, 270
Hertwig, Oscar, 117, 195, 211
Hippocrates, 2–3, 7, 9, 11, 19, 23, 37, 59, 89, 182, 235
His, Wilhelm, 251
Hoagland, Mahlon, 275
Hodgkin, Alan, 238
Hodgkin, Dorothy, 266, 368
Hofmeister, Wilhelm, 185, 220
Hooker, Joseph, 172, 188, 191
Hooke, Robert, 63
Hopkins, Frederick Gowland, 231, 323
Hoppe-Seyler, Felix, 136–137, 153
Hubel, David, 354
Humboldt, Alexander von, 174, 191, 199, 208
Hutchinson, George Evelyn, 307, 311–313, 323–324, 359
Huxley, Andrew, 238
Huxley, Julian, 304, 309, 314
Huxley, Thomas, 175, 183, 188, 304
Ibn Khaldun, 24
Ibn al-Nafis, 24, 53–54
Ingenhousz, Jan, 96
Ivanovsky, Dimitri, 245
Jacob, François, 45, 92, 94, 149, 277–278, 283, 344, 367, 369
Jamot, Eugène, 249
Janssens, Frans, 261
Jenner, Edward, 128
Jennings, Herbert, 314
Jerne, Niels, 336–337
Johannsen, Wilhelm, 258, 264, 298
Jordan, Alexis, 166, 196
Joule, James, 139
Juday, Chancey, 312
Kabat, Elvin, 243
Kandel, Eric, 355
Kanehiro, Takaki, 230
Kant, Emmanuel, 83, 99, 146, 165, 216
Katz, Bernard, 239
Keilin, David, 225
Kelvin, lord, 298
Kendrew, John, 272
Kepler, Johannes, 33
Khorana, Har Gobind, 276
Kimura, Motoo, 343
King, Mary-Claire, 345
Kirkwood, Thomas, 216
Kitasato, Shibasaburo, 126, 128, 241
Klebs, Edwin, 126, 127
Kluver, Albert Jan, 247, 304
Köhler, George, 336
Kölliker, Albert von, 118, 195
Kossel, Albrecht, 137
Kostitzin, Vladimir, 311
Krebs, Hans, 226
Kropotkin, Pierre, 342
Kühn, Alfred, 262, 288
Kühn, Thomas, 48, 380
Kühne, Wilhelm, 136
La Mettrie, Julien Offray de, 86, 87
Landsteiner, Karl, 242, 245
Lanester, Ray, 189
Lapicque, Louis, 238
Laue, Max von, 266
Laveran, Alphonse, 131
Lavoisier, Antoine Laurent de, 76, 95–96, 100–101, 135, 139, 158, 226
Lawrence, Peter, 345
Lebrun, Charles, 140
Le Dantec, Félix, 197
Lederberg, Joshua, 277, 363
Leduc, Stéphane, 252
Leibniz, Gottfried Wilhelm, 87, 92–93, 113, 148
Lenski, Richard, 349
Leucippus, 3, 10
Levaditi, Constantin, 245
Levene, Phoebus, 228
Levi-Montalcini, Rita, 255
Lewis, Edward B., 345
Lewis, Sinclair, 247
Lewontin, Richard C., 343
Liebig, Justus von, 123, 136, 138, 148, 201
Lindbergh, Charles, 255
Lindeman, Raymond, 312–313, 323, 359
Lind, James, 229
Lister, Joseph, 130
Loeb, Jacques, 252, 298
Loewi, Otto, 236, 255
Löfler, Friedrich, 126
Lohmann, Karl, 225
Lombroso, Cesare, 142
Lorenz, Konrad, 314, 316–318
Lotka, Alfred, 310–311, 313, 323–324
Lovelock, James, 16, 360
Lucretius, 3, 11, 15–16, 87, 94, 99, 164
Lunin, Nicolas, 230–231
Luria, Salvador, 277
Lwoff, André, 148, 278, 323
Lyell, Charles, 170, 172, 174, 189, 200
Lynch, Michael, 343
Lyonet, Pierre, 86
Lysenko, Trofim, 32, 319
MacArthur, Robert, 359–360
Mach, Ernst, 187
Magenide, François, 132
Maillet, Benoît de, 92–94, 108, 164
Malebranche, Nicolas, 66
Malpighi, Marcello, 56, 65, 68, 115
Malthus, Thomas Robert, 171–172, 309
Manaseina, Marta, 224
Mangold, Hilde, 254
Mantell, Gedeon, 190
Marat, Jean-Paul, 96
Marchal, Paul, 309
Margulis, Lynn, 348
Marilaun, Anton Kerner von, 195
Marsh, Othniel, 192
Marx, Karl, 189
Matthaei, Heinrich, 275
Maturana, Humberto, 322
Maupertuis, Pierre Louis Moreau de, 92–94, 99, 103–104, 253
Mayer, Julius Robert, 139
Maynard Smith, John, 342, 358
Mayr, Ernst, 7, 121, 315, 327, 387, 403
McClintock, Barbara, 262, 281, 353
McCulloch, Warren, 356
Meckel, Johan Friedrich, 107–108, 151, 194
Medawar, Peter B., 217
Mendel, Gregor, 177–181, 186–187, 204, 221–222, 256–259, 261, 297, 300
Menten, Maud, 229
Mesmer, Franz-Anton, 96
Metchnikoff, Elie, 251
Metchnikoff, Olga, 149
Meyerhof, Otto, 225–226
Michaelis, Leonor, 229
Miescher, Friedrich, 137, 269
Miller, Jacques, 336
<table>
<thead>
<tr>
<th>Name</th>
<th>Page/Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miller, Stanley L.</td>
<td>363</td>
</tr>
<tr>
<td>Milne, Edwards Henri</td>
<td>112</td>
</tr>
<tr>
<td>Milstein, César</td>
<td>336</td>
</tr>
<tr>
<td>Mitchell, Peter</td>
<td>335</td>
</tr>
<tr>
<td>Michurin, Ivan</td>
<td>319</td>
</tr>
<tr>
<td>Mivart, Jackson</td>
<td>190–191</td>
</tr>
<tr>
<td>Möbius, Karl</td>
<td>201</td>
</tr>
<tr>
<td>Moniz, Egas</td>
<td>156</td>
</tr>
<tr>
<td>Monod, Jacques</td>
<td>247, 278, 283, 333, 344, 367, 372</td>
</tr>
<tr>
<td>Montagu, Lady Mary</td>
<td>128</td>
</tr>
<tr>
<td>Morgagni, Giovanni Battista</td>
<td>37</td>
</tr>
<tr>
<td>Morgenstern, Oskar</td>
<td>358</td>
</tr>
<tr>
<td>Morris, Desmond</td>
<td>359</td>
</tr>
<tr>
<td>Morton, Samuel George</td>
<td>192</td>
</tr>
<tr>
<td>Müller, Fritz</td>
<td>177</td>
</tr>
<tr>
<td>Muller, Hermann J.</td>
<td>261</td>
</tr>
<tr>
<td>Müller, Johannes</td>
<td>108, 113–115, 127, 139–140, 143, 147–148</td>
</tr>
<tr>
<td>Nägeli, Carl von</td>
<td>130, 180, 184, 244</td>
</tr>
<tr>
<td>Nanney, David</td>
<td>350</td>
</tr>
<tr>
<td>Napp, Cyril</td>
<td>179</td>
</tr>
<tr>
<td>Naudin, Charles</td>
<td>179</td>
</tr>
<tr>
<td>Needham, Joseph</td>
<td>254</td>
</tr>
<tr>
<td>Needham, Tisbury</td>
<td>89</td>
</tr>
<tr>
<td>Neuberg, Carl</td>
<td>224</td>
</tr>
<tr>
<td>Neumann, John von</td>
<td>356, 358</td>
</tr>
<tr>
<td>Newton, Isaac</td>
<td>33, 46, 77, 83, 89, 92, 175, 222, 309, 378</td>
</tr>
<tr>
<td>Nicolle, Charles</td>
<td>130</td>
</tr>
<tr>
<td>Nicolson, Garth</td>
<td>335</td>
</tr>
<tr>
<td>Nirenberg, Marshall W.</td>
<td>276, 276</td>
</tr>
<tr>
<td>Nitti, Federico</td>
<td>249</td>
</tr>
<tr>
<td>Northrop, John</td>
<td>227–228</td>
</tr>
<tr>
<td>Nüsslein-Volhard, Christiane</td>
<td>345</td>
</tr>
<tr>
<td>Ochoa, Severo</td>
<td>276</td>
</tr>
<tr>
<td>Odum, Eugene</td>
<td>313, 359</td>
</tr>
<tr>
<td>Odum, Howard</td>
<td>313, 359</td>
</tr>
<tr>
<td>Oken, Lorentz</td>
<td>144, 147, 162</td>
</tr>
<tr>
<td>Olden堡, Henry</td>
<td>64</td>
</tr>
<tr>
<td>Oliver, George</td>
<td>236</td>
</tr>
<tr>
<td>Oparin, Alexander</td>
<td>301, 320, 325, 363, 370</td>
</tr>
<tr>
<td>Orbigny, Alcide Dessalines</td>
<td>169</td>
</tr>
<tr>
<td>Ostwald, Wilhelm</td>
<td>323</td>
</tr>
<tr>
<td>Owen, Richard</td>
<td>170, 189–190, 355</td>
</tr>
<tr>
<td>Palade, George</td>
<td>275</td>
</tr>
<tr>
<td>Paley, William</td>
<td>211</td>
</tr>
<tr>
<td>Pallas, Peter Simon</td>
<td>167</td>
</tr>
<tr>
<td>Pander, Christian</td>
<td>106</td>
</tr>
<tr>
<td>Paracelsus</td>
<td>41–44, 47, 50, 76</td>
</tr>
<tr>
<td>Paré, Ambroise</td>
<td>36–37, 55</td>
</tr>
<tr>
<td>Parmenides</td>
<td>14</td>
</tr>
<tr>
<td>Pauling, Linus</td>
<td>243, 267, 271–272, 336, 343</td>
</tr>
<tr>
<td>Pavlov, Ivan</td>
<td>239, 315</td>
</tr>
<tr>
<td>Payen, Anselme</td>
<td>135</td>
</tr>
<tr>
<td>Pearl, Raymond</td>
<td>309</td>
</tr>
<tr>
<td>Pearson, Karl</td>
<td>187</td>
</tr>
<tr>
<td>Pecquet, Jean</td>
<td>63</td>
</tr>
<tr>
<td>Peeters, Ferdinand</td>
<td>234</td>
</tr>
<tr>
<td>Penrose, Lionel S.</td>
<td>264</td>
</tr>
<tr>
<td>Perrault, Claude</td>
<td>59–60, 62, 67–68</td>
</tr>
<tr>
<td>Perrier, Edmond</td>
<td>197</td>
</tr>
<tr>
<td>Perrin, Jean</td>
<td>268</td>
</tr>
<tr>
<td>Persoz, Jean-François</td>
<td>135</td>
</tr>
<tr>
<td>Perutz, Max</td>
<td>272, 378</td>
</tr>
<tr>
<td>Phillips, John</td>
<td>308</td>
</tr>
<tr>
<td>Pincus, Gregory</td>
<td>234</td>
</tr>
<tr>
<td>Pitts, Walter</td>
<td>356</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Plato</td>
<td>4, 7, 16, 34</td>
</tr>
<tr>
<td>Platter, Félix</td>
<td>40</td>
</tr>
<tr>
<td>Pliny the Elder</td>
<td>2, 9–10, 20, 38–39, 220</td>
</tr>
<tr>
<td>Pouchet, Félix-Archimède</td>
<td>123–124, 151</td>
</tr>
<tr>
<td>Praxagoras</td>
<td>53, 369</td>
</tr>
<tr>
<td>Priestley, Joseph</td>
<td>95–96, 100</td>
</tr>
<tr>
<td>Punnett, Reginald</td>
<td>258, 299</td>
</tr>
<tr>
<td>Purkinje, Jan Evangelista</td>
<td>111, 113–115</td>
</tr>
<tr>
<td>Pythagoras</td>
<td>2</td>
</tr>
<tr>
<td>Rabl, Carl</td>
<td>118</td>
</tr>
<tr>
<td>Ramon, Gaston</td>
<td>244</td>
</tr>
<tr>
<td>Ramón y Cajal, Santiago</td>
<td>142</td>
</tr>
<tr>
<td>Rashevsky, Nicolas</td>
<td>368</td>
</tr>
<tr>
<td>Raspail, François-Vincent</td>
<td>112–113, 115, 120, 147</td>
</tr>
<tr>
<td>Rathke, Martin Heinrich</td>
<td>108</td>
</tr>
<tr>
<td>Ray, John</td>
<td>78–79</td>
</tr>
<tr>
<td>Réaumur, René Antoine Ferchault de</td>
<td>86, 90, 314</td>
</tr>
<tr>
<td>Redi, Francesco</td>
<td>66, 124</td>
</tr>
<tr>
<td>Reichert, Karl</td>
<td>108</td>
</tr>
<tr>
<td>Remak, Robert</td>
<td>108, 115, 124</td>
</tr>
<tr>
<td>Renner, Otto</td>
<td>263</td>
</tr>
<tr>
<td>Rhazes (Al-Razi)</td>
<td>23</td>
</tr>
<tr>
<td>Richardson, Jane</td>
<td>332</td>
</tr>
<tr>
<td>Riolan, Jean</td>
<td>56</td>
</tr>
<tr>
<td>Rivers, Thomas</td>
<td>245</td>
</tr>
<tr>
<td>Rondelet, Guillaume</td>
<td>39</td>
</tr>
<tr>
<td>Rosen, Robert</td>
<td>322</td>
</tr>
<tr>
<td>Ross, Ronald</td>
<td>131</td>
</tr>
<tr>
<td>Rothschild, Edmond de</td>
<td>268</td>
</tr>
<tr>
<td>Roux, Émile</td>
<td>128</td>
</tr>
<tr>
<td>Roux, Wilhelm</td>
<td>185, 195, 250–252, 298</td>
</tr>
<tr>
<td>Royer, Clémence</td>
<td>196, 212–213</td>
</tr>
<tr>
<td>Rudbeck, Olof</td>
<td>63</td>
</tr>
<tr>
<td>Ruska, Ernst</td>
<td>266</td>
</tr>
<tr>
<td>Ružička, Leopold</td>
<td>234</td>
</tr>
<tr>
<td>Sabin, Albert</td>
<td>246</td>
</tr>
<tr>
<td>Sachs, Julius von</td>
<td>138, 183, 185, 221, 255</td>
</tr>
<tr>
<td>Santorio, Santorino</td>
<td>57–59</td>
</tr>
<tr>
<td>Saunders, Edith Rebecca</td>
<td>258</td>
</tr>
<tr>
<td>Saussure, Théodore de</td>
<td>97</td>
</tr>
<tr>
<td>Schatz, Albert</td>
<td>250</td>
</tr>
<tr>
<td>Schaudinn, Fritz</td>
<td>129</td>
</tr>
<tr>
<td>Scheel, Carl</td>
<td>135</td>
</tr>
<tr>
<td>Schelling, Friedrich Wilhelm Joseph von</td>
<td>145, 380</td>
</tr>
<tr>
<td>Schimper, Karl</td>
<td>220</td>
</tr>
<tr>
<td>Schleiden, Matthias</td>
<td>111, 113–115, 143, 147</td>
</tr>
<tr>
<td>Schrödinger, Erwin</td>
<td>268, 277, 282, 325</td>
</tr>
<tr>
<td>Schwann, Theodor</td>
<td>111, 113–115, 122, 123, 143–144, 148, 150</td>
</tr>
<tr>
<td>Schwendener, Simon</td>
<td>220, 347</td>
</tr>
<tr>
<td>Shear, John R.</td>
<td>356</td>
</tr>
<tr>
<td>Semmelweis, Ignaz</td>
<td>121–123, 127, 154</td>
</tr>
<tr>
<td>Serres, Étienne</td>
<td>107–108, 151, 194</td>
</tr>
<tr>
<td>Servet, Michel</td>
<td>24, 54</td>
</tr>
<tr>
<td>Sharpey-Schafer, Edward</td>
<td>236</td>
</tr>
<tr>
<td>Sherrington, Charles</td>
<td>72, 142, 240, 376</td>
</tr>
<tr>
<td>Simberloff, Daniel</td>
<td>360</td>
</tr>
<tr>
<td>Simpson, George G.</td>
<td>209, 305–306, 344</td>
</tr>
<tr>
<td>Singer, Seymour</td>
<td>335</td>
</tr>
<tr>
<td>Skinner, Burrhus Frederic</td>
<td>315</td>
</tr>
<tr>
<td>Slonimski, Piotr</td>
<td>351</td>
</tr>
<tr>
<td>Smuts, Jan</td>
<td>308</td>
</tr>
<tr>
<td>Sonneborn, Tracy</td>
<td>351</td>
</tr>
<tr>
<td>Spalding, Douglas</td>
<td>314</td>
</tr>
<tr>
<td>Spallanzani, Lazzaro</td>
<td>87, 89–90, 123, 131, 290</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Spemann, Hans</td>
<td>252, 254, 289, 316, 321</td>
</tr>
<tr>
<td>Spencer, Herbert</td>
<td>151, 212</td>
</tr>
<tr>
<td>Sperry, Roger</td>
<td>354</td>
</tr>
<tr>
<td>Spiegelman, Sol</td>
<td>280</td>
</tr>
<tr>
<td>Spinoza, Baruch</td>
<td>148</td>
</tr>
<tr>
<td>Stahl, Georg Ernst</td>
<td>75–77, 97, 271</td>
</tr>
<tr>
<td>Starling, Ernest</td>
<td>233</td>
</tr>
<tr>
<td>Staudinger, Hermann</td>
<td>227</td>
</tr>
<tr>
<td>Stebbins, Ledyard</td>
<td>305–306</td>
</tr>
<tr>
<td>Stelluti, Francisco</td>
<td>63</td>
</tr>
<tr>
<td>Steno, Nicolas</td>
<td>66, 70</td>
</tr>
<tr>
<td>Strasburger, Eduard</td>
<td>116, 118</td>
</tr>
<tr>
<td>Sturtevant, Alfred</td>
<td>261</td>
</tr>
<tr>
<td>Subbarow, Yellapragada</td>
<td>225</td>
</tr>
<tr>
<td>Suess, Eduard</td>
<td>311</td>
</tr>
<tr>
<td>Sumner, James</td>
<td>227–228, 285</td>
</tr>
<tr>
<td>Sutton, Walter</td>
<td>259</td>
</tr>
<tr>
<td>Suzuki, Umetaro</td>
<td>230</td>
</tr>
<tr>
<td>Svedberg, Theodor</td>
<td>265</td>
</tr>
<tr>
<td>Swammerdam, Jan</td>
<td>61–64, 70, 86–87, 138</td>
</tr>
<tr>
<td>Szent-Györgyi, Albert</td>
<td>231</td>
</tr>
<tr>
<td>Tansley, Arthur</td>
<td>308–309</td>
</tr>
<tr>
<td>Tatum, Edward</td>
<td>273, 277, 285</td>
</tr>
<tr>
<td>Teilhard de Chardin, Pierre</td>
<td>311</td>
</tr>
<tr>
<td>Teissier, Georges</td>
<td>302</td>
</tr>
<tr>
<td>Theophrastus</td>
<td>5, 16, 68, 78, 82, 220</td>
</tr>
<tr>
<td>Thuillier, Louis</td>
<td>129</td>
</tr>
<tr>
<td>Timofeeff-Ressovsky, Nikolay</td>
<td>277</td>
</tr>
<tr>
<td>Tinbergen, Niko (Nikolaas)</td>
<td>317–318</td>
</tr>
<tr>
<td>Tiselius, Arne</td>
<td>265</td>
</tr>
<tr>
<td>Titian, 35</td>
<td></td>
</tr>
<tr>
<td>Tonegawa, Susumu</td>
<td>336</td>
</tr>
<tr>
<td>Tournefort, Joseph Pitton de</td>
<td>78–79</td>
</tr>
<tr>
<td>Tozzetti, Giovanni Targioni</td>
<td>120</td>
</tr>
<tr>
<td>Tréfouël, Jacques</td>
<td>249</td>
</tr>
<tr>
<td>Tréfouël, Thérèse</td>
<td>249</td>
</tr>
<tr>
<td>Trembley, Abraham</td>
<td>87, 289</td>
</tr>
<tr>
<td>Treviranus, Gotthelf Reinhold</td>
<td>146</td>
</tr>
<tr>
<td>Trivers, Robert</td>
<td>342</td>
</tr>
<tr>
<td>Tschermak, Erich von</td>
<td>256</td>
</tr>
<tr>
<td>Turing, Alan</td>
<td>356, 368</td>
</tr>
<tr>
<td>Turpin, Pierre</td>
<td>113</td>
</tr>
<tr>
<td>Twort, Frederick</td>
<td>246</td>
</tr>
<tr>
<td>Valentin, Gabriel Gustav</td>
<td>114–115</td>
</tr>
<tr>
<td>Van Beneden, Edouard</td>
<td>117</td>
</tr>
<tr>
<td>Van Calcar, Jan</td>
<td>35</td>
</tr>
<tr>
<td>Van Helmont, Jean-Baptiste</td>
<td>41, 43–44, 94, 133</td>
</tr>
<tr>
<td>Van Leeuwenhoek, Antoni</td>
<td>63, 64</td>
</tr>
<tr>
<td>Van Valen, Leigh</td>
<td>341</td>
</tr>
<tr>
<td>Varela, Francisco</td>
<td>322</td>
</tr>
<tr>
<td>Varmus, Harold</td>
<td>338</td>
</tr>
<tr>
<td>Venter, Craig</td>
<td>352, 358</td>
</tr>
<tr>
<td>Verhulst, Pierre-François</td>
<td>309</td>
</tr>
<tr>
<td>Vernadsky, Vladimir</td>
<td>311, 320–321, 324</td>
</tr>
<tr>
<td>Verworn, Max</td>
<td>314</td>
</tr>
<tr>
<td>Vesalius, Andreas</td>
<td>34–37, 40, 52, 54</td>
</tr>
<tr>
<td>Vicq-d’Azyr, Félix</td>
<td>164, 206</td>
</tr>
<tr>
<td>Vinci, Léonard de</td>
<td>35, 58, 220</td>
</tr>
<tr>
<td>Volta, Alessandro</td>
<td>138–139</td>
</tr>
<tr>
<td>Voltaire, 100</td>
<td></td>
</tr>
<tr>
<td>Volterra, Vito</td>
<td>310</td>
</tr>
<tr>
<td>Vulpian, Alfred</td>
<td>236, 239</td>
</tr>
<tr>
<td>Waddington, Conrad</td>
<td>254, 350</td>
</tr>
<tr>
<td>Wagner, Rudolf</td>
<td>114</td>
</tr>
<tr>
<td>Waksman, Selman</td>
<td>250</td>
</tr>
<tr>
<td>Walcott, Charles D.</td>
<td>303</td>
</tr>
<tr>
<td>Waldeyer, Wilhelm von</td>
<td>116–117</td>
</tr>
<tr>
<td>Wald, George</td>
<td>231</td>
</tr>
<tr>
<td>Wallace, Alfred Russel</td>
<td>172, 176–177, 188, 200, 208, 214</td>
</tr>
</tbody>
</table>
Warburg, Otto, 225–226, 231
Warming, Eugenius, 307
Watson, James D., 270–271, 273
Watson, John, 315
Weaver, Warren, 267
Weinberg, Robert, 339
Weinberg, Wilhelm, 299
Weiss, Paul, 255, 321
Weizmann, Chaim, 248
Weldon, Raphael, 187
Wharton, Thomas, 63
Wheeler, William, 314
Wheldale, Muriel, 273
Whitman, Charles, 253, 314
Wiener, Alexander, 242
Wiener, Norbert, 356
Wieschaus, Eric, 345
Wiesel, Torsten N., 354
Wiesner, Julius von, 220–221
Wilberforce, Samuel, 175, 188
Wilkins, Maurice, 270
Williams, George C., 217, 342
Willis, Thomas, 63
Willstätter, Richard, 227
Wilson, Allan, 345
Wilson, Edmund, 253, 260
Wilson, Edward, 359, 360
Windaus, Adolf, 234
Winogradsky, Sergei, 202
Woese, Carl, 361
Wöhler, Friedrich, 123, 136
Wollman, Elie, 277, 278
Wright, Almroth, 129, 242
Wright, Sewall, 299, 301–303, 306
Wyman, Jeffries, 333
Wynne-Edwards, Vero Copner, 341–342
Yersin, Alexandre, 128, 129
Zamecnik, Paul C., 275
Zimmer, Karl, 277
Zuckerkandl, Emile, 343
Thematic Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>academies (creation of)</td>
<td>48, 71</td>
</tr>
<tr>
<td>acetylcholine</td>
<td>236, 239</td>
</tr>
<tr>
<td>actualism</td>
<td>174</td>
</tr>
<tr>
<td>adaptation, enzymatic</td>
<td>278</td>
</tr>
<tr>
<td>adrenaline</td>
<td>232, 236, 237</td>
</tr>
<tr>
<td>aging (theories of)</td>
<td>50–51, 217, 241, 293</td>
</tr>
<tr>
<td>acetylation</td>
<td></td>
</tr>
<tr>
<td>alchemy: definition</td>
<td>33, 41–45; in the Middle Ages, 26; role of, 46–47</td>
</tr>
<tr>
<td>allostery/allosteric model</td>
<td>333</td>
</tr>
<tr>
<td>altruism</td>
<td>342</td>
</tr>
<tr>
<td>analogy</td>
<td>12, 14, 18–19, 70, 72, 77, 103, 144, 176, 200, 213, 255, 308, 316, 317</td>
</tr>
<tr>
<td>anatomy</td>
<td>39, 48, 103; the revolution of the sixteenth century, 33–37, 45–46, 48</td>
</tr>
<tr>
<td>Anthropocene</td>
<td>327, 373</td>
</tr>
<tr>
<td>antibiotic</td>
<td>247, 249, 250, 256, 340</td>
</tr>
<tr>
<td>antibody</td>
<td>243, 336; monoclonal, 336, 339</td>
</tr>
<tr>
<td>animal electricity</td>
<td>138–140</td>
</tr>
<tr>
<td>Archaea</td>
<td>361</td>
</tr>
<tr>
<td>Asilomar Conference</td>
<td>281, 296</td>
</tr>
<tr>
<td>astrobiology</td>
<td>363, 370</td>
</tr>
<tr>
<td>atomism</td>
<td>3, 10, 47</td>
</tr>
<tr>
<td>bacteria and elephant. See Kluyver, Albert Jan</td>
<td></td>
</tr>
<tr>
<td>bacteriophage</td>
<td>246–247, 270, 276–278, 325, 362</td>
</tr>
<tr>
<td>behaviorism</td>
<td>315</td>
</tr>
<tr>
<td>biogeography</td>
<td>174, 208–209, 307, 360</td>
</tr>
<tr>
<td>biometry/biometrics</td>
<td>258, 264, 300</td>
</tr>
<tr>
<td>biosphere</td>
<td>311, 326–327, 373</td>
</tr>
<tr>
<td>biotechnology</td>
<td>247, 256, 281, 286</td>
</tr>
<tr>
<td>“bone wars”</td>
<td>192</td>
</tr>
<tr>
<td>brain imaging</td>
<td>20, 141</td>
</tr>
<tr>
<td>cabinets of curiosities</td>
<td>48</td>
</tr>
<tr>
<td>Cambrian</td>
<td>303</td>
</tr>
<tr>
<td>causes (Aristotle’s four)</td>
<td>6–7</td>
</tr>
<tr>
<td>cell culture</td>
<td>256</td>
</tr>
<tr>
<td>cell division</td>
<td>116–118, 149, 162, 181, 214, 261, 334, 339, 351</td>
</tr>
</tbody>
</table>

cells. See cell theory

chain, side. See side-chain theory

“chemical weapons,” 195

chemistry, physiological, 153

chromatin, 117

chromatography, 266, 269

chromosome, 117–118, 181, 184–185, 253, 259, 261–263, 269, 278, 293, 304, 350, 351, 358

circulation, blood, 55, 63, 133, 255

cladistics, 362

classification, 101–102, 130, 165, 200, 317, 332; in Aristotle, 4, 38, 40; vs. evolution, 99; of human beings, 83, 99–100; natural: Linnaeus vs. Buffon, 78–85; in the sixteenth century, 38, 40

climax, 308, 309

Colchester Survey, 264

colloids, theory of, 265, 294

comparison of animals and plants, 102–103

complement, 182, 241, 271, 302, 367, 369

conjugation, bacterial, 278

contraception, 234

CRISPR-Cas9, 330

cybernetics, 235, 279–280

cyclogenic theories), 244

dance of the bees, 315

Darwinism, 177, 184, 190, 193, 195–198, 206, 250, 297, 303; epistemological characteristics of, 209–210; and the human being, 212–214; introduction of the term, 197

design (definition of), 290–291, 357

debate between Geoffroy Saint-Hilaire and Cuvier, 147

determinism (of living phenomena), 134

deoxyribonucleic acid (DNA):
component of genes, 269; first descriptions of, 228; sequencing, 330–334, 339, 346, 352–353, 362; structure, 265–266, 269–271, 273, 283, 284, 352; tetranucleotide hypothesis, 228

digestion, 18, 62, 68, 73, 94, 133; experiments of Claude Bernard, 44; experiments of Spallanzani, 90; experiments of Van Helmont, 44
dissection, 11, 24; in Alexandria, 53; Galen and, 8; in the Middle Ages, 24, 28; in the Renaissance, 45–46
dogma, central, 274, 279, 364

Drosophila. See fruit fly

ecology, 82, 315, 207; and evolutionary biology, 207, 202, 324, 360; nineteenth-century birth of, 202; roots of, 208; in the twentieth century, 307–313

electron microscopy, 275, 332

electrophoresis, 265, 267, 343

electrophysiology, 238–239

embryology, experimental, 120, 254, 290
embryology and evolution: in Haeckel, 151; in Meckel and Serres, 107–108, 151
emergentism, 321–322
entelechy (according to Driesch), 252
enzymes; catalysis of, 228, 349; notion of, 136; restriction enzyme, 280, 285
epigensis, 66, 69, 90, 92, 289, 350
epigenetics, 350
ethology, 313–318
eugenics, 212–213, 263–264, 327–328
Evo-Devo, 346, 347, 368
evolution in vitro, 148, 253, 349
exaptation, 292, 344
exobiology, 363
experimental method, 12, 71, 132, 177, 203
experimentation (in Antiquity), 11–13, 33, 49, 59, 104
fertilization (mechanisms of), 64, 117–118, 152, 171, 184
fermentation, 4, 7, 44, 136, 224, 226, 248, 378; in Pasteur’s time, 122
fiber, 109, 118, 354
finalism, 21; in Aristotle, 9; in Galen, 20
fitness, 216, 217, 300–302, 342
fossil, 158, 165–171, 190–192, 198, 210, 288, 303–305
fruit fly, 260, 273, 288, 345–346, 353, 357
Gaia (hypothesis), 16, 360
game theory, 324, 358
gemmule, 182–183
gene therapy, 328, 330, 331
geologic code, 273–276, 279, 280, 352
genetic drift, 302, 303, 306
geologic engineering, 280–281
geologic map, 46, 282
geobiology, 363
genes (sequence of), 352–353
germ cell encasement, 66, 69, 88
germ layer theory, 91, 106, 109
germ cell theory, 87, 120, 124–127, 131, 154
gradualism, 174, 188, 211
“greenhouse effect,” 311
growth factors, 255, 332, 334
heat and energy, 101, 139, 226
hippocampus, 355–356
histories of life, 152, 160, 380
history of life (Cuvier), 164, 169
holism, 142, 149, 308, 321–322
homeostasis, 235
homology, 162, 200, 206, 219, 317
hospital (creation of), 25–26, 32
hormone, 231–235; characterization of the first hormones, 232; introduction of the term, 233; plant hormones, 235; sex hormones, 233, 234
hysteria, 239
iatrochemistry, 60, 73
iatrophysics, 60, 73, 76, 138
immunity, cellular and humoral, 240–243
imprinting (in ethology), 316
induction, embryonic, 288–289, 377
information and molecular biology, 264–268
inheritance of acquired traits, 176, 182, 187, 350, 351; in Darwin, 182, 195; in Lamarck, 198; rejected by August Weismann, 184–185, 215
insulin, 233–234, 274, 280
integration (in the nervous system), 141, 238–240
intelligent design, 349
Koch’s criteria, 127
Lamarckism, 106–107, 157–163, 214–216
law of compensation (Geoffroy Saint-Hilaire’s), 161
law of recapitulation (Haeckel’s), 253
laws of genetics (Mendel’s), 186, 257–259, 297
laws of paleontology (Cope’s), 193, 210
life: artificial, 322; concept of, 151, 377, 379; suspended, 290, 291
linkage: cellular, 287; genetic, 261
localizations, cerebral, 155–156, 354, 357
lymphatic system, 62, 63, 133
lysogeny, 277, 278
“magic bullets.” See Ehrlich, Paul
marine stations, 119, 197
Marxism (dialectical materialism), 319–321
mathematics and biology, 72, 152, 181, 220
meiosis, 118, 261, 334
memory, 102, 290, 353, 355
microscope (invention of), 63–66
mimicry, 177, 300
mitochondria, 119, 335
modern synthesis, 303–304, 325, 341, 343, 346–347
mold, interior, 89
molecular clock, 343
molecular noise, 365–366
molecules, organic, 84, 88–89, 93, 136, 144, 254
morphogenetic field, 255, 322
Naturphilosophie, 106, 119, 138, 144–149, 161–163, 190, 194, 221, 380
Neanderthal man, 362
neo-Darwinism, 184, 197
neo-Lamarckism, 193, 197–198, 215, 277, 319
nerve impulses, 139
networks (theory of), 292
neuron, 142, 235–239, 255, 350, 354–357
neurosciences, 331, 353, 355–356
neurotransmitter, 232, 235–239, 243, 332, 354–355, 368
neutralism: in ecology, 361; in evolutionary biology, 343
niche, 309, 312, 360
nucleus, cell, 113–118, 137, 144–145, 184, 193, 263, 325, 361
nucleolus, 113–115, 144–145, 380
null model (in ecology), 361

one gene–one enzyme relationship, 273
operon (model of), 278–279
optogenetics, 357
organicism, 321–322
organizing (center), 254
origin of life, 282, 301, 320, 363
orthogenesis, 195, 217–218, 298, 305

pangenesis (theory of), 181–183
Parkinson’s disease, 51, 237, 239
parthenogenesis, 87, 88, 252
pedology, 310
penicillin, 250
phagocytosis, 240, 242
phlogiston, 75–76, 95–96
photosynthesis, 138, 225, 335
phrenology, 142
phyllotaxy, 220–221, 288, 368
phylogeny, 101
physiognomy, 140, 142
physiology: invention of the term, 54; in the nineteenth century, 131–143, 153; and pathology, 133; plant, 138, 221
phytosociology, 307
plasticity (neural), 354
pleiotropy, 357
polygenism, 100, 192, 213
“population cages,” 302
population genetics, 281, 299–304, 319–320, 341, 368
precursor, 47, 48, 173, 228, 232, 237

prey/predator relationship, 82, 310
principle of the correlation of parts (Cuvier), 165, 174
principle of the subordination of characters (Cuvier), 165
prion, 364
proteins: crystallization and identification of the structure of, 331, 333; engineering of, 348; first studies of, 135; membrane, 332, 334; sequencing of, 274
protoplast, 118, 134, 150, 241, 294
punctuated equilibrium, 344

“Red Queen” (hypothesis), 341
reflexes, conditioned, 239
regeneration, 87, 182, 252, 260, 289–291
repressor, 279, 283, 367
respiration, 95–96, 101, 132, 225, 335
revolutions of the Earth’s surface, 163, 168
ribosome, 275–276, 332

scale of being, 194
science, cognitive, 356, 361
self-organization, 18, 103–104, 378
serotherapy, 128, 242
sexuality in plants, 79, 82
side-chain theory, 241
signaling pathway, 334, 339
sociobiology, 358–359
soul (Aristotle’s three types of), 7
speciation, allopatric, 305
specificity (concept of), 243–244, 368–370
spontaneous generation, 7, 88–89, 123–124, 148, 151, 159, 161
stem cells, 45, 73, 290, 293, 335
stimulus, supranormal (ethology), 317
sulfanilamide, 249
symbiosis, 347
synapse, 142, 239, 350

teratology, 163, 251
thermometer (invention of), 58
thymus (role in immune response), 336–337
transforming principle (of pneumococcus), 269
transformism, experimental, 197–198
transfusion (blood), 74, 78, 242, 374
transgenics, 280
transposon, 353
ultracentrifugation, 228, 265, 267, 271, 275
universities (founding of), 26, 132
vaccination, 128, 154, 244
vitalism, 47, 75–78, 86, 88, 97–98, 111, 123, 134, 136, 147–149, 252
vitamin, 229–232, 234, 285, 293, 324
weak bonds, 243, 267, 284, 369