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The Succulent Karoo ecoregion, stretching from southwest Namibia down into 

South Africa, encompasses the arid region of Namaqualand, which is home to the 

world’s most diverse desert flora. The distinctive characteristic of Namaqualand is 

the predominance of dwarf shrubs with succulent leaves. Typical species are members 

of the Aizoaceae family (the lithops and mesembs, or vygies), but Crassula, Haworthia, 

and other genera are also important. Some 1,700 species of leaf succulents grow in the 

Succulent Karoo, of which 700 are contracted, dwarf forms. Namaqualand has between 

four to six times the plant diversity of equivalent-sized areas found in other foggy, 

winter-rainfall deserts across the world, such as Mexico’s northwestern Baja 

California, Chile’s southern Atacama, and Morocco’s southern coastline.

Lithops optica is one such succulent of the family Aizoaceae and these plants are 

often referred to as “living stones”; their scientific name is derived from the Greek 

lithos, meaning “stone,” and opsis, meaning “appearance,” due to their remarkable 

resemblance to the pebbles found throughout their natural environment. L. optica

is endemic to the area around Lüderitz, in the southern Namib Desert, and found 

nowhere else on Earth. It thrives in its unique habitat, which primarily consists 

Fascinating succulents
The plant life found in the world’s deserts includes a remarkable array of diverse species—

including cacti, agaves, desert shrubs, and hardy grasses—that have evolved to flourish in 

extremely arid environments. These resilient plants often possess specialized adaptations, 

such as succulent foliage or extensive root systems.

q Desert icon
Standing tall amid 

Namibia's arid 

landscape, the iconic 

quiver tree is a good 

example of adaptation 

to the harsh desert 

environment. 
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PLANT POACHING
Plant poaching, driven by human greed and the desire to possess rare 

specimens, is becoming an increasingly alarming issue, and Namaqualand, 

with its rich biodiversity and endemic plants, has  become a prime target. 

Operating under the guise of tourists, ruthless environmental criminals 

deplete the region’s plant resources. The specimens they smuggle out of 

the region often perish during transportation, introduce plant pathogens, 

and disrupt the delicate ecological balance. Ultimately, poachers prioritize 

profit over environmental preservation, disregarding the well-being of 

the ecosystems they exploit.
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of coastal plains with sandy terrain, and rainfall averaging between only 

0.8–2 inches (20–50 mm) per year, with frequent fog. Among rocks and gravel, these 

plants can be challenging to detect, due to their exceptional camouflage. Their 

flowers open only in the late afternoon, closing again at dusk, and they can 

be pollinated by the bees, flies, wasps, gnats, and so on that are common in the area. 

Lithops are self-sterile, so cross-pollination is critical for survival.

Aloidendron dichotomum—previously Aloe dichotoma, and commonly known as the 

quiver tree—is a unique and iconic succulent plant found in Namaqualand and other 

arid regions of southern Africa. It possesses a distinctive appearance, featuring a thick 

trunk that branches out into multiple symmetrically oriented stems. Its branches are 

adorned with densely packed succulent leaves, creating a striking crownlike look. 

The quiver tree has evolved to thrive in harsh desert conditions, utilizing its succulent 

leaves to store water during prolonged droughts. Within the local ecosystem, where 

few other tree species exist, it serves a vital role by o�ering shelter to various desert-

dwelling creatures. The San people have historically used di�erent parts of the tree 

for practical purposes, notably hollowing out its branches to fashion quivers (arrow 

holders) for hunting—hence its common name. Today, the quiver tree is a symbol of 

strength and beauty in the arid landscapes of southern Africa.

p Camouflaged 
Lithops
(top) A Lithops species 

consists of a two-lobed 

fused and thickened pair 

of opposite leaves with 

a very smooth texture 

and a very short stem 

that is not visible. 

(bottom) Succulent 

Lithops species are well 

adapted to survive in the 

desert and also di cult 

to spot by herbivores 

because they are 

camouflaged to resemble 

the pebbles of the 

environment.
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When the first astronaut set foot on our Moon in 1969, his footfall generated 

pu�s of dust that indicated a surface that was not simply solid, but mantled by soft, 

mobile sediment. The growth of extraterrestrial exploration (via multiyear, even 

multidecadal, unmanned spacecraft missions that have reached, orbited, observed, 

and returned data from planetary bodies to Earth) is providing a wealth of data on 

other landscapes in our solar system. Dunes have been identified on three other 

planets (Mars, Venus, and, more recently, Pluto) and on one of Saturn’s moons, 

Titan, while massive dust storms have been observed across the surface of Mars 

and Titan. Even alluvial fans are observed on Mars—evidence, along with possible 

channel systems, of the presence of water in the past. Remotely controlled rover 

vehicles have also been landed on the surfaces of both the Moon and Mars and 

successfully utilized in exploration, providing images akin to those we have of 

Earth’s deserts, as well as carrying out simple experiments on the sediments 

and features they have encountered.

Planets and moons have to have atmospheres in order for sediment-moving winds 

to blow from high-pressure to low-pressure areas. For there to be sediment to move 

in the first place requires rock breakdown via weathering, which in turn calls for 

significant temperature di�erences or some form of salt crystallization to force 

Beyond Earth: deserts of the universe
If moisture deficits define aridity (on Earth), then the absence of moisture on other terrestrial 

bodies in our solar system suggests that desertlike conditions could, even should, be present 

in their landscapes. And to some degree this is the case, though marked di erences compared 

to Earth in surface temperatures, and in atmospheric densities and compositions, make 

direct comparisons with our deserts—and expectations of what features might be found, 

or formative processes experienced—rather challenging.

u Red storm
In June 2018, a dust 

storm developed on 

Mars that eventually 

engulfed the planet’s 

entire surface. NASA’s 

Curiosity Rover vehicle, 

which has operated 

continuously in Mars’ 

Gale Crater since August 

2012, recorded the early 

stages of the storm that 

lasted over three days.
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particles apart. Planetary scientists tend therefore to consider “aridity” in the sense 

we understand it with reference to Earth to best apply to other bodies that first have 

a solid surface (thereby excluding gas bodies such as Jupiter) and second have 

atmospheres containing condensable gases (such as methane on Titan).

Mars, the cold red planet, 50 million miles (80 million km) farther away from the 

Sun than Earth, has experienced significant climate changes, including stages 

when liquid water was present—which may explain the presence of channel-like 

landforms in some regions. Today its thin carbon dioxide (CO2)-dominated 

atmosphere is conducive to the movement of sediment by wind, the most prevalent 

environmental process a�ecting its surface. There are many spectacular dune fields, 

and other areas showing the e¥cacy of wind erosion, where moving dust and sand 

have sculpted large fluted hills and faceted the surfaces of exposed pebbles and rocks 

into ventifact forms.

Though a moon of Saturn, Titan is larger than the planet Mercury. It has a dense, 

extremely cold (average temperature –292 °F/ –180 °C) atmosphere of methane. 

This can condense into a liquid and fall as rain, explaining the occurrence of fluvial-

like landforms and lakes on the moon’s surface. Strong winds also allow aeolian 

processes to operate, with multiple fly-pasts by the Saturn-exploring NASA Cassini

spacecraft from 2004 to 2017 revealing fields of equatorial linear sand dunes 

comparable in morphology to those of the deserts of southern Africa and Australia.

The most recent discovery of arid landscape features has been on the surface of 

small, distant Pluto, which, depending on orbital position, is between 2.66 and 4.67 

billion miles (4.28–7.5 billion km) from Earth, and only a sixth its diameter. NASA’s 

New Horizons mission flew by Pluto in 2015, producing imagery that shows its thin, 

nitrogen-dominated atmosphere possesses winds that have formed the distinctive 

Sputnik Planitia dune field—made not of sand but of frozen methane particles 

deposited on the surface of one of the planet’s extensive ice plains.

p Martian winds
Wind is one of the most 

active forces shaping 

Mars’ surface in today’s 

climate. Wind-carved 

features such as these, 

called “yardangs,” are 

common on the Red 

Planet. Wind has also 

deposited fine sand on 

the floor of shallow 

channels between the 

yardangs. On the sand, 

the wind forms ripples 

and small dunes. In 

Mars’ thin atmosphere, 

light is not scattered 

much, so the shadows 

cast by the yardangs 

are sharp and dark.
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PLANETARY DUNES
Dunes on other planets come in all sorts of patterns, forms, 

and materials. Many forms are similar to dunes on Earth: 

for example, in the Belet dune field on the equator of Saturn’s 

moon Titan, linear dunes extend east–west over tens of miles, 

spaced about 1.2 miles (2 km) apart, captured here in a radar 

image from the Cassini spacecraft. On Mars, we have the 

benefit of dune images not only from space but captured on 

the surface by the Curiosity Rover. For example, “barchanlike” 

dunes have been recorded in high resolution from NASA’s 

Mars Reconnaissance Orbiter, in this example (farthest right) 

in 2015, showing ripples on the dune’s upwind side as the dune 

migrates over a fractured rocky surface (from the top-right 

corner of the image toward the bottom left). The amazing 

Curiosity image of another barchan form, the so-called Namib 

dune in the Bagnold dune field (named in honor of one of 

Earth’s most spectacular dune fields and, in turn, one of dune 

science’s earliest proponents, Ralph Bagnold), shows the 

downwind slip face of the dune, again in 2015. This is about 

13 feet (4 m) high, and displays the typical patterns of sediment 

avalanches that form as a dune moves forward. Repeat analyses 

suggest that this dune is migrating at a rate of about 3 feet (1 m) 

per Earth year. The upwind, or lee, sides of the dunes are 

covered in ripples, shown in close up in another Curiosity 

mosaic image, from the Bagnold dune field. Elsewhere on Mars, 

dunes that do not have an earthly analogue are found.

0
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p Titan dunes
The Belet dunefield on Titan.

u Barchan
A classic barchan dune on Mars.

q Martian dune
Curiosity Rover image of the slip face 

of the “Namib dune” on Mars.
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What causes dryness, and where?
It is possible to break down the atmospheric and environmental factors that cause the 

moisture deficits around the globe into four broad influences: atmospheric stability; distance 

from the ocean (or “continentality”); topographic (“rain shadow”) e�ects; and the influence of 

cold ocean currents on neighboring coastal areas.

Every desert and dryland area on Earth is caused by at least one of these factors. 

The great belts of subtropical deserts, including the Sahara, Arabian, and Thar 

Deserts of the northern hemisphere, and the Kalahari and Australian Deserts of 

the southern, result from atmospheric stability that limits rainfall. The extensive 

deserts of central Asia and China are largely caused by their great distance from 

the oceans. Desert areas also occur on the lee (downwind) side of mountain barriers, 

creating dynamic deserts and drylands, particularly in North and South America. 

Finally, on a much smaller scale than any other mechanism, cold ocean currents 

cause dryness on the western Atlantic coast of southern Africa, parts of the Pacific 

coastlines of South and North America, and, to a lesser extent, the west coast of 

Australia. While the areas a�ected by this final influence are relatively small, 

the processes involved have contributed to the existence of two of the driest 

deserts on Earth: the Namib and Atacama.

Each of these mechanisms results in limited moisture in the atmosphere over the 

land, and therefore to little precipitation. To compound matters, some individual 

desert areas are influenced by more than one of these factors. For example, low 

precipitation in the heart of Australia is a�ected not only by its subtropical location, 

q Dryness drivers
The generalized main 

causes of aridity in the 

world’s desert and 

dryland areas.

Subtropical

Continental

Rain shadow

Ocean current
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but by distance from the ocean, while the eastern Australian interior is also 

impacted by the north–south Great Dividing Range inhibiting rain-bearing easterly 

trade winds reaching farther inland. Taken together, almost 75 percent of Australia 

is consequently either arid or semiarid.

Land masses are not equally distributed over the Earth’s surface, with 68 percent 

found in the northern hemisphere. When combined with the occurrence of the 

atmospheric and environmental factors that cause deserts and drylands, the size of 

landmasses as well as their latitudinal distributions result in each of Africa and Asia 

possessing over 30 percent of global arid lands, with 12 percent in North America, 

around 5 percent in southern Europe, just 9 percent in South America, and 11 percent 

of the global total in Australia.

RIVER IN THE SKY

Scientists have often wondered why tropical East Africa, 

spanning South Sudan, Ethiopia, and Kenya, is dryland—its 

latitude means it ought to be a wetter region, like the Congo 

Basin to the west. Research in 2023 by Callum Munday and 

colleagues has shown that the answer seems to lie in the 

effect of the east–west Turkana Basin, a gap between the 

Ethiopian and Kenya Highlands created by faulting in the East 

African Rift. This channels low-level winds from the Indian 

Ocean as the “Turkana Jet,” carrying water vapor away from 

eastern Africa toward the Congo, drying the former and 

making the latter even rainier than it would otherwise be.
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Atmospheric stability: 
subtropical deserts and savannas
The subtropics, centered on latitudes 30° North and 30° South, are the location of great 

atmospheric belts of moisture-limited stable air. Atmospheric stability tends to bring dryness, 

creating the major desert and dryland zones of Afro-Asia that include the Sahara, Arabian, Lut, 

and Thar Deserts; the Sonoran and Chihuahuan Deserts of North America; and the large, 

dry expanses of the Kalahari and Australia in the southern hemisphere.

Westerlies
High

SAHARA

North Easterly Trades

South Easterly Trades

KALAHARI

Mid-latitude cell

Hadley cell

Seasonal 
tropical 
rainbelt 
(moves north 
and south 
across the 
equator)

Hadley cell

Mid-latitude cell

Polar cell

Polar cell

High

Westerlies

Dry descent
Many subtropical deserts and drylands, such as 

the Sahara and Kalahari in Africa, sit under the dry 

descending air of the atmospheric Hadley cells. The 

diagram below shows the general position of the Earth’s 

circulation cells and the associated surface winds.
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q Subtropical Arabia
The desert dunes of 

the Arabian Peninsula, 

here in the United Arab 

Emirates, are influenced 

by the aridity caused 

by dry descending 

subtropical air.

These stable air masses represent the descending limbs of large circulation cells that 

originate in the wet tropics (the Hadley cell) and the mid-latitudes. Descending air is 

generally moisture-depleted, creating stable conditions in the lower atmosphere, 

and surface trade winds that blow out of the driest areas, further limiting rainfall 

incursion and contributing to evaporative loss. The resulting dry conditions tend to 

comprise central arid regions, with surrounding semiarid and dry-subhumid areas 

that are a�ected seasonally by elements of the monsoon rains of the tropics or the 

westerly depressions of the mid-latitudes.

Given their subtropical location, many of these deserts and drylands are hot all year 

round (mean temperatures of the warmest months exceeding 86 °F [30 °C]), such as 

in the central Sahara and Arabia, or they have hot summers and mild winters (mean 



coolest month temperatures in the 50–85 °F [10–30 °C] range), for example in the 

southern Sahara, the Kalahari, and the deserts of Mexico. These expansive deserts 

include depositional sedimentary basins that have some of the most extensive areas 

of sand dunes on Earth.

The aridity gradient of subtropical drylands results in a transition from almost 

vegetation-free conditions to surrounding better-vegetated areas, sometimes called 

semideserts. These have a distinct climatic seasonality, expressed not so much in 

temperature variations as in the distinct timing of rainfall. On the equatorial side of 

subtropical drylands, vegetated areas comprise savanna grasslands and dry tropical 

woodlands, the result of a commonly short, hot, summer rainy season and dry winter 

months, which aggregate to give a net mean annual moisture deficit.

Some subtropical savanna areas occur without an associated desert core—notably 

the Cerrado (Portuguese for “savanna”) and neighboring Caatinga (dry, thorny 

shrubland) regions of central-eastern Brazil. Other subtropical drylands also have, 

on their temperate (mid-latitude-facing) margins, conditions with a reverse 

seasonality of wet winter months and hot, dry summers. These include so-called 

Mediterranean climates, among which are the semiarid to dry-subhumid drylands 

of the extreme north of Africa, the Levant, and southern Europe, as well as occurring 

in southeastern and southwestern Australia and South Africa’s Cape region.

u Cerrado
Located between the 

Amazon Basin and 

Pantanal wetlands, this 

extensive savanna area 

covers over 7.5 million 

square miles (2 million 

sq km) of Brazil.

q Desert dates
The oasis at Tafilalt, 

Morocco, sits on the 

northern margin of 

the subtropical 

Sahara Desert.
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Deserts and drylands of the continental interiors
Continentality, or distance from the ocean, is an important contributor to moisture deficits in 

the interior of the largest land masses. Continentality is responsible for the great desert areas of 

central Asia centered on latitude 45° North, and the dry regions of central North America, as well 

as acting as an additional contributor to aridity in the heart of the Sahara and Australia.

Rain-bearing winds, such as the tropical monsoons and temperate-region westerly 

depressions, derive most of their moisture from the oceans. Precipitation on land 

generally therefore decreases in an inland direction from the coast.

Asia
The belt of mid- and higher-latitude drylands that stretches from the Caspian Sea 

in Turkmenistan in the east, to Mongolia and China in the west, is a function of 

continentality, with the Dzoosotoyn (Gurbantünggüt) Desert, in the China–

Kazakhstan borderlands, up to 1,644 miles (2,645 km) from the nearest ocean, being 

the most continental place on Earth. Other major deserts of continental Asia include 

the Gobi (“waterless place”) in Mongolia and China, the Taklamakan Desert of China, 

and the Karakum Desert of Turkmenistan. The Taklamakan and Gobi Deserts also sit 

at relatively high altitudes, ranging 2,900–5,000 feet (900–1,500 m) above sea level, 

which, when combined with distance from the moderating e�ects of the ocean, 

q Gobi Bactrian
This camel species 

native to the Gobi 

Desert, Mongolia, 

is well adapted 

to the continental 

desert climate.
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leads to seasonal temperature extremes. Mean monthly summer temperatures can 

readily exceed 86 °F (30 °C) in some places, while mean monthly winter temperatures 

can fail to reach 32 °F (0 °C). Plants and animals therefore have to display distinct 

adaptations to survive such extremes.

North America
Much of the western half of the North American interior is also dry due to distance 

from the ocean, the greatest distance being over 1,025 miles (1,650 km) near Kyle in 

South Dakota. The Great Plains grassland prairies of the United States and Canada are 

e�ectively drought-prone semiarid regions that also experience seasonal extremes 

of heat and cold: the northernmost latitude (up to around 53° North) of the Canadian 

Prairies makes them among the most northerly and coldest drylands on Earth. While 

the prairies are, in contrast to true deserts, agriculturally productive today, this is 

generally only achieved by using artificial means of irrigation on soils with poor 

moisture retention, with much of the region receiving less than 16 inches (400 mm) 

of mean annual rainfall. Natural grasslands and their extensive fauna have been 

dramatically altered over the past 200 years by human interventions—including 

arable cultivation and extensive stock rearing—so are now among the least “natural” 

drylands on Earth.

A notable feature of some Asian and North American continental deserts and 

drylands is that the very low temperatures result in snow cover being a major 

characteristic of long winter months.

p Canadian Prairies
Continentality and a 

higher latitude bring 

cold winter conditions 

to the plains of 

Saskatchewan.
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Mountain-building, or orogeny, has been particularly important for the development 

of the deserts and drylands of the western United States and throughout Asia. 

Mountains also contribute to dryness in parts of the eastern and western Sahara, 

Australia, and South America.

North and South America
In North America, mountain ranges that stretch from northern Mexico through 

California to southern Oregon, including the Sierra Madre, Sierra Nevada, and 

Cascade Range, provide an e�ective trap for moisture emanating from the eastern 

Pacific Ocean. This creates the Great Basin and Mojave Deserts in their lee, as well 

as contributing to the aridity of the subtropical Chihuahuan Desert. Farther east, 

the extensive Rocky Mountains, extending from Canada to New Mexico, cast a rain 

shadow on the interior plains and prairies. The geological faulting and rifting that 

created the region’s mountains has formed a series of parallel ridges and troughs 

with abrupt altitude changes, giving rise to the name Basin and Range Province 

for the region as a whole.

Rain shadow deserts
Mountain ranges, especially those parallel to ocean margins, can block the passage of 

rain-bearing winds and cause rainfall on windward slopes, resulting in drier conditions 

on their lee (downwind) sides.
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The uplift of mountain-building has also meant that rivers such as the Colorado have 

cut deep canyons into the desert landscape. The 5,250 feet (1,600 m) mean elevation 

Colorado Plateau is also dryland a�ected by rain shadow factors from the mountains 

to the west. In South America, the largely semiarid Patagonian and Monte Deserts of 

Argentina similarly lie in the rain shadow of the Andes Mountains.

Asia
Several desert and dryland areas of Asia result from, or are enhanced by, rain shadow 

e�ects. East of the Caspian Sea, for example, the Caucasus Mountains and the Hindu 

Kush contribute to aridity in the Karakum and Kyzylkum Deserts, while the cold 

winter semiarid steppe lands of eastern Turkey and Syria are at least in part 

shadowed by the Taurus and Pontic Mountains. Iran’s Lut Desert, which experiences 

some of the hottest summer temperatures on Earth, is located in an interior 

mountain-rimmed basin.

Typical landforms
Mountains often have a direct e�ect on the landforms of their shadow deserts, too. 

Mountain-sourced rivers, often with a spring peak flow from snow melt, and which 

may have been more active during past wetter climate conditions, have deposited 

sediments that form desert salt lakes or provide the material for sand dune 

formation. Another characteristic landform of many dynamic deserts, notably in 

North America and Iran, are extensive and distinctive alluvial fans that cover 

desert-facing mountain slopes. 

Great Sand Dunes
In Colorado, pockets 

of dunes have formed 

where rain shadow 

conditions and 

sediments from rivers 

provide the setting for 

dunes to develop in the 

lee of mountains.

q Landlocked desert
The Hindu Kush 

mountains provide a 

significant obstacle for 

rainfall penetration into 

the interior drylands of 

Tajikistan and 

Afghanistan.



Where cold Southern (Antarctic) Ocean water currents upwell and reach the ocean 

surface in the subtropics in latitudes 15–34° South, they have the e�ect of cooling 

the lower atmosphere, enhancing the aridifying e�ects of descending stable 

subtropical air. The cold water both limits the ability of rain clouds to form over 

the ocean through convection, and creates fog through condensation as cold air

 has a lower capacity than warm air to store water vapor. These conditions then a�ect 

neighboring coastal areas, creating narrow deserts up to 1,200 miles (2,000 km) long 

and extending inland for up to 100 miles (160 km). The rotation of the Earth means 

that currents tend to flow along the west coast of landmasses.

While the Namib (and its northern extensions) and Atacama Deserts are the most 

distinctive manifestation of the aridifying e�ects of cold southern-hemisphere 

ocean currents, the same processes occur to a lesser degree on the west coast of 

Australia. In the northern hemisphere, cold currents originating in the Arctic Ocean 

have a similar e�ect on the coast of the United States and Baja California in Mexico, 

enhancing dryness in the Sonoran Desert, as well as in the Canary Islands o� the 

west coast of Africa’s Sahara Desert.

In the most coastal parts of these deserts, fog can be the dominant source of 

moisture, amounting to only a few millimeters of precipitation each year. The Namib 

and Atacama are renowned for the specialist animal and plant adaptations to this 

unusual dominant moisture source. While some parts of these deserts are 

represented by rocky landscapes, the coastal locations can result in wave action 

bringing significant quantities of sediment to the dry coastline. Strong onshore 

winds transport this material inland, building in the Namib a distinctive “sand sea” 

that possesses some of the biggest dunes on Earth, up to 1,000 feet (300 m) high.

Ocean-margin deserts
Narrow coastal deserts occur on the west coast of several landmasses, due to the impact of cold 

ocean water on the ability of rain clouds to form. The Namib and Atacama Deserts (see the map 

opposite)  are among the driest places and oldest deserts on Earth.

q Atacama
Cold fogs called the 

Camanchaca can 

bring moisture from 

the cold ocean to the 

neighboring hyperarid 

desert landscape.
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GLOBAL MAP OF COLD CURRENTS 
AND ASSOCIATED DESERTS
Cold-water currents contribute to aridity in west-coast 

deserts—notably the Namib, Atacama, and Sonoran Deserts, 

but also in western Australia and the Canary Islands off the 

Saharan coast. The inset shows how the Benguela Current, 

which cools the southern African west coast, forms part of 

a more extensive ocean-water circulation system called the 

South Atlantic Gyre. Warm surface water is shown in orange; 

cold surface water is blue.



60 WHY ARE THERE DESERTS ON EARTH?

McMurdo Station, a research facility on the coastal tip of Antarctica’s Ross Island, 

receives on average 7.9 inches (200 mm) of precipitation a year. Another, the 

Amundsen–Scott South Pole Station—more than 740 miles (1,200 km) from the 

landmass margin—has recorded on average 2 inches (50 mm) of precipitation per 

year. At Vostok Station, which is located at the southern geomagnetic pole, less than 

0.2 inches (5 mm) of annual precipitation is recorded, making it one of the very driest 

(and, with a mean temperature of –67 °F [–55 °C], coldest!) places on Earth.

Antarctica can also be very windy, and wind provides an important mechanism 

for the movement of sediment and loose material in dry environments that lack 

protective vegetation. The British Antarctic Survey runs six research stations on the 

continent. They report generally moderate wind-speed conditions year-round, with 

a mean speed of 6 meters (19.7 ft) per second (m/s), which is around the threshold 

speed at which loose particles start to be blown around. Also notable is that over 

40 days a year are reported to experience gales, when wind speeds exceed 30 m/s 

(98 ft/s), and even hurricane-force gusts (over 55 m/s [180 ft/s]). One factor that makes 

Antarctica generally windy is its high plateau nature. Cold air flows o� this surface 

toward lower coastal areas, in what are called katabatic winds, which can make the 

margins of the continent particularly windy places.

On precipitation criteria alone, Antarctica could therefore be regarded as a desert, 

while its windiness also favors some of the common attributes of desert 

environments. Why is it not therefore formally recognized as a desert by 

organizations such as the United Nations Environment Programme?

To understand why, it is necessary to appreciate the scientific evolution of desert 

research during the twentieth century.

Land classifications
Following World War II, global concern rose regarding support for human 

populations living in drought-prone and dryland conditions. As a result, the United 

Nations Educational, Scientific and Cultural Organization (UNESCO) commenced 

a program concerning global food production, out of which grew analyses of aridity 

and the classification of land areas. The early work of the American geographer 

Peveril Meigs was especially influential in this regard, and remains so today. In 1953 

his aridity scheme, produced for UNESCO, classified deserts and drylands based not 

only on their e�ective precipitation amounts, but on temperatures being su�cient 

for crop growth. Thus Antarctica was, and continues to be, excluded from UN 

designations of desert areas.

Is Antarctica a desert?
As well as being extremely cold and windy, Antarctica receives the least precipitation of all 

the Earth’s continents—conditions that together favor aridity. Extremely cold air simply 

cannot transfer su�cient water from surrounding oceans to generate much precipitation: 

what small amounts occur are almost exclusively in the form of snow. Technically, 

precipitation levels are well within the values that are usually considered to designate 

desert conditions. But is Antarctica really a desert?
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That most of Antarctica is ice-covered—only 0.4 percent is not—also favors its 

exclusion from areas regarded as deserts, as most of its land surface is not exposed 

to the elements and therefore does not experience the direct impacts of atmospheric 

conditions and associated environmental processes. Contrastingly, seasonally very 

cold, and winter-snow covered, continental dry regions, such as the Gobi of Mongolia, 

are recognized as deserts because summer months are snow-free and warm enough 

for crop growth.

POLAR DESERT?  
Data from the few weather stations in Antarctica show 

that this continent is, in fact, the Earth’s driest.

Amundsen-Scott South Pole Station
9,301 ft (2,835 m) above sea level
Mean average temperature –56.9 °F 
(–c49.4 °C)
Mean average precipitation 0.2 in (5 mm)

0°

45°E

90°W

45
°W

180°

13
5°

E135°W

65°S

75°W

85°S

85°W

75°S

65°S

90°E

Vostok Station
11,312 ft (3,448 m) above sea level
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78.74 ft (24 m) above sea level
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The dunes of Antarctica
Antarctica is not a place where you would generally expect to find sand dunes, but 

there are circumstances on the continent where environmental conditions align to 

make their formation possible. As conditions of very low temperatures, aridity, and 

windiness are common on other planetary bodies, where unmanned exploration 

has led to the identification of extensive dune fields, the Antarctic dunes may be 

important analogs for their interpretation.

The Victoria Valley of Ross Island is one of a series of “dry valleys” near the Antarctic 

coast that are glacier-free in their lower reaches. Fine sand-sized sediment on the 

valley floor has accumulated in a glacial-outwash sand sheet, from material eroded 

by the Victoria Glacier and sourced from frost-weathered rocks exposed in the steep 

valley sides. The valley’s aridity and its windiness, assisted by the funnelling e�ect 

of the valley itself, provide unique local conditions that have allowed aeolian sand 

dunes to form in this ice-free part of the continent. Initially scientifically 

investigated in the 1960s, the first data on these dunes appeared in the 1970s, 

including a detailed field analysis in 1974, as interest grew in their potential as 

analogs for Martian dunes. Subsequent research has applied advanced methods such 

as ground penetrating radar (GPR), to understand the dunes’ internal structures and 

luminescence dating, which measures when sand grains became buried and 

therefore when they were deposited or ceased to be moved by the wind, allowing 

their age and rate of movement to be established.

The main dune field occurs in a belt that is just 2.2 miles (3.5 km) long and 0.6 miles 

(1 km) wide. Dunes are formed of sand blown westward in “summer” months from 

the sand sheet, and are mostly barchan dune forms, mobile features with distinct 

slip faces on their downwind edges. Northwesterly katabatic winds, however, cause 

q Dry valley dunes
Dry valley dunes provide 

an unusual landscape 

feature in a unique 

ice-free part of 

Antarctica.

Barchan and reversing dunesWhaleback dunes
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some seasonal reversal in movement direction so that some of the features may be 

what are known as reversing dunes. Individual dunes are up to around 1,950 feet (600 

m) from tip to tip and can be over 30 feet (10 m) high. Close to the sand sheet, another 

dune patch comprises features that are formed of coarser sand and have no slip faces 

and a generally rounded profile. These so-called “whaleback dunes” also have an 

active surface layer including a capping of gritty sediments, while their interiors 

are reported to be largely frozen.

GPR surveys of the barchan and reversing dunes have also revealed dune interiors 

that include distinct frozen snow layers within the stratified sand. Samples collected 

for luminescence dating show that the oldest dune sediments were deposited around 

1,300 years ago. The dunes remained stable until around 300 years ago, when 

circulation strengthened; movement today, at a rate of around 5 feet (1.5 m) per year, 

may now be heightened in association with temperature rises due to anthropogenic 

global warming.  

Satellite imagery has also revealed extensive dunelike patterns over large swathes of 

Antarctica’s interior plateau. These are snow forms upon the ice sheet surface, up to 

26 feet (8 m) high, with wavelengths that can be as long as 3.7 miles (6 km). Relative to 

sand dunes, these generate low, undulating surfaces, but they undoubtedly owe their 

existence to the transportation of dry snow and ice particles by strong katabatic winds.

Whether these features and the mobile dunes of the dry valleys are su°cient 

evidence to warrant Antarctica being regarded as a true desert landscape is not clear; 

however, it is certainly one of the largest dry regions on Earth, and it possesses 

marked evidence of the wind being an important environmental agency in shaping 

the surface of its landscape.

z Snow dunes
High on Antarctica’s 

bleak interior, satellite 

images have revealed 

fields of dunelike 

features formed 

from snow.

p Polar sand dunes
The dry valley dunes in 

Antarctica are formed 

of more usual material: 

sands washed out from 

under the ice sheet.
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Early maps
Mapping of deserts has occurred since prehistoric times, witnessed in rock art from the 

Sahara and Arabia. In this section we explore the history of desert mapping, from prehistory 

to the latest technological developments. The following pages draw extensively, but not 

exclusively, on the Sahara Desert and surrounding regions, where many mapping 

developments have played out and can be well illustrated.

The world’s earliest maplike drawings come in fact from drylands. In the deserts 

of Saudi Arabia and Jordan there are remarkable 9,000-year-old plan-view rock 

etchings of gigantic stone structures known as kites, used to aid hunting of wild 

animals. Amazingly, the remains of these structures still exist today (see pages 

188–189). Their makers had the uncanny ability to depict them accurately in their 

stone-engraved plans, despite not being able to see the kites from above. There is 

then little evidence of further developments in mapping from anywhere until about 
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u Early surveyors
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2,600 years ago, with conception of the first map of the world, the Imago Mundi. 

This is a clay tablet centered on ancient Babylon and surrounding desert regions in 

present-day Iraq, but it also depicts the rest of the known world of its maker, albeit 

in a stylized and schematic manner.

Early Egyptian art exhibits many aspects of mapping, at a similar time to the 

Imago Mundi. For example, the lid of a 2,400-year-old stone sarcophagus (co�n) 

bears a circular depiction of Egypt and the surrounding regions. An inner circle 

shows numerous standards associated with the ancient territorial divisions of 

Egypt, and an outer ring depicts its neighboring peoples. The goddesses of east and 

west are shown on the left and right of the outer ring respectively, thus allowing 

orientation of the inscription. By 1,150 years ago, Egyptian cartography had 

developed considerably, as evidenced by the Turin Papyrus, a map showing the 

location of a quarry deep in the desert that was to be reopened in order to acquire 

stone to build statues for the pharaoh Ramesses IV. This map is particularly 

important as it contains the earliest surviving depiction of topography.
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Though the Turin Papyrus has no scale, it is clear that the Egyptians could measure 

distance accurately, as evidenced by archaeological finds of a surveying instrument 

known as a merchet, as well as sticks and ropes. The Egyptians also used a unit of 

measurement known as a cubit, derived from the distance from the elbow to the tip 

of the middle finger. Because a few plans of buildings have survived, we know that 

the cubit, and the instruments developed to measure it, were used to survey and map 

urban areas. Pictures of surveyors measuring fields have also been discovered, 

indicating that they were used to make larger-scale maps showing land ownership 

too. Maps were also perhaps used to show trade routes across the Sahara. We know 

that the latter existed in Egyptian times and their users would have benefited 

considerably from the knowledge used to prepare them. For example, there is a line 
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t Ptolemy world map
Produced in the 
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left-hand quadrant.

of archaeological sites known as the Abu Ballas Trail that stretches some 250 miles 

(400 km) from Dakhla Oasis to the Gilf Kebir in the central Sahara. The site of Abu 

Ballas itself, which means “Father of Jars,” is a large pottery depot—one of many 

used to store water for the people and donkeys that used the trail. The first map to 

include geographical details of the Sahara was made by the Egyptian Claudius 

Ptolemy. Born around 100 CE, Ptolemy lived on the coast at Alexandria, where he 

had access to what was at the time the world’s greatest library. He was an expert in 

mathematics, astronomy, astrology, geography, and music, and wrote numerous 

books on these subjects, including what is known as the Geographia. The Geographia

explained how to draw maps using geographical coordinates based on a map 

projection. It then described how to use astronomical data to establish accurate 

locations, but also how to use less-precise travelers’ reports when these were not 

available. Ptolemy collated vast amounts of geographical information using these 

methods and employed it to construct a ground-breaking map of the known world at 

the time. Though the map did not have the specific aim of mapping deserts, it did so 

where they were known. However, even though Ptolemy lived on the edge of the 

Sahara, the map shows less detail here than it does elsewhere, suggesting a paucity 

of travelers’ reports from such a harsh environment. 

Furthermore, we now know that Ptolemy’s world map contained many errors for 

the Sahara region, which, despite its proximity to Egypt, is not even portrayed as a 

desert. Instead, it incorrectly shows the north-central Sahara as being drained from 

east to west by a large river system feeding numerous lakes along the way and 

eventually debouching into the Atlantic Ocean. In contrast, the mapping of the 

River Nile has stood the test of time, being relatively accurate—presumably because 

it had been an important trade route for thousands of years. The lesson to be learned 

from this map is that relying solely on a small number of travelers’ reports, as 

Ptolemy appears to have done for the Sahara, can lead to erroneous results.



No maps of the Sahara that we have evidence of today appear to have been produced 

for around a thousand years after Ptolemy’s time. A renaissance in Saharan mapping 

started with Muhammad al-Idrisi (1100–65), who spent his early life travelling in 

North Africa, then moved to Europe, where he continued his travels while also 

embarking on a career in geography and cartography. He is best known for the 

Tabula Rogeriana, a map of the known world that included a remarkable amount of 

detail on the location of settlements, mountain ranges, and rivers. For the Sahara, the 

map was a significant development. It contains much more detail than Ptolemy’s 

map, showing numerous previously unrecorded settlements. However, there is one 

obvious similarity—it indicates the erroneous east–west river crossing the Sahara 

that Ptolemy’s map introduced.

Mapping from exploration
The mapping techniques laid down by Ptolemy appear to have been lost during the Dark Ages 

that followed the collapse of the Roman Empire, but a renaissance in desert mapping seems 

to have begun in the twelfth century CE.
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nebkha dunes 131
parabolic 85, 131
planetary dunes 42, 43, 44–5
reversing dunes 63
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Serengeti, diversity of 29
serir 142
Shantz, Homer 37
sheep 230, 233, 235

argali sheep 226, 237
The Sheltering Desert 16
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slot canyons 128
Smith, Jonathan 84
snakes 180, 180, 182, 265
snow 37, 224, 228, 238, 240

Antarctica 60, 63, 63
continental deserts 55
Gobi Desert 61, 200
as water resource 233
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fossilized deserts 104
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subtropical deserts 50–3, 138–91

anatomy of 140–3
animal adaptations 176–83
Australian spinifex grasses 174–5
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Tunisian Sahara 17, 314

Turin Papyrus 67–8
Turkana Basin 49
Turkana Jet 49
Turkey, causes of dryness in 57
Turpan Depression 196
Tushka Megalake 93
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Wadi ad-Dawasir 316, 316, 317
Wadi Howar 96, 96
Wadi Rum 14, 14–15
wartime, mapping in 74–7, 78
Warren, Andrew 81
water

Aral Sea 326–9
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