
distributed, posted, or reproduced in any form by digital means without prior written permission of the publisher **CONTENTS**

INTRODUCTION

24

FORM AND FUNCTION

82

DEALING WITH

THE ENVIRONMENT

118

REPRODUCTION

154

DIET AND FEEDING

198

ENEMIES AND DEFENSE

234

SNAKES AND HUMANS

278 Glossary

281 Resources

282 Index

288 Acknowledgments

288 Picture credits

For general queries, contact info@press.princeton.edu

Snakes of many colors

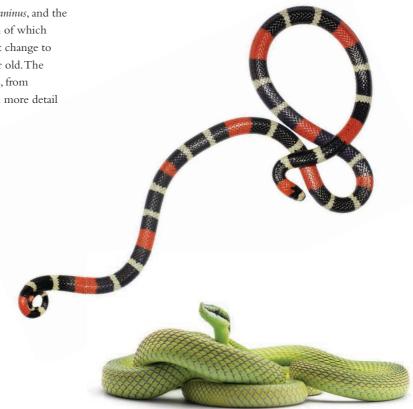
Snakes' colors are largely dependent on the environment in which they live. In cool places, dark-colored snakes will warm up more quickly when exposed to radiant heat from the sun, whereas light-colored species reflect heat. The need to maintain the right temperature must be balanced with the need to be inconspicuous and avoid the attentions of predators.

DIFFERENT TYPES OF COLOR

Colors in snakes are produced in three different ways. Pigments may be contained within the color cells (chromatophores). These consist of colored chemicals, of which melanin is the most common, resulting in brown or black areas. Red and orange are produced by carotenoids, and yellow may be produced by either melanin or carotenoids; white is produced by guanine.

Iridescent effects are the result of a process known as interference. This occurs when light strikes the translucent outer layer of a snake's scales at an angle and splits into its component parts, like a rainbow or a film of oil on a puddle.

Finally, there is Tyndall scattering, in which small particles known as iridophores embedded in the snake's cells refract and reflect light in a particular way, so that light at the shorter (blue) end of the spectrum is reflected more than other parts. Very few snakes are blue, however, because in most cases a layer of yellow chromatophores overlies the blue-producing cells, turning the blue to green—although blue snakes do exist.


SHADES AND PATTERNS

More than one type of color production may be found in a single snake, thus forming various shades and patterns. The distribution and type of color cells may change throughout the snake's life so that juveniles look very different from adults. The best-known examples of

SNAKES OF MANY COLORS

these are the Emerald Tree Boa, *Corallus caninus*, and the Green Tree Python, *Morelia viridis*, in both of which juveniles are bright yellow (rarely red) but change to green by the time they are about one year old. The convergent evolution of these two species, from opposite sides of the world, is discussed in more detail on page 52.

- ← The South American Rainbow Boa, Epicrates cenchria, is so named because of the iridescent nature of its scales, an example of interference coloration.
- → (Top) The brightly colored South American Coral Snake, Micrurus lemniscatus, is an example of warning, or aposematic, coloration.
 (Middle) Baron's Green Racer, Philodryas baroni, is a handsome, fast-moving, diurnal species from the drier parts of Argentina, Bolivia, and Paraguay.
 (Bottom) A particularly colorful specimen of the Australian Carpet Python, Morelia spilota, belonging to the subspecies cheynei, sometimes known as a Jungle Carpet Python.

Ornamentation

Snakes lack the ornamentation we see in many birds and lizards, as visual display is not an important part of their lives. Flaps and protuberances, the purposes of some of which are unknown at present, are mostly confined to the head and are found in only a few species.

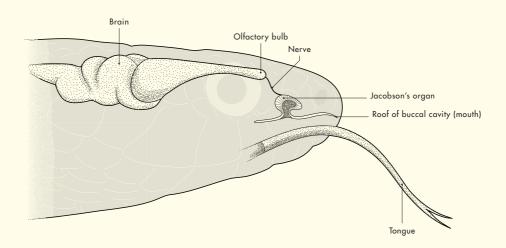
A single modified, thorn-like scale is found over each eye in such species as the Desert Horned Viper, *Cerastes cerastes*, or there may be a small cluster of such scales, as in the Eyelash Pit Viper, *Bothriechis nigroadspersus*, and the Many-horned Viper, *Bitis cornuta*. The Sidewinder, *Crotalus cerastes*, and three species of false-horned vipers, *Pseudocerastes*, have a structure consisting of raised and enlarged scales over each eye. The function of these is not known, but may serve to disguise the outline of the snake's head or its eyes.

Snakes with protuberances on their snouts are more common and widespread. Examples include the three species of Madagascan leaf-nosed snakes, Langaha, and the Rhinoceros Ratsnake, Gonyosoma boulengeri (until recently known as Rhynchophis boulengeri). The Nose-horned or Sand Viper, Vipera ammodytes, is a European species with an upturned snout, and another viper, the Rhinoceros Viper, Bitis nasicornis, has a cluster of pointed scales on its snout. The purpose of these nasal structures is unclear, but in one speciesthe aquatic Tentacled Snake, Erpeton tentaculatum—the paired appendages contain nerves that can detect vibrations and changes in pressure in the water around them, enabling the snake to find its fish prey in turbid water or at night.

- ← The Desert Horned Viper, Cerastes cerastes, does not always have horns; some lack horns, and even the same clutch of eggs can produce horned and non-horned individuals.
- → A number of snakes have horns comprised of a single, large, pointed scale, especially pronounced in this spectacular and well-named Rhinoceros Viper, Bitis nasicornis, from Africa.

The sensory world of snakes

An essential element in the way organisms live involves the gathering of information about their surroundings. Because of their evolutionary history as burrowing animals, snakes use their senses and sense organs in ways that are different to most other animals, including ourselves.


Most snakes' eyesight is generally poor compared with humans, as is their sense of hearing (although they are not deaf, as is popularly believed). To compensate, they have an acute sense of smell, and many species have a remarkable ability to detect minute temperature changes.

CHEMICAL COMMUNICATION

Chemical communication (smell) is very important. When a snake detects some change in its environment it immediately flicks out its tongue through a notch in the upper jaw, known as the lingual fossa, and uses it to pick up scent molecules. These are returned to the mouth, where the twin tips of the forked tongue are inserted into a pair of sacs on the roof of the mouth, known as the Jacobson's organ. The scent molecules are transferred from here to

Jacobson's organ

Snakes use their forked tongue to pick up scent particles, before transferring them to the Jacobson's organ, situated in the roof of the mouth.

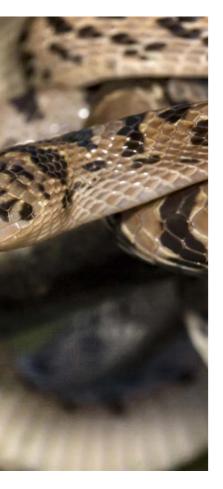
THE SENSORY WORLD OF SNAKES

the olfactory part of the brain, along with messages obtained through the nostrils, and analyzed.

Snakes regularly monitor their surroundings by tongue-flickering. They use the information obtained to hunt for prey, detect potential enemies, and search for mates. Their olfactory system is extremely sensitive, and snakes have been known to sit by rodent trails that are many days old in wait for prey to pass by.

As snake-keepers will no doubt confirm, captive snakes become agitated if food is placed in the same room, even if it is some distance from the cages and inside a container, and this is often accompanied by an increase in the frequency of tongue-flickering.

SIGHT


Unusually for predators, most snakes have poor eyesight. The most primitive snakes, the Scolecophidia, all of which are confirmed burrowers, have only rudimentary eyes, covered with one or more scales, and capable only of distinguishing light from dark. The more advanced snakes have, to some extent, reinvented the eye, but only to a limited degree.

Focusing is very primitive compared with other vertebrates, and consists, for the most part, of moving the lens backward and forward. In addition, the cells lining the retina—the rods and cones—are not as well organized as they are in other vertebrates, and some species lack one or the other of them altogether. All

these drawbacks result in the inability to spot and identify stationary objects, although they are more alert to moving objects.

Snakes that hunt by day, such as the various racers, whipsnakes, and garter snakes, tend to have large eyes with circular pupils. Nocturnal hunters also have large eyes, but their pupils usually take the form of vertical ellipses, which can be closed down to narrow slits in bright light. Horizontally elliptical pupils occur only in the Asian vine snakes, *Ahaetulla*, of which there are 21 species, and the three African twig snakes, *Thelotornis*. These horizontal or "wrap-around" pupils allow the snake to see forward with both eyes (binocular vision) and thus to judge distance accurately. In the *Ahaetulla*

THE SENSORY WORLD OF SNAKES

NT The pupils of the Asian vine snakes, Ahaetulla species, are horizontally elliptical, allowing them to look forward along the grooved snout and judge distances accurately.

- ↑ The vertical pupil in this strictly nocturnal tree snake, *Lycodryas pseudogranuliceps*, from Madagascar, has closed down to a small aperture.
- 71 The diurnal Parrot Snake, Leptophis ahaetulla, from South America, has large round pupils. It hunts lizards, frogs, and invertebrates, largely by sight.
- The eyes of the Aquatic Coral Snake, Micrurus surinamensis, which feeds mostly on eels and other fish, are situated toward the top of its head so that it can look upward when it is partially submerged.

species, this ability is further enhanced by a long narrow snout with concave sides along which the snake can sight its prey.

Snakes' eyes are usually positioned on the sides of their heads, giving them a wide arc of vision to the front and back, useful for locating prey and predators. A few species have their eyes positioned on top of their heads, looking straight up. These are either aquatic snakes that rest on the water surface, such as the file snakes, *Acrochordus*, and the unusual aquatic coral snake, *Micrurus surinamensis*, or species that burrow in sand leaving just their heads exposed, such as the Arabian Sand Boa, *Eryx jayakari*, and the Namib Side-winding Adder or Péringuey's Adder, *Bitis peringueyi*.

HEAT DETECTION

Heat detection is highly developed in several groups of snakes, and has evolved more than once. It is unique to snakes and, in the species that have it, more than compensates for poor sight and hearing.

Specialized heat-sensitive pits are lined with epithelial cells that are connected to the brain by nerves. Amongst the boas and the pythons, pits are located in or between the scales bordering the mouth. Not all species have them, though, and where present they may be large and numerous or small and few. They are most noticeable in the larger, mammaleating species belonging to the genera *Corallus*, *Sanzinia*, *Liasis*, *Morelia*, *Python*, and *Malayopython* but are completely absent in other species such as the Common Boa, *Boa constrictor*, and all of the Erycinae (sand boas, rosy boas, and rubber boas).

The most highly developed heat pits are found in the pit vipers (subfamily Crotalinae), a group that includes rattlesnakes, *Crotalus* and *Sistrurus*, and several other genera in the New and Old World, such as *Bothrops* and *Trimeresurus*. In these snakes the pits are paired, and located on either side of the head, just below an imaginary line between the eyes and the nostrils. They are directed forward and look like an extra pair of nostrils. Some pit vipers are known as *cuatro narices* or "four nostrils" in parts of Latin America.

These pits are more sophisticated than those of the boas and pythons, having two chambers separated by a membrane. The ambient temperature is detected by the inner chamber, while the outer chamber detects heat originating from a warm-blooded animal.

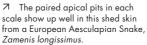
In experiments, some pit vipers have been shown to detect temperature differences of as little as 0.001 °C. Because the organs are paired, they work together "in stereo" to assess range as well as direction, and the snake is able to accurately strike at prey, even in total darkness, usually targeting the head or the thoracic region where the venom will act most quickly.

HEARING AND OTHER SENSES

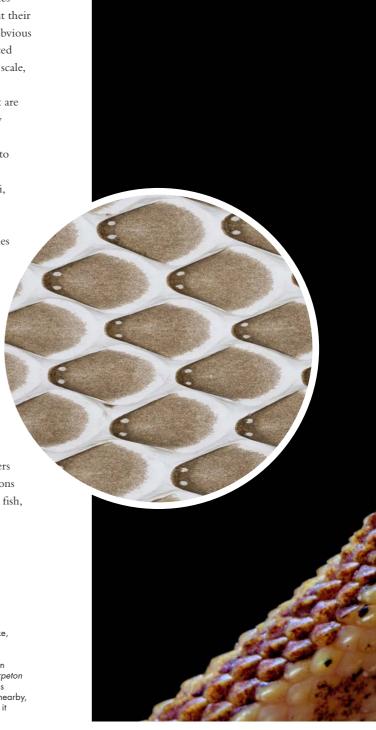
Snakes' hearing is not on a par with most other vertebrates, but they can pick up vibrations through the ground, via their lower jaws, which are in contact with the quadrate bone and the columella, a small bone that transmits vibrations to the inner ear (equivalent to the stapes in mammals). Low-frequency airborne sounds may also trigger vibrations, but, because they have no eardrum, snakes can only detect a limited range of airborne vibrations, much less than mammals.

- Seen from this angle, the heat pits of the Jumping Viper, Metlapilcoatlus nummifer, are clearly directed forward.
- As in all pit vipers, the heat-sensitive pits of this White-lipped Island Pit Viper, *Trimeresurus insularis*, are positioned roughly between the eyes and the nostrils.
- → In the Emerald Tree Boa, *Corallus batesii*, the heat pits are positioned between the upper and lower labial scales.

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.



SENSE ORGANS IN THE SCALES


A number of structures on and between the scales of snakes are thought to carry information about their surroundings to the nervous system. The most obvious of these are apical pits, paired sense organs situated either side of the keel or midline of each dorsal scale, absent in some species but present in most. The functions of these pits, and others like them that are found on the head scales, are uncertain, but they are served by nerve endings and probably relay information about the immediate environment to the snake's brain. They may be sensitive to light, temperature, touch, or airborne chemical stimuli, or possibly a combination of these.

Similarly, there are small tubercles on the scales around the heads of most snakes, sometimes numerous but at other times very sparsely distributed. They are thought to be organs of touch, and, in some species, especially aquatic snakes, the tubercles are equipped with a small bristle, which may detect movements in the water caused by nearby animals.

The only such structures that have been investigated thoroughly are those in the paired appendages on the snout of the Tentacled Snake, *Erpeton tentaculatum*, from Southeast Asia. This aquatic species feeds on fish and hunts in turbid water and at night. The sense organs in its tentacles consist of clusters of nerve endings that apparently react to vibrations in the water caused by the movement of nearby fish, enabling it to strike rapidly and accurately even when the prey is not visible (see page 188).

[→] The unique paired structures on the snout of the Tentacled Snake, Erpeton tentaculatum, contain nerve endings that sense movements in the water nearby, helping it to detect prey even when it cannot see it.

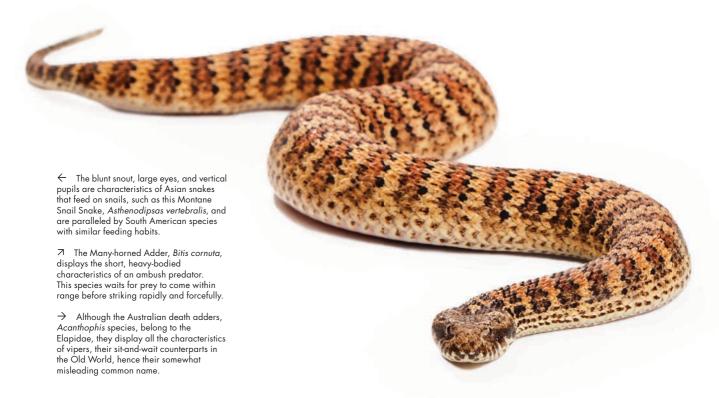
THE SENSORY WORLD OF SNAKES

Convergent evolution

Animals that live in similar habitats often share certain aspects of their appearance and behavior, because each species has arrived at the same solution to the challenges they have in common. This is known as convergent evolution, and there are several well-known examples among the snakes.

The emerald tree boas, *Corallus caninus* and *C. batesii*, and the Green Tree Python, *Morelia viridis*, though belonging to different families and hailing from opposite sides of the world, are remarkably similar in their appearance, their behavior, and the way in which their color changes from yellow to green during their early growth. All three species live in rainforest habitats and feed largely on birds, relying on their camouflage to ambush their prey and their long curved teeth to grip and hold on.

Another example can be seen in the sidewinding vipers, *Crotalus cerastes* from North America (page 78) and *Bitis peringueyi* from southern Africa (page 100), and members of a third genus, the horned vipers, *Cerastes*, from North Africa (page 106). All of these live among loose, windblown sand dunes and, as well as looking similar and being of similar sizes, have evolved a similar method of locomotion (page 59).


The arboreal species *Sibon annulatus*, and its close relatives from tropical America, and the Blunt-headed

Slug Snake, *Aplopeltura boa*, along with other members of the Pareatidae from Southeast Asia, are all slug- and snail-eaters and share the characteristics of a large head, blunt snout, large eyes, and modified jaws adapted to extract snails from their shells.

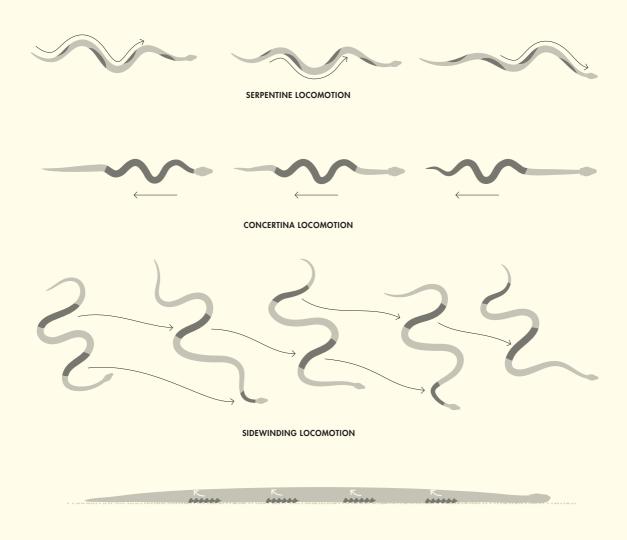
On another level, the Australasian snakes belonging to the genus *Acanthophis*, commonly known as death adders, bear a striking resemblance to vipers, especially to members of the African genus *Bitis*, having stout bodies, a broad, triangular head, long fangs, heavily keeled scales (apart from one species), and sedentary habits. Despite their collective common name, they are not adders but members of the Elapidae. It is assumed that their body plan, hunting strategy, and reproductive habits have evolved to fill the niche left vacant by the absence of true vipers in that part of the world.

Moving around

Snakes clearly need to find a way to move around in their environment as they hunt for food, escape predators, find mates, and thermoregulate, and they must pursue all these activities despite lacking limbs. They use a number of techniques, some more specialized than others, and most snakes can use more than one means of locomotion.

The most widespread types of locomotion fall into three main categories: serpentine locomotion on the land (crawling) and in water (swimming); concertina locomotion, often used by burrowing snakes; and rectilinear locomotion (crawling in a straight line), used mostly by heavy-bodied snakes when moving slowly. Three additional methods are used by a handful of species that live in particular habitats: climbing, gliding, and sidewinding.

To a large extent, habitat determines which method a snake uses. They are not mutually exclusive, however, so an individual may switch from serpentine locomotion to concertina locomotion or straight-line crawling, for instance, according to its needs.


SERPENTINE LOCOMOTION

This is the most common form of locomotion. The snake wriggles from side to side, using the sides of its body to push against irregularities in the ground, rocks, or vegetation. At any given time, several points along the snake's body are pushing simultaneously against a number of different fixed objects. As the snake moves, new parts of the body come into contact with the same objects, and so all parts of the body follow the same line and the snake moves forward steadily and almost imperceptibly. The speed of movement will depend on the roughness or smoothness of the substrate, the shape of the snake, and its reason for moving.

← A South American Puffing Snake, Spilotes sulphureus, travels across rough ground using serpentine locomotion. During swimming in open water the same movements occur but the body of the snake pushes against the resistance of the water. Snakes that spend a large part of their time in water may have heavily keeled scales, and a laterally flattened body shape (flattened from side to side), to improve their purchase on the water. Marine snakes have an oar-shaped tail.

Snake locomotion

Snakes use a variety of methods of locomotion depending on the situation in which they find themselves. Serpentine is the most common; the other methods are used occasionally, depending on species and substrate.

RECTILINEAR LOCOMOTION

CONCERTINA LOCOMOTION

This is most often seen in burrowing species, but also when any snake is moving through narrow places, such as between rocks. A cycle of movement starts with the snake using the rear half of its body to jam itself against the sides of the burrow while it extends the front half. Once this is fully extended, it in turn is jammed against the tunnel walls while the rear part is pulled toward it. This results in a stop–start routine as the snake inches forward, in contrast to the more fluid action seen in other types of locomotion.

Most burrowing snakes are cylindrical in crosssection and have smooth or lightly keeled scales. They expand their ribs to increase their diameter when jamming themselves against the sides of the burrow, and may also kink their body to gain extra purchase. Shield-tailed snakes, Uropeltidae, are able to bend the vertebral column into a series of curves independently of the sides of the body, which remain parallel. The body thus becomes shorter and thicker so that the snake can wedge itself between the walls of the burrow with one part of its body while another part is thrust forward or drawn up. This is not a speedy method of moving, but burrowing snakes rarely need to move quickly.

- ↑ The Black Shield-tailed Snake, *Uropellis melanogaster*, is a burrowing species that rarely emerges onto the surface. Like the other members of its family, it moves through its burrows by means of concertina locomotion.
- 7 Many climbing snakes have ridges running along the edges of their ventral scales on either side; these help them grip rough surfaces when climbing.
- → Snakes' ventral scales are broad and overlapping on their trailing edge. There movement is controlled by muscles, enabling the snake to crawl forward.

RECTILINEAR LOCOMOTION

Heavy-bodied snakes, such as certain boas, pythons, and vipers, use the raised edges of their ventral scales to hook over irregularities and pull themselves forward, thus moving in a straight line. During the process, different sections of the body will be stretching forward, while other sections are pulling, as their muscles contract and relax in a series of waves from head to tail, resulting in a smooth progression forward. This is a relatively slow method of moving but presumably uses up less energy than serpentine locomotion. Rectilinear locomotion is also used by snakes in the final stages of stalking prey, as they inch forward slowly, and almost imperceptibly, to get within striking distance.

CLIMBING

Snakes that habitually climb amongst branches tend to have elongated bodies, and many are deep-bodied. This creates a girder-like cross-section, allowing the snake to cantilever the front part of its body across a wide gap while reaching for its next point of contact.

Other species, those that are not so specialized, move up tree trunks by using crevices in the bark to act as purchase points. They move in much the same way as they would when covering uneven ground, using serpentine locomotion, but in a vertical rather than a horizontal plane. A number of snakes from different genera have sharp keels at the edges of their ventral scales, where they meet the dorsal ones, creating a pair of ridges running along the length of the snake and providing it with a better grip on bark or other rough surfaces.

GLIDING

Gliding is a seemingly unlikely form of locomotion for snakes, lacking as they do the limbs or wings that other animals use to fly or glide. But snakes of the South and Southeast Asian genus Chrysopelea (the five species of

which are known, rather inaccurately, as "flying" snakes) can launch themselves from tall trees and descend in a gradual and controlled manner to reach lower branches, or the ground, in order to escape predators. They do this by flattening their bodies until the ventral surface is slightly concave, to increase air resistance, while moving their bodies in a slowed-down sinuous serpentine motion. In this way they are able to steer and to maintain a position almost parallel to the ground throughout the "flight."

- ∧ Leopard Snake, Zamenis situla, climbs a tree trunk by using the ridges on its ventral surface to gain purchase.
- ↑ A flying snake, Chrysopelea species, glides by flattening its body and "swims" through the air by forming a series of sinuous loops.
- → A Péringuey's Viper, Bitis peringueyi, moves rapidly across loose sand in the Namib Desert by means of a characteristic sidewinding technique.

SIDEWINDING

Snakes that live in deserts consisting of windblown sand dunes have difficulty in gaining purchase on the loose substrate, and their locomotion is impaired. Some species—those that live almost exclusively in this type of habitat—have evolved a specialized, and very effective, method of locomotion called sidewinding.

Starting from a resting position, they raise their head and neck off the ground and move it sideways, with the rest of the body providing an anchor-point. As soon as the head and body are back on the ground they, in turn, act as anchor-points and the rest of the body follows. In reality, this is a fluid movement, with one cycle beginning before the previous one has been completed, giving the impression that the snake is gliding sideways across the surface. The snake moves at about 45 degrees to the line of its body and leaves a trail of disconnected J-shaped impressions of its body in the sand.

The best-known sidewinding species are the Sidewinder, Crotalus cerastes, from the deserts of the North American Southwest, and the Namib Side-winding Adder or Péringuey's Adder, Bitis peringueyi. There are other sidewinders, such as the Saw-scaled Viper, Echis carinatus, and the horned vipers, Cerastes species, all from North Africa and the Middle East. A small number of snakes that live in coastal habitats, such as the Puff-faced Water Snake, Homalopsis buccata, and related species, may also use a similar sidewinding technique to cross mudflats, and some other snakes may switch temporarily to a primitive form of sidewinding when faced with a substrate that does not provide enough purchase for their normal mode of locomotion.

An Ornate Tree Snake, Chrysopelea ornata, one of the "flying" snakes, is at home amongst high branches in rainforests. It will launch itself into the air if necessary to avoid predators.

71 The Green Bush Viper, Atheris chlorechis, is a highly arboreal venomous snake from West Africa. All the Atheris species are covered in heavily keeled scales.

FORM AND FUNCTION

Long-nosed Vine Snake

The snake with wrap-around eyes

SCIENTIFIC NAME Ahaetulla nasuta (Lacépède, 1789)

FAMILY Colubridae

SUBFAMILY Ahaetuliinae

SIZE 3½–5 ft (1–1.5 m)

REPRODUCTION Viviparous, with 5–15 young

Various populations of vine snakes have recently been recognized as "cryptic species," in other words, species that are identical in appearance but show differences when subjected to genetic sequencing. Analysis of their DNA has shown that only the Sri Lankan populations should be assigned to this species, all the others being genetically distinct but morphologically the same: "hiding in plain sight," as some scientists have described it.

This snake, along with its close relatives, is remarkable for its long, pointed snout, large eyes, and horizontal pupils. These characteristics complement each other, and enable the snake to focus on a subject immediately in front of it by looking along its concave snout with both eyes. This binocular vision helps it to judge distances between

the branches through which it moves, and a large proportion of its elongated body can be cantilevered out to bridge gaps.

HABITAT : Forests

Binocular vision also enables it to strike accurately at prey, usually arboreal lizards. Prey is killed by venom introduced via long fangs in the rear of its mouth, and it will hold the prey until it stops struggling, an essential strategy for snakes that hunt above the ground.

The Long-nosed Vine Snake is diurnal and highly arboreal, rarely descending to the ground and relying on its elongated shape and green coloration to provide excellent camouflage. Individuals tend to "freeze" when disturbed, enhancing their crypsis. If threatened, the snake will open its mouth widely and flatten its neck to display black and white markings. Bites can be painful but the venom is not dangerous to humans.

[→] The long pointed snout and the horizontal pupils make the tree or vine snakes, *Ahaetulla*, of which there are 21 species in all, instantly recognizable.

FORM AND FUNCTION

Javelin Sand Boa

Europe's only boa

This small boa is the only European representative of the Boidae, a family that is more usually associated with tropical and subtropical regions. It only occurs in the warmer parts of the continent, along the eastern Mediterranean coastal region, including many small islands. The rest of its range falls within North Africa and the Middle East.

Like all sand boas, this is a secretive burrowing species, spending most of its time underground in rodent burrows or beneath flat rocks, where some heat penetrates through to the substrate. Its small, smooth scales and cylindrical cross-section are adaptations to a burrowing lifestyle, allowing it to move easily through the ground. When beneath the surface it moves by means of concertina locomotion (see page 56), inching its way slowly through tunnels or cracks or forcing its body through loose soil.

SCIENTIFIC NAME Eryx jaculus (Linnaeus, 1758)
FAMILY Boidae

SUBFAMILY Erycinae

SIZE 12–20 in (30–50 cm), occasionally longer

REPRODUCTION Viviparous

HABITAT Dry rocky, sandy, and scrub-covered fields, valleys, and hillsides

It probably finds most of its prey in this manner, feeding on rodents, although the snakes on some islands are much smaller than those on the mainland, and probably feed on small lizards and lizard eggs.

Although not endangered, owing to its large geographical range, some populations have been reduced or eliminated altogether through habitat destruction, mainly agricultural development and overgrazing. On a more positive note, in 2015 the presence of this species was confirmed from a small area in the south of Sicily, the first completely new reptile species for Italy for many years and a huge range extension from the rest of the European populations. In fact, individuals on Sicily resemble those in North Africa more than they do those in eastern Europe, leading to speculation that they may be more closely related to these populations.

[→] Perfectly adapted to burrowing, with its cylindrical body, smooth shiny scales, and underslung jaw, the Javelin Sand Boa is the only member of the Boidae family that can be found in parts of Europe.

FORM AND FUNCTION

MALAYOPYTHON RETICULATUS

Reticulated Python

Jungle giant

SCIENTIFIC NAME Malayop

Malayopython reticulatus (Schneider, 1801)

FAMILY Pythonidae

16-20 ft (5-6 m),

potentially to 30 ft (9 m) or more

REPRODUCTION Oviparous

HABITAT: Rainforest, often around human habitation

One of the two largest snakes in the world, and probably the longest, even a half-grown Reticulated Python is a formidable predator. They have been known to take monkeys, crocodiles, and tigers as well as livestock such as goats, dogs, cats, and chickens. Humans have also been eaten on rare occasions.

Reticulated Pythons hunt mainly in the evening and during the night, actively seeking prey, which is detected by the heat-sensitive pits in the scales bordering the mouth (the labial scales). They are powerful constrictors, wrapping several coils around their prey and exerting pressure until it suffocates; bones may be broken in the process. They are slow-moving, crawling in a straight line (rectilinear locomotion) when on the ground, and often come to a complete halt when first encountered, rather than trying to escape.

Young and sub-adult Reticulated Pythons are partially arboreal, and typically rest in the branches of trees overhanging rivers, dropping into the water to escape if they feel threatened. They are powerful swimmers.

They are among the most prolific of snakes, laying clutches of 50–100 eggs, although 20–50 is more normal. The female coils around her clutch for the duration of the incubation period, although they appear to be unable to raise the temperature by muscular contractions, unlike some other large pythons.

Due to their large size and intricate pattern, Reticulated Pythons are one of the most desirable snakes in the skin trade; a total of 300,000–450,000 skins are traded each year, the majority of which come from Indonesia. They are also popular amongst zoos and amateur snake-keepers, and a number of strains, of a wide array of colors and markings, have been selectively bred to satisfy this market.

[→] The Reticulated Python is a rainforest species that readily adapts to human-altered environments, such as plantations and villages, where its preferred prey of rodents and larger mammals is plentiful.

FORM AND FUNCTION

Rhinoceros Ratsnake

Long-nosed climber

The purpose of the nasal protuberance that gives this species its name is unknown. It is present in both sexes and is covered in scales and is flexible. It may simply serve to break up the outline of the snake.

This is an arboreal snake, moving easily and rapidly through the branches of trees and understory shrubs, and most often found in humid river valleys at moderate altitudes, up to 5,000 ft (1,500 m). It lays clutches of 4–15 eggs which hatch after about two months. The young measure about 1 ft (30 cm) in length when they hatch and have the "rhino horn" right from the start. They are brown initially, changing to dark gray and eventually green or bluish green as they mature.

They feed on small vertebrates, lizards probably forming their main prey, although they also eat amphibians,

SCIENTIFIC NAME Gonyosoma boulengeri (Mocquard, 1897)
FAMILY Colubridae

SUBFAMILY Colubridae

SIZE 3–5 ft (90–150 cm)

REPRODUCTION Oviparous

HABITAT Forests, including degraded forests, often near water

small mammals, and birds. Populations appear to be reasonably secure, as much of their range is within protected areas, but habitat degradation is a problem in some places and small numbers are collected for the pet trade.

There are seven other species of *Gonyosoma*, all from Southeast Asia, mostly arboreal and green in color, though there are some exceptions. All of these other species lack the nasal appendage apart from *Gonyosoma hainanense*, described as recently as 2021 from Hainan, China; it is almost identical to *G. boulengeri*, except for small differences in color and the pattern of scales on its head.

The specific name *boulengeri* honors the Belgian-British herpetologist and polymath G. A. Boulenger, who worked at the Natural History Department of the British Museum from 1880 to 1920, describing 872 new species of reptiles as well as many fishes and amphibians.

[→] The appendage growing from the snout of the well-named Rhinoceros Ratsnake is distinctive, but its function is a mystery.

FORM AND FUNCTION

Central American Eyelash Pit Viper

Multi-colored jungle dweller

This is a highly arboreal pit viper, usually found coiled a short distance above the ground, often in low-growing palms. For this reason members of the genus *Bothriechis* are known collectively as palm pit vipers. This species is remarkable for the pointed scales above its eyes, the "eyelashes" that give it its English name.

This pit viper occurs in many color forms, depending to some extent on its origin. The mottled coloration is the most common, but the shade of green and the extent of the markings vary. Other forms include tan, orange, or yellow; the bright yellow form, common in some parts of Costa Rica, is known as *oropel*, meaning tinsel or glitter. Polychromatic snakes such as these, in which there are a number of color and pattern types, are thought to benefit by confusing predators, and perhaps even prey, which are unable to build up a search image and so overlook them.

SCIENTIFIC NAME Bothriechis nigroadspersus (Steindachner, 1870)

FAMILY Viperidae

SUBFAMILY Crotalinae

SIZE 2-2½ ft (60–80 cm)

REPRODUCTION : Viviparous

HABITAT : Lowland tropical forest

Eyelash Pit Vipers feed on a wide variety of prey, including small mammals, birds, and lizards. The juveniles often have colored tips to their tails, which they use as lures. There is some evidence that individuals "stake out" tropical flowers in order to ambush birds that are attracted to them for their nectar. Owing to their habit of resting at eye level, bites to humans are often on the face or hands. Bites are serious but rarely life-threatening in healthy humans.

The taxonomic relationships of this group of snakes has been revised. Many of the populations previously known as *Bothriechis schlegelii* have been reassigned to related species, and five new species have been described recently (2024). *B. schlegelii* is now restricted to the highlands of Colombia. Lowland populations from Central America are now mostly *B. nigroadspersus* but some have been reassigned to the species *B. supraciliaris*. Of the new species, only *B. schlegelii* and *B. supraciliaris* have the eyelash-like superciliary scales.

[→] The Eyelash Pit Viper is an iconic species from Central America. It is fairly common, occurring in many colors and patterns that camouflage the snake against a variety of lichens, mosses, and other vegetation.

A. piscivorus 163, 182, 183, Atractaspis 33

Round Island Burrowing

INDEX

Page numbers in italic type

rage numbers in nam type	A. piscivorus 103, 162, 163,	Attactaspis 33	Round Island Burrowing
refer to pictures.	209	A. bibroni 33	See Bolyeria multocarinata
	Ahaetulla 46, 46, 47, 169		Round Island Ground See
Acanthophis 53, 53, 132, 173,	Aipysurus	basking 86, 86, 89, 90-1, 90,	Casarea dussumieri
175	A. apraefrontalis 257	91, 98, 108, 121, 131,	Rubber See Charina bottae
A. praelongus 175, 248	A. eydouxii 163, 257	132, 144, 146, 182	sand 48, 64, 108, 132
A. pyrrhus 93, 116, 117	A. fuscus 257	Batesian mimicry 192, 207,	South American Rainbow
Acontias lineatus 16	Alethinophidia 12–13	207, 209, 209, 212, 222,	See Epicrates cenchria
Acrochordidae 12, 13, 35,	Alopecion guttatum 12	224, 230	Boaedon capensis 45, 98, 170,
110, 132, 162	Alsophis 248	bird-catching species 114,	194, 195
Acrochordoidea 13	A. antiguae 261, 270, 271	148, 168, <i>168</i> , <i>169</i>	Boidae 28, 29, 93
Acrochordus 33, 47, 96, 97,	ambush predators <i>53</i> , 57, 116,	Bitis 15, 53, 173, 208	
132, 162	•		Boiga
	146, 167, 172–3, 216,	B. arietans 132, 146, 147,	B. dendrophila 209
A. arafurae 96, 110, 111	228, 266	208, 210, 244	B. irregularis 168, 242, 268,
A. granulatus 110, 162	Amerophidia 12–13	B. atropos 15,91	269
A. javanicus 110	Amphisbaenia 6,7,16	B. caudalis 93, 99, 192, 204	B. nigriceps 154
adaptation 18–19, 135, 160,	Anaconda 11	B. cornuta 43, 53	Bolyeria multocarinata 255
163, 192	Green See Eunectes murinus	B. gabonica 32, 173, 216, 217	Boomslang See Dispholidus
Adder	Anguis fragilis 16	B. nasicornis 43, 43	typus
Berg See Bitis atropos	Aniliidae 12, 225	B. peringueyi 47, 52, 59, 59,	Bootlace Snake See Imantodes
Common European See	Anilius scytale 12,207,224	93, 100, 101, 173	Bothriechis 70
Vipera berus	Antaresia childreni 130, 170	B. rhinoceros 32, 216	B. nigroadspersus 43,70,
Death See Acanthophis	Aparallactus 160-1	B. schneideri 23	71, 205
Desert Death See	apical pits 35, 50, 50	Blanus cinereus 16	B. schlegelii 70
Acanthophis pyrrhus	Aplopeltura 160	blind snakes 28, 31, 155	B. supraciliaris 70
Gaboon See Bitis gabonica	A. boa 52-3, 159	Schinz's Beaked See	Bothrops 48
Horned See Bitis caudalis	aquatic species 22, 34, 43, 47,	Rhinotyphlops schinzi	B. ammodytoides 88, 104, 105
Many-horned See Bitis	47, 50, 55, 96–7, 110,	Texas See Rena dulcis	B. asper 244, 266, 267
cornuta	112, 132, 150, 188, 196,	Boa	B. atrox 132, 244
Namaqua Dwarf See Bitis	256–7, <i>257–9</i>	B. constrictor 11, 23, 48,	Brachyurophis australis 207
schneideri	arboreal species 22, 60, 62, 66-	148, <i>149</i>	Brahminy Worm Snake See
Namib Side-winding	73, 75, 80, 85, 139, 168,	B. imperator 148	Indotyphlops braminus
See Bitis peringueyi	169, 178, 184, 205, 268	Boa 12, 29, 48, 57, 121, 127,	Bull Snake See Pituophis
Northern Death See	Aspidelaps 209	171	catenifer sayi
Acanthophis praelongus	A. lubricus 206, 207	Arabian Sand See Eryx	Bungarus 167,250
Puff See Bitis arietans	Aspidites	jayakari	burrowing species 22, 28,
Rhombic Night See Causus	A. melanocephalus 108, 108	Common See Boa constrictor	34, 46, 47, 54, 56, 56, 64,
rhombeatus	A. ramsayi 93, 108	Cuban See Chilabothrus	85, 100, 106, 108, 180,
Schneider's See Bitis	Asthenodipsas 160	angulifer	181, 253
schneideri	A. vertebralis 52	Emerald Tree See Corallus	Bushmaster, Central American
Aesculapian Snake See	Atheris 61,72	caninus	See Lachesis stenophrys
Zamenis longissimus	A. chlorechis 61,72,73,	Javelin Sand See Eryx jaculus	
Afrophidia 12, 13	278–9	Pacific Ground See Candoia	Caenophidia 12, 13
Agkistrodon	A. hispida 35, 36	carinata	Calliophis 167, 206
A. bilineatus 174	A. squamiger 137	Red-tailed See Boa constrictor	C. bivirgatus 218, 219
A. contortrix 174	Atractaspididae 33	Rosy See Lichanura trivirgata	Calloselasma rhodostoma 173

Candoia carinata 21 Cantil See Agkistrodon bilineatus Casarea dussumieri 261, 261 Cat Snake, Black-headed See Boiga nigriceps Cat-eyed Snake, Northern See Leptodeira septentrionalis Catesby's Snail-eater See Dipsas catesbyi Causus 165 C. rhombeatus 164, 192 Cemophora coccinea 167 Centipede Snake See Scolecophis atrocinctus Cerastes 52, 59, 106 C. cerastes 15, 42, 43, 106, 107, 212 Cerberus 162 Chappell Island Tiger Snake See Notechis scutatus serventyi Charina C. bottae 48, 74, 75, 202 C. umbricata 74 Chilabothrus angulifer 84 Chilomeniscus cinctus 128 Chilorhinophis gerardi 167 Chionactis 207 C. occipitalis 180, 181 chromatophores 40 Chrysopelea 58, 58 C. ornata 60-1 C. paradisi 80, 81 Clelia C. clelia 15, 15 C. errabunda 255 climate change 252-3 climbing species 54, 58, 58, 80, 114, 274 cloaca 121, 127 Clonophis kirtlandii 160 Cobra 12, 32, 177, 209, 241, Common See Naja naja Indonesian See Naja sputatrix

King See Ophiophagus hannah Mozambique Spitting See Naja mossambica Ring-necked Spitting See Hemachatus haemachatus Spectacled See Naja naja spitting 214, 214-15, 226, coiling 85, 89, 130, 131 Colombian Long-tailed Snake See Enuliophis sclateri coloration 37, 40-1, 70 Batesian mimicry 192, 207, 207, 209, 209, 212, 222, 224 changing with age 138-9, 138-9, 182, 222, 262, 274 crypsis 204-5, 216 dark 91, 91, 102 dark-headed 90, 90, 108, 108 displays 34 disruptive 205, 216, 217 luring 100, 100, 116, 117, 174, 175 seasonal changes 264 sexual dimorphism 102, 120-1, 140, 141 variable 93, 106 warning 112, 139, 206-7, 206, 207, 220, 222, 223, 224 Colubridae 13, 15, 19, 31, 91, 93, 96, 97, 127, 163, 177,214 Colubroidea 12, 13 communication 44, 127 concertina locomotion 55, 56, 56, 64 conservation 260-1,270 constrictors 26, 66, 74, 148, 148, 154, 170-1, 170, 171, 194, 272 Contia tenuis 160

Coral Snake 206-7, 222 African See Aspidelaps Allen's See Micrurus alleni Aquatic See Micrurus surinamensis Blue Malaysian See Calliophis bivirgatus South American See Micrurus lemniscatus Variable See Micrurus diastema Corallus 48, 168 C. batesii 49,52 C. caninus 41, 52, 139 Corn Snake See Pantherophis guttatus Coronella C. austriaca 133, 133 C. girondica 133, 133, 156-7 Cottonmouth See Agkistrodon piscivorus Crab-eating Snake See Fordonia leucobalia critical minimum/ maximum 87 Crotalinae 48 Crotalus 15, 33, 48 C. adamanteus 32, 88 C. atrox 32, 114, 144, 145 C. catalinensis 95, 114, 115 C. cerastes 35, 38-9, 43, 52, 59, 78, 79, 93, 100 C. estebanensis 95 C. mitchellii 126, 204 C. scutulatus 211 C. triseriatus 90,91 Crowned Dwarf Snake See Eirenis coronella crypsis 204-5, 216 cryptic species 62, 150 Cuban Wood Snake See Tropidophis melanurus cultural associations 236-41 Curl Snake See Suta suta Cylindrophis 207

Daboia russelii 244, 262 Dasypeltis 28, 158, 159, 212, D. scabra 192, 193 defense strategies 202-13; See also threat displays; Batesian mimicry 192, 207, 207, 209, 209, 212, 222, 224, 230 crypsis 204-5 longitudinal stripes 202, odor production 212-13, 220, 232 sound 38, 38-9, 85, 106, 107, 144, 145, 210-12, 230, 231 tail detachment 202, 203 thanatosis 213, 213, 232 warning coloration 112, 139, 206-7, 206, 207, 220, 222, 223, 224 Dendrophidion nuchale 89 desert banded snakes See Simoselaps desert species 52, 59, 78, 85, 92-3, 100, 106-7, 116, 132,180-1Diadophis punctatus 220, 221 Dice Snake See Natrix tessellata diet 92, 154-71 Dipsas 160 D. catesbyi 37, 178, 179 Dispholidus typus 120, 120, 121, 172, 177, 201 diurnal species 46, 47, 87, 90,144 Dragon Tubercle Snake See Xenodermus javanicus Duberria 160 Duvernoy's glands 31, 190 Echis 85, 106, 230, 244

E. carinatus 59

E. ocellatus 230, 231

Copperhead See Agkistrodon

contortrix

ectotherms 86, 92, 252	island species 94-5	Gloydius strauchi 91	Spotted See Alopecion
Egg-eating Snake, Common	excretory system 92	Gongylosoma baliodeira 124–5	guttatum
See Dasypeltis scabra	extinct species 254–5, 261	Gonyosoma 68	hunter predators 172
egg-eating species 28, 106,	eyes and vision 7, 37, 44,	G. boulengeri 43, 68, 69	Hydrophis 159
158, 159, 167, 192	46–7, 78, 154, 172	G. hainanense 68	H. melanocephalus 259
eggs 37, 66, 128–31, 132,	61 1 207 224	G. prasinum 7	H. platurus 112, 113
137, 232	false coral snakes 207, 224	gopher snakes See Pituophis	H. schistosus 159
Eirenis	Centipede Snake See	Grass Snake	H. semperi 257
E. africanus 15	Scolecophis atrocinctus	Barred See Natrix helvetica	H. stokesii 97, 256
E. coronella 15	Coral Cylinder Snake See	Common See Natrix natrix	hypapophyses 192
Elachistodon 28	Anilius scytale	Green Trinket Snake See	Hypnale hypnale 15
E. westermanni 192	Tschudi's False Coral	Gonyosoma prasinum	Hysiglena ochrorhynchus 95
Elaphe 138	Snake See Oxyrhopus	Ground Snake, Spotted See	T 1
Elapidae 32, 53, 116, 127,	melanogenys	Gongylosoma baliodeira	Imantodes
132, 162, 173, 174, 177,	False Habu See Pseudagkistrodon	growth and development	I. cenchoa 184, 185
206, 214, 218, 222	rudis	136–7	I. lentiferus 19
Elephant Trunk Snake See	Ficimia 161	Gyalopion 161	Indotyphlops braminus 134–5,
Acrochordus javanicus	Fiddlestring Snake See	III C D / I /	134
Emydocephalus	Imantodes cenchoa	Habu See Protobothrops	introduced species 168,
E. annulatus 121, 163	Fierce Snake See Oxyuranus	flavoviridis	242–3, 247–8, 261, 268,
E. ijimae 163	microlepidotus	hearing 48	272,276
endangered species 64,72,	file snake See Acrochordus	heat detection 44, 48, 48, 66,	iridophores 40
114, 142, 246–9, 252–64,	Florida Black-headed Snake	93, 108, 154, 171, 272	island species 94–5, 114, 255
268–70	See Tantilla relicta	Hemachatus haemachatus 15,	
Enhydris 162	Flowerpot Snake See	201, 209, 213, 214	Jacobson's organ 44, 44
E. enhydris 15	Indotyphlops braminus	Henophidia 12, 13	Javan Tubercle Snake See
Enuliophis sclateri 202, 203	flying snakes See Chrysopelea	Heterodon 165, 208, 213	Xenodermus javanicus
Epicrates cenchria 40	Fordonia leucobalia 161	H. platirhinos 213	jaws 31, 32, 53, 155, 155, 160,
Erpeton tentaculatum 43,50,	fox snakes See Pantherophis	H. simus 190, 191, 213	178, 192
51, 162, 188, 189		hibernacula 144	
Erycinae 48,93	gaping 209	hibernation 37, 90, 102, 122,	keelbacks 163
Erythrolamprus	Garter Snake See Thamnophis	124, 137, 200, 253	kingsnakes 37, 207
E. mimus 207	Blackneck See Thamnophis	hissing 210	Kirtland's Snake See Clonophis
E. perfuscus 255	cyrtopsis	hognose snakes 122, 208	kirtlandii
Eryx	Common See Thamnophis	South American See	kraits See Bungarus
E. jaculus 64, 65	sirtalis	Xenodon dorbignyi	kukri snakes See Oligodon
E. jayakari 47	Eastern See Thamnophis	Southern See Heterodon simus	
Eunectes	sirtalis	Homalophis 162	Lachesis stenophrys 228, 229
E. akayima 150	Red-sided See Thamnophis	Homalopsidae 33, 97, 162	Ladder Snake See Zamenis
E. murinus 8, 9, 23, 150,	sirtalis parietalis	Homalopsis buccata 59	scalaris
151, 167	San Francisco 142	horned species 42, 43, 43, 68,	Lampropeltis 207, 212, 224
Euprepiophis mandarinus 19	Santa Cruz See Thamnophis	<i>69</i> , 106, <i>10</i> 7	L. polyzona 139, 224, 225
evolution 7-11, 12, 14-21 ,	atratus	Hot Springs Snake See	L. triangulum 37, 128, 139
121, 135	genetic diversity 247	Thermophis baileyi	Lamprophiidae 12, 177
convergent 14, 52-3, 132,	Geophis sartorii 161	House Snake	Lancehead 173
139, 178	gliding 54, 58, 58, 80	Brown See Boaedon capensis	Common See Bothrops atrox

Fer-de-Lance See Bothrops	Mangrove Snake See Boiga	Night Snake See Hysiglena	Pope's See Trimeresurus
asper	dendrophila	ochrorhynchus	popeiorum
Patagonian See Bothrops	marsh snakes 202 Maticora 167	Ninia maculata 160 nocturnal species 46, 47,74–	Schultze's See Trimeresurus schultzei
ammodytoides		1	
Langaha 43, 140	Metlapilcoatlus nummifer 48,	9, 89, 90, 93, 140, 144,	Strauch's See Gloydius strauchi
L. alluaudi 140	244–5	186, 194, 224, 230	Sunda See Trimeresurus insularis
L. madagascariensis 121,	Micruroides euryxanthus 206,	Notechis scutatus serventyi 168,	
140, 141	222	168	Wagler's See Tropidolaemus
L. pseudoalluaudi 140	Micrurus 167, 206, 224	01: 1 22 167	wagleri
Laticauda	M. alleni 222, 223	Oligodon 33, 167	White-lipped Island See
L. colubrina 96, 196, 197,	M. diastema 206	Ophidia 7	Trimeresurus insularis
258	M. lemniscatus 41	Ophiophagus hannah 130, 167,	Pituophis 205, 210
L. crockeri 257	M. surinamensis 47, 47	167, 210, 260, 262, 263	P. catenifer sayi 210
L. schistorhyncha 257	milksnakes See Lampropeltis	Oxyrhopus 224	predators of snakes 200–13
Leopard Snake See Zamenis	Mole Snake, African See	O. melanogenys 207	premaxillary gland 97
situla	Pseudaspis cana	Oxyuranus	Prosymna 167
Leptodeira	Montane Snail Snake See	O. microlepidotus 244, 264,	Protobothrops
L. annulata 186	Asthenodipsas vertebralis	265	P. flavoviridis 209
L. septentrionalis 186, 187	Montpellier Snake See	O. scutellatus 264	P. himalayanus 88, 91, 91
Leptophis	Malpolon monspessulanus		Pseudagkistrodon rudis 209,
L. ahaetulla 47	Morelia 48	Pantherophis 138	209
L. mexicanus 15	M. spilota 41	P. bairdi 35	Pseudalsophis 94,95
L. praestans 30	M. viridis 41, 52, 139, 139,	P. guttatus 276, 277	P. biserialis 95, 166
Leptotyphlopidae 31, 155	168	P. quadrivittatus 138	P. darwini 95
Leptotyphlops 161	movement 26, 34, 54–61 , 55,	P. ramspotti 212	P. hoodensis 95
Lialis burtonis 16	87, 180, 202	P. vulpinus 212	P. occidentalis 167
Liasis 48	Mussurana See Clelia clelia	Pareas 160	Pseudaspis cana 132
Lichanura trivirgata 48,93,93		Pareatidae 178	Pseudechis porphyriacus 248
lingual fossa 44	Naja 15, 209, 214, 241	parrot snakes See Leptophis	Pseudocerastes 43
Loxocemus bicolor 167	N. mossambica 226, 227	parthogenesis 134-5	P. urarachnoides 174, 175
lungs 6,97	N. naja 15, 177, 209, 209,	facultative 135, 135, 150	Pseudonaja nuchalis 98
luring 100, 100, 116, 117,	244, 262	pet trade 76, 100, 114, 142,	Python 15, 27, 48
174, <i>175</i>	N. sputatrix 248	251, 272, 276	P. bivittatus 23, 128, 131,
Lycodryas pseudogranuliceps 47	Najash rionegrina 8	Philodryas baron 41	243, 243, 250, 272, 273
	Natricinae 163	pine snakes See Pituophis	P. brongersmai 172
Macrovipera 168	Natriciteres 202	pipe snakes 12, 29, 207	P. molurus 23, 131
M. lebetina schweizeri 255	Natrix 164	South American See Anilius	P. regius 251
Madagascan Leaf-nosed	N. astretophora 232	scytale	P. sebae 23, 128, 155, 171
Snake See Langaha	N. helvetica 129, 136, 137,	PitViper 48, 70, 93, 108, 171,	Python 12, 29, 48, 57, 98, 121,
madagascariensis	213, 213, 232, 233	262	124, 127, 128, 130–1,
Madatyphlops carieri 255	N. natrix 15, 127, 165,	Eyelash See Bothriechis	137, 171, 250
Malayopython reticulatus 22,	212,232	nigroadspersus	African Rock See Python
23, 48, 66, 67, 85, 128,	N. tessellata 163	Himalayan See Protobothrops	sebae
150, 250	Nerodia 132, 164	himalayanus	Australian Carpet See
Malpolon monspessulanus 168,	N. erythrogaster flavigaster 135	Malayan See Calloselasma	Morelia spilota
209	nests 130	rhodostoma	Ball See Python regius
			1 8

Black-headed See Aspidites Rattlesnake 38, 38-9, 76, 95, parthogenesis 134-5, 134, Stokes' See Hydrophis stokesii 122, 127, 136, 144, 171, 135, 150 Turtle-headed See melanocephalus Emydocephalus annulatus Blood See Python brongersmai 173, 210, 249, 250 scramble competition 122, Burmese See Python bivittatus Catalina See Crotalus 123, 142 Yellow-bellied See Green Tree See Morelia viridis catalinensis seasonal breeding systems Hydrophis platurus Indian See Python molurus Eastern Diamondback See 122 - 3senses 44-51, 84, 93 Jungle Carpet See Morelia Crotalus adamanteus sperm storage 110, 122, 128 Serpentes 7 Mojave See Crotalus scutulatus viviparous specious 78,91, serpentine locomotion 54, spilota *54*–*5*, 58 Mute See Lachesis stenophrys 100, 102, 114, 122, 133 Mexican Burrowing See San Esteban See Crotalus Loxocemus bicolor Reptilia 6 sexual dimorphism 102, Reticulated See estebanensis respiration 6,97 120-1, 127, 140, 141 Malayopython reticulatus Santa Catalina See Crotalus Rhamnophis aethiopissa 35 Sharp-tailed Snake See Contia Royal See Python regius catalinensis Rhinotyphlops schinzi 29 tenuis Pythonidae 29 Southwestern Speckled See Ringneck Snake See Diadophis shield-tailed snakes 12, 29, 56, Crotalus mitchellii punctatus 155, 160 Rinkhals See Hemachatus Black See Uropeltis Queen Snake See Regina Western Diamondback See septemvittata Crotalus atrox haemachatus melanogaster quill-snouted snakes See Western Dusky See Crotalus Short-tailed Snake See Xenocalamus triseriatus salt balance 85, 97 Stilosoma extenuatum rectilinear locomotion 54, 55, Sand Snake 172 Shovel-nosed Snake, Western Racer 46, 172, 248 57,66 Banded See Chilomeniscus See Chionactis occipitalis Antiguan See Alsophis Red-bellied Black Snake See cinctus shovel-snouted snakes See antiguae Pseudaspis porphyriacus sand swimming 180, 181 Prosymna Baron's Green See Philodryas Red-bellied Snake See Storeria Sanzinia 48 Sibon 160 S. annulatus 52 occipitomaculata S. madagascariensis 139 Españolan See Pseudalsophis Regina scales 6, 7, 34-5, 34, 35, 43, S. longifrenis 45 hoodensis R. grahami 161 50, 50-1, 57, 85, 92 Sidewinder See Crotalus cerastes Galapagos See Pseudalsophis R. septemvittata 161 keeled 33-5, 53, 55, 61, 72, sidewinding 54, 55, 59, 59, biserialis Rena dulcis 161, 161 73, 78, 79, 104, 105 76, 100, 106 Western See Pseudalsophis reproduction 37, 91, 136 scale-sawing 85, 106, 107, Simoselaps 167 occidentalis basking 121 212, 230, 231 Sinomicrurus 206 Rainbow Puffing Snake See competing males 102, 122, Scarlet Snake See Cemophora Sistrurus 48 Spilotes sulphureus 122, 123, 126, 127, 150 size 22-3, 150, 262 coccinea Rainbow Water Snake See copulatory plug 127 scientific names 12-15 skeleton 26-8, 26-7, 28-9, Enhydris enhydris courtship 121 Scincus scincus 16 155, 159 rainforest species 19, 22, 52, 60, genetic diversity 247 Scolecophidia 12-13, 46, 160 skin 34-9, 85, 92 67, 84, 89, 159, 247, 262 male combat 102, 122, Scolecophis atrocinctus 224 shedding 37, 37, 112, 122, ratsnakes 12, 37, 138, 212, 250 126, 127, 127 Sea Krait See Laticauda 137, 137, 138, 240, 274 trade in 66, 250-1, 263 Baird's See Pantherophis bairdi mating 127 Yellow-lipped See Laticauda Mandarin See Euprepiophis mating ball 122, 150, 196 colubrina skinks 8, 16 mandarinus non-seasonal systems 124 sea snakes 12,55,85,96-7,132, Slug Snake, Blunt-headed See Red See Pantherophis guttatus oviparous species 106, 108, 163, 250, 256-7, 257-9 Aplopeltura boa Rhinoceros See Gonyosoma 128-31, 128-31, 132, Beaked See Hydrophis smell, sense of 44-5, 44, 93,

boulengeri

quadrivittatus

Yellow See Pantherophis

schistosus

Slender-necked See

Hydrophis melanocephalus

127, 154

austriaca

Smooth Snake See Coronella

133, 137

91, 132

ovo-viviparous specious

Southern See Coronella girondica	Thread Snake 28, 31, 155 Barbados See Tetracheilostoma	Uropeltidae 56, 160 Uropeltis melanogaster 56	Péringuey's See Bitis peringueyi
Snail Sucker See Sibon longifrenis	carlae	Cropenis metanogaster 50	Rhinoceros See Bitis
Sonora 207	threat displays 34, 35, 190,	Varanus doreanus 8	nasicornis
Spilotes sulphureus 54	201, 208–9, 208, 209	venom 32, 112, 146, 154,	Russell's See Daboia russelii
spinal cord 26,28	hissing 210	161, 171, 176–7, 182,	Sand See Vipera ammodytes
Spotted Coffee Snake See	Puff Adder 146	186, 190, 196, 208, 214,	Saw-scaled See Echis carinatus
Ninia maculata	rattles 38, 38–9, 85, 144,	214–15, 216, 218, 222,	Spider-tailed See
			•
spurs 28, 121, 150	145, 210, 211	228, 230, 264	Pseudocerastes urarachnoides
Squamata 6–7 stiletto snakes <i>See Atractaspis</i>	scale-sawing 85, 106, 107, 212, 230, 231	fangs 30–3, 31, 32–3, 154, 162, 177	Temple See Tropidolaemus wagleri
Bibron's See Atractaspis bibroni	warning coloration 112,	hemostatic 177	Variable Bush See Atheris
Stilosoma extenuatum 167	139, 206–7, 206, 207,	human fatalities 244, 262,	squamiger
sublingual gland 97	220, 222, 223, 224	266	West African Gaboon See
sunbeam snakes 12, 155	Titanoboa cerrejonensis 8,	spitting 214, 214-15, 226,	Bitis rhinoceros
supraocular scales 78	<i>10</i> – <i>11</i> , 11	227	Western Bush See Atheris
swimming 54, 55, 66, 112,	tongue 44–5, 44, 45, 49, 97	vertebra 6, 26–8, 27, 56, 180,	chlorechis
113, 196, 272	Toxicocalamus 160	192	Vipera 121, 127, 168
	Trachyboa boulengeri 20	vine snakes See Ahaetulla	V. ammodytes 43, 104
tail 35, 117, 120, 174, 202, 210	Tree Snake 12	Viper 12, 15, 59, 91, 93, 122,	V. aspis 87, 176, 241
Taipan See Oxyuranus	Asian Vine See Ahaetulla	127, 132, 174, 177, 205,	V. berus 37, 86, 88, 102, 103
Tantilla 90	Blunt-headed See Imantodes	212	Viperidae 32, 93, 177, 214
T. relicta 90, 167	cenchoa	Asp See Vipera aspis	
tautonyms 15	Brown See Boiga irregularis	Carpet See Echis	wart snakes See Acrochordus
teeth and fangs 26, 30-3,	Large-eyed Green See	Desert Horned See Cerastes	water balance 84, 85, 92, 97,
<i>31</i> – <i>3</i> , 154, 155, 159, 162,	Rhamnophis aethiopissa	cerastes	100, 137
165, 168, 177, 190, 192	Ornate See Chrysopelea ornata	False-horned See	Water Moccasin See
Tentacled Snake See Erpeton	Paradise See Chrysopelea	Pseudocerastes	Agkistrodon piscivorus
tentaculatum	paradisi	Gaboon See Bitis gabonica	Water Snake 12, 33, 163
Terciopelo See Bothrops asper	Trimeresurus 48	Green Bush See Atheris	Puff-faced See Homalopsis
Tetracheilostoma carlae 23	T. insularis 49,76,77	chlorechis	buccata
Thamnophis 46, 98, 121, 123,	T. popeiorum 174	Hairy Bush See Atheris	Yellow-bellied See Nerodia
123, 127, 132, 163, 164	T. schultzei 14	hispida	erythrogaster flavigaster
T. atratus 202	Tropidolaemus wagleri 120	horned See Cerastes	whipsnakes 12, 46, 172
T. cyrtopsis 18	Tropidophis melanurus 29	Hump-nosed See Hypnale	Woma See Aspidites ramsayi
T. sirtalis 89, 132, 142	Tschudi's False Coral	hypnale	worm snakes 23
T. sirtalis parietalis 88, 123,	Snake See Oxyrhopus	Jumping See Metlapilcoatlus	
142, 162	melanogenys	nummifer	Xenocalamus 167
T. sirtalis tetrataenia 143	Twig Snake 46, 209	Many-horned See Bitis	Xenodermus javanicus 35
thanatosis 213, 213, 232	Southern See Thelotornis	cornuta	Xenodon dorbignyi 165
Thelotornis 46,209	capensis	Milos See Macrovipera	
T. capensis 34, 208	Tyndall scattering 40	lebetina schweizeri	Zamenis
Thermophis baileyi 88–9, 91,	Typhlacontias brevipes 8	Mole 177	Z. longissimus 50, 240, 274,
132	Typhlopidae 23, 29	Northern See Vipera berus	275
thermoregulation 6, 22, 40,		Nose-horned See Vipera	Z. scalaris 138, 168
66, 84–92, 97, 131, 132	urban habitats 98-9, 247	ammodytes	Z. situla 58, 128, 131