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1 Prev iew

Art is the lie that tells us the truth.

—Pablo Picasso

All models are wrong but some are useful.

—George E. P. Box

Pablo Picasso was a contemporary of George Box, a statistician who had

an enormous impact on his field, writing influential papers well into his 90s.

Both sought to express truth about nature, but they used tools that were dra-

matically different — Picasso brushing strokes on canvas, and Box writing

equations on paper. Given the different ways they worked, it is remarkable

that Box and Picasso made such similar statements about the central impor-

tance of abstraction to insight. Abstraction plays a role in all creative human

enterprise — in art, music, literature, engineering, and science. We create

abstractions because they allow us to focus on the most important elements

of a problem, those relevant to the objectives of our work, without being

distracted by elements that are not relevant.

Scientific models are, above all else, abstractions. They are statements

about the operation of nature that purposefully omit many details and thus

achieve insight that would otherwise be discursively obscured. They provide

unambiguous statements of what we believe is important. A key principle in

modeling and statistics — in science, for that matter — is the need to reduce

the dimensions of a problem. A data set may contain a thousand observa-

tions. By reducing its dimensions to a model with a few parameters, we are

able to gain understanding.

However, because models are abstractions and reduce the dimensions of a

problem, we must deal with the elements we choose to omit. These elements

create uncertainty in the predictions of models, so it follows that assessing

uncertainty is fundamental to science. Scientists, journalists, logicians, and

attorneys alike can rightly claim to make statements based on evidence, but

only scientific statements include evidence tempered by uncertainty quan-

tified. We know what is certain only to the extent that we can say, with
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Current concepts, 
theory, questions

New insight 
qualified by 
uncertainty

Model of process 
Observations of process
Model of observations

Figure 1.1.1. The fundamental challenge in ecological research is to establish a

credible line of inference extending from concepts and theory to new insight tempered

by uncertainty.

confidence, what is uncertain. Sharpening our thinking about uncertainty

and learning how to estimate it properly is a main theme of this book.

Your science will have impact to the extent that you are able to ask impor-

tant questions and provide compelling answers to them. Doing so depends

on establishing a line of inference that extends from current thinking, the-

ory, and questions to new insight qualified by uncertainty (fig. 1.1.1). This

book offers a highly general, flexible approach to establishing this line of

inference. We cannot help you pose novel, interesting questions, but we can

teach an approach to inference applicable to an enormous range of research

problems, an approach that can be understood from first principles and that

can be unambiguously communicated to other scientists, managers, and pol-

icy makers. We emphasize that understanding the principles of this frame-

work allows you to customize your analyses to accommodate the inevitable

idiosyncrasies of specific problems in research.

We sketch that framework in this chapter to give a general sense of where

this book is headed, a preview we use to motivate the development of con-

cepts and principles in the chapters that follow. There should be details of

our approach that are unfamiliar, otherwise you probably don’t need this

book. Soon enough, we will explain those details fully. For now, we offer a

somewhat abstract overview followed by a concrete example as an entice-

ment to read on. It will be rewarding to return to this section after you have

worked through the book. We hope you will be pleasantly surprised by your

increased understanding of our small preview. The only part of this chapter

that is essential for the remainder of the book is understanding our notation,

which we describe in section 1.1.1.

1.1 A Line of Inference for Ecology

Virtually all research problems in ecology share a set of features. We want to

understand how the state of an ecological system changes over time, across

space, or among individuals. We seek to understand why those changes

occur. Our understanding usually depends on a sample drawn from all
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possible instances of the state because we want to make statements about

a system that is too large to observe fully. The observations in that sample

are often related imperfectly to the true state. In the subsections that follow,

we lay out an approach first described by Berliner (1996)1 for modeling the

imperfect observations that arise from a process we want to understand. It

does not apply to all research problems, but it is sufficiently general and

flexible that it applies to most.

1.1.1 Some Notation
Before we proceed, we must introduce some notation. Boldface lower-

case letters will indicate vectors (e.g., θ , a), and lightface lowercase letters,

scalars (θ , a).2 Bold capital letters will be used for matrices (e.g., A). The

symbol θ will indicate a vector of parameters, and, of course, θ will indicate

a single parameter.3 The letter ywill indicate a vector of data,Y amatrix, and

y or yi a single observation. Corresponding notation using x, x, and xi will

be used for predictor variables, also called covariates. The notation [a|b, c]
will be used for the probability distribution of the random variable a condi-

tional on the parameters b and c.4 Deterministic models will be denoted by

g()with arguments necessary for the model within the parentheses. Notation

will be added as needed, in context.

1.1.2 Process Models
Process models include a mathematical statement that depicts a process and

a way to account for uncertainty about the process. To compose a process

model we start by thinking about the true state (z) of an ecological system.

That state could be the size of a population, the flux of nitrogen from the soils

of a grassland, the number of invasive plants in a community, or the area

of landscape annually disturbed by fire. We seek to understand influences

on that state, the things that cause it to change. We write an equation,5 a

1For elaboration, seeWikle (2003); Clark (2003b); Cressie et al. (2009), andWikle et al. (2013).
2It might be useful to review scalars, vectors, and matrices. Most ecologists are familiar with

matrices — rows and columns of numbers. Vectors are “one dimension” of a matrix, that is, a row

or a column. Scalars are a single element. So, a matrix might be A = (c dd f
)
; a vector, a = (c, d)′;

and a scalar, c. We will use the notation ( )′ to list the elements of a vector.
3We illustrate with the familiar example y=β0 + β1x. The vector of parameters from the model

is β = (β0,β1)
′. When discussing parameters generically, we will use θ .

4The symbol “|” reads conditional on.
5Or equations. To keep things simple, we focus on a single equation here, but we might build a

system of equations making multiple predictions of states.
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deterministic model that represents our ideas about the behavior of the state

of interest and the quantities that influence it.6 When we say the model is

deterministic, we mean that for a given set of parameters and inputs, it will

make precisely the same predictions. We use the notation g(θp, x) to repre-

sent the deterministic part of a process model, where g() is anymathematical

function, θp is a vector of parameters in the model, and x is one or more

explanatory variables that we hypothesize influence the true state.

Our deterministic model is an abstraction, so it follows that we have omit-

ted influences on the true state from the model, and we must deal with our

omissions. If we model aboveground net primary production of a grassland

as a function of growing season precipitation, we have brushed aside the

influence of grazing intensity and precipitation that occurs during the dor-

mant season. If wemodel reproductive success of individuals as a function of

age and genotype, we have ignored variation contributed by their nutritional

status. A model of harvest from a fishery based on observations of stock size

and sea temperature omits the effect of variation in the food web. We recog-

nize that these neglected influences shape the behavior of the true state by

treating them stochastically, by estimating a parameter, σ 2
p , that subsumes

all the unmodeled influences on the true state. Including this stochastic com-

ponent allows us to estimate a statistical distribution (fig. 1.1.2A) for the true

state, [
z|g (θp, x) , σ 2

p

]
︸ ︷︷ ︸

process model

, (1.1.1)

where the bracket notation [z|g(θp, x), σ 2
p ] means the distribution of z con-

ditional on g(θp, x) and σ 2
p .

7 If the notation is somewhat unfamiliar at this

point, don’t worry; equation 1.1.1 simply says that if we know the functional

form g( ) and the values of θp, x, and σ 2
p , we can specify the probability

distribution of the true state, z (fig. 1.1.2 A).

We want to determine the probability distribution of the true state as

well as the probability distributions of the parameters in our model. Doing

6As a tangible example, we might model the influence of phytoplankton biomass (x) on zoo-

plankton biomass (z) with a linear model, z= θ0 + θ1x. In this case z= g(θ , x) = θ0 + θ1x.
7This notation was first introduced by Gelfand and Smith (1990) as a way to reduce clutter. It

has become widely used by statisticians and ecologists. There is a small caveat needed here. We are

using the arguments for probability distributions as if they were the mean (g(θp, x)) and variance

(σ 2
p ) of the distributions. The arguments for most of the statistical distributions are parameters that

are functions of the mean and variance, a topic we treat in detail in section 3.4.4. For now, we take

the liberty of treating the mean and variance as the needed parameters because they are familiar to

ecologists.



Preview • 7

A. Process model

z

Pr
ob
ab
ilit
y d

en
sit
y

g(θ p, x)
B. Sampling model

ui

z

C. Observation model

yi

d(θ o, ui)

Figure 1.1.2. An observation on the operation of an ecological process (yi) is linked
to ideas about how the process works via three linked probability distributions.

Hierarchical models consist of linked distributions. As we move from panel A to C,

notice how the random variables (on the x-axis) becomes the mean (or other central

tendency) of the distribution in the next panel. (A) The deterministic model, g(θp, x)

predicts a true state, z, as a function of parameters θp and predictor variables x. There is

uncertainty in the predictions, σ 2
p , that arises because there are influences on z that are

not represented in the model. Thus, the distribution in A is [z|g(θp, x), σ 2
p ]. If the

deterministic model predicts z well, then the distribution in A shrinks toward the

g(θp, x) arrow. (B) There are almost always more instances of z in nature than we

can hope to observe. Observations of individual instances of z define a sampling

distribution, [ui|z, σ 2
s ], the breadth of which depends on σ 2

s . As variation among

observations declines, the distribution in B shrinks toward the z arrow. Note that the

mean of the distribution shown by the arrow is not at the peak of the distribution,

because the distribution is skewed. (C) Observations (yi) of instances of the true state

ui are often biased, such that yi �= ui. A deterministic observation model, d(θo, ui),
corrects for this bias. Uncertainty in this correction (σ 2

o ) leads to the observation

distribution [yi|d(θo, ui), σ 2
o ]. As uncertainty in the observation model declines, the

distribution in C shrinks toward the d(θo, ui) arrow.

so requires evaluating the predictions of the process model against data.

The data can be obtained in experiments or observational studies; they can

be measurements we plan to collect or have already collected. This linkage

between process models and observations is discussed next.

1.1.3 Sampling Models
We can rarely observe all instances of the true state in the system we study.

Instead, we take a sample of i= 1, . . . , n observations of the true state, and

we notate the ith observation as ui. This sample might be biomass from plots

on a grassland landscape where we seek to understand the true state, above-

ground productivity. It might be presence or absence of an exotic fungus on
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trees in a stand where wewant to understand infestation of the stand. It might

be classifications of zooplankton in aliquots from a stream where we want to

estimate the stream’s species richness. Uncertainty arises because our sam-

ple assuredly will not represent the true state perfectly. Again, we represent

this uncertainty stochastically using a probability distribution relating the

true state to an observation [
ui|z, σ 2

s

]
︸ ︷︷ ︸

sampling model

, (1.1.2)

where σ 2
s represents sampling variation (fig. 1.1.2 B). Expression 1.1.2

implicitly assumes that we can observe instances of the true state without

bias, which simply says that if we collect many observations, then the aver-

age (i.e., also called the expected value of the observations, E(u)) of the

observations equals the mean of the distribution of the true state, E(u)= z.
(Expectation will be treated in detail in chapter 3.) We realize samples of the

true state is a nuanced concept — soldier on, things will become clear in the

next section.

1.1.4 Observation Models
The assumption that we can observe the true state perfectly may not be rea-

sonable.When we count animals, some are overlooked.When we use Lidar8

to estimate the heights of 10,000 trees, we do not measure the height of

each tree using a ladder and a meter tape (thankfully) but instead observe

backscatter from a laser beam. When we measure nitrogen mineralization,

we do not follow the fate of individual nitrogen atoms but measure the

net change in the extractable soil ammonium pool over time. The mis-

match between what we observe and the true state requires a model of

the observations, which we notate as d(θo, ui), where θo are parameters. It

is important to understand that ui is the quantity we would observe if we

could perfectly observe the instance of the true state in a draw from all the

instances, without any bias injected by our observation process. We use yi to
notate the actual measurements we have in hand, including error resulting

from the way we observe the ui. The observation model serves to elimi-

nate the bias found in our observations, yi relative to an instance (ui) of the
true state drawn from the distribution of z. The probability distribution of

the observations (fig. 1.1.2 C) arising from the observed instances of the

8Lidar, light detection and ranging, a technique used in remote sensing.
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true state is [
yi|d(θo, ui), σ 2

o

]
︸ ︷︷ ︸
observation model

, (1.1.3)

where the σ 2
o represents all the influences on the yi that are not repre-

sented in d(θo, ui). As a simple example, the σ 2
o could be the variance

of the predictions of a regression model used to calibrate observations

against true values. We emphasize that model d(θo, ui) is needed to off-

set bias in the yi. If our observations are unbiased, then there is no need

for an observation model (i.e., yi = ui), and the uncertainty in our data

arises solely from sampling variation (i.e., eq. 1.1.3). For simplicity, we

have ignored the sampling variation and observation errors that might influ-

ence the x, but these could be handled in the same way as we have done

for the y (i.e., we would use probability distributions like eqs. 1.1.2 and

1.1.3).

1.1.5 Parameter Models
Because the approach we sketch is Bayesian, we also require models of the

parameters expressing what we knew about the parameters when we began

our investigation, that is, our prior knowledge. This knowledge is expressed

in probability distributions, one for each parameter we seek to estimate9[
θp
]
[θo]

[
σ 2
p

] [
σ 2
s

] [
σ 2
o

]
︸ ︷︷ ︸

parameter models

. (1.1.4)

These distributions must have numeric arguments that specify our current

knowledge of the probability distribution of the parameters. The arguments

can be chosen to make the distributions informative or vague, but as you will

see, we will encourage you to make priors as informative as knowledge and

scholarship allow.Wemight know a lot about a parameter or we might know

very little.

1.1.6 The Full Model
We are now equipped to write a mathematical expression representing our

ideas about the operation of an ecological process linked to data in a way

9Equation 1.1.4 requires the assumption that the parameters θp, θd , σ
2
p , σ

2
s , and σ 2

o are statisti-

cally independent. We will explain this idea in greater detail later.
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that includes all sources of uncertainty— in the process, in our sample of the

process, and in the way we observe it (fig. 1.1.2). Given a single observation

yi, we write a posterior distribution as⎡⎢⎣z, θp, θo, σ 2
p , σ

2
s , σ

2
o , ui︸ ︷︷ ︸

unobserved

| yi︸︷︷︸
observed

⎤⎥⎦∝

[
yi|d(θo, ui), σ 2

o

]
︸ ︷︷ ︸
observation model

[
ui|z, σ 2

s

]
︸ ︷︷ ︸

sampling model

[
z|g (θp, x) , σ 2

p

]
︸ ︷︷ ︸

process model

[
θp
]
[θo]
[
σ 2
p

][
σ 2
s

][
σ 2
o

]
︸ ︷︷ ︸

parameter models

.

(1.1.5)

Equation 1.1.5 is Bayesian and hierarchical.10 It is Bayesian because it treats
the unobserved quantities as random variables. This treatment allows us to

make statements about the probability distributions of all of the unobserved

quantities based on the observed ones. It is hierarchical because the z and ui
are found on both sides of a conditioning symbol “ | ”, illustrating a power-

ful tool for simplifying problems that we will discuss more fully soon. The

observation model includes our knowledge of the relationship between the

true state and our observations of it and the uncertainty that occurs because

that relationship is imperfect. The sampling model includes the uncertainty

that comes from observing a subset of instances of the true state. The process

model represents our hypotheses about the ecological process by specifying

a probability distribution defining our knowledge and our uncertainty about

the true state and the factors that control its behavior. The parameter models

allow us to exploit previous estimates of parameters that we have made our-

selves or that have beenmade by others. Together thesemodels provide a line

of inference extending from concepts to insight for a broad range of research

problems (fig. 1.1.1). We can use equation 1.1.5 to obtain estimates of unob-

served states, parameters, and quantities of interest derived from parameters

and states. All of these estimates are properly tempered by uncertainty in a

statistically coherent way.

In the remainder of this book, we develop the principles needed to under-

stand equation 1.1.5 and to apply it to research problems in ecology. We

tailor it to match the needs of the particular problem at hand. But first, we

provide an example of its use.

10The symbol ∝ means “is proportional to.” It may be confusing at this point that the observed

x does not show up in the list of observed quantities on the left-hand side of the proportionality.

Bear with us. We will make that clear as we proceed.
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1.2 An Example Hierarchical Model

We are now going to apply the general framework we have previewed to a

specific problem. Remember that we don’t expect this section to be familiar

to you. Although the application here focuses on learning about popula-

tion dynamics of a large mammal from a time series of observations in East

Africa, it could be about any topic, any research design, and any location.

We urge you to draw analogies to your own work as the example develops.

The Serengeti wildebeest (Connochaetes taurinus) population migrates

across the grasslands of Tanzania and Kenya in an annual cycle driven

by availability of green plant biomass (Boone et al., 2006). During the

late 1800s, the viral disease rinderpest created a panzootic, decimating

the wildebeest and other wild and domestic ruminants. Numbers of these

animals remained low until the 1950s when a campaign to vaccinate cat-

tle in the pastoral lands surrounding the Serengeti eliminated the virus in

wildlife (Plowright, 1982). Survivorship of wildebeest, particularly juve-

niles, doubled after rinderpest was eradicated, and the population grew

rapidly until the mid 1970s when density-dependent mortality produced

a quasi-equilibrium. This steady state appears to have been caused by

intraspecific competition for green plant biomass during the dry season.

This biomass varies in approximate proportion to annually variable rainfall

(Mduma et al., 1999).

Developing informative models depends on a clearly stated question. An

unambiguous question is vital because it guides the abstraction that we for-

mulate; it informs our decisions about which variables and parameters we

need to include in our model. In this particular example we ask the question:

How does variation in weather modify feedbacks between population den-

sity and population growth rate in a population of large herbivores occupying

a landscape where precipitation is variable in time? Answering this question

requires a model that portrays density dependence, effects of precipitation,

and their interaction.

1.2.1 Process Model
We pose the deterministic model portraying growth of the wildebeest popu-

lation as

Nt = g (β,Nt−1, xt,�t) =Nt−1e(
β0+β1Nt−1+β2xt+β3Nt−1xt)�t, (1.2.1)

where Nt is the unobserved, true abundance of wildebeest in year t
(corresponding to z in eq. 1.1.5); xt is a measure of the annual rainfall
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that influences population growth during t− 1 to t; and �t = 1 year.11 The

meaning of the coefficients β requires some thought. A critical part of gain-

ing insight from models and data is careful thinking about the biological

meaning of the parameters in our models and their relationship to existing

concepts and theory, the need for which is illustrated here.

We first consider the intercept, β0, a logical place to start. If the units of

precipitation, xt, are centimeters per year, ranging from 0 to a large number,

then algebra dictates that eβ0�t is the proportional change in the population

during the period t to t+ 1 that occurs when abundance is zero and rain-

fall is zero. The abundance equals zero part might seem a bit odd at first

glance, because there is no population to grow when Nt = 0, but the param-

eter nonetheless serves to define the upper limit on population growth rate

as numbers approach zero. There is no problem here. But the part about

zero rainfall is troubling because it makes β0 difficult to interpret biologi-

cally or at least makes it somewhat unuseful in its biological interpretation.

Why would we want to estimate a parameter determining population growth

when the population is low and rainfall is low? Alternatively, if we define xt
in terms of divergence from the long-term average by subtracting the mean

rainfall from each year’s observation, then the definition of β0 becomesmore

sensible. In this case, eβ0�t is the proportional change in population size that

occurs when the population is zero and rainfall is average. This definition

allows us to relate our model to well-established theory; β0 is analogous to

the intrinsic rate of increase in the logistic equation.12

Once we have defined the intercept in a sensible way, the slope terms

are easily interpreted. The parameter β1 represents the strength of density

dependence, that is, the change in the per capita population growth rate

that occurs for each animal added to the population.13 Again relating our

model to classical theory, β1 = −(rmax/K), where K is the carrying capac-

ity, that is, the population size at which the long-term average population

11The identical form log(Nt) = log(Nt−1) + (β0 +β1Nt−1 + β2xt +β3Nt−1xt)�t might be

more familiar to ecologists accustomed to a general linear modeling framework.
12This might require a bit of explanation. Equation 1.2.1 can be rearranged to log(Nt/Nt−1)=

(β0 +β1Nt−1 +β2xt +β3Nt−1xt)�t. If we drop the β2xt and β3xtNt−1 terms and assume �t is
small, the resulting expression approximates 1/N · dN/dt= r− rN/K, where N is the population

size, r is the intrinsic rate of increase, and K is the carrying capacity — the long-term average

population size at which 1/N · dN/dt= 0. Thus, the portion of our model representing density

dependence is a version of the logistic equation in discrete time, also known as the Ricker equation,
where β0 = r, and β1 = r/K.

13You might be tempted to make the sign for β1 negative, because density dependence reduces

the per capita population growth rate as population size increases. There is a good reason to use

addition. When the model is fit to data, we want to estimate the sign and the value of β1 without

needing to “back transform” the sign. Always use addition in additive models that you will fit to

data.
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growth rate equals zero. The parameter β2 expresses the strength of the

effect of variation in rainfall, that is, the change in the per capita popula-

tion growth rate per unit deviation from the long-term mean. Finally, the

parameter β3 determines the magnitude of the effect of rainfall on the effect

of density.

Estimating the βs will inform the question we posed, but we don’t pretend

that they capture all the influences on wildebeest population dynamics. We

recognize that there are other processes, for example, predation, poaching,

and disease, that shape wildebeest numbers over time. We can acknowledge

these other processes exist without portraying them explicitly. Instead, we

lump these unmodeled effects into a single parameter, σ 2
p . The model of

the process for a population at time t including deterministic and stochastic

components is [
Nt|g (β,Nt−1, xt,�t) , σ

2
p

]
. (1.2.2)

1.2.2 Sampling Model
The wildebeest population was estimated14 on 20 occasions during 1961–

2008 using spatially replicated counts of animals on georectified aerial pho-

tographs arrayed along transects, with each photograph covering a known

area (Norton-Griffiths, 1973). For simplicity, we ignore the aspect of sam-

pling contributed by the transects and treat the photographs as if they were a

random sample from the area used by the population. Thus, we assume that

each photograph provided a statistically independent estimate of popula-

tion density calculated as the observed count divided by the area covered by

the photograph. The stochastic samplingmodel representing the relationship

between these observations and the true population size is[
ytj

∣∣∣∣ Nta , σ 2
s

]
, (1.2.3)

where ytj is the density of animals at year t on photograph j, and a is the

total area from which the sample of photographs was drawn — the area

used by the population we are modeling — which we assume to be a known

constant. Note that equation 1.2.3 implies that there is no bias in the esti-

mate of animal density on a given photograph, which is the assumption

made by the researchers who collected the data. Although this assumption is

14Portions of this time series have been published in Hilborn and Mangel (1997) and Mduma

et al. (1999). The most recent data were graciously provided by A.R.E. Sinclair, Ray Hilborn, and

Grant Hopcraft. We use these data later to illustrate making inference from a single model.
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reasonable for large animals counted in open habitat, we could obviate the

need for this assumption by modeling the animals that were present and not

observed.

As a purely hypothetical example, imagine that we fitted a sample of ani-

mals with high-resolution telemetry instruments that would allow us to know

whether each animal was within a photograph. Imagine also that we marked

them with highly visible neckbands to allow us to distinguish between ani-

mals that were fitted with instruments and those that were not. We could

use these observations to estimate the probability (ψ) that an animal truly

present was counted. In this case our combined observation and sampling

model would be [
ytj|ψntj, σ 2

o

]
︸ ︷︷ ︸
observationmodel

[
ntj

∣∣∣∣ Nta , σ 2
s

]
︸ ︷︷ ︸
samplingmodel

, (1.2.4)

where ntj are animals that are truly present on photograph j during year t,
and σ 2

o is the uncertainty associated with the estimate of ψ . We could also

deal explicitly with the likely cases in which it was not certain whether an

animal was on a sampled photograph.

To simplify the example and to exploit published data, wemake the heroic

assumption that rainfall at time t, xt, is measured without error; we are treat-

ing it as known, but we are not obliged to do so. We could develop sampling

models and observation models for the rainfall data in the same way we did

for the count data (i.e., eqs. 1.2.3 and 1.2.4).

1.2.3 Full Model
Combining the sampling model (eq. 1.2.3) and process model (eq. 1.2.2)

with models for the parameters, we obtain the foundation for a full Bayesian

analysis capable of estimating the parameters and the unobserved, true pop-

ulation size (fig. 1.2.1); however, work remains to be done. The full model

written thus far (fig. 1.2.1) applies to a single year of observations and a

single photograph, but, of course, we want to use all the years and all the

observations within a year. We have not yet chosen specific probability dis-

tributions for the stochastic components, and we must do so in a sensible

way. We may need to deal with correlation among photographs or among

annual estimates in the time series of data, and with errors in the estima-

tion of rainfall. We need to lay out a method for numerically estimating

the parameters and unobserved states. However, although tasks remain, all

proceed in a logical way from the foundation we have built (fig. 1.2.1). All
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ytj

σ2
pβ0, β1, β2, β3 σ2

s

NtNt−1

xt

⎡
⎢⎣Nt, Nt−1, β, σ2

p, σ2
s

unobserved

| ytj

observed

⎤
⎥⎦ ∝ ytj

Nt

a
, σ2

s

sampling model

×

Nt|g (β, Nt−1, xt

process model

, Δt) , σ2
p ×

[β0] [β1] [β2] [β3] σ2
p σ2

s

parameter models

Data

Process

Parameters

a

Figure 1.2.1. Hierarchical Bayesian model of the dynamics of the Serengeti

wildebeest population. The true population size at time t is modeled using the

deterministic model g(β,Nt−1, xt,�t) =Nt−1e
(β0+β1Nt−1+β2xt+β3Nt−1xt)�t, which

represents the effects of the true, unobserved population size (Nt); the dry season

rainfall (xt); and their interaction on population growth. The biological interpretation

of the parameters β are given in the text. The parameter σ 2
p represents all the effects on

wildebeest abundance not represented by the β. The ytj is a single observation of

population density obtained from one of j= 1, . . . , nt photographs chosen from

area = a km2. The parameter σ 2
s represents sampling error. The arrow diagram is a

Bayesian network, also called a directed acyclic graph, that can be used as a visual

guide for properly writing the full model. The solid lines show stochastic relationships.

The dashed lines show deterministic relationships, implying that the quantities at the

tails of the arrows are known without error. Instructions for drawing diagrams like this

one will be developed in subsequent chapters.

are manageable. Completing them allows us to reliably estimate unobserved

states, parameters, and derived quantities of interest.

1.3 What Lies Ahead?

One of the aims of this book is to enable ecologists to write equations

for models that allow data to speak informatively. Our goal is to provide

an understanding of principles needed to accomplish this vital task. We

will show how an enormous range of research problems in ecology can be
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decomposed into a set of sensible parts, as we have illustrated. The specific

example we offered no doubt raised more questions than it answered, which

was our intention. Notable among these questions might be the following:

1. Why does the Bayesian approach to analysis work?What are the prob-

abilistic foundations of inference from models like this one?

2. How does a Bayesian analysis relate to analyses based on maximum

likelihood?

3. How do we choose the appropriate statistical distributions for the

stochastic components of the model (fig. 1.2.1)?

4. How can we incorporate multiple sources of data in estimates of

parameters and states?

5. How do numerical methods allow us to implement the model and

obtain results? How do these methods work?

6. How can we evaluate the model to assure it adequately represents the

data?

7. What can we conclude about the operation of the ecological process

based on estimates of the parameters and states? What do we do about

derived quantities; for example, how do we make inferences about the

population size where growth rate is maximum?

8. What if we want to evaluate the strength of evidence for this model (eq.

1.2.1) relative to competing ones, for example, a model with nonlinear

density dependence?

9. How do we predict future states with honest estimates of uncertainty?

Answering these questions in a clear and accessible way for a broad range

of research problems in ecology is the goal of remainder of this book.
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